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Abstract

In a multiparty fair coin-flipping protocol, the parties output a common (close to) unbiased
bit, even when some corrupted parties try to bias the output. Cleve [STOC 1986] has shown
that in the case of dishonest majority (i.e., at least half of the parties can be corrupted), in any
m-round coin-flipping protocol the corrupted parties can bias the honest parties’ common output
bit by Ω( 1

m
). For more than two decades the best known coin-flipping protocols against dishonest

majority had bias Θ( ℓ
√

m
), where ℓ is the number of corrupted parties. This was changed by a

recent breakthrough result of Moran et al. [TCC 2009], who constructed an m-round, two-party
coin-flipping protocol with optimal bias Θ( 1

m
). In a subsequent work, Beimel et al. [Crypto

2010] extended this result to the multiparty case in which less than 2
3 of the parties can be

corrupted. Still for the case of 2
3 (or more) corrupted parties, the best known protocol had bias

Θ( ℓ
√

m
). In particular, this was the state of affairs for the natural three-party case.

We make a step towards eliminating the above gap, presenting an m-round, three-party

coin-flipping protocol, with bias O(log3
m)

m
. Our approach (which we also apply for the two-party

case) does not follow the “threshold round” paradigm used in the work of Moran et al. and
Beimel et al., but rather is a variation of the majority protocol of Cleve, used to obtain the
aforementioned Θ( ℓ

√

m
)-bias protocol.
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1 Introduction

In a multi-party fair coin-flipping (-tossing) protocol, the parties output a common (close to)
unbiased bit, even though some corrupted parties try to bias the output. More formally, such
protocols should satisfy the following two properties: first, when all parties are honest (i.e., follow
the prescribed protocol), they all output the same bit, and this bit is unbiased (i.e., uniform over
{0, 1}). Second, even when some parties are corrupted (i.e., collude and arbitrarily deviate from
the protocol), the remaining parties should still output the same bit, and this bit should not be
too biased (i.e., its distribution should be close to uniform over {0, 1}). We emphasize that, unlike
weaker variants of coin-flipping protocol known in the literature, the honest parties should output
a common bit, regardless of what the corrupted parties do. In particular, they are not allowed to
abort if a cheat was noticed.

When a majority of the parties are honest, efficient and completely fair coin-flipping protocols
are known as a special case of secure multi-party computation with an honest majority [13].1 When
an honest majority is not guaranteed, however, the situation is more complex.

Negative results. Cleve [17] showed that for any efficient two-party m-round coin-flipping pro-
tocol, there exists an efficient adversary to bias the output of the honest party by Θ(1/m), and
that the lower bound extends to the multi-party case via a simple reduction.

Positive results. Assuming one-way functions exist, Cleve [17] showed that a simple m-round
majority protocol can be used to derive a t-party coin-flipping protocol with bias Θ( ℓ√

m
) (against

dishonest majority), where ℓ is the number of corrupted parties. For more than two decades,
Cleve’s protocol was the best known fair coin-flipping protocol (without honest majority), under
any hardness assumption, and for any number of parties. In a recent breakthrough result, Moran
et al. [41] constructed an m-round, two-party coin-flipping protocol with optimal bias of Θ( 1

m ). The
result holds for any parameter m ∈ N, and under the assumption that oblivious transfer protocols
exist. In a subsequent work, Beimel et al. [10] extended the result of [41] for the multi-party case
in which less than 2

3 of the parties can be corrupted. More specifically, for any ℓ < 2
3 · t, they

presented an m-round, t-party protocol, with bias 22ℓ−t

m against (up to) ℓ corrupted parties.

Still for the case of 2
3 (or more) corrupted parties, the best known protocol was the Θ( ℓ√

m
)-bias

majority protocol of [17]. In particular, this was the state of affairs for the natural three-party case
(where two parties are corrupt).

1.1 Our Result

We present an almost-optimally fair, three-party coin-flipping protocol.

Theorem 1.1 (main theorem, informal). Assuming the existence of oblivious transfer protocols,2

then for any m ∈ N there exists an m-round, three-party coin-flipping protocol, with bias O(log3 m)
m

(against one, or two, corrupted parties).

1Throughout, we assume a broadcast channel is available to the parties. By [19], broadcast channel is necessary
for fair coin-flipping protocol secure against third, or more, corruptions.

2It is enough to assume the existence of a constant-round secure-with-abort protocol, which is a weaker assumption.
However, we chose to assume OT for simplifying the main theorem.
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That is, no efficient algorithm can makes the (expected) outcome of the protocol to deviate

from 1
2 by more than O(log3 m)

m . As a building block towards constructing our three-party protocol,
we present an alternative construction for two-party, almost-optimally fair coin-flipping protocols.
Our approach does not follow the “threshold round” paradigm used in [41, 10], but rather is a
variation of the aforementioned Θ( ℓ√

m
)-bias, coin-flipping protocol of [17].

1.2 Additional Related Work

Cleve and Impagliazzo [18] showed that in the fail-stop model,3 any two-party m-round coin-flipping
protocol has bias Ω( 1√

m
); adversaries in this model are computationally unbounded, but they must

follow the instructions of the protocol, except for being allowed to abort prematurely. Dachman-
Soled et al. [20] showed that the same holds for o(n/ log n)-round protocols in the random-oracle
model — the parties have oracle access to a uniformly chosen function over n bit strings.

There is a vast literature concerning coin-flipping protocols with weaker security guarantees.
Most notable among these are protocols that are secure with abort. According to this security
definition, if a cheat is detected or if one of the parties aborts, the remaining parties are not required
to output anything. This form of security is meaningful in many settings, and it is typically much
easier to achieve; assuming one-way functions exist, secure-with-abort protocols of negligible bias
are known to exist against any number of corrupted parties [15, 34, 42]. To a large extent, one-way
functions are also necessary for such coin-flipping protocols [14, 31, 36, 39].

Coin-flipping protocols were also studied in a variety of other models. Among these are collective
coin-flipping in the perfect information model : parties are computationally unbounded and all
communication is public [4, 12, 22, 44, 45], and protocols based on physical assumptions, such as
quantum computation [2, 5, 6] and tamper-evident seals [40].

Perfectly fair coin-flipping protocols (i.e., zero bias) are a special case of protocols for fair
secure function evaluation (SFE). Intuitively, the security of such protocols guarantees that when
the protocol terminates, either everyone receives the (correct) output of the functionality, or no
one does. While Cleve [17]’s result yields that some functions do not have fair SFE, it was recently
shown that many interesting function families do have (perfectly) fair SFE [29, 7, 8].

1.3 Our Techniques

The following is a high-level description of the ideas underlying our three-party fair coin flipping
protocol.4 We start by describing the two-party protocol of Moran et al. [41] (hereafter the MNS

protocol), and explain why natural extensions of their approach (such as the one used in [10]) fall
short when it comes to constructing three-party fair protocols. We next explain our new approach
for two-party protocols, and then extend this approach to three parties.

Throughout, we assume without loss of generality that if a corrupted party aborts in a given
round, it sends an abort message to all other parties at the end of this round (after seeing the
messages sent by the non-aborting parties). To keep the discussion simple, we focus on security
against polynomially bounded fail-stop adversaries — ones that follow the prescribed protocol, but

3In this model, the parties are assumed to have unbounded computation power, cannot deviate from the prescribed
protocol, but are allowed to prematurely abort their execution.

4We restrict the discussion to the intuitive game-base definition of fairness — the goal of the adversary is to make
the honest party to output some bit b with probability as further away from 1

2
as possible. Discission of the more

standard Real/Ideal definition of fairness, in which we prove our result, is given in Section 2.6.

2



might abort prematurely. Achieving this level of security is the heart of the matter, since (assuming
one-way functions exist) there exists a round-preserving reduction from protocols secure against
fail-stop adversaries into protocols of full-fledged security [26].5

1.3.1 The Two-Party MNS Protocol

For m ∈ N, the (2m)-round, two-party MNS protocol (P0,P1) is defined as follows.6 Following a
common paradigm for fair multi-party computations [10, 28, 38], the protocol starts by the two
parties using oblivious transfer (OT) to securely compute the following “share generating” random
function.

Algorithm 1.2 (share generating function SharesGen).

Input: Round parameter 1m.

Operation:

1. Uniformly sample c← {0, 1} and i∗ ← [m] (= {1, . . . ,m}).

2. For i = 1 to m, let

(a) (d0i , d
1
i )=

{
uniform sample from {0, 1}2, i < i∗ − 1
(c, c), otherwise.

(b) ci =

{
⊥, i < i∗

c, otherwise.

3. Split each of the 3m values d01, d
1
1, . . . , d

0
m, d1m, c1, . . . , cm into two “shares,” using a 2-out-of-2

secret sharing scheme, and output the two sets of shares.

Protocol 1.3 ((P0,P1)).

Common input: round parameter 1m.

Initial step: The parties securely compute SharesGen(1m), where each party gets one set of shares.

Main loop: For i = 1 to m, do

(a) P0 sends to P1 its share of d1i , and P1 sends to P0 its share of d0i .

• P0 reconstructs the value of d0i , and P1 reconstructs the value of d1i .

(b) Each party sends to the other party its share of ci.

• Both parties reconstruct the value of ci.

Output: The parties output ci, for the first i for which ci 6=⊥.
5Note that by restricting the parties to being fail-stop, we do not reduce the setting to the fail-stop model, since

the parties considered here are computationally bounded.
6The protocol described below is a close variant of the original MNS protocol, which serves our presentation better.

The difference is the addition of phase (b), in both the share generating function and the protocol, which does not
exists in the original protocol.
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Abort: If P0 aborts, party P1 outputs the value of d1i for the maximal i ∈ [m] for which it has
reconstructed this value. If there is no such i, P1 outputs a uniform bit. (The case that P1

aborts is analogously defined).

We start with few observations regarding the secure computation of SharesGen(1m) done in the
above protocol.

• The computation of SharesGen(1m) is not fair: the parties get their parts of the output (i.e.,
their shares) in an arbitrary manner. Specifically, the corrupted party might prematurely
abort after learning its part of the output, preventing the other party from getting its part.

• Since SharesGen(1m) is efficient, assuming OT protocols exist, an (unfair) secure computation
of SharesGen(1m) exists.

• Ignoring negligible terms (due to the imperfection of secure computation using OT), the
output of each party (when seen on its own) is a set of uniform strings. In particular, it
contains no information about the other party’s shares, or about the values of c and i∗.

By construction, a party outputs a uniform bit if the other party aborts before the end of the
secure computation phase. Hence, it makes no sense for a party to abort during this phase.

• Given the above observation, it is instructive to pretend that at the first step of the protocol,
the output of a random execution of SharesGen(1m) was given to the parties by an honest
dealer.

Note that in each round of the above protocol, both honest parties send their messages without
waiting for the other party’s message. Hence, the above protocol is symmetric with respect to the
parties’ role. However, since we assume no simultaneous channel (which would have trivialized the
whole question), the corrupted party can postpone sending its message until it gets the message of
the honest party, and then decide whether to send its message for this round or abort.

Security of the protocol. At least on the intuitive level, the security proof of the above protocol
is rather simple. Since the protocol is symmetric, we assume for concreteness that P0 is corrupted
and tries to bias the expected output of P1 away from 1

2 . The following random variables are
defined with respect to a random execution of (P0,P1): let V be the view of the corrupted P0, right
after sending the abort message, and let V − be the view V without this abort message. For a view
v, let val(v), the view value, be defined as the expected outcome of P1 conditioned that P0’s view
is v, assuming no further aborts (i.e., if P0 is not aborting in v, then it acts honestly till the end of
the protocol). It is not hard to verify that the bias obtained by P0 (toward 0 or 1) is exactly the
expected value of |val(V )− val(V −)|.7

It is also easy to see that by aborting in round (i, b) (i.e., phase (b) of round i), for some i ∈ [m],
party P0 gains nothing (i.e., val(V ) = val(V −)), where the (i, j)’th round of the execution stands
for the j’th step of the i’th loop in the execution. A slightly more complicated math yields that by
aborting in round (i, a), party P0 only gains Θ( 1

m ) bias. It follows that the maximal bias obtained
by a fail-stop strategy for P0 is Θ( 1

m).

7The expected value of
∣∣val(V )− val(V −)

∣∣ actually captures the security of the protocol in a stronger sense,
characterizing the so-called α-security of the protocol according to the Real/Ideal paradigm. See proof in Section 2.7.
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Fairness via defense. Let us present a different view of the MNS protocol. Consider a variant
of this protocol without the di’s. Namely, the parties reconstruct c1, . . . , cm one at a time, until
they reach ci 6=⊥. When an abort occurs, the remaining party outputs an unbiased coin if it has
not yet reconstructed c, and outputs c otherwise. It is easy to see that an aborting attacker can
bias the output of the other party in this degenerate variant by 1

4 ; that is, it simply waits until it
reconstructs c and then aborts for biasing the other party’s output towards 1− c.

The role of “defense” values (d0i , d
1
i ), . . . , (d

0
m, d1m) is to prevent such an attack; if a party aborts

after reconstructing c, the other party is guaranteed to output c as well. The problem is, however,
that the defense values themselves might cause a problem: a corrupted party might abort after
reconstructing its defense value for the i’th round (and not only after reconstructing ci). Indeed,
by aborting in these rounds, a corrupted party does gain a bias, but only Θ( 1

m ).

On extending the MNS protocol for the three-party case. We next explain why the ap-
proach of MNS does not seem to be useful for constructing fair, three-party coin-flipping protocols.

In a three-party fair coin-flipping protocol, one should deal with two, possibly non-simultaneous,
aborts. In particular, after P0 aborts, the remaining pair of parties {P1,P2} should interact in a two-
party protocol to agree on their common coin. Since one of {P1,P2} might be also corrupted, this
two-party protocol needs to be a fair coin-flipping protocol as well. Assuming P0 aborts in round
i, the expected outcome of this two-party protocol should be equal (up to an additive difference of
Θ( 1

m)) to the expected outcome of the three party protocol assuming no aborts, from P0’s point of
view, after getting the i’th round messages. Otherwise, P0, by aborting after seeing the messages
sent by {P1,P2} in this round, can bias the outcome of the other parties by more than Θ( 1

m).
Consider the following natural extension of MNS protocol to a three-party protocol. The value

of c1, . . . , cm are as in the two-party protocol (now shared between the three parties). The defense
values are not bits, but rather two vectors of shares for the two remaining parties (different shares
for each possible pair), to enable them to interact in some fair two-party coin-flipping protocol if
the third party aborts. Assume that in the i’th round of the “outer” three-party protocol, the value
of ci is one (i.e., ci = c = 1), and consider the two-party protocol executed by the remaining parties,
if a party aborts in this round. The outcome of the remaining party in the case of a premature
abort in this underlying two-party protocol should be also one. Otherwise, two corrupted parties
can mount the following two-phase attack: first aborting in the outer three-party protocol after
seeing ci = 1, and then prematurely aborting in the inner two-party protocol, knowing that the
other party will output something that is far from one. Now, assume that in the i’th round of
the “outer” three-party protocol, the value of ci is ⊥ (i.e., i < i∗), and consider again the two-
party protocol executed by the remaining parties if party aborts in this round. It is easy to see
that expected outcome of this two-party protocol should be close to 1

2 (i.e., unbiased). Thus, the
defense values, to be constructed by each party during the execution of this two-party protocol,
cannot all be of the same value.

But the above restrictions on the two-party protocol defense values, ruin the security of the outer
three-party protocol; in each round i, two corrupted (and thus colluding) parties can reconstruct
the whole two-party execution that they should engage in if the other (in this case, the honest)
party aborts in this round. By checking whether the defense values of this two-party execution are
all ones (indicating that c = 1), all zeros (indicating that c = 0), or mixed (indicating that ci =⊥),
they get enough information for biasing the output of the protocol by a constant value.

What fails the above three-party protocol, is that during its execution the expected outcome

5



of the protocol given a player’s view might change by a constant (say from 1
2 to 1). As we argued

above, the (long) defense values reconstructed before each round in the three-party protocol have
to contain many (i.e., m) samples drawn according to the value of the protocol at the end of the
round. It follows that two corrupted parties might extrapolate, at the beginning of such a round,
the value of protocol when this round ends, thus rendering the protocol insecure.

To conclude, due to the restrictions described above which comes from the large jump in the
game value of MNS, extending it into three-party protocol seems unlikely.

1.3.2 Our Two-Party Protocol

Given the above understanding, our first step is to construct a two-party coin-flipping protocol,
whose value only changes slightly (i.e., smoothly) between consecutive rounds. In the next section
we use a hiding variant of such a smooth coin-flipping protocol as a building block for constructing
an (almost) optimally fair three-party protocol.

Consider the Θ( 1√
m
)-bias coin-flipping protocol of Cleve [17]: in each round i ∈ [m], the parties

reconstruct the value of a coin ci ∈ {−1, 1}, and the final outcome is set to sign(
∑

i∈[m] ci). Since

the value of
∑

ci is close to being uniform over [−√m,
√
m], the value of the first coin c1 changes the

protocol’s value by Θ( 1√
m
). This sounds like a good start toward achieving a smooth coin-flipping

protocol.

The protocol. As in MNS protocol, the parties start by securely computing a share generating
function, and then use its outputs to slowly reconstruct the output of the protocol.

Let Ber(δ) be the Bernoulli distribution over {0, 1}, taking the value one with probability δ and
zero otherwise.

We next describe (a simplified variant of) our share generating function and use it to describe
our two-party protocol.

Algorithm 1.4 (share generating function TwoPartySharesGen).

Input: Round parameter 1m.

Operation:

1. For z ∈ {0, 1}, sample dz0 ← {0, 1}.

2. For i = 1 to m,

(a) Sample ci ← {−1, 1}.
(b) For z ∈ {0, 1}, sample dzi ← Ber(δi), for δi = Pr

[∑m
j=1 cj ≥ 0 | c1, . . . , ci

]
.8

3. Split each of the 3m values d01, d
1
1, . . . , d

0
m, d1m, c1, . . . , cm into two “shares”, using a 2-out-of-2

secret sharing scheme, to create two sets of shares: s#0 and s#1.

4. Output (d00, s
#0), (d10, s

#1).

Protocol 1.5 (π2 = (P2
0,P

2
1)).

8δi is the probability that the protocol’s output is one, given the value of the “coins” c1 . . . , ci (and assuming no
abort).
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Common input: round parameter 1m.

Initial step: The parties securely compute TwoPartySharesGen(1m). Let (di0, s
#i) be the local output

of P2
i .

Main loop: For i = 1 to m, do

(a) P2
0 sends to P2

1 its share of d1i , and P2
1 sends to P2

0 its share of d0i .

• P2
0 reconstructs the value of d0i , and P2

1 reconstructs the value of d1i .

(b) Each party sends to the other party its share of ci.

• Both parties reconstruct the value of ci.

Output: Both parties output one if
∑m

j=1 cj ≥ 0, and zero otherwise.

Abort: If P2
0 aborts, party P2

1 outputs the value of d1i , for the maximal i ∈ [m] for which it has
reconstructed this value (note that by construction such an i always exists).

The case that P2
1 aborts is analogously defined.

Namely, the parties interact in a majority protocol, where in the i’th round, they recon-
struct, in an unfair manner, the i’th coin (i.e., ci). If a party aborts, the remaining party out-
puts a defense value given to it by the honest dealer (implemented via the secure computation of
TwoPartySharesGen).

A few remarks are in place. First, we will only define the protocol for odd values of m. Hence,∑m
j=1 cj 6= 0, and the protocol’s output is a uniform bit when played by the honest parties. Second,

if P2
0 aborts in the first round, the party P2

1 could simply output a uniform bit. We make P2
0 output

d10, since this be useful when the two-party protocol will be later used as part of the three-party
protocol. Finally, one can define the above protocol without exposing the coins ci’s to the parties
(in this case, the honest parties output (d0m, d1m) as the final outcome). We do expose the coins to
make the analysis of the protocol easier to follow.

Security of the protocol. Note that the defense value given in round (i, a) (i.e., step a of the
i’th loop) is distributed according to the expected outcome of the protocol, conditioned on the
value of the coin to be given in round (i, b). These defense values make aborting in round (i, b), for
any value of i, harmless. So it is left to argue that aborting in round (i, a), for any value of i, is
not too harmful either. Intuitively, this holds since the defense value reconstructed in round (i, a)
is only a noisy signal about the value of ci.

Since the protocol is symmetric, we assume for concreteness that the corrupted party is P2
0.

Similar to the analysis of the MNS protocol sketched above, it suffices to bound the value of
|val(V )− val(V −)|.

Assume that P2
0 aborts in round (i, b). By construction, val(V −) = δi. Since, the defense of P2

1

in round (i, b) is sampled according to Ber(δi), it is also the case that val(V ) = δi.
Assume now that P2

0 aborts in round (i, a). By construction, val(V ) = δi−1. Note that V −

does contains some information about δi, i.e., a sample from Ber(δi), and thus val(V −) is typically
different from val(V ). Yet, since V − contains only a sample from Ber(δi), a noisy signal for the
actual value of δi, we manage to prove the following.

∣∣val(V )− val(V −)
∣∣ = E

[
(δi − δi−1)2

δi−1
| δi−1

]
(1)
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If P2
0 aborts in the first rounds, Equation (1) yields that |val(V )− val(V −)| = O( 1

m ) since by the
“smoothness” of the protocol (i.e., the value of the game does not change drastically between con-

secutive rounds) it follows that
∣∣∣ δi−δi−1

δi−1

∣∣∣ ∈ O( 1√
m
). The problem is, however, that with probability

Θ( 1√
m
), the sum of c1, . . . , cm−1 is exactly zero. Hence, with this probability, the final coin changes

the protocol’s value by 1
2 . Therefore, the bias obtained by P2

0 that just wait to the last round to
abort is Θ( 1√

m
).

We overcome the above problem by using a weighted majority variant of the protocol. In the
first round the parties reconstruct m-coins (in a single shot), reconstruct (m−1) coins in the second
round, and so on, until in the very last round only a single coin is reconstructed. Now the value
of
∑

ci (now each ci is an integer) is close to being uniform over [−m,m], and the last round
determines the outcome only with probability Θ( 1

m ) (versus Θ( 1√
m
) in the unweighted version).

Other rounds also enjoy a similar smoothness property. See Section 3 for more details.

1.3.3 Our Three-Party Protocol

We start by applying a generic approach, introduced by Beimel et al. [10], to try and extend our fair
two-party protocol into a three-party one. We explain why this approach falls short, and present
a variant of our two-party protocol for which the generic approach does yield the desired three-
party protocol. To keep the presentation simple, the two-party protocol we use is the non-weighted
variant of our two-party protocol (the actual implementation uses the aforementioned weighted
protocol).

In this first attempt protocol, the three parties interact in the following variant of the
two-party protocol π2 described in Protocol 1.5. The parties start by (securely) computing
ThreePartySharesGen(1m) defined below.

For δ ∈ [0, 1], let TwoPartySharesGen(1m, δ) be the following variant of TwoPartySharesGen

defined above: (1) the “coin” ci takes the value 1 with probability 1
2 + ε and −1 otherwise (and

not a uniform coin over {−1, 1} as in TwoPartySharesGen), where ε is set to the number such that
Pr [
∑m

i=1 ci ≥ 0] = δ; (2) the initial defense values d00 and d10 are sampled according to Ber(δ) (and
not Ber(12 ) as in TwoPartySharesGen).

Algorithm 1.6 (share generating function ThreePartySharesGen).

Input: Round parameter 1m.

Operation:

1. For i = 1 to m,

(a) Sample ci ← {−1, 1}.
(b) For each pair of the three parties, generate shares for an execution of π2, by calling

TwoPartySharesGen(1m, δi) for δi = Pr
[∑m

j=1 cj ≥ 0 | c1, . . . , ci
]
.

2. Split the values of c1, . . . , cm and the defense values into three set of shares using a 3-out-of-3
secret sharing scheme, and output the three sets.

Protocol 1.7 (π3 = (P3
0,P

3
1,P

3
2)).

Common input: round parameter 1m.
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Initial step: The parties securely compute ThreePartySharesGen(1m), where each party gets one set
of shares.

Main loop: For i = 1 to m, do

(a) Each party sends to the other parties its share of their defense values.

• Each pair (P3
z,P

3
z′) of the parties reconstructs a pair of two sets of shares dz,z

′

i =

((dz,z
′

i )z, (d
z,z′

i )z′), to serve as input for an execution of the two-party protocol if the

third party aborts (i.e., P3
z reconstructs (dz,z

′

i )z, and P3
z′ reconstructs (dz,z

′

i )z′).

(b) Each party sends the other parties its share of ci.

• All parties reconstruct the value of ci.

Output: The parties output one if
∑m

j=1 cj ≥ 0, and zero otherwise.

Abort: • If P3
0 aborts, the parties P3

1 and P3
2 use the shares of d1,2i , for the maximal i ∈ [m] that

has been reconstructed, to interact in π2 (starting right after the share reconstruction
phase). If no such i exists, the parties interact in the (full, unbiased) two-party protocol
π2.

The case that P3
1 or P3

2 aborts is analogously defined.

• If two parties abort in the same round, the remaining party acts as if one party has only
aborted in the very beginning of the two-party protocol.

Similar to the analysis for the two-party protocol sketched above, it suffices to show that the
defense values reconstructed by a pair of corrupted parties in round (i, a) (i.e., the inputs for
the two-party protocols) do not give too much information about the value of δi — the expected
outcome of the three-party protocol conditioned on the coins reconstructed at round (i, b). Note that
once two corrupted parties are given these defense values, which happens in round (i, a), they can
immediately reconstruct the whole two-party execution induced by them. This two-party execution
effectively contains Θ(m) independent samples from Ber(δi): one sample is given explicitly as the
final output of the execution, and the value of 2m additional samples can be extrapolated from the
2m defense values given to the two parties. Many such independent samples can be used to reveal
the value of δi just by looking at the sum of those 2m samples, and guess its value according to
it.9 Hence, in round (i, a), two corrupted parties can rush and use the above information to bias
the outcome of the three-party protocol by Θ(|δi − δi−1|) ∈ Ω( 1√

m
).

We solve this issue using a hiding variant of the two-party shares generating function — a
function that leaks only limited information about the value of δi. See details in Section 3.

1.4 Open Problems

The existence of an optimally fair three-party coin-flipping protocol (without the poly(logm) factor)
is still an interesting open question. A more fundamental question is whether there exist fair coin-
flipping protocols for more than three parties (against any number of corrupted parties). A question

9This can be done by the following process: If the sum is greater than 2m · δi−1, guess that ci = 1. Otherwise,
guess that ci = −1. Since |δi − δi−1| ∈ Ω( 1√

m
), it follows by Hoeffding inequality [35] that the guess is good with

probability 1
2
+ Θ(1). Similarly, it can be shown that the same problem also holds in the weighted variant of the

protocol which mentioned in the security proof of Protocol 1.5
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of a larger scope, is to find 1/m-fair protocol for other many-party functionality, as done by Gordon
and Katz [27] for two-party functionalities. In particular, can one harness our three-party protocol
for this aim.

Finally, some of the proofs we give for bounding the values of the Binomial games, which
are in sense equivalent to bounding the bias of our coin-flipping protocols, are long and tedious.
Finding simpler proofs would be a good service, and might yield tighter bounds and increase our
understanding of these protocols.

Paper Organization

General notations and definitions used throughout the paper are given in Section 2. We also state
there (Section 2.7.1) a new game-based definition of fair coin-flipping protocols, which is equivalent
to the standard real/ideal definition. Our coin-flipping protocols, along with their security proofs,
are given in Section 3. The security proofs of Section 3 use bounds on the value of several types
of online-binomial games, these bounds are proven in Section 4. Missing proofs can be found in
Appendix A.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables and functions, lowercase
for values, boldface for vectors and capital boldface for matrices. All logarithms considered here are
in base two. For a ∈ R and b ≥ 0, let a± b stand for the interval [a− b, a+ b]. Given sets S1, . . . ,Sk
and k-input function f , let f(S1, . . . ,Sk) := {f(x1, . . . , xj) : xi ∈ Si}, e.g., f(1± 0.1) = {f(x) : x ∈
[.9, 1.1]}. For n ∈ N, let [n] := {1, . . . , n} and (n) := {0, . . . , n}. Given a vector v ∈ {−1, 1}∗, let
w(v) :=

∑
i∈[|v|] vi. Given a vector v ∈ {−1, 1}∗ and a set of indexes I ⊆ [|v|], let vI = (vi1 , . . . , vi|I|)

where i1, . . . , i|I| are the ordered elements of I. We let the XOR of two integers, stands for the
bitwise XOR of their bits.

Let poly denote the set all polynomials, ppt denote for probabilistic polynomial time, and
pptm denote a ppt algorithm (Turing machine). A function ν : N → [0, 1] is negligible, denoted
ν(n) = neg(n), if ν(n) < 1/p(n) for every p ∈ poly and large enough n.

Given a distribution D, we write x← D to indicate that x is selected according to D. Similarly,
given a random variable X, we write x← X to indicate that x is selected according to X. Given a
finite set S, we let s← S denote that s is selected according to the uniform distribution on S. The
support of a distribution D over a finite set U , denoted Supp(D), is defined as {u ∈ U : D(u) > 0}.
The statistical distance of two distributions P and Q over a finite set U , denoted as SD(P,Q), is
defined as maxS⊆U |P (S)−Q(S)| = 1

2

∑
u∈U |P (u)−Q(u)|.

For δ ∈ [0, 1], let Ber(δ) be the Bernoulli probability distribution over {0, 1}, taking the value 1
with probability δ and 0 otherwise. For ε ∈ [−1, 1], let Cε be the Bernoulli probability distribution
over {−1, 1}, taking the value 1 with probability 1

2(1 + ε) and −1 otherwise.10 For n ∈ N and
ε ∈ [−1, 1], let Cn,ε be the binomial distribution induced by the sum of n independent random

variables, each distributed according to Cε. For n ∈ N, ε ∈ [−1, 1] and k ∈ Z, let Ĉn,ε(k) :=

10Notice the slight change in notation comparing to the those used in the introduction.
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Prx←Cn,ε [x ≥ k] =
∑n

t=k Cn,ε(t). For n ∈ N and δ ∈ [0, 1], let Ĉ−1n (δ) be the value ε ∈ [−1, 1] with
Ĉn,ε(0) = δ.

For n ∈ N, ℓ ∈ [n] and p ∈ {−n, . . . , n}, define the hypergeometric probability distribution
HGn,p,ℓ by HGn,p,ℓ(k) := PrI [w(vI) = k], where I is an ℓ-size set uniformly chosen from [n] and

v ∈ {−1, 1}n with w(v) = p. Let ĤGn,p,ℓ(k) := Prx←HGn,p,ℓ
[x ≥ k] =

∑ℓ
t=kHGn,p,ℓ(t).

Let Φ: R 7→ (0, 1) be the cumulative distribution function of the standard normal distribution,

defined by Φ(x) := 1√
2π

∫∞
x e−

t2

2 dt.

Finally, for n ∈ N and i ∈ [n], let ℓn(i) := n+ 1− i and sumn(i) :=
∑n

j=i ℓn(j).
We summarize the different notations used throughout the paper in the following tables.

Table 1: Basic Functions.

Definition Input Range Output value

[n] n ∈ N {1, . . . , n}
(n) n ∈ N {0, . . . , n}
ℓn(i) n ∈ N, i ∈ [n] n+ 1− i

sumn(i) n ∈ N, i ∈ [n]
∑n

j=i ℓn(j)

Φ(x) x ∈ R 1√
2π

∫∞
x e−

t2

2 dt

w(v) v ∈ {−1, 1}∗ ∑
i∈I vi

vI v ∈ {−1, 1}∗, I ⊆ [|v|] and i1, . . . , i|I| are the ordered elemets of I (vi1 , . . . , vi|I|)

SD(P,Q) distributions P and Q over a finite set U 1
2

∑
u∈U |P (u)−Q(u)|

Supp(D) distributions D over a finite set U {u ∈ U : D(u) > 0}
a± b a ∈ R, b ≥ 0 [a− b, a+ b]

11



Table 2: Distributions.

Distribution Input Range Description

Ber(δ) δ ∈ [0, 1] 1 with probability δ and 0 otherwise.

Cε ε ∈ [−1, 1] 1 with probability 1
2 (1 + ε) and −1 otherwise

Cn,ε n ∈ N, ε ∈ [−1, 1] sum of n independent Cε random variables

HGn,p,ℓ n ∈ N, p ∈ {−n, . . . , n}, ℓ ∈ [n] The value of w(vI) where I is an ℓ-size set uniformly
chosen from [n] and v ∈ {−1, 1}n with w(v) = p

Table 3: Other Functions.

Definition Input Range Output value

Cn,ε(k) n ∈ N, ε ∈ [−1, 1], k ∈ Z Prx←Cn,ε [x = k]

Ĉn,ε(k) n ∈ N, ε ∈ [−1, 1], k ∈ Z Prx←Cn,ε [x ≥ k]

Ĉ−1n (δ) n ∈ N, δ ∈ [0, 1] The value ε ∈ [−1, 1] with Ĉn,ε(0) = δ

HGn,p,ℓ(k) n ∈ N, p ∈ {−n, . . . , n}, ℓ ∈ [n], k ∈ Z Prx←HGn,p,ℓ
[x = k]

ĤGn,p,ℓ(k) n ∈ N, p ∈ {−n, . . . , n}, ℓ ∈ [n], k ∈ Z Prx←HGn,p,ℓ
[x ≥ k]

2.2 Basic Inequalities

The following proposition is proved in Appendix A.1.

Proposition 2.1. Let n ∈ N, α > 0, k ∈ [n] and let {pj}nj=k be a set of non-negative numbers such

that
∑n

j=i pj ≤ α ·(n+1− i) for every i ∈ {k, k+1, . . . , n}. Then
∑n

j=k
pj

(n+1−j) ≤ α ·∑n
j=k

1
(n+1−j) .

2.3 Facts About the Binomial Distribution

Fact 2.2 (Hoeffding’s inequality for {−1, 1}). Let n, t ∈ N and ε ∈ [−1, 1]. Then

Prx←Cn,ε [|x− εn| ≥ t] ≤ 2e−
t2

2n .

Proof. Immediately follows by [35]. �

Fact 2.3. Let n ∈ N and ε ∈ [− 1√
n
, 1√

n
]. Then Ex←Cn,ε

[
x2
]
≤ 2n and Ex←Cn,ε [|x|] ≤

√
2n.

Proof. A simple calculation yields that Ex←Cn,ε

[
x2
]
= n(1 − ε2) + ε2n2, which is smaller than 2n

by the bound on ε. The second bound holds since Ex←Cn,ε [|x|] ≤
√

Ex←Cn,ε [x
2]. �

The following propositions are proved in Appendix A.2.

Proposition 2.4. Let n ∈ N, t ∈ Z and ε ∈ [−1, 1] be such that t ∈ Supp(Cn,ε), |t| ≤ n
3
5 and

|ε| ≤ n−
2
5 . Then

Cn,ε(t) ∈ (1± error) ·
√

2

π
· 1√

n
· e−

(t−εn)2

2n ,
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for error = ξ · (ε2 |t|+ 1
n + |t|3

n2 + ε4n) and a universal constant ξ.

Proposition 2.5. Let n ∈ N, t, x, x′ ∈ Z, ε ∈ [−1, 1] and λ > 0 be such that t−x, t−x′ ∈ Supp(Cn,ε),
|x| , |x′| , |t| ≤ λ · √n log n and |ε| ≤ λ ·

√
logn
n , then

Cn,ε(t− x′)
Cn,ε(t− x)

∈ (1± error) · exp
(−2 · (t− εn) · x+ x2 + 2 · (t− εn) · x′ − x′2

2n

)
,

for error = ϕ(λ) · log1.5 n√
n

and a universal function ϕ.

Proposition 2.6. Let n ∈ N, k, k′ ∈ Z and ε ∈ [−1, 1], where n is larger than a universal constant,

|k| , |k′| ≤ n
3
5 and |ε| ≤ n−

2
5 . Then

∣∣∣Ĉn,ε(k)− Ĉn,ε(k′)
∣∣∣ ≤ |k − k′|√

n
.

Proposition 2.7. Let n, n′ ∈ N, k ∈ Z, ε ∈ [−1, 1] and λ > 0 be such that n ≤ n′, |k| ≤ λ·√n log n,

|ε| ≤ λ ·
√

logn
n , and let δ = Ĉn,ε(k). Then

Ĉ−1n′ (δ) ∈
εn − k√
n · n′

± error,

for error = ϕ(λ) · log1.5 n√
n·n′ and a universal function ϕ.

Proposition 2.8. Let n ∈ N, integer i ∈ [n −
⌊
log2.5 n

⌋
], x, β, β′, α, α′ ∈ Z, ε ∈

[−1, 1], S ⊆ Z and λ > 0 such that |α| , |α′| ≤
√

λ · sumn(i) · log n, |β| , |β′| ≤ 1, S ⊆
[−
√

λ · ℓn(i) · log n,
√

λ · ℓn(i) · log n], x ∈ S, |ε| ≤
√

λ · logn
sumn(i)

and Ex′←Cℓn(i),ε|x′∈S [|x′|] ≤
Ex′←Cℓn(i),ε

[|x′|]. Then

E
x′←Cℓn(i),ε|x′∈S

[
exp

(
α · x+ β · x2 + α′ · x′ + β′ · x′2

sumn(i+ 1)

)]
∈ 1± ϕ(λ) ·

√
log n

ℓn(i)

(
1 +

|x|√
ℓn(i)

)
.

for a universal function ϕ.

2.4 Facts About the Hypergeometric Distribution

Fact 2.9 (Hoeffding’s inequality for hypergeometric distribution). Let ℓ ≤ n ∈ N, and p ∈ Z with
|p| ≤ n. Then

Prx←HGn,p,ℓ
[|x− µ| ≥ t] ≤ e−

t2

2ℓ ,

for µ = Ex←HGn,p,ℓ
[x] = ℓ·p

n .

Proof. Immediately follows by [46, Equations (10),(14)]. �

The following proposition is proved in Appendix A.3.
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Proposition 2.10. Let n ∈ N, p, t ∈ Z be such that |p| , |t| ≤ n
3
5 and t ∈ Supp(HG2n,p,n). Then

HG2n,p,n(t) ∈ (1± error) · 2√
π · n · e

− (t− p
2 )2

n ,

for error = ξ · (n+|p|
3+|t|3
n2 ) and a universal constant ξ.

Proposition 2.11. Let n ∈ N, p, t, x, x′ ∈ Z and λ > 0 be such that t− x, t− x′ ∈ Supp(HG2n,p,n)
and |p| , |t| , |x| , |x′| ≤ λ · √n log n. Then

HG2n,p,n(t− x′)
HG2n,p,n(t− x)

∈ (1± error) · exp
(−2(t− p

2 )x+ x2 + 2(t− p
2)x
′ − x′2

n

)
,

for error = ϕ(λ) · log1.5 n√
n

and a universal function ϕ.

2.5 Multi-Party Protocols

The following discussion is restricted to no private input protocols (such restricted protocols suffice
for our needs).

A t-party protocol is defined using t Turing Machines (TMs) P1, . . . ,Pt, having the security
parameter 1κ as their common input. In each round, the parties broadcast and receive messages
on a broadcast channel. At the end of protocol, each party outputs some binary string.

The parties communicate in a synchronous network, using only a broadcast channel: when a
party broadcasts a message, all other parties see the same message. This ensures some consistency
between the information the parties have. There are no private channels and all the parties see
all the messages, and can identify their sender. We do not assume simultaneous broadcast. It
follows that in each round, some parties might hear the messages sent by the other parties before
broadcasting their messages. We assume that if a party aborts, it first broadcasts the message
Abort to the other parties, and without loss of generality only does so at the end of a round in
which it is supposed to send a message. A protocol is efficient, if its parties are pptm, and the
protocol’s number of rounds is a computable function of the security parameter.

This work focuses on efficient protocols, and on malicious, static ppt adversaries for such
protocols. An adversary is allowed to corrupt some subset of the parties; before the beginning
of the protocol, the adversary corrupts a subset of the parties that from now on may arbitrarily
deviate from the protocol. Thereafter, the adversary sees the messages sent to the corrupted parties
and controls their messages. We also consider the so called fail-stop adversaries. Such adversaries
follow the prescribed protocol, but might abort prematurely. Finally, the honest parties follow the
instructions of the protocol to its completion.

2.6 The Real vs. Ideal Paradigm

The security of multi-party computation protocols is defined using the real vs. ideal paradigm
[16, 24]. In this paradigm, the real-world model, in which protocols is executed is compared to
an ideal model for executing the task at hand. The latter model involves a trusted party whose
functionality captures the security requirements of the task. The security of the real-world protocol
is argued by showing that it “emulates” the ideal-world protocol, in the following sense: for any
real-life adversary A, there exists an ideal-model adversary (also known as simulator) A such that
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the global output of an execution of the protocol with A in the real-world model is distributed
similarly to the global output of running A in the ideal model. The following discussion is restricted
to random, no-input functionalities. In addition, to keep the presentation simple, we limit our
attention to uniform adversaries.11

The Real Model. Let π be an t-party protocol and let A be an adversary controlling a subset
C ⊆ [t] of the parties. Let REALπ,A,C(κ) denote the output of A (i.e., without loss of generality its
view: its random input and the messages it received) and the outputs of the honest parties, in a
random execution of π on common input 1κ.

Recall that an adversary is fail stop, if until they abort, the parties in its control follow the
prescribed protocol (in particular, they property toss their private random coins). We call an
execution of π with such a fail-stop adversary, a fail-stop execution.

The Ideal Model. Let f be a t-output functionality. If f gets a security parameter (given in
unary), as its first input, let fκ(·) = f(1κ, ·). Otherwise, let fκ = f .

An ideal execution of f with respect to an adversary A controlling a subset C ⊆ [t] of the
“parties” and a security parameter 1κ, denoted IDEALf,A,C(κ), is the output of the adversary A
and that of the trusted party, in the following experiment.

Experiment 2.12.

1. The trusted party sets (y1, . . . , yt) = fκ(X), where X is a uniform element in the domain of
fκ, and sends {yi}i∈C to A(1κ).

2. A(1κ) sends the message Continue/ Abort to the trusted party, and locally outputs some value.

3. The trusted party outputs {oi}i∈[t]\C , for oi being yi if A instructs Continue, and ⊥ otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An adversary A is non-aborting, if it never sends the Abort message.

2.6.1 α-Secure Computation

The following definitions adopts the notion of α-secure computation [11, 27, 38] for our restricted
settings.

Definition 2.13 (α-secure computation). An efficient t-party protocol π computes a t-output func-
tionality f in a α-secure manner [resp., against fail-stop adversaries], if for every C ( [t] and
every [resp., fail-stop] ppt adversary A controlling the parties indexed by C,12 there exists a ppt A
controlling the same parties, such that

SD (REALπ,A,C(κ), IDEALf,A,C(κ)) ≤ α(κ),

for large enough κ.
A protocol securely compute a functionality f , if it computes f in a neg(κ)-secure manner.
The protocol π computes f in a simultaneous α-secure manner, if the above is achieved by a

non-aborting A.
11All results stated in this paper, straightforwardly extend to the non-uniform settings.
12The requirement that C is a strict subset of [t], is merely for notational convinced.
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Note that being simultaneous α-secure is a very strong requirement, as it dictates that the
cheating real adversary has no way to prevent the honest parties from getting their part of the
output, and this should be achieved with no simultaneous broadcast mechanism.

2.7 Fair Coin-Flipping Protocols

Definition 2.14 (α-fair coin-flipping). For t ∈ N let CoinFlipt be the t-output functionality from
{0, 1} to {0, 1}t, defined by CoinFlipt(b) = b . . . b (t times). A t-party protocol π is α-fair coin-flipping
protocol, if it computes CoinFlipt in a simultaneous α-secure manner.

2.7.1 Proving Fairness

The following lemma reduces the task of proving fairness of a coin-flipping protocol, against fail-
stop adversaries, to proving the protocol is correct: the honest parties always output the same
bit, and this bit is uniform in an all honest execution, and to proving the protocol is unbiased: a
fail-stop adversary cannot bias the output of the honest parties by too much.

Definition 2.15 (correct coin-flipping protocols). A protocol is a correct coin flipping, if

• When interacting with an fails-stop adversary controlling a subset of the parties, the honest
parties always output the same bit, and

• The common output in a random honest execution of π, is uniform over {0, 1}.
Given a partial view of a fail-stop adversary, we are interesting in the expected outcome of the

parties, conditioned on this and the adversary making no further aborts.

Definition 2.16 (view value). Let π be a protocol in which the honest parties always output the
same bit value. For a partial view v of the parties in a fail-stop execution of π, let Cπ(v) denote the
parties’ full view in an honest execution of π conditioned on v (i.e., all parties that do not abort in
v act honestly in Cπ(v)). Let valπ(v) = Ev′←Cπ(v) [out(v

′)], where out(v′) is the common output of
the non-aborting parties in v′.

Finally, a protocol is unbiased, if no fail-stop adversary can bias the common output of the
honest parties by too much.

Definition 2.17 (α-unbiased coin-flipping protocols). A t-party, m-round protocol π is α-unbiased,
if the following holds for every fail-stop adversary A controlling the parties indexed by a subset
C ⊂ [t]. Let V be the view of the corrupted parties controlled by A in a random execution of π, and
let Ij be the index of the j’th round in which A sent an abort message (set to m + 1, if no such
round). Let Vi be the prefix of V at the end of the i’th round, letting V0 being the empty view, and
let V −i be the prefix of Vi with the i’th round abort messages (if any) removed. Then

∣∣∣∣∣∣
E
V


∑

j∈|C|
val(VIj)− val(V −Ij )



∣∣∣∣∣∣
≤ α,

where val = valπ is according to Definition 2.16.

The following is an alternative characterization of fair coin-flipping protocols (against fail-stop
adversaries).
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Lemma 2.18. Let π be a correct, α-unbiased coin-flipping protocol with α(κ) ≤ 1
2 − 1

p(κ) , for some

p ∈ poly, then π is a (α(κ) + neg(κ))-secure coin-flipping protocol against fail-stop adversaries.

Proof. Let A be a ppt fail-stop adversary controlling a subset C ( [t] of the parties. The ideal-world
adversary A is defined as follows.

Algorithm 2.19 (A).

Input: 1κ.

Operation: Upon receiving {yi = b}i∈C from the trusted party, for some b ∈ {0, 1}, do:
1. Keep sampling uniformly at random coins for the parties of π and for A, on security parameter

κ, until the honest parties’ common output in the resulting execution is b. Abort after κ · p(κ)
failed attempts.

2. Output A’s output in the above sampled execution.

Let Dκ be the distribution of the honest parities common output, in a random execution of
π(1κ), in which A controls the parties indexed by C. Assume for a moment that the trusted party
chooses its output on security parameter κ, according toDκ (and not uniformly at random). Assume
further that A keeps sampling in Step 1 until good coins are found. Under these assumptions, it
is immediate that A is a perfect ideal variant simulator for A, i.e., REALπ,A,C(κ) ≡ IDEALf,A,C(κ)
for every κ. We complete the proof showing that SD(Dκ, U) ≤ α(κ), where U is the uniform
distribution over {0, 1}. This yields that SD (REALπ,A,C(κ), IDEALf,A,C(κ)) ≤ α(κ) assuming no
abort in Step 1. Since, by assumption, α(κ) ≤ 1

2 − 1
p(κ) , such aborts happens only with negligible

probability, it will follow that SD (REALπ,A,C(κ), IDEALf,A,C(κ)) ≤ α(κ) + neg(κ).
Let val, V , Vi, V −i and Ij be as in Definition 2.17 with respect to algorithm A, sub-

set C and protocol π. We prove by induction on ℓ ∈ |C| that E [val(VIℓ)] = 1
2 + βℓ, for

βℓ =
∑

j∈[ℓ]E
[
val(VIj)− val(V −Ij )

]
. Since no abort occurs after the |C|’th aborting round, it fol-

lows that E [val(V )] = 1
2 + β|C|. Since π is α-unbiased, it follows that E [val(V )] ∈ [12 ± α(κ)], and

therefore SD(Dκ, U) ≤ α(κ).
The base case (i.e., ℓ = 0) holds by the correctness of π. Assume for 0 ≤ ℓ < |C|. Since no

additional aborts messages were sent in V −Iℓ+1
beside the ones sent VIℓ , it holds that

E
[
val(V −Iℓ+1

)
]
= E [val(VIℓ)] (2)

It follows that

E
[
val(VIℓ+1

)
]
= E

[
val(V −Iℓ+1

)
]
+E

[
val(VIℓ+1

)− val(V −Iℓ+1
)
]

= E [val(VIℓ)] + E
[
val(VIℓ+1

)− val(V −Iℓ+1
)
]

=


1

2
+
∑

j∈[ℓ]
E
[
val(VIj)− val(V −Ij )

]

+ E

[
val(VIℓ+1

)− val(V −Iℓ+1
)
]

=
1

2
+

∑

j∈[ℓ+1]

E
[
val(VIj )− val(V −Ij )

]
.

The second equality holds by Equation (2) and the third one by the induction hypothesis. �
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2.8 Oblivious Transfer

Definition 2.20. The
(
1
2

)
oblivious transfer (OT for short) functionality, is the two-output func-

tionality f over {0, 1}3, defined by f(σ0, σ1, i) = ((σ0, σ1), (σi, i)).

Protocols the securely compute OT, are known under several hardness assumptions (cf., [3, 21,
23, 30, 37, 43]).

2.9 f-Hybrid Model

Let f be a t-output functionality. The f -hybrid model is identical to the real model of compu-
tation discussed above, but in addition, each t-size subset of the parties involved, has access to a
trusted party realizing f . It is important to emphasize that the trusted party realizes f in a non-
simultaneous manner: it sends a random output of f to the parties in an arbitrary order. When
a party gets its part of the output, it instructs the trusted party to either continue sending the
output to the other parties, or to send them the abort symbol (i.e., the trusted party “implements”
f in a perfect non-simultaneous manner).

All notions given in Sections 2.6 and 2.7 naturally extend to the f -hybrid model, for any
functionality f . In addition, the proof of Lemma 2.18 straightforwardly extends to this model.

We make use of the following known fact.

Fact 2.21. Let f be a polynomial-time computable functionality, and assume there exists a k ∈
O(1)-party, m-round, α-fair coin-flipping protocol in the f -hybrid model, making at most t calls to
f . Assuming there exist protocols for securely computing OT, then there exists a k-party, (O(t)+m)-
round, (α+ neg)-fair coin-flipping protocol (in the real world).

Proof. Since f is a polynomial-time computable and since we assume the existence of a protocol
for securely computing OT, there exists a constant-round protocol πf for securely computing f :
a constant-round protocol for f that is secure against semi-honest adversaries follows by Beaver
et al. [9] (assuming OT), and the latter protocol can be compiled into a constant-round protocol
that securely computes f , against arbitrary malicious adversaries, using the techniques of Goldreich
et al. [25] (assuming one-way functions, that follows by the existence of OT). Let π be a k-party,
m-round, α-fair coin-flipping protocol in the f -hybrid model. Canetti [16] yields that by replacing
the trusted party for computing f used in π with the protocol πf , we get an (O(t) + m)-round,
(α+ neg)-fair coin-flipping protocol. �

3 The Protocols

The following protocols follows the high-level description given in Section 1.3.

3.1 Two-Party Protocol

We start with defining a coin-flipping protocol whose parties get (correlated) shares as input, then
describe the functionality for generating these shares, and finally explain how to combine the two
into a (no input) coin-flipping protocol.
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3.1.1 The Basic Two-Party Protocol

Protocol 3.1 (Π2
m = (P2

0,P
2
1)).

Common input: round parameter 1m.

P2
z’s input: c#z ∈ {0, 1}m×⌈logm⌉ and d0,#z,d1,#z ∈ {0, 1}m+1.

Protocol’s description:

1. For i = 1 to m:

(a) P2
0 sends d1,#0[i] to P2

1, and P2
1 sends d0,#1[i] to P2

0.

• For z ∈ {0, 1}, party P2
z set dzi = dz,#0[i]⊕ dz,#1[i].

(b) P2
0 sends c#0[i] to P2

1, and P2
1 sends c#1[i] to P2

0.

• Both parties set ci = c#0[i]⊕ c#1[i].

2. Both parties output 1 if
∑m

i=1 ci ≥ 0, and 0 otherwise.

Abort: If the other party aborts, the remaining party P2
z outputs dzi , for the maximal i ∈ [m] for

which it has reconstructed this value. In case no such i exists, P2
z outputs dz,#z[m+ 1].

To keep the above description symmetric, in Step 1a and in Step 1b, both parties are supposed
to send messages. This is merely for notational convince, and one might assume that the parties
send their messages in an arbitrary order.

3.1.2 Two-Party Shares Generator

We now define the share-generating function of our two-party coin-flipping protocol. For future use,
we describe a parameterized variant of this function that gets, in addition to the round parameter,
also the desired expected outcome of the protocol. Our two-party protocol will call this function
with expected outcome 1

2 .
Recall that Ber(δ) is the Bernoulli probability distribution over {0, 1}, taking the value 1 with

probability δ and 0 otherwise, that Cε is the Bernoulli probability distribution over {−1, 1}, taking
the value 1 with probability 1

2(1 + ε) and −1 otherwise,13 that Cn,ε(k) = Pr [
∑n

i=1 xi = k], for xi’s

that are i.i.d according to Cε, and that Ĉn,ε(k) = Prx←Cn,ε [x ≥ k]. Also recall that Ĉ−1n (δ) is the

value ε ∈ [−1, 1] with Ĉn,ε(0) = δ, and that ℓn(i) = n + 1 − i and sumn(i) =
∑n

j=i ℓn(j). Finally,
for z ∈ {0, 1} let z = z + 1 mod 2.

Algorithm 3.2 (TwoPartySharesGen).

Input: round parameter 1m and δ ∈ [0, 1].

Operation:

1. For z ∈ {0, 1}: sample dz,#z
m+1 ← Ber(δ). Set dz,#z

m+1 arbitrarily.

2. Let ε = Ĉ−1
summ(1)(δ).

14

13Notice the slight change in notation compared to those used in the introduction.
14Note that Ĉ−1

summ(1)(
1
2
) = 0 if summ(1) is odd.
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3. For i = 1 to m:

(a) Sample ci ← Cℓm(i),ε.

(b) Sample c#0
i ← {0, 1}⌈logm⌉ and set c#1

i = ci ⊕ c#0
i .

(c) For z ∈ {0, 1}:
i. Sample dzi ← Ber(Ĉsumm(i+1),ε(−

∑i
j=1 cj)).

ii. Sample dz,#0
i ← {0, 1}, and set dz,#1

i = dzi ⊕ dz,#0
i .

4. Output (s#0, s#1), where s#z = (c#z,d0,#z,d1,#z), for c#z = (c#z
1 , . . . , c#z

m ) and dz,#z
′
=

(dz,#z′
1 , . . . , dz,#z′

m+1 ).

3.1.3 The Final Two-Party Protocol

For m ∈ N, our two-party, (2m)-round, O(log3 m)
m -fair coin-flipping protocol Π̂2

m, is defined as follows.

Protocol 3.3 (Π̂2
m = (P̂2

0, P̂
2
1)).

Oracle: an oracle õ computing TwoPartySharesGen 1
2
= TwoPartySharesGen(·, 12 ).

Common input: round parameter 1m.

Protocol’s description:

1. The two parties use the oracle õ to compute TwoPartySharesGen 1
2
(1m). Let s0 and s1 be the

outputs of P̂2
0, and P̂2

1 respectively.

2. In case the other party aborts, the remaining party outputs a uniform coin.

3. Otherwise, the two parties interact in an execution of Π2
m = (P2

0,P
2
1), where P̂2

z plays the role
of P2

z with private input sz.

3.1.4 Main Theorems for Two-Party Protocols

The following theorem states that Protocol 3.3 is an almost-optimally fair, two-party coin-flipping
protocol, in the TwoPartySharesGen 1

2
-hybrid model.

Theorem 3.4. For m ≡ 1 mod 4, the protocol Π̂2
m is a (2m)-round, two-party, O( log

3 m
m )-fair coin-

flipping protocol against unbounded fail-stop adversaries, in the TwoPartySharesGen 1
2
-hybrid model.

Theorem 3.4 is proven in Section 3.1.6 using the the bound on online-binomial games described
in Section 3.1.5, but we first use it to deduce an almost-optimal two-party fair coin-flipping protocol,
in the real (non-hybrid) model.

Theorem 3.5 (Main theorem — two-party, fair coin flipping). Assuming protocols for securely
computing OT exist, then for any polynomially bounded, polynomial-time computable, integer func-

tion m, there exists an m-round, O(log3 m)
m -fair, two-party coin-flipping protocol.
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Proof. Define the integer function m̃ by m̃(κ) = ⌊m(κ)/3⌋ − a, where a ∈ {0, 1, 2, 3} is the value
such that ⌊m(κ)/3⌋ − a ≡ 1 mod 4. Note that both the functionality TwoPartySharesGen 1

2
(1m̃(κ))

and the protocol Π̂2
m̃(κ) are polynomial-time computable in κ, and that Π̂2

m̃(κ) has 2 · m̃(κ)

rounds. Using information-theoretic one-time message authentication codes (cf., [41]), the
functionality TwoPartySharesGen 1

2
(1m̃(κ)) and protocol Π̂2

m̃(κ) can be compiled into functional-

ity ˜TwoPartySharesGen 1
2
(1m̃(κ)) and protocol Π̃2

m̃(κ) that maintains essentially the same effi-

ciency as the original pair, protocol Π̃2
m̃(κ) maintain the same round complexity, and Π̃2

m̃(κ) is(
O(log3 m̃(κ))

m̃(κ) + neg(κ)
)
-fair against arbitrary unbounded adversaries, in the ˜TwoPartySharesGen 1

2
-

hybrid model.
Assuming protocols for securely computing OT exist, Fact 2.21 yields that there exists an

(2m̃(κ) + O(1))-round, two-party, polynomial-time protocol that is
(
O(log3 m̃(κ))

m̃(κ) + neg(κ)
)
-fair, in

the standard model. For large enough κ, the latter protocol obtains the parameters stated in the
theorem (the theorem trivially holds for small values of κ, i.e., smaller than some universal constant)

�

3.1.5 Online Binomial Games

Our main tool for proving Theorem 3.4 are bounds on the bias of online-binomial games, defined
below, that we prove in Section 4.

In a online binomial game, independent random variables X1 . . . ,Xm are independently sam-
pled, and the game outcome (or value) is set to one if

∑m
i=1 Xi ≥ 0, and to zero otherwise. At

round i, the value of Xi−1 is given to the attacker, with some auxiliary information (i.e., hint) Hi

about the value of Xi. The attacker can abort, and in this case it gains the expected outcome of
the game, conditioned on the values of X1, . . . ,Xi−1 (but not on the additional information). If it
never aborts, it gains the game outcome. The goal of the attacker is to use the hint value to bias
its expected gain away from the game expected outcome. For instance, in the simple form of the
game where the Xi’s are unbiased {−1, 1} bits and Hi = Xi, the game expected outcome is 1/2,
and it is not hard to see that the expected gain of the attacker who aborts on the first round in
which Hi = Xi = 1, is 1/2 + Θ(1/

√
m). Namely, such an attacker bias the game by Θ(1/

√
m).

We are concerned with the weighted version of the above games in which the Xi’s are sums of
biased {−1, 1} random variables. Specially, Xi is the sum of ℓm(i) = m− i+ 1 coins. We will also
allow the games to have an initial offset: a fixed value (i.e., offset) X0 is added to the coins sum.
Such online binomial games are useful abstractions to understand the power of fail-stop adversaries
trying to violate the fairness of the coin-flipping protocols considered in this section, and the results
presented below play a central role in their security proofs.

We start with formally defining online-binomial games and the bias of such games.

Definition 3.6 (online binomial games). For m ∈ N, t ∈ Z, ε ∈ [−1, 1] and a randomized (hint)
function f , the online game Gf,m,ε,t is the set of the following random variables. Let Y0 = X0 = t,
and for i ∈ [m],

• Xi is sampled according to Cℓm(i),ε.

• Yi =
∑i

j=0Xj and Hi = f(i, Yi).
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• Oi = oi(Yi−1,Hi) and O−i = oi(Yi−1), for oi(y) = Pr [Ym ≥ 0 | Yi−1 = y] and oi(y, h) =
Pr [Ym ≥ 0 | Yi−1 = y,Hi = h], respectively.

Let Om+1 = O−m+1 = 1 if Ym ≥ 0, and Om+1 = O−m+1 = 0 otherwise.
We let Gf,m,ε = Gf,m,ε,0.

Namely, Oi is the expected output of the game given Yi−1, the coins flipped in the first i − 1
rounds, and the hint Hi about Yi, and O−i is this value given only Yi−1. Consider an attacker who
is getting at round i the values of Yi−1 and Hi, and decides whether to abort and gain O−i , or to
continue to next round. If it never aborts, it gains Om+1. The goal of an attacker is to abort in
the round that maximize the gap between Oi and O−i . This is an equivalent task to maximizing
the difference between the adversary’s expected gain and the game’s expected outcome (which is
the expected gain of a never-aborting attacker).

Definition 3.7 (game bias). Let m, t, ε, f and G = Gf,m,ε,t = {Xi, Yi,Hi, Oi, O
−
i } be as in Defini-

tion 3.6. For an algorithm B, let I be the first round in which B outputs 1 in the following m-round
process: in round i, algorithm B is getting input (i, Yi−1,Hi) and outputs a value. Let I = m+1 if
B never outputs a one. The bias B gains in G is defined by

BiasB(G) =
∣∣∣E
[
OI −O−I

]∣∣∣

The bias of G is defined by Bias(G) = maxB{BiasB(G)}, where the maximum is over all possible
algorithms B.

We give upper bounds for the security of three different types of online-binomial games that we
call simple, hypergeometric and vector games. The first type of online-binomial game (i.e., simple
game) is used for proving Theorem 3.4 whereas the other types (hypergeometric and vector games)
are used later in Section 3.2 for proving the fairness of our three-party protocol.

Definition 3.8 (simple game). For m ∈ N, ε ∈ [−1, 1] and a randomized function f , the
game Gf,m,ε is called ”simple game” if f on input (i, y) outputs 1 with probability oi+1(y) (=

Ĉsumm(i+1),ε(−y)), and zero otherwise.

Namely, in the simple game, the value of f is sampled according to the expected value of the
game.

Lemma 3.9. Let m ∈ N, let ε ∈ [−1, 1] and let f be the randomized function such that Gf,m,ε is a

simple game according to Definition 3.8. Then Bias(Gf,m,ε) ≤ ξ·log3 m
m , for some universal constant

ξ.

Recall that for n ∈ N, ℓ ∈ [n] and an integer p ∈ [−n, n], we define the hypergeomet-
ric probability distribution HGn,p,ℓ by HGn,p,ℓ(k) := PrI [w(vI) = k], where I is an ℓ-size set
uniformly chosen from [n] and v ∈ {−1, 1}n with w(v) = p (recall that w(v) =

∑
j∈[|v|] v[j]

and that vI = (vj1 , . . . , vj|I|) where j1, . . . , j|I| are the ordered elements of I) and recall that

ĤGn,p,ℓ(k) := Prx←HGn,p,ℓ
[x ≥ k] =

∑ℓ
t=kHGn,p,ℓ(t).

Definition 3.10 (hypergeometric game). For m ∈ N, ε ∈ [−1, 1], λ > 0 and a randomized function
f , the game Gf,m,ε is called ”λ-hypergeometric game” if there exists p ∈ [−m,m], with |p| ≤ λ ·√

logm · summ(1), such that f on input (i, y) outputs 1 with probability ĤG2·summ(1),p,summ(i+1)(−y)
and zero otherwise.
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Namely, in the above game, the value of f is not sampled according to the expected value of
the game, as done in the simple game above, but rather from a skewed version of it, obtained by
replacing the Binomial distribution used by the game, with an Hypergeometric distribution.

Lemma 3.11. Let m ∈ N, let ε ∈ [−1, 1], let λ > 0 and let f be a randomized function such that

Gf,m,ε is an λ-hypergeometric game according to Definition 3.10. Then Bias(Gf,m,ε) ≤ ϕ(λ)·log3 m
m

for some universal function ϕ.

Recall that for n ∈ N and δ ∈ [0, 1] we let Ĉ−1n (δ) be the value ε ∈ [−1, 1] with Ĉn,ε(0) = δ.

Definition 3.12 (vector game). For m ∈ N, ε ∈ [−1, 1], λ ∈ N and a randomized function f , the
game Gf,m,ε is called ”λ-vector game” if f on input (i, y) outputs a string in {−1, 1}λ·summ(1), where

each of entries takes the value 1 with probability Ĉ−1
summ(1)(δ) for δ = oi+1(y)(= Ĉsumm(i+1),ε(−y)).

In the last game, the function f outputs a vector (i.e., a string), and not a bit as in the previous
games. The distribution from which the vector is drawn, however, is very related to the expected
value of the game.

Lemma 3.13. Let m ∈ N, let λ > 0 and let f be a randomized function such that Gf,m,ε=0 is an

λ-vector game according to Definition 3.12. Then Bias(Gf,m,ε=0) ≤ ϕ(λ)·log3 m
m for some universal

function ϕ.

The proof of the above lemmas are given in Sections 4.3 to 4.5. In addition, we make use of
the following lemma which asserts that if the expected value of an online-binomial game is almost
determined, then there is no much room for an attacker to gain much bias.

Lemma 3.14. Let Gf,m,ε,t = {Xi, Yi,Hi, Oi, O
−
i } be according to Definition 3.6. Assume that

O−1 /∈ [ 1
m2 , 1− 1

m2 ], then Bias(Gf,m,ε,t) ≤ 2
m .

The proof of Lemma 3.14 is given in Section 4.1.

3.1.6 Proving Theorem 3.4

Proof of Theorem 3.4. Fix m ≡ 1 mod 4. By construction, the honest parties in Π̂2
m always output

the same bit, where under the assumption about m, it holds that summ(1), the total number of
coins flipped, is odd. It follows that the common output of a random honest execution of Π̂2

m, is a
uniform bit. Namely, protocol Π̂2

m is correct according to Definition 2.15.
We assume without loss of generality that if a party aborts in the i’th round, it does so by

sending the message Abort, after seeing the other party message of that round.
Let the (i, j)’th round in a random execution of Π̂2

m, for (i, j) ∈ (m)×{a, b}, stands for the j’th
step of the i’th loop in the execution. Letting (0, a) being the zero round (i.e., before the call to
TwoPartySharesGen 1

2
is made) and (0, b) denote the round where the call to TwoPartySharesGen 1

2
is

made.
Let z ∈ {0, 1} and let A be a fail-stop adversary controlling P̂2

z. Let V be P̂2
z’s view in a random

execution of Π̂2
m. For r = (i, j) ∈ (m)× {a, b}, let Vr be r’th round prefix of V , and let V −r be the

value of Vr with the abort message sent in the r’th round (if any) removed. Finally, let I be the
round in which A sent the abort message, letting I = (m, b), in case no abort occurred.
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In the following we show that

∣∣∣E
[
val(VI)− val(V −I )

]∣∣∣ ≤ ξ · log3 m
m

, (3)

for some universal (independent of m) constant ξ ≥ 0, where val(v) is the expected outcome of
an honest (non aborting) execution of the parties that do no abort in v, conditioned on v (see
Definition 2.16).

Since Equation (3) holds for any m ≡ 1 mod 4 and any fail-stop adversary A, protocol Π̂2
m is

ξ log3 m
m -biased according to Definition 2.17. Since, see above, Π̂2

m is correct according to Defini-
tion 2.15, the proof of the theorem follows by Lemma 2.18.

So it is left to prove Equation (3). Notice that the next rounds shares held by P̂2
z (when playing

the role of P2
z) at the end of round (i, b) (i.e., c#z

i+1,...,m, d0,#z
i+1,...,m+1 and d1,#z

i+1,...,m+1), are

uniformly chosen strings from P̂2
z’s point of view. In particular, these shares contains no information

about the expected output of the protocol, or the other party’s action in case of future aborts. It
follows that val(V0,b) =

1
2 (recall that V0,b is P̂

2
z’s view after getting its part of TwoPartySharesGen 1

2
’s

output). We also note that by construction, in case P̂2
z aborts during the call to TwoPartySharesGen 1

2

(and in this case the honest party gets no value from the functionality), then the honest party
outputs a uniform bit. Namely, val(V −(0,b)) =

1
2 . Hence, the adversary A gains nothing by aborting

during the call to TwoPartySharesGen 1
2
, and in the following we assume without loss of generality

that A only aborts (if any) during the execution of the embedded execution of Π2
m = (P2

0,P
2
1).

In the rest of the proof we separately consider the case I = (·, a) and the case I = (·, b). We

conclude the proof showing that the first type of aborts might help A to gain O(log3 m)
m advantage,

where the second type give him nothing.
Since both steps are symmetric, we assume for concreteness that A controls P2

0.

I = (·, b). In case I = (i, b), the adversary’s view VI contains the value of (c1, . . . , ci) sampled by
TwoPartySharesGen 1

2
, and some random function of these values, i.e., the shares of the next

rounds it got from TwoPartySharesGen 1
2
, which are uniform strings from his point of view, and

the shares used till this round, which are random function of (c1, . . . , ci). Hence, the expected

outcome of the protocol given A’s view is δi := Ĉsumm(i),0

(
−∑i

j=1 cj

)
. By construction,

however, the expected outcome of P2
1 in case P2

0 aborts in round (i, b), is also δi. Hence, the
adversary gains nothing (i.e., val(Vi) = val(V −i )), by aborting in these steps.

I = (·, a). Since A gains nothing by aborting at Step 1b of the loop, we assume without loss of
generality that A only aborts at Step 1a of the loop, and the proof by the next claim (proven
below).

Claim 3.15. Assuming A only aborts at Step 1a of the loop in Π2
m, then

∣∣∣E
[
val(VI)− val(VI)

−]∣∣∣ ≤ ξ · log3m
m

,

for some universal (independent of m) constant ξ ≥ 0.

Claim 3.15 yields that the overall bias A gains, which equals to |E [val(VI)− val(VI)
−]|, is

bounded by ξ·log3 m
m , for some universal constant ξ ≥ 0.

�
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Proving Claim 3.15 We prove the claim via reduction to online-binomial game, described in
Section 3.1.5. The proof immediately follows from the following claim and Lemma 3.9.

Claim 3.16. Assuming A only aborts at Step 1a of the loop in Π2
m, then

∣∣∣E
[
val(VI)− val(VI)

−]∣∣∣ ≤ Bias(Gf,m,0),

where Gf,m,0 is a simple online-binomial game according to Definition 3.8 and Bias(·) is according
to Definition 3.7.

Proof of Claim 3.16. We prove that an attacker for the coin-flipping protocol of the type considered
in this claim, i.e., one that only aborts in Step 1a of the loop in Π2

m and achieves bias α, yields a
player for the simple binomial game (described in Section 3.1.5) that achieves the same bias. Thus,
the bound on the former attacker follows from the bound on the latter one.

Let G = Gf,m,0 = {Xi, Yi,Hi, Oi, O
−
i } be the simple binomial game as defined in Definition 3.8

and recall that in this game, f is the randomized function that on input (i, y) outputs 1 with
probability Ĉsumm(i+1),ε(−y), and zero otherwise. Now, consider the player B for G that emulates
interaction with A in Π2

m = (P2
0,P

2
1), where A controls P2

0. The emulation goes as follows:

Algorithm 3.17 (Player B for the simple game).

Operation:

1. Choose uniformly c#0 ← {0, 1}m×⌈logm⌉ and d0,#0,d1,#0 ← {0, 1}m+1 and set s0 =
{c#0,d0,#0,d1,#0} as input for P2

0 in Π2
m.

2. For i = 1 to m:

(a) Receive input (i, Yi−1,Hi) from the game G.

(b) If i > 1, emulate a sending of c#1[i − 1] from P2
1 to P2

0 at step (i − 1, b) of Π2
m, where

c#1[i−1] := Xi−1⊕c#0[i−1] (recall that Xi−1 := Yi−1−Yi−2 according to Definition 3.6).

(c) Emulate a sending of d0,#1[i] from P2
1 to P2

0 at step (i, a) of Π2
m, where d0,#1[i] :=

Hi ⊕ d0,#0[i]. If A aborts at this step, output 1 (abort at round i). Otherwise, output 0
(continue to next round).

Note that by the definition of f , the set of G’s variables (X1, . . . ,Xm,H1, . . . ,Hm) has the
same distribution as the set of Π2

m’s variables (c1, . . . , cm, d01, . . . , d
0
m) where the parties’ inputs are

sampled according to TwoPartySharesGen 1
2
. Therefore, A’s view in the emulation done by B, is

distributed exactly the same as its view when interacting with honest P2
1 in Π2

m; in both cases, the
only meaningful information it gets is the revelation of these values. Since B aborts at round i of
G (i.e outputs 1) iff A aborts at round (i, a) of Π2

m, it follows that

∣∣∣E
[
val(VI)− val(VI)

−]∣∣∣ = BiasB(G) ≤ Bias(G),

as required. �
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3.2 Three-Party Protocol

As done in Section 3.1, we start with defining a three-party coin-flipping protocol whose parties get
(correlated) shares as input, then describe the functionality for generating these shares, and finally
explain how to combine the two into a (no input) coin-flipping protocol.

3.2.1 The Basic Three-Party Protocol

Protocol 3.18 (Π3
m = (P3

0,P
3
1,P

3
2)).

Common input: round parameter 1m.

P3
z’s input: c#z ∈ {0, 1}m×⌈logm⌉ and D(z′,z′′),#z ∈ {0, 1}m×(m·⌈logm⌉+2(m+1)), for all z′ 6= z′′ ∈
{0, 1, 2}.
Protocol’s description:

1. For i = 1 to m:

(a) For all zs, zr, zo ∈ {0, 1, 2} with zr /∈ {zs, zo}, party P3
zs sends D(zr,zo),#zs [i] to P3

zr .

• For all z 6= z′ ∈ {0, 1, 2}, party P3
z sets d

(z,z′)
i

=
⊕

z′′∈{0,1,2}D
(z,z′),#z

′′
[i].

(b) For all z ∈ {0, 1, 2}, party P3
z sends c#z[i] to the other parties.

• All parties set ci = c#0[i]⊕ c#1[i]⊕ c#2[i].

Output: All parties output 1 if
∑m

i=1 ci ≥ 0, and 0 otherwise.

Abort:

One party aborts: Let z < z′ ∈ {0, 1, 2} be the indices of the remaining parties, and let i ∈ [m]

be the maximal i ∈ [m] for which both P3
z and P3

z′ have reconstructed d
(z,z′)
i

and d
(z′,z)
i

,
respectively. Set i to ⊥ in case no such index exists. To decide on a common output, P3

z

and P3
z′ interact in the following two-party protocol.

i =⊥: P3
z and P3

z′ interact in Π̂2
m.

i 6=⊥: P3
z and P3

z′ interact in Π2
m = (P2

0,P
2
1), where P3

z with input d
(z,z′)
i

plays the role

of P2
0, and P3

z′ with input d
(z′,z)
i

plays the role of P2
1.

Two parties abort (in the same round): Let P3
z be the remaining party and for an arbitrary

z′ 6= z ∈ {0, 1, 2}, let i ∈ [m] be the maximal index for which P3
z have reconstructed

d
(z′,z)
i

, set to ⊥ in case no such index exists.

i =⊥: P3
z outputs a uniform bit.

i 6=⊥: The remaining party P3
z acts as if P3

z′ has only aborted at the very beginning of
the following two-party protocol: P3

z “interact” with P3
z′ in (P2

0,P
2
1), where P3

z with

input d
(z′,z)
i

plays the role of P2
0 in case z < z′ and as P2

1 otherwise.15

15The latter protocol is well defined, since when aborting right at the beginning, P3
z′ does not send any message.
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Namely, at Step (a) the parties help each other to reconstruct inputs for the two-party protocol
Π2

m. More specifically, each pair of parties reconstructs two inputs (shares) for an execution of Π2
m,

one input for each party in the pair. In case a party aborts, the remaining parties use the above
inputs for interacting in Π2

m. In Step (b) the parties help each other to reconstruct the round coins
(i.e., ci).

Note that the above protocol has 4m rounds (in case one party abort at the end of the outer
three-party protocols). While it is possible to reduce this number to 2m (to match the two-party
case), we chose to present the somewhat simpler protocol given above.

3.2.2 Hiding Two-Party Shares Generator

As mentioned in Section 1.3, we construct a hiding variant HidTwoPartySharesGen of the two-party
share-generating function TwoPartySharesGen. The construction is done by modifying the way the
defense values (given to the parties in the three-party protocol) are sampled. On input δ ∈ [0, 1],
HidTwoPartySharesGen first draws Θ(m2) independent samples from Cε for ε = Ĉ−1

summ(1)(δ), and

then uses these samples via a simple derandomization technique for drawing the Θ(m) defense
values given in the three-party protocol.

Roughly, these Θ(m2) values sampled by HidTwoPartySharesGen give about the same infor-
mation as a constant number of independent samples from Ber(δ) would, unlike the non-hiding
TwoPartySharesGen which gives about the same information as Θ(m) independent samples from
Ber(δ). As mentioned in Section 1.3, these Θ(m) samples can be used to bias the outcome by
Ω( 1√

m
), which makes HidTwoPartySharesGen crucial for the fairness of our protocol.

Recall that for a vector v ∈ {−1, 1}∗ we let w(v) :=
∑

i∈[|I|] vi, and given a set of indexes
I ⊆ [|v|], we let vI = (vi1 , . . . , vi|I|) where i1, . . . , i|I| are the ordered elements of I.

Algorithm 3.19 (HidTwoPartySharesGen).

Input: Round parameter 1m and δ ∈ [0, 1].

Operation:

1. Let ε = Ĉ−1
summ(1)(δ).

2. For z ∈ {0, 1}: sample a random vector vz ∈ {−1, 1}2·summ(1), where each coordinate is
independently drawn from Cε.

3. For z ∈ {0, 1}: sample a random (summ(1))-size subset Iz ⊂ [2 · summ(1)], and set dz,#z
m+1 to

one if w(vzIz ) ≥ 0, and to zero otherwise. Set dz,#z
m+1 arbitrarily.

4. For i = 1 to m:

(a) Sample ci ← Cℓm(i),ε.

(b) Sample c#0
i ← {0, 1}⌈logm⌉, and set c#1

i = ci ⊕ c#0
i .

(c) For z ∈ {0, 1}:
i. Sample a random (summ(i+ 1))-size subset Iz ⊂ [2 · summ(1)], and set dzi to one if∑i

j=1 cj + w(vzIz) ≥ 0, and to zero otherwise.

ii. Sample dz,#0
i ← {0, 1}, and set dz,#1

i = dzi ⊕ dz,#0
i .

27



5. Output (s#0, s#1), where s#z = (c#z,d0,#z,d1,#z), for c#z = (c#z
1 , . . . , c#z

m ) and dz,#z′ =

(dz,#z′

1 , . . . , dz,#z′

m+1 ).

Namely, rather then sampling the defense values in Step 4(c)i independently (as done in its
non-hiding variant TwoPartySharesGen), the defense values used by HidTwoPartySharesGen in the
different rounds, are correlated via the vectors v0 and v1 (vz is used for the defense values of
the party P2

z). Note, however, that each round defense value on its own, has exactly the same
distribution as in TwoPartySharesGen.

3.2.3 Three-Party Shares Generator

Using the above two-party shares generator, our three-party shares generator is defined as follows.

Algorithm 3.20 (ThreePartySharesGen).

Input: round parameter 1m.

Operation:

1. For i = 1 to m:

(a) Sample ci ← Cℓm(i),0.

(b) Sample (c#0
i , c#1

i )← ({0, 1}⌈logm⌉)2, and set c#2
i = ci ⊕ c#0

i ⊕ c#1
i .

(c) Let δi = Ĉsumm(i+1),0(−
∑i

j=1 cj).

(d) For z < z′ ∈ {0, 1, 2}:
i. Sample (s

(z,z′)
i

, s
(z′,z)
i

)← HidTwoPartySharesGen(1m, δi).

ii. Sample (s
(z,z′),#0

i
, s

(z,z′),#1

i
, s

(z′,z),#0

i
, s

(z′,z),#1

i
)← ({0, 1}m·⌈logm⌉+2(m+1))4.

Set s
(z,z′),#2

i
= s

(z,z′)
i

⊕ s
(z,z′),#0

i
⊕ s

(z,z′),#1

i
and s

(z′,z),#2

i
= s

(z′,z)
i

⊕ s
(z′,z),#0

i
⊕

s
(z′,z),#1

i
.

2. Output (S0,S1,S2), where Sz = (c#z,D(0,1),#z,D(0,2),#z,D(1,0),#z,D(1,2),#z,D(2,0),#z,D(2,1),#z),

for c#z = (c#z
1 , . . . , c#z

m ) and D(z′,z′′),#z = (s
(z′,z′′),#z

1
, . . . , s

(z′,z′′),#z

m ).

3.2.4 The Final Three-Party Protocol

For m ∈ N, our three-party, 3m-round, O(log3 m)
m -fair coin-flipping protocol Π3

m is defined as follows.

Protocol 3.21 (Π̂3
m = (P̂3

0, P̂
3
1, P̂

3
2)).

Input: round parameter 1m.

Oracle: Oracle õ2 and õ3 for computing TwoPartySharesGen 1
2
and ThreePartySharesGen respectively.

Protocol’s description:

1. The three parties using the oracle õ3 to securely compute ThreePartySharesGen(1m). Let S0,
S1, and S2 be the outputs obtained by P̂3

0, P̂
3
1 and P̂3

2 respectively.

2. In case one party aborts, the remaining parties use oracle õ2 to interact in Π̂2
m (Protocol 3.3).
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3. In case two parties aborts, the remaining party outputs a uniform bit.

4. Otherwise, the three parties interact in Π3
m = (P3

0,P
3
1,P

3
2), where P̂3

z plays the role of P3
z with

private input Sz.

3.2.5 Main Theorems for Three-Party Protocols

Theorem 3.22. For m ≡ 1 mod 4, protocol Π̂3
m is a (4m)-round, three-party,

O( log
3 m
m )-fair, coin-flipping protocol, against unbounded fail-stop adversaries, in the

(TwoPartySharesGen 1
2
,ThreePartySharesGen)-hybrid model.

As in the two-party case, we deduce the following result.

Theorem 3.23 (Main theorem — three-party, fair coin flipping). Assuming protocols for securely
computing OT exist, then for any polynomially bounded, polynomial-time computable, integer func-

tion m, there exists an m-round, O(log3 m)
m -fair, three-party coin-flipping protocol.

Proof. The only issue one should take care of in the current proof, which does not occur in the proof
of Theorem 3.5, is that the function HidTwoPartySharesGen, called by ThreePartySharesGen, and in
particular calculating the value of Ĉ−1

summ(1)(δ), is not necessarily polynomial-time computable. (This

issue was not a problem in the proof of Theorem 3.5, since Ĉ−1
summ(1)(·) is only called there with δ = 1

2 ,

and in this case its output is simply 0). Note, however, that after HidTwoPartySharesGen calculates
ε = Ĉ−1

summ(1)(δ), it merely uses ε for sampling 5 · summ(1) independent samples from Cε. Hence, one
can efficiently estimate ε by a value ε̃ (via binary search),16 such that |ε− ε̃| < 1

m5 , which yields that
the statistical distance of 5 · summ(1) independent samples from Cε, from 5 · summ(1) independent
samples from Cε̃, is bounded by 1

m2 . It follows that there exists a polynomial-time computable

function ˜ThreePartySharesGen, such that protocol Π̂3
m given in Protocol 3.21, is a (4m)-round,(

O(log3 m)
m + m

m2

)
-fair, three-party coin-flipping protocol, against unbounded fail-stop adversaries,

in the (TwoPartySharesGen 1
2
, ˜ThreePartySharesGen)-hybrid model. The proof continues like the proof

of Theorem 3.5.
�

Proving Theorem 3.22. We advise to reader to read first the proof of Theorem 3.4.

Proof of Theorem 3.22. Fix m ≡ 1 mod 4. As in the proof of Theorem 3.4, it holds that protocol
Π̂3

m is correct according to Definition 2.15. Also as in the proof of Theorem 3.4, we assume without
loss of generality that if a party aborts in the i’th round, it does so by sending the message Abort,
and after seeing the other parties’ message of that round.

Let the (p, i, j)’th round in a random execution of Π̂3
m, for (p, i, j) ∈ {outer, inner}×(m)×{a, b},

stands for the j’th step of the i’th loop in the execution of the Π̂3
m, where p = outer means that this

is a step of the outer execution of Π̂3
m, and p = inner means that this is a step of the inner execution

16The binary search on a value ε̃ ∈ [−1, 1] is done by sampling x← C
m11,δ̃− 1

2

(for δ̃ = Ĉsumm(1),ε̃(0)) and guessing if

ε̃ is bigger, smaller or close enough to ε according to whether x is bigger, smaller or inside the range (δ− 1
2
) ·m11±m6,

respectively. By Hoeffding Inequality (Fact 2.2), all the guesses are good with probability 1−neg(m) and the binary

search outputs ε̃ such that |ε− ε̃| ≤
∣∣∣δ − δ̃

∣∣∣ ≤ 1
m5 .
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of Π2
m (whose execution starts in case a party aborts). We let (outer, 0, a) be the zero round, let

(outer, 0, b) denote the round where the call to ThreePartySharesGen is made, and let (inner, 0, b) be
the zero round in the inner execution of Π2

m.
Let A be a fail-stop adversary controlling the parties {P̂3

z}z∈C , for some C ( {0, 1, 2}. Let V
be the view of A in a random execution of Π̂3

m, in which A controls the parties indexed by C. For
r ∈ {outer, inner} × (m) × {a, b}, let Vr be the r’th round prefix of V , and let V −r be the value of
Vr with the r’th round abort messages (if any) removed. Finally, let I1 and I2 be the rounds in
which A sent an abort message, letting Ik = (outer,m, b) in case less than k aborts happen. In the
following we show that for both k ∈ {1, 2}, it holds that

∣∣∣E
[
val(VIk)− val(V −Ik )

]∣∣∣ ≤ ξ · log3 m
m

(4)

for some universal (independent of m) constant ξ ≥ 0, where val(v) is the expected outcome of
an honest (non aborting) execution of the parties that do not abort in v, conditioned on v (see
Definition 2.16). Since Equation (4) holds for any m ≡ 1 mod 4 and any fail-stop adversary A, the
proof of the theorem follows by Lemma 2.18.

So it is left to prove Equation (4). By construction, the only non-redundant information in A’s
view at the end of round (i, b) is the coins constructed by the parties at the end of this round. In
particular, it holds that val(Vouter,0,b) =

1
2 . By construction, in case two parties abort during the

call to ThreePartySharesGen, the remaining party outputs one with probability 1
2 . In case one party

aborts, the remaining parties interact in the unbiased protocol Π̂2
m. In both cases, it holds that

val(V −
outer,0,b) = 1

2 . Taken the security of protocol Π̂2
m (proven in Theorem 3.4) into account, we

can assume without loss of generality that A only aborts (if any) during the embedded execution
of Π3

m = (P3
0,P

3
1,P

3
2).

In the rest of the proof we separately bound the case k = 1 and k = 2. Note that I1 is of the
form (outer, ·, ·), where I2, unless equals (outer,m, b), is of the form (inner, ·, ·) (i.e., the first abort
is in the outer three-party protocol, and the second, if any, is in the inner two-party protocol).

First abort. We separately consider the case I1 = (outer, ·, a) and the case I1 = (outer, ·, b). We

conclude the proof, of this part, showing that the first type of aborts might help A to gain O(log3 m)
m

advantage, where the second type give him nothing.

Case I1 = (outer, ·, b). Assume that I1 = (outer, i, b) for some i ∈ [m]. The view of A at this
point (i.e., VI1) contains the value of (c1, . . . , ci), and some random function of these values, i.e.,
the shares of the next rounds it got from ThreePartySharesGen, which are uniform strings from his
point of view, and the shares used till this round, which are random function of (c1, . . . , ci). Hence,

val(V −I1 ) = δi := Ĉsumm(i+1),0

(
−∑i

j=1 cj

)
. By construction, δi is also the expected outcome of the

remaining parties, in case an abort message was sent in this round. Namely, val(VI1) = δi. Hence,
the adversary gains nothing (i.e., val(VI1) = val(V −I1 )), by aborting in this round.

Case I1 = (outer, ·, a). Since A’s first abort at Step 1b of the loop gains nothing, we assume
without loss of generality that A’s first abort is at Step 1a of the loop. We use the following claim,
proof given below, for bounding the effect of such abort.
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Claim 3.24. Assuming A’s first abort is only at Step 1a of the loop in Π3
m, it follows that

∣∣∣E
[
val(VI1)− val(VI1)

−]∣∣∣ ≤ ξ · log3 m
m

,

for some universal (independent of m) constant ξ ≥ 0.

Claim 3.24 yields that the overall bias A’s first abort gains, which equals to

|E [val(VI1)− val(VI1)
−]|, is bounded by ξ·log3 m

m , for some universal constant ξ ≥ 0.

Second abort. We assume without loss of generality that I2 = (inner, ·, ·) (i.e., a second
abort occurred). Assume I1 = (out, j, ·) and let ε be the value of Ĉ−1m (δj) computed by
HidTwoPartySharesGen on input δj , for generating the shares of the two-party protocol.

The following proof is similar to analysis of the two-party protocol Π2
m, done in the proof of

Theorem 3.4, but with few differences. We separately consider the case I2 = (inner, ·, a) and the
case I2 = (inner, ·, b). We conclude the proof showing that the first type of aborts might help A to

gain O(log3 m)
m advantage, where the second type give him nothing.

Case I2 = (inner, ·, b). Assume I2 = (inner, i, b). The view of A at this point (i.e., VI2) contains
the value of (c1, . . . , ci) sampled by HidTwoPartySharesGen, and some random function of these
values, i.e., the shares of the next rounds it got from HidTwoPartySharesGen, which are uniform
strings from his point of view, and the shares used till this round, which are random function of
(c1, . . . , ci). Hence,

val(V −I2 ) = δi := Ĉsumm(i+1),ε


−

i∑

j=1

cj




By construction, δi is also the expected outcome of the remaining party, in case an abort
message was sent in this round. It follows that val(VI2) = δi, and the adversary gains nothing (i.e.,
val(VI2) = val(V −I2 )), by aborting in this round.

The above point needs is somewhat subtle and deserves some justification. Note that the
output of the remaining party P2

z is not directly sampled from Ber(δi), as in the case of protocol
Π̂2

m considered in the proof of Theorem 3.4. Rather, a (2 · summ(1))-size vector vz is sampled
according to Cε (see Algorithm 3.19). Then, the output of the remaining party is set to one if∑i

j=1 cj + w(vzIz) ≥ 0, and to zero otherwise, where Iz is random (summ(i+ 1))-size subset of
[2 · summ(1)]. Yet, by construction, since VI2 does not contain any extra information about the
remaining party’s vector vz, it follows that

val(VI2) = Prvz←(Cε)2·summ(1),Iz⊂[2·summ(1)]




i∑

j=1

cj + w(vzIz ) ≥ 0


 (5)

= Pru←(Cε)summ(i+1)




i∑

j=1

cj + w(u) ≥ 0




= δi.
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Case I2 = (inner, ·, a). Since A’s second abort at Step 1b of the loop gains nothing, we assume
without loss of generality that A’s second abort is at Step 1a of the loop. We use the following
claim, proof given below, for bounding the effect of such abort.

Claim 3.25. Assuming A’s second abort is only at Step 1a of the loop in Π2
m, it follows that

∣∣∣E
[
val(VI2)− val(VI2)

−]∣∣∣ ≤ ξ · log3 m
m

,

for some universal (independent of m) constant ξ ≥ 0.

Claim 3.25 yields that the overall bias A’s second abort gains, which equals to

|E [val(VI2)− val(VI2)
−]|, is bounded by ξ·log3 m

m , for some universal constant ξ ≥ 0. �

It is left to prove Claims 3.24 and 3.25. Similarly to the proof of Claim 3.15, we prove these
claims via reductions to online-binomial games, described in Section 3.1.5.

Proving Claim 3.24 The proof immediately follows from the following claim and Lemma 3.13.

Claim 3.26. Assuming A’s first abort is only at Step 1a of the loop in Π3
m, then

∣∣∣E
[
val(VI1)− val(VI1)

−]∣∣∣ ≤ Bias(Gf,m,0),

where Gf,m,0 is a 9-vector game according to Definition 3.12 and Bias(·) is according to Defini-
tion 3.7.

Proof of Claim 3.26. We prove that an attacker for the coin-flipping protocol of the type considered
in this claim, i.e., one that achieves bias α from his first abort at Step 1a of the loop in Π3

m, yields a
player for the vector binomial game (described in Section 3.1.5) that achieves the same bias. Thus,
the bound on the former attacker follows from the bound on the latter one.

Recall that A controls the parties {P3
z}z∈C in Π3

m and assume without loss of generality that
C = {0, 1}. Consider the 9-vector binomial game G = Gf,m,0 = {Xi, Yi,Hi, Oi, O

−
i } as defined in

Definition 3.12 and recall that in this game, f is the randomized function that on input (i, y) outputs
a string in {−1, 1}9·summ(1), where each of entries takes the value 1 with probability Ĉ−1

summ(1)(δ)

for δ = Ĉsumm(i+1),0(−y). Now, consider the player B for G that emulates interaction with A in
Π3

m = (P3
0,P

3
1,P

3
2), where A controls P3

0 and P3
1. The emulation goes as follows:

Algorithm 3.27 (Player B for the vector game).

Operation:

1. For z ∈ {0, 1}, choose Sz = (c#z,D(0,1),#z,D(0,2),#z,D(1,0),#z,D(1,2),#z,D(2,0),#z,D(2,1),#z)
← {0, 1}m×⌈logm⌉+6×m×(m×⌈logm⌉+2(m+1)) as inputs for P3

0 and P3
1 in Π3

m = (P3
0,P

3
1,P

3
2).

2. For i = 1 to m:

(a) Receive input (i, Yi−1,Hi) from the game G (recall that Hi ∈ {−1, 1}9·summ(1)).

(b) If i > 1, emulate a sending of c#2[i− 1] from P2
2 to the other parties at step (i− 1, b) of

Π3
m, where c#2[i− 1] := Xi−1 ⊕ c#0[i− 1] ⊕ c#1[i− 1] (recall that Xi−1 := Yi−1 − Yi−2

according to Definition 3.6).
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(c) Emulate a sending of D(0,1),#2[i] and D(0,2),#2[i] from P3
2 to P3

0, and emulate a sending
of D(1,0),#2[i] and D(1,2),#2[i] from P3

2 to P3
1 at step (i, a) of Π3

m, where

i. (D(0,1),#2[i],D(1,0),#2[i]) is set to the output of HidTwoPartySharesGen where vz at
Step 2 of HidTwoPartySharesGen is set to {Hi[2z ·summ(1)], . . . ,Hi[4z ·summ(1)−1]}
for z ∈ {0, 1}, and ci at Step 4a is set to Hi[4 · summ(1)− 1 + i] for i ∈ [m].

ii. For z ∈ {0, 1}, choose a random (summ(1))-size subset Wz ⊂ {Hi[(5 +
2z) · summ(1)], . . . ,Hi[(7 + 2z) · summ(1) − 1]}, choose uniformly D(z,2),#2[i] ←
{0, 1}m·⌈logm⌉+(m+1), and change the last bit of D(z,2),#2[i] to 1 if

∑
w∈Wz w ≥ 0

and to 0 otherwise.

If P3
0 or P3

1 aborts at this step, output 1 (abort at round i). Otherwise, output 0 (continue
to next round).

Note that by the definition of f , the set of B’s emulation variables
(X1, . . . ,Xm, {D(z,z′)}z∈{0,1},z 6=z′) has the same joint distribution as the set of Π3

m’s vari-

ables (c1, . . . , cm, {D(z,z′)}z∈{0,1},z 6=z′), where the parties’ inputs are sampled according to
ThreePartySharesGen. Therefore, A’s view in the emulation done by B, is distributed exactly the
same as its view when interacting with honest P3

2 in Π3
m; in both cases, the only meaningful

information it gets is the revelation of these values. In addition, note that B aborts at round i of
G (i.e outputs 1) iff A’s first aborts is at round (i, a) of Π3

m.
For concluding the analysis, let g be the function that on input Hi ∈ {−1, 1}9·summ(1), outputs

{D(z,z′)}z∈{0,1},z 6=z′ as described in Step 2c, and let B′ be an attacker for Gg◦f,m,0 that operates just
like B, only that it gets the output of g ◦ f directly instead of constructing the output as B does at
Step 2c. It follows that

BiasB′(Gg◦f,m,0) =
∣∣∣E
[
val(VI1)− val(VI1)

−]∣∣∣ , (6)

We conclude that
∣∣∣E
[
val(VI1)− val(VI1)

−]∣∣∣ = BiasB′(Gg◦f,m,0) (7)

≤ Bias(Gg◦f,m,0)

≤ Bias(Gf,m,0).

�

Proving Claim 3.25 The proof immediately follows from the following claim and Lemma 3.11.

Claim 3.28. Assuming A’s second abort is only at Step 1a of the loop in Π2
m and that Bias(Gf,m,ε) ≤

α(m) for any ε ∈ [−1, 1] and for any randomized function f of a 12-hypergeometric game, as defined
in Definition 3.10. Then

∣∣∣E
[
val(VI2)− val(VI2)

−]∣∣∣ ≤ α(m) +
2

m
.

Proof of Claim 3.25. We prove that an attacker for the coin-flipping protocol of the type considered
in this claim, i.e., one that achieves bias α from his second abort at Step 1a of the loop in Π2

m,
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yields a player for the hypergeometric binomial game (described in Definition 3.10) that achieves
the same bias. Thus, the bound on the former attacker follows from the bound on the latter one.

Assume without loss of generality that A controls P2
0 in Π2

m after the first abort, and recall
that the parties’ inputs are sampled according to HidTwoPartySharesGen(δ) for some δ ∈ [0, 1].
Let ε = Ĉ−1

summ(1)(δ) and let p = w(v0) where v0 is the vector that has been sampled in Step 2

of HidTwoPartySharesGen. Consider the binomial game G = Gfp,m,ε = {Xi, Yi,Hi, Oi, O
−
i } as

defined in Definition 3.6 where fp is the randomized function that on input (i, y) outputs 1 with

probability δp = ĤG2·summ(1),p,summ(i+1)(−y) and zero otherwise (i.e hypergeometric game). Let
B be the player described in the proof of Claim 3.15 at Algorithm 3.17, and let B′ be the player
for G which operates as B, where the only difference is that at step 1 it chooses d0,#0[m + 1]
according to Ber(δp) instead of uniformly over {0, 1} as B does. By the definition of fp, the set
of G’s variables (X1, . . . ,Xm,H1, . . . ,Hm) has the same distribution as the set of Π2

m’s variables
(c1, . . . , cm, d01, . . . , d

0
m) after A’s first abort.

Therefore, after the first abort, A’s view in the emulation done by B, is distributed exactly
the same as its view when interacting with honest with honest P2

1 in Π2
m; in both cases, the

only meaningful information A’ gets is the revelation of these values together with the value of
d0,#0[m + 1], which is distributed the same in both cases. Since B′ aborts at round i of G (i.e
outputs 1) iff A aborts at round (i, a) of Π2

m, it follows that

E
δ,p

[BiasB′(G)] =
∣∣∣E
[
val(VI2)− val(VI2)

−]∣∣∣ , (8)

where BiasB′(G) is according to Definition 3.7 and the expectation is on the values of δ and p
which are being set after A’s first abort. Note that by the definition of ε it holds that O−1 = δ,
where O−1 is according to Definition 3.6. Therefore, in case δ /∈ [ 1

m2 , 1 − 1
m2 ], Lemma 3.14 tells us

that BiasB′(G) ≤ 1
m . Assuming that δ ∈ [ 1

m2 , 1 − 1
m2 ], Hoeffding inequality (Fact 2.2) yields that

|ε| < 4 ·
√

logm
summ(1) . Therefore, since p is distributed according to C2summ(1),ε, it follows that

Pr

[
|p| > 12

√
logm · summ(1) | δ ∈ [

1

m2
, 1− 1

m2
]

]
(9)

≤ Pr

[
|p− 2ε · summ(1)| > 4

√
logm · summ(1) | δ ∈ [

1

m2
, 1− 1

m2
]

]

≤ 1

m
,

where the second inequality holds again by Hoeffding inequality. We conclude that
∣∣∣E
[
val(VI2)− val(VI2)

−]∣∣∣ = E
δ,p

[BiasB′(G)] (10)

≤ E
δ,p

[
BiasB′(G) | δ ∈ [

1

m2
, 1− 1

m2
]

]
+

1

m

≤ E
δ,p

[
BiasB′(G) | δ ∈ [

1

m2
, 1− 1

m2
]
∧
|p| ≤ 12

√
logm · summ(1)

]
+

2

m

≤ α(m) +
2

m
,

where the last inequality holds by the assumption. �
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4 Bounds for Online-Binomial Games

In the following section we focus on online-binomial games, as defined in Section 3.1.5. In Section 4.1
we state two basic tools for bounding the bias of such games, in Section 4.2 we develop our main tool
for bounding the bias of such games and in Sections 4.3-4.5 we prove Lemmas 3.9, 3.11 and 3.13.

Recall that Cε is the Bernoulli probability distribution over {−1, 1}, taking the value 1 with
probability 1

2(1 + ε) and −1 otherwise, that Cn,ε is the binomial distribution induced by the sum
of n independent random variables, each distributed according to Cε, and that ℓm(i) = m + 1 − i
and summ(i) =

∑m
j=i ℓm(j).

We recall the following definitions from Section 3.1.5.

Definition 4.1 (online binomial games – Restatement of Definition 3.6). For m ∈ N, t ∈ Z,
ε ∈ [−1, 1] and a randomized (hint) function f , the online game Gf,m,ε,t is the set of the following
random variables. Let Y0 = X0 = t, and for i ∈ [m],

• Xi is sampled according to Cℓm(i),ε.

• Yi =
∑i

j=0Xj and Hi = f(i, Yi).

• Oi = oi(Yi−1,Hi) and O−i = oi(Yi−1), for oi(y) = Pr [Ym ≥ 0 | Yi−1 = y] and oi(y, h) =
Pr [Ym ≥ 0 | Yi−1 = y,Hi = h], respectively.

Let Om+1 = O−m+1 = 1 if Ym ≥ 0, and Om+1 = O−m+1 = 0 otherwise.
We let Gf,m,ε = Gf,m,ε,0.

Definition 4.2 (game bias – Restatement of Definition 3.7). Let m, t, ε, f and G = Gf,m,ε,t =
{Xi, Yi,Hi, Oi, O

−
i } be as in Definition 4.1. For an algorithm B, let I be the first round in which

B outputs 1 in the following m-round process: in round i, algorithm B is getting input (i, Yi−1,Hi)
and outputs a value. Let I = m+ 1 if B never outputs a one. The bias B gains in G is defined by

BiasB(G) =
∣∣∣E
[
OI −O−I

]∣∣∣

The bias of G is defined by Bias(G) = maxB{BiasB(G)}, where the maximum is over all possible
algorithms B.

4.1 Basic Tools

We present two basic tools for bounding a game bias. The first tool asserts that the game bias can
only decrease when applying a random function to the hint.

Lemma 4.3. For randomized functions f and g, m ∈ N, ε ∈ [−1, 1] and t ∈ Z, let Gf,m,ε,t and
Gg◦f,m,ε,t be according to Definition 4.1. It holds that Bias(Gg◦f,m,ε,t) ≤ Bias(Gf,m,ε,t).

Proof. Let {Yi}mi=0 be distributed as in Gf,m,ε,t (according to Definition 4.1), let τ = g ◦ f and let
Bτ be the algorithm with BiasBτ (Gτ,m,ε,t) = Bias(Gτ,m,ε,t). Let Bf be the algorithm for Gf,m,ε,t

that emulates an execution of Bτ in Gτ,m,ε,t. Namely, Bf on input (i, y, h) emulates a sending of
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(i, y, g(h)) from the game Gτ,m,ε,t to Bτ and outputs Bτ ’s output. Let I be the first round on which

Bτ outputs one in Gτ,m,ε,t, let H
f
i = f(i, Yi) and let Hτ

i = τ(i, Yi). It follows that

Bias(Gτ,m,ε,t)

= BiasBτ (Gτ,m,ε,t)

=

∣∣∣∣ Ei←I

[
E

y←Yi−1,h←Hτ
i
|I=i

[Pr [Ym ≥ 0 | Yi−1 = y,Hτ
i = h]− Pr [Ym ≥ 0 | Yi−1 = y]]

]∣∣∣∣

=

∣∣∣∣∣ Ei←I

[
E

y←Yi−1,h←Hτ
i |I=i

[
E

h′←Hf
i |Yi−1=y,Hτ

i =h

[
Pr
[
Ym ≥ 0 | Yi−1 = y,Hf

i = h′
]
− Pr [Ym ≥ 0 | Yi−1 = y]

]]]∣∣∣∣∣

=

∣∣∣∣∣ Ei←I

[
E

y←Yi−1,h′←Hf
i |I=i

[
Pr
[
Ym ≥ 0 | Yi−1 = y,Hf

i = h′
]
− Pr [Ym ≥ 0 | Yi−1 = y]

]]∣∣∣∣∣
= BiasBf (Gf,m,ε,t)

≤ Bias(Gf,m,ε,t),

where the last equality holds since I also describes the first output on which Bf outputs one in
Gf,m,ε,t. �

The second tool is a restatement of Lemma 3.14. It asserts that if the expected value of a game
is almost determined, then there is mo much room for an attacker to gain much bias.

Lemma 4.4. [Restatement of Lemma 3.14] Let Gf,m,ε,t = {Xi, Yi,Hi, Oi, O
−
i } be according to

Definition 4.1. Assume that O−1 /∈ [ 1
m2 , 1− 1

m2 ], then Bias(Gf,m,ε,t) ≤ 2
m .

Proof. We prove the case O−1 ≤ 1
m2 , where the other case is analogues. By a simple averaging

argument, it holds that

Pr

[
∃i ∈ [m] : O−i >

1

m

]
≤ 1

m
(11)

Consider the game Gg,m,ε,t for g(i, y) = y. By the above, Bias(Gg,m,ε,t) ≤ 2
m . Hence, Lemma 4.3

yields that the same also holds for Gf,m,ε,t. �

4.2 Main Tool — Expressing Game Bias using Ratio

In this section, we develop our main tool for bounding the bias of online-binomial games. Informally,
we reduce the task of bounding the bias of a game into evaluating the “ratio” of the game, where
ratio (defined below) is a useful game-depend measurement on how much the distribution of Xi is
far from the distribution of Xi | Hi.

Definition 4.5. Let Gf,m,ε = {Xi, Yi,Hi, Oi, O
−
i } be according to Definition 4.1 and let Xi := {x ∈

Supp(Xi) : |x| ≤ 4·
√

logm · ℓm(i)}. For i ∈ [m], y ∈ Supp(Yi−1), x ∈ Supp(Xi) and h ∈ Supp(Hi),
define

ratioi,y,h(x) =
Pr [Xi = x | Yi−1 = y,Hi = h,Xi ∈ Xi]

Pr [Xi = x | Yi−1 = y,Xi ∈ Xi]
.
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Namely, ratioi,y,h(x) measures the change (in multiplicative term) of the probability Xi = x,
due to the knowledge of h, assuming that Xi is typical (i.e., Xi ∈ Xi).

The following lemma states that an appropriate upper-bound on
∣∣1− ratioi,Yi−1,Hi

∣∣ for any
“interesting” round i, yields an upper-bound on the game bias.

Lemma 4.6. [main tool: expressing game bias using ratio] Let G = Gf,m,ε = {Xi, Yi,Hi, Oi, O
−
i }

be according to Definition 4.1, and let ratio be according to Definition 4.5. Assume that for every
i ∈ [m −

⌊
log2.5m

⌋
] and y ∈ Yi−1 := {y ∈ Supp(Yi−1) : |y + ε · summ(i)| ≤ 4

√
logm · summ(i)},

there exist λ > 0 and a set Hi,y such that:

1. Pr [Hi /∈ Hi,y | Yi−1 = y] ≤ 1
m2 , and

2. |1− ratioi,y,h(x)| ≤ λ ·
√

logm
ℓm(i+1) · (

|x|√
ℓm(i)

+ 1) for every (x, h) ∈ Xi ×H′i,y,

for H′i,y = Hi,y
⋂

Supp(Hi | Yi−1 = y,Xi ∈ Xi). Then

Bias(G) ≤ ϕ(λ) · log
3m

m

for a universal function ϕ.

In the following we fix f,m, ε, we let G = Gf,m,ε = {Xi, Yi,Hi, Oi, O
−
i } be according to Def-

inition 4.1, and for i ∈ [m], we let Xi be according to Definition 4.5 and Yi−1 be according to
Lemma 4.6. We assume without loss of generality that m is larger than some universal constant

and that |ε| ≤ 4
√

logm
summ(1) (Otherwise, Hoeffding’s inequality (Fact 2.2) yields that O−1 /∈ [ 1

m2 , 1− 1
m2 ]

and the proof follows by Lemma 4.4).
The following sub-lemmas are the main building blocks for proving Lemma 4.6. The first one

(proved in Section 4.2.1) states that an appropriate bound of each round bias, yields a bound on
the game bias.

Lemma 4.7. Assume that for every i ∈ [m −
⌊
log2.5m

⌋
] and y ∈ Yi−1, there exists λ > 0 and a

set Ĥi,y ⊆ Supp(Hi | Yi−1 = y) such that

1. Pr
[
Hi /∈ Ĥi,y | Yi−1 = y

]
≤ 3

m2 , and

2. |oi(y)− oi(y, h)| ≤ λ ·
√
logm

ℓm(i+1) for every h ∈ Ĥi,y.

Then

Bias(G) ≤ ϕ(λ) · log
3m

m

for a universal function ϕ.

The following lemma (proved in Section 4.2.2) relates the bias that can be obtained in a given
round, to the ratio function.

Lemma 4.8. For i ∈ [m], y ∈ Supp(Yi−1) and h ∈ Supp(Hi | Yi−1 = y,Xi ∈ Xi), it holds that

|oi(y)− oi(y, h)| ≤ E
x←Xi|x∈Xi

[|oi+1(y + x)− oi+1(y)| · |1− ratioi,y,h(x)|] + 2 · (q + qh),
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for q = Pr[Xi /∈ Xi] and qh = Pr[Xi /∈ Xi | Yi−1 = y,Hi = h].17

Intuitively, the above tells that if Hi is unlikely to tell much information about Xi, reflected by
ratioi,y,Hi

(Xi) being close to one, then the bias of round i is small.
We will also use the following two simple facts. The first one states some useful properties of

the sets Xi’s.

Claim 4.9. The following holds for every i ∈ [m].

1. Pr [Xi /∈ Xi] <
1
m3 ,

2. Ex←Xi|x∈Xi
[|x|] < Ex←Xi

[|x|],
3. Ex←Xi|x∈Xi

[
x2
]
< Ex←Xi

[
x2
]
.

Proof. For Item 1, compute

Pr [Xi /∈ Xi]

= Pr
[
|Xi| > 4

√
logm · ℓm(i)

]

< Pr
[
|Xi − ε · ℓm(i)| > 3 ·

√
logm · ℓm(i)

]

≤ 2 · exp
(
−32 · logm · ℓm(i)

2 · ℓm(i)

)

<
1

m3
,

where the first inequality holds since |ε| ≤ 4
√

logm
summ(1) yields that |ε| · ℓm(i) <

√
logm · ℓm(i) and

the second inequality holds by Hoeffding’s inequality (Fact 2.2).
For Item 2, compute

E
x←Xi

[|x|] = Prx←Xi
[Xi ∈ Xi] · E

x←Xi|x∈Xi

[|x|] + Prx←Xi
[Xi /∈ Xi] · E

x←Xi|x/∈Xi

[|x|]

> Prx←Xi
[Xi ∈ Xi] · E

x←Xi|x∈Xi

[|x|] + Prx←Xi
[Xi /∈ Xi] · E

x←Xi|x∈Xi

[|x|]

= E
x←Xi|x∈Xi

[|x|] ,

where the inequality holds since Ex←Xi|x/∈Xi
[|x|] > 4

√
logm · ℓm(i) ≥ Ex←Xi|x∈Xi

[|x|]. The proof
of Item 3 is analogous to the above. �

The second claim bounds the change of the expected game value in a single round.

Claim 4.10. For i ∈ [m−
⌊
log2.5 m

⌋
], x ∈ Xi and y ∈ Yi−1, it holds that

|oi+1(y + x)− oi+1(y)| ≤
|x|√

summ(i+ 1)
.

Proof. Note that |x| , |y + x| ≤ 5 ·
√

logm · summ(i) < summ(i)
3
5 , that |ε| ≤ 4

√
logm

summ(1) <

summ(i)−
2
5 and that |oi+1(y + x)− oi+1(y)| =

∣∣∣Ĉsumm(i+1),ε(−y − x)− Ĉsumm(i+1),ε(−y)
∣∣∣. There-

fore, the proof immediately follows by Proposition 2.6. �

17It can be easily shown that oi(y)−oi(y, h) = Ex←Xi
[(oi+1(y+x)−oi+1(y)) ·(1−

Pr[Xi=x|Yi−1=y,Hi=h]
Pr[Xi=x|Yi−1=y]

)]. However,

Lemma 4.8 allows us to ignore “non-typical” x’s.
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Putting it together.

Proof of Lemma 4.6. Let i ∈ [m−
⌊
log2.5m

⌋
], y ∈ Yi−1 and Hi,y be the set that satisfies assump-

tions 1 and 2 of Lemma 4.6, let H′i,y = Hi,y
⋂

Supp(Hi | Yi−1 = y,Xi ∈ Xi) and let Ĥi,y = {h ∈
H′i,y | Pr [Xi /∈ Xi | Yi−1 = y,Hi = h] ≤ 1

m}. We first show that Pr
[
Hi /∈ Ĥi,y | Yi−1 = y

]
≤ 3

m2 .

Next, we use Lemma 4.8 for bounding |oi(y, h)− oi(y)| for every h ∈ Ĥi,y and the proof will follow
by Lemma 4.7.

For the first part, let Si,y = {h ∈ Supp(Hi) | Pr [Xi /∈ Xi | Yi−1 = y,Hi = h] ≤ 1
m} and assume

by contradiction that Pr [Hi /∈ Si,y | Yi−1 = y] > 1
m2 . It follows that

Pr [Xi /∈ Xi] = Pr [Xi /∈ Xi | Yi−1 = y]

≥ Pr [Xi /∈ Xi | Yi−1 = y,Hi /∈ Si,y] · Pr [Hi /∈ Si,y | Yi−1 = y]

>
1

m
· 1

m2

=
1

m3
,

In contradiction to Item 1 of Claim 4.9. Therefore,

Pr [Hi /∈ Si,y | Yi−1 = y] ≤ 1

m2
. (12)

In addition, note that

Pr [Hi /∈ Supp(Hi | Yi−1 = y,Xi ∈ Xi) | Yi−1 = y] ≤ Pr [Xi /∈ Xi] ≤
1

m2
. (13)

Using simple union bound, we conclude from Equations (12) and (13) that

Pr
[
Hi /∈ Ĥi,y | Yi−1 = y

]
≤ Pr [Hi /∈ Hi,y | Yi−1 = y] +

2

m2
≤ 3

m2
, (14)

where the second inequality holds by assumption 1 of Lemma 4.6.
For the second part, note that for every h ∈ Ĥi,y it holds that

|oi(y, h) − oi(y)| ≤ E
x←Xi|x∈Xi

[|oi+1(y + x)− oi+1(y)| · |1− ratioi,y,h(x)|] +
4

m
(15)

≤ E
x←Xi|x∈Xi

[
|x|√

summ(i+ 1)
·
(
λ ·
√

logm

ℓm(i+ 1)

( |x|√
ℓm(i)

+ 1
)
)]

+
4

m

= E
x←Xi|x∈Xi


 |x|√

1
2ℓm(i)ℓm(i+ 1)

·
(
λ ·
√

logm

ℓm(i+ 1)

( |x|√
ℓm(i)

+ 1
)
)
+

4

m

=

√
2λ · √logm
ℓm(i+ 1)

· E
x←Xi|x∈Xi

[
x2

ℓm(i)
+

|x|√
ℓm(i)

]
+

4

m

≤
√
2λ · √logm
ℓm(i+ 1)

·
(
2 · ℓm(i)

ℓm(i)
+

√
2 · ℓm(i)√
ℓm(i)

)
+

4

m

≤ (5λ+ 4) · √logm
ℓm(i+ 1)

.
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The first inequality holds by Lemma 4.8 (recalling Item 1 of Claim 4.9 and that
Pr [Xi /∈ Xi | Yi−1 = y,Hi = h] ≤ 1

m by the definition of Ĥi,y). The second inequality holds by
Claim 4.10 and by assumption 2 of Lemma 4.6. The third inequality holds by Fact 2.3 (recalling
Items 2 and 3 of Claim 4.9).

In conclusion, we proved that for every i ∈ [m−
⌊
log2.5m

⌋
] and y ∈ Yi−1, the set Ĥi,y satisfies

the constrains of Lemma 4.7. Hence, Lemma 4.7 yields that Bias(G) ≤ ϕ(5λ + 4) · log3 mm , for some
universal function ϕ, as required. �

4.2.1 Proving Lemma 4.7

We will use the following facts. The first claim yields that if Yi−1 /∈ Yi−1 (i.e., |Yi−1| is untypically
large), then the expected value of the game at round i is almost determined.

Claim 4.11. For every i ∈ [m] and y ∈ Supp(Yi−1) \ Yi−1, it holds that

Pr




m∑

j=i

Xj ≥ −y


 /∈

[
1

m2
, 1− 1

m2

]
.

Proof. Let Zi :=
∑m

j=iXj . We assume that y + ε · summ(i) ≤ 0, where the proof of the case y + ε ·
summ(i) > 0 is analogous. Note that since y /∈ Yi−1, then −(y + ε · summ(i)) > 4

√
logm · summ(i),

and since Zi is distributed according to Csumm(i),ε, then E [Zi] = ε · summ(i). Therefore, Hoeffding’s
inequality (Fact 2.2) yields that

Pr [Zi ≥ −y] = Pr [Zi − ε · summ(i) ≥ −(y + ε · summ(i))]

≤ Pr
[
Zi − ε · summ(i) ≥ 4

√
logm · summ(i)

]

≤ 2 · exp
(
−16 · summ(i) logm

2 · summ(i)

)

<
1

m2
.

�

We associate the following events with G. For i ∈ [m], let Ei be the event that Yi−1 ∈ Yi−1 and
for i ∈ (m) let Li = E1

⋂
E2
⋂

. . .
⋂
Ei
⋂¬Ei+1, letting Em+1 = ∅. In words, Ei is the event that

|Yi−1| is not large, and Li is the event that i is the minimal index such that |Yi| is large (where
Lm is the event that all the Yi’s are not large). Note that {Lj}j∈(m) are disjoint events and that

Pr
[⋃

j∈(m) Lj

]
= 1. We use the following fact.

Claim 4.12. For integer i ∈ [m2 ,m], it holds that Pr[Ei] ≤ 12·ℓm(i)
√
logm

m .
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Proof. Note that Yi−1 is the outcome of summ(1)− summ(i) coins. Compute

summ(1) − summ(i) =
1

2
(ℓm(1)(ℓm(1) + 1)− ℓm(i)(ℓm(i) + 1)) (16)

=
1

2
(m(m+ 1)− (m− i+ 1)(m− i+ 2))

≥ 1

2

(
m(m+ 1)− (

m

2
+ 1)(

m

2
+ 2)

)

≥ m2

4
.

Proposition 2.4 yields that the probability Yi−1 equals a given value in Yi−1 is at most
1√

(summ(1)−summ(i))
≤ 2

m (recall that we only care about large enough m). Since |Yi−1| <

8
√

summ(i) logm, it follows that

Pr[Ei] ≤ 8
√

summ(i) logm · 2
m

=
16
√

summ(i) logm

m

=
16
√

1
2 · ℓm(i)

(
ℓm(i) + 1

)
logm

m

≤ 12 · ℓm(i)
√
logm

m
.

�

The following claim bounds the sum
∑m

j=i Pr [Lj] for every integer i ∈ [m2 ,m].

Claim 4.13. For integer i ∈ [m2 ,m], it holds that
∑m

j=i Pr [Lj] ≤ 12·ℓm(i)
√
logm

m .

Proof. Since {Lj}mj=0 are disjoint events and since
⋃m

j=i Lj ⊆ Ei, it follows that

m∑

j=i

Pr [Lj] = Pr[
m⋃

j=i

Li] ≤ Pr[Ei] ≤
12 · ℓm(i)

√
logm

m
,

where the last inequality holds by Claim 4.12. �

Putting it together.

Proof of Lemma 4.7. Let B be an algorithm and let B′ be the algorithm that operates like B with
the following difference: if B aborts (i.e., output 1) at round i, and i > m− log2.5 m or i ≥ i′, for i′

being the minimal index with Ei′ , then B′ does not abort, and outputs 0’s till the end of the game.
Combining Claims 4.11 and 4.12 and Lemma 4.4 yields that

|BiasB(G)− BiasB′(G)| ≤
1

m
+

12 · log3 m
m

(17)

Let B′′ be the strategy that acts like B′, but does not abort (even if B′ does) in rounds {i, . . . ,m},
for i being the minimal index with Hi /∈ Ĥi,Yi−1 and let I ′′ = I(G,B′′) be according to Definition 4.2.
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Since we assume that Pr
[
Hi /∈ Ĥi,y | Yi−1 = y

]
≤ 3

m2 for every i ∈ [m −
⌊
log2.5m

⌋
] and y ∈ Yi−1,

a simple averaging argument yields that

|BiasB′(G)− BiasB′′(G)| ≤ Pr
[
∃i ∈ [m−

⌊
log2.5 m

⌋
] : Yi−1 ∈ Yi−1 ∧Hi /∈ Ĥi,Yi−1

]
≤ 3

m
. (18)

Let J ∈ (m) be the index for which LJ happens (i.e., J is the minimal index such that YJ /∈ YJ).
The definition of B′′ yields that I ′′ ≤ J , I ′′ ≤ m − log2.5m, YI′′−1 ∈ YI′′−1 and HI′′ ∈ ĤI′′,YI′′−1

.

Since, by assumption, |oi(y)− oi(y, h)| ≤ λ ·
√
logm

ℓm(i+1) for every i ∈ [m −
⌊
log2.5m

⌋
], y ∈ Yi−1 and

h ∈ Ĥi,y, it follows that

∣∣O−I′′ −OI′′
∣∣ = |oI′′(YI′′−1)− oI′′(YI′′−1,HI′′)| ≤ λ ·

√
logm

ℓm(I ′′ + 1)
≤ λ ·

√
logm

ℓm(J + 1)
. (19)

We conclude that

BiasB′′(G) =

∣∣∣∣ E
i←I′′

[
O−i −Oi

]∣∣∣∣ (20)

≤ E
i←I′′

[∣∣O−i −Oi

∣∣]

≤
m−1∑

i=0

Pr [Li] ·
λ · √logm
ℓm(i+ 1)

≤ λ ·
√

logm ·
(⌈

m
2 ⌉−1∑

i=0

Pr [Li]

ℓm(i+ 1)
+

m−1∑

i=⌈m2 ⌉

Pr [Li]

ℓm(i+ 1)

)

≤ λ ·
√

logm ·
( 1

ℓm(
⌈
m
2

⌉
)
+

12 · √logm
m

·
m−1∑

i=⌈m2 ⌉

1

ℓm(i+ 1)

)

≤ λ ·
√

logm ·
( 2
m

+
12 · √logm

m
·

m−1∑

i=⌈m2 ⌉

1

m− i

)

≤ λ ·
√

logm ·
( 2
m

+
12 · log1.5m

m

)

≤ 13λ · log
2m

m
.

The fourth inequality holds by Claim 4.13 and Proposition 2.1, and the one before last inequality

holds since
∑⌊m2 ⌋

i=1
1
i ≤ logm. Hence, Bias(G) ≤ 13λ · log2 mm + 4

m + 12·log3 m
m ≤ (13λ+ 13) log

3 m
m . �

4.2.2 Proving Lemma 4.8

The following claim states a more convenient, yet equivalent, expression for the ratio function.

Claim 4.14. For x ∈ Xi, y ∈ Supp(Yi−1) and h ∈ Supp(Hi | Yi−1 = y,Xi ∈ Xi), it holds that

ratioi,y,h(x) =
Pr[Hi = h | Yi−1 = y,Xi = x]

Pr[Hi = h | Yi−1 = y,Xi ∈ Xi]
.
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Proof. A simple calculation yields that

Pr [Hi = h | Yi−1 = y,Xi = x]

Pr [Hi = h | Yi−1 = y,Xi ∈ Xi]
=

Pr [Xi = x | Yi−1 = y,Hi = h]

Pr [Xi = x | Yi−1 = y]
· Pr [Xi ∈ Xi | Yi−1 = y]

Pr [Xi ∈ Xi | Yi−1 = y,Hi = h]
(21)

Since x ∈ Xi, it follows that

Pr [Xi = x | Yi−1 = y,Xi ∈ Xi] =
Pr [Xi = x | Yi−1 = y]

Pr [Xi ∈ Xi | Yi−1 = y]
(22)

and

Pr [Xi = x | Yi−1 = y,Xi ∈ Xi,Hi = h] =
Pr [Xi = x | Yi−1 = y,Hi = h]

Pr [Xi ∈ Xi | Yi−1 = y,Hi = h]
(23)

We conclude that

Pr [Hi = h | Yi−1 = y,Xi = x]

Pr [Hi = h | Yi−1 = y,Xi ∈ Xi]
=

Pr [Xi = x | Yi−1 = y,Xi ∈ Xi]

Pr [Xi = x | Yi−1 = y,Xi ∈ Xi,Hi = h]
= ratioi,y,h(x).

�

We now ready to prove Lemma 4.8.

Proof of Lemma 4.8. Let p = Pr[Xi ∈ Xi] = 1−q and ph = Pr[Xi ∈ Xi | Yi−1 = y,Hi = h] = 1−qh.
Then,

oi(y) = Pr[Ym ≥ 0 | Yi−1 = y] (24)

= p · Pr[Ym ≥ 0 | Yi−1 = y,Xi ∈ Xi] + q · Pr[Ym ≥ 0 | Yi−1 = y,Xi /∈ Xi]

= p · E
x←Xi|x∈Xi

[Pr[Ym ≥ 0 | Yi−1 = y,Xi = x]] + q · p′,

= p · E
x←Xi|x∈Xi

[oi+1(y + x)] + q · p′,

= ph · E
x←Xi|x∈Xi

[oi+1(y + x)] + (p− ph) · E
x←Xi|x∈Xi

[oi+1(y + x)] + q · p′,

for p′ = Pr[Ym ≥ 0 | Yi−1 = y,Xi /∈ Xi]. In addition,

oi(y, h) = Pr[Ym ≥ 0 | Yi−1 = y,Hi = h] (25)

= ph · Pr[Ym ≥ 0 | Yi−1 = y,Hi = h,Xi ∈ Xi] + qh · Pr[Ym ≥ 0 | Yi−1 = y,Hi = h,Xi /∈ Xi]

= ph ·
Pr[Ym ≥ 0 ∧Hi = h | Yi−1 = y,Xi ∈ Xi]

Pr[Hi = h | Yi−1 = y,Xi ∈ Xi]
+ qh · p′′

= ph ·
Ex←Xi|x∈Xi

[Pr[Ym ≥ 0 ∧Hi = h | Yi−1 = y,Xi = x]]

Pr[Hi = h | Yi−1 = y,Xi ∈ Xi]
+ qh · p′′

= ph ·
Ex←Xi|x∈Xi

[Pr[Ym ≥ 0 | Yi−1 = y,Xi = x] · Pr[Hi = h | Yi−1 = y,Xi = x]]

Pr[Hi = h | Yi−1 = y,Xi ∈ Xi]
+ qh · p′′

= ph · E
x←Xi|x∈Xi

[
oi+1(y + x) · Pr[Hi = h | Yi−1 = y,Xi = x]

Pr[Hi = h | Yi−1 = y,Xi ∈ Xi]

]
+ qh · p′′

= ph · E
x←Xi|x∈Xi

[oi+1(y + x) · ratioi,y,h(x)] + qh · p′′,
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for p′′ = Pr[Ym ≥ 0 | Yi−1 = y,Hi = h,Xi /∈ Xi], where the last equality holds by Claim 4.14.
Combing Equations (24) and (25) yields that

|oi(y)− oi(y, h)|

≤ ph ·
∣∣∣∣ E
x←Xi|x∈Xi

[oi+1(y + x) · (1− ratioi,y,h(x))]

∣∣∣∣+ |p− ph|+ q + qh

≤
∣∣∣∣ E
x←Xi|x∈Xi

[(oi+1(y + x)− oi+1(y)) · (1− ratioi,y,h(x))]

∣∣∣∣+ |q − qh|+ q + qh

≤ E
x←Xi|x∈Xi

[|oi+1(y + x)− oi+1(y)| · |1− ratioi,y,h(x)|] + 2 · (q + qh),

where the second inequality holds since

∣∣∣∣ E
x←Xi|x∈Xi

[oi+1(y + x) · (1− ratioi,y,h(x))]

∣∣∣∣

≤
∣∣∣∣ E
x←Xi|x∈Xi

[(oi+1(y) + oi+1(y + x)− oi+1(y)) · (1− ratioi,y,h(x))]

∣∣∣∣

≤
∣∣∣∣ E
x←Xi|x∈Xi

[oi+1(y) · (1− ratioi,y,h(x))]

∣∣∣∣+
∣∣∣∣ E
x←Xi|x∈Xi

[(oi+1(y + x)− oi+1(y)) · (1− ratioi,y,h(x))]

∣∣∣∣

=

∣∣∣∣oi+1(y) · (1− E
x←Xi|x∈Xi

[ratioi,y,h(x)])

∣∣∣∣+
∣∣∣∣ E
x←Xi|x∈Xi

[(oi+1(y + x)− oi+1(y)) · (1− ratioi,y,h(x))]

∣∣∣∣

=

∣∣∣∣ E
x←Xi|x∈Xi

[oi+1(y) · (1− 1)]

∣∣∣∣+
∣∣∣∣ E
x←Xi|x∈Xi

[(oi+1(y + x)− oi+1(y)) · (1− ratioi,y,h(x))]

∣∣∣∣

=

∣∣∣∣ E
x←Xi|x∈Xi

[(oi+1(y + x)− oi+1(y)) · (1− ratioi,y,h(x))]

∣∣∣∣ .

�

4.3 Bounding the Simple Binomial Game

In this section we prove Lemma 3.9 restated below.

Definition 4.15 (simple game – Restatement of Definition 3.8). For m ∈ N, ε ∈ [−1, 1] and a
randomized function f , the game Gf,m,ε is called ”simple game” if f on input (i, y) outputs 1 with

probability oi+1(y) (= Ĉsumm(i+1),ε(−y)), and zero otherwise.

Lemma 4.16 (Restatement of Lemma 3.9). Let m ∈ N, let ε ∈ [−1, 1] and let f be the randomized
function such that Gf,m,ε is a simple game according to Definition 4.15. Then Bias(Gf,m,ε) ≤
ξ·log3 m

m , for some universal constant ξ.

Proof. We view the function f as the composition g ◦ τ , where τ(i, y) outputs y + t, for t ←
Csumm(i+1),ε, and g(y + t) outputs 1 if y + t ≥ 0, and zero otherwise. Using Lemma 4.3, for
bounding the value of Gf,m,ε it suffices to bound that of Gτ,m,ε. We would also like to assume that

|ε| ≤ 4
√

logm
summ(1) . Indeed, if this is not the case, then O−1 /∈ [ 1

m2 , 1 − 1
m2 ], and the proof follows by

Lemma 4.4. Therefore, in the following we assume that |ε| ≤ 4
√

logm
summ(1) .
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In the following, we fix i ∈ [m−
⌊
log2.5m

⌋
] and y ∈ Yi−1, where Yi−1 is according to Lemma 4.6.

Let

Hi,y = {h ∈ Z : |h− y| ≤ 8 ·
√

logm · summ(i)}, (26)

Since (Hi − y) is distributed according to Csumm(i),ε (given that Yi−1 = y) and since |ε · summ(i)| ≤
4 ·
√

logm · summ(i), Hoeffding’s inequality yields that

Pr [Hi /∈ Hi,y | Yi−1 = y] = Pr
[
|Hi − y| > 8 ·

√
logm · summ(i) | Yi−1 = y

]
(27)

≤ Pr
[
|(Hi − y)− ε · summ(i)| > 4 ·

√
logm · summ(i) | Yi−1 = y

]

≤ 2 · exp
(
−16 · summ(i) logm

2 · summ(i)

)

≤ 1

m2
.

Fix h = y + t ∈ H′i,y := Hi,y
⋂

Supp(Hi | Yi−1 = y,Xi ∈ Xi), and let t0 = t − ε · summ(i). Note

that |t0| = |t− ε · summ(i)| = |h− y − ε · summ(i)| ≤ |h− y| + |ε · summ(i)| ≤ 12
√

summ(i) logm.
In addition, note that since y+ t ∈ H′i,y, there exists x0 ∈ Xi such that t−x0 ∈ Supp(Csumm(i+1),ε),
where Xi is according to Definition 4.5. Therefore, we can deduce that t−x ∈ Supp(Csumm(i+1),ε) for

every x ∈ Xi. The latter holds since |t− x| ≤ |t|+ |x| < (8 + 4) ·
√

logm · summ(i) < summ(i+ 1)
(recalling that i ∈ [m −

⌊
log2.5m

⌋
] for large m) and since x has the same parity as x0 (all the

elements of Xi has the same parity since Xi ⊆ Supp(Xi)).
Fix x ∈ Xi and compute

1

ratioi,y,h(x)
=

Pr[Hi = y + t | Yi−1 = y,Xi ∈ Xi]

Pr[Hi = y + t | Yi−1 = y,Xi = x]
(28)

= E
x′←Xi|x′∈Xi

[Csumm(i+1),ε(t− x′)

Csumm(i+1),ε(t− x)

]

∈ E
x′←Xi|x′∈Xi

[
exp

(−2 · t0 · x+ x2 + 2 · t0 · x′ − x′2

2 · summ(i+ 1)

)]
·
(
1± ξ1 ·

log1.5m√
summ(i+ 1)

)

⊆
(
1± ξ2 ·

√
logm

ℓm(i+ 1)

(
1 +

|x|√
ℓm(i)

)
)
·
(
1± ξ1 ·

log1.5m√
summ(i+ 1)

)

⊆ 1± ξ3 ·
√

logm

ℓm(i+ 1)

(
1 +

|x|√
ℓm(i)

)
,

for some constants ξ1, ξ2, ξ3 ∈ R+ (independent of the game). The first transition holds by
Claim 4.14, the third one by Proposition 2.5, and the fourth one by Proposition 2.8.

Recalling that i ≤ m− log2.5 m, it follows that

ξ3 ·
√

logm

ℓm(i+ 1)
·
(
1 +

|x|√
ℓm(i)

)
∈ O

(
logm√
ℓm(i+ 1)

)
∈ o(1) (29)
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Since 1
1±z ⊆ 1± 2z for every z ∈ (−0.5, 0.5), we deduce from Equation (28) that

ratioi,y,h(x) ∈ 1± 2ξ3 ·
√

logm

ℓm(i+ 1)
·
(
1 +

|x|√
ℓm(i)

)
(30)

and thus

|1− ratioi,y,h(x)| ≤ 2ξ3 ·
√

logm

ℓm(i+ 1)
·
(
1 +

|x|√
ℓm(i)

)
(31)

Finally, since the above holds for every i ≤ m − log2.5m, y ∈ Yi−1, h ∈ Hi,y and x ∈ Xi, and

recalling Equation (27), we can apply Lemma 4.6 to get that Bias(Gτ,m,ε) ≤ ξ · log3 mm , for some
universal constant ξ > 0. �

4.4 Bounding the Hypergeometric Binomial Game

In this section we prove Lemma 3.11 restated below. Recall that for n ∈ N, ℓ ∈ [n] and an
integer p ∈ [−n, n], we define the hypergeometric probability distribution HGn,p,ℓ by HGn,p,ℓ(k) :=
PrI [w(vI) = k], where I is an ℓ-size set uniformly chosen from [n] and v ∈ {−1, 1}n with w(v) = p
(recall that w(v) =

∑
j∈[|v|] v[j] and that vI = (vj1 , . . . , vj|I|) where j1, . . . , j|I| are the ordered

elements of I) and recall that ĤGn,p,ℓ(k) := Prx←HGn,p,ℓ
[x ≥ k] =

∑ℓ
t=kHGn,p,ℓ(t).

Definition 4.17 (hypergeometric game – Restatement of Definition 3.10). For m ∈ N, ε ∈ [−1, 1],
λ > 0 and a randomized function f , the game Gf,m,ε is called ”λ-hypergeometric game” if there
exists p ∈ [−m,m], with |p| ≤ λ ·

√
logm · summ(1), such that f on input (i, y) outputs 1 with

probability ĤG2·summ(1),p,summ(i+1)(−y) and zero otherwise.

Lemma 4.18 (Restatement of Lemma 3.11). Let m ∈ N, let ε ∈ [−1, 1], let λ > 0 and let f be
a randomized function such that Gf,m,ε is an λ-hypergeometric game according to Definition 4.17.

Then Bias(Gf,m,ε) ≤ ϕ(λ)·log3 m
m for some universal function ϕ.

Proof. We view the function f as g ◦ τ , for τ(i, y) being the output of the following process. A
random subset I of size 2·summ(i+ 1) is uniformly chosen from [2·summ(1)], where the output of τ is
set to (w(vI), y+t), for v ∈ {−1, 1}2·summ(1) with w(v) = p and for t←HG2summ(i+1),w(v,I),summ(i+1).
The function g on input (p′, y′) outputs one if y′ ≥ 0, and zero otherwise. Since Pr [g ◦ τ(i, y) = 1] =
Pr [f(i, y) = 1], by Lemma 4.3 it suffices to bound the bias of the game Gτ,m,ε. In addition, as in

the proof of Lemma 4.16, we can assume without loss of generality that |ε| ≤ 4
√

logm
summ(1) . Fix

i ∈ [m−
⌊
log2.5m

⌋
] and y ∈ Yi−1, where Yi−1 is according to Lemma 4.6. Let

Hi,y = {(p′, y′) ∈ Z2 :
∣∣p′
∣∣ ,
∣∣y′ − y

∣∣ ≤ (λ+ 8)
√

logm · summ(i+ 1)},

Since Hi = (p′, y+t) for p′ ← HG2summ(1),p,2summ(i+1) and t← Cℓm(i),ε+HG2summ(i+1),p′,summ(i+1)
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(given that Yi−1 = y), it follows that

Pr
[
|Hi[0]| > (λ+ 8)

√
logm · summ(i+ 1)

]

≤ Pr

[∣∣∣∣Hi[0]−
p · summ(i+ 1)

summ(1)

∣∣∣∣ > 8
√

logm · summ(i+ 1)

]

≤ exp

(
−64 · summ(i+ 1) logm

2 · summ(i+ 1)

)

≤ 1

m4
,

where the second inequality holds by Hoeffding’s inequality for hypergeometric distribution
(Fact 2.9). In addition, given that Hi[0] = p′ for |p′| ≤ (λ + 8)

√
logm · summ(i+ 1), it holds

that
(
Hi[1] − (y +Xi)

)
is distributed according to HG2summ(i+1),p′,summ(i+1). This yields that

Pr
[
|Hi[1] − y| > (λ+ 8)

√
logm · summ(i+ 1) | Yi−1 = y

]

≤ Pr
[
|Hi[1]− (y +Xi)| > (λ+ 7)

√
logm · summ(i+ 1) | Yi−1 = y

]

≤ Pr

[∣∣∣∣
(
Hi[1] − (y +Xi)

)
− p′

2

∣∣∣∣ > 3
√

logm · summ(i+ 1) | Yi−1 = y

]

≤ exp

(
−9 · summ(i+ 1) logm

2 · summ(i+ 1)

)

≤ 1

m4
.

The first inequality holds since |Xi| ≤ ℓm(i) <
√
logm · summ(i+ 1), the second one holds since

|p′|
2 < λ+8

2

√
logm · summ(i+ 1), and the third one by Hoeffding’s inequality for hypergeometric

distribution (Fact 2.9). It follows that

Pr [Hi /∈ Hi,y | Yi−1 = y] ≤ 1

m4
+

1

m4
<

1

m2
(32)

Fix h = (p′, y + t) ∈ H′i,y := Hi,y
⋂

Supp(Hi | Yi−1 = y,Xi ∈ Xi), where Xi is according to
Definition 4.5. Note that by the same arguments introduced in the analogous case in Section 4.3,
it holds that t− x ∈ Supp(HG2summ(i+1),p′,summ(i+1)) for every x ∈ Xi.

Fix x ∈ Xi and compute

1

ratioi,y,h(x)
=

Pr[Hi = (p′, y + t) | Yi−1 = y,Xi ∈ Xi]

Pr[Hi = (p′, y + t) | Yi−1 = y,Xi = x]
(33)

= E
x′←Xi|x′∈Xi

[HG2summ(i+1),p′,summ(i+1)(t− x′)

HG2summ(i+1),p′,summ(i+1)(t− x)

]

∈ E
x′←Xi|x′∈Xi

[
exp

(
−2(t− p′

2 )x+ x2 + 2(t− p′

2 )x
′ − x′2

summ(i+ 1)

)]
·
(
1± ϕ1(λ) ·

log1.5m√
summ(i+ 1)

)

⊆
(
1± ϕ2(λ)

√
logm

ℓm(i+ 1)

(
1 +

|x|√
ℓm(i)

)
)
·
(
1± ϕ1(λ) ·

log1.5m√
summ(i+ 1)

)

⊆ 1± ϕ3(λ)

√
logm

ℓm(i+ 1)

(
1 +

|x|√
ℓm(i)

)
,
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for some functions ϕ1, ϕ2, ϕ3 : R+ 7→ R+ (independent of the game). The first transition holds by
Claim 4.14, the third one by Proposition 2.11 and the fourth one by Proposition 2.8.

Recalling that i ≤ m− log2.5 m, it follows that

ϕ3(λ) ·
√

logm

ℓm(i+ 1)
·
(
1 +

|x|√
ℓm(i)

)
∈ o(1) (34)

Since 1
1±z ⊆ 1± 2z for every z ∈ (−0.5, 0.5), we deduce from Equation (33) that

ratioi,y,h(x) ∈ 1± 2ϕ3(λ)

√
logm

ℓm(i+ 1)
·
(
1 +

|x|√
ℓm(i)

)
(35)

and thus

|1− ratioi,y,h(x)| ≤ 2ϕ3(λ)

√
logm

ℓm(i+ 1)
·
(
1 +

|x|√
ℓm(i)

)
(36)

Finally, since the above holds for every i ≤ m − log2.5m, y ∈ Yi−1, h ∈ Hi,y and x ∈ Xi, and

recalling Equation (32), we can apply Lemma 4.6 to get that Bias(Gτ,m,ε) ≤ ϕ(λ) · log3 mm , for some
universal function ϕ : R+ 7→ R+. �

4.5 Bounding the Vector Binomial Game

In this section we prove Lemma 3.13 restated below. Recall that for n ∈ N and δ ∈ [0, 1] we let
Ĉ−1n (δ) be the value ε ∈ [−1, 1] with Ĉn,ε(0) = δ.

Definition 4.19 (vector game – Restatement of Definition 3.12). For m ∈ N, ε ∈ [−1, 1], λ ∈ N
and a randomized function f , the game Gf,m,ε is called ”λ-vector game” if f on input (i, y) outputs

a string in {−1, 1}λ·summ(1), where each of entries takes the value 1 with probability Ĉ−1
summ(1)(δ) for

δ = oi+1(y)(= Ĉsumm(i+1),ε(−y)).

Lemma 4.20 (Restatement of Lemma 3.13). Let m ∈ N, let λ > 0 and let f be a randomized
function such that Gf,m,ε=0 is an λ-vector game according to Definition 4.19. Then Bias(Gf,m,ε=0) ≤
ϕ(λ)·log3 m

m for some universal function ϕ.

Proof. For i ∈ [m] and y ∈ Z, let εi(y) := Ĉ−1summ(1)(oi+1(y)) (recall that oi+1(y) = Ĉsumm(i+1),0(−y))
and let q = λ · summ(1). Fix i ∈ [m −

⌊
log2.5m

⌋
] and y ∈ Yi−1, where Yi−1 is according to

Lemma 4.6. Note that

Pr [f(i, y) = v] = 2−q · (1 + εi(y))
q
2
+w(v)

2 · (1− εi(y))
q
2
−w(v)

2 (37)

for every v ∈ {−1, 1}q . Let

Hi,y = {v ∈ {−1, 1}q : |w(v)| ≤
√

d · logm · q}, (38)

for d = d(λ) to be determined by the analysis. In the following we let si = summ(i+ 1) · summ(1).

Since m is large, Proposition 2.7 yields that εi(y + x) ∈ y+x√
si
± log2 m√

si
for every x ∈ Supp(Xi).
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Since y ∈ Yi−1, it follows that |y| ≤ 4
√

logm · summ(i). Therefore,
∣∣∣y+x√

si

∣∣∣ ≤ 4
√

logm·summ(i)+ℓm(i)√
summ(i+1)·summ(1)

≤
5
√

logm·summ(i)√
summ(i+1)·summ(1)

≤ 6
√
logm√

summ(1)
=
√

36λ·logm
q , and thus, |εi(y + x)| ≤ (36λ + 1) ·

√
logm
q for every

x ∈ Supp(Xi). By setting d = (5 + 72λ)2, Hoeffding’s bound yields that the following holds for
every x ∈ Supp(Xi).

Pr [Hi /∈ Hi,y | Yi = y + x]

= Prz←Cq,εi(y+x)

[
|z| >

√
d · logm · q

]

≤ Prz←Cq,εi(y+x)

[
|z − 2q · εi(y + x)| >

√
d · logm · q − 2q · εi(y + x)

]

≤ Prz←Cq,εi(y+x)

[
|z − 2q · εi(y + x)| >

√
d · logm · q − 2 · (36λ+ 1) ·

√
logm · q

]

= Prz←Cq,εi(y+x)

[
|z − 2q · εi(y + x)| > 3 ·

√
logm · q

]

≤ 1

m2
.

Thus,

Pr [Hi /∈ Hi,y | Yi−1 = y] = E
x←Xi

[Pr [Hi /∈ Hi,y | Yi = y + x]] ≤ 1

m2
(39)

Fix x ∈ Xi and v ∈ H′i,y := Hi,y
⋂

Supp(Hi | Yi−1 = y,Xi ∈ Xi), where Xi is as defined in
Lemma 4.6. Compute

Pr[Hi = v | Yi = y + x] = 2−q · (1 + εi(y + x))
q
2
+

w(v)
2 (1− εi(y + x))

q
2
−w(v)

2 (40)

= 2−q · (1− ε2i (y + x))
q
2
−w(v)

2 (1 + εi(y + x))w(v)

Since 1 + z ≤ ez for z ∈ R, it holds that

Pr[Hi = v | Yi = y + x] ≤ 2−q · exp
(
−ε2i (y + x) · (q

2
− w(v)

2
) + εi(y + x) · w(v)

)
(41)

Since m is large, Proposition 2.7 yields that εi(y+x) ∈ (−1
2 ,

1
2). Using the inequality 1+ z ≥ ez−z

2

for z ∈ (−1
2 ,

1
2), we deduce that

Pr[Hi = v | Yi = y + x] ≥ 2−q · e(−ε2i (y+x)−ε4i (y+x))( q
2
−w(v)

2
) · e(εi(y+x)−ε2i (y+x))·w(v) (42)

= 2−q · e−ε2i (y+x)·( q
2
−w(v)

2
) · eεi(y+x)·w(v) · e−ε4i (y+x)·( q

2
−w(v)

2
)−ε2i (y+x)·w(v)

≥ 2−q · exp
(
−ε2i (y + x) · (q

2
− w(v)

2
) + εi(y + x) · w(v)

)
· (1− error(x)),

for

error(x) :=

∣∣∣∣1− exp

(
−ε4i (y + x) · (q

2
− w(v)

2
)− ε2i (y + x) · w(v)

)∣∣∣∣ (43)
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Using Equations (41) and (42), we can now write

Pr[Hi = v | Yi = y + x] ∈ 2−q · exp
(
−ε2i (y + x) · (q

2
− w(v)

2
) + εi(y + x) · w(v)

)
(1± error(x))

(44)

Let x′ ∈ Xi, and assume without loss of generality that error(x) ≥ error(x′). We show next that
error(x) ∈ o(1). Hence, since 1±z

1±z ⊆ 1± 4z for every z ∈ [0, 12 ], it holds that

Pr[Hi = v | Yi = y + x′]
Pr[Hi = v | Yi = y + x]

(45)

∈
exp

(
−ε2i (y + x′) · ( q2 −

w(v)
2 ) + εi(y + x′) · w(v)

)

exp
(
−ε2i (y + x)( q2 −

w(v)
2 ) + εi(y + x) · w(v)

) · (1± 4 · error(x))

= exp

(
(εi(y + x)− εi(y + x′))

[
(εi(y + x) + εi(y + x′))(

q

2
− w(v)

2
)− w(v)

])
(1± 4 · error(x))

⊆ exp

((x− x′√
si
± log2m√

si

) [(2y + x+ x′√
si

± log2m√
si

)
· (q
2
− w(v)

2
)− w(v)

])
· (1± 4 · error(x))

⊆ exp

(
x− x′ ± log2 m

summ(i+ 1)
·
[
2y + x+ x′ ± log2 m

summ(1)
· (q
2
− w(v)

2
)±

√
summ(i+ 1)

summ(1)
· w(v)

])
· (1± 4 · error(x)),

and therefore,

Pr[Hi = v | Yi = y + x′]
Pr[Hi = v | Yi = y + x]

∈ exp

(( x− x′

summ(i+ 1)
± log2 m

summ(i+ 1)

)
· α
)
· (1± 4 · error(x)) (46)

for some α ∈ (2y+x+x′

summ(1) ±
log2 m

summ(1)) · (
q
2 − w(v)) ±

√
summ(i+1)
summ(1) · w(v). The third transition of the

previous calculation holds by Proposition 2.7. By taking large enough d′ = d′(λ) > 0, we can
bound |α| and error(x) by

|α| ≤ d′ ·
√

logm · summ(i+ 1) (47)

and

error(x) =

∣∣∣∣1− exp

(
−ε4i (y + x)(

q

2
− w(v)

2
)− ε2i (y + x) · w(v)

)∣∣∣∣

≤ max

(∣∣∣∣∣1− exp

(
−
(
y + x√

si
± log2 m√

si

)4

(
q

2
− w(v)

2
)−

(
y + x√

si
± log2m√

si

)2

w(v)

)∣∣∣∣∣

)

≤ 1− exp


−

(
3 ·
√

logm

summ(1)

)4

· (λ+ 1) · summ(1)−
(
3 ·
√

logm

summ(1)

)2

·
√

d · summ(1) · logm




≤ 1− (1− d′ · log1.5m√
summ(1)

)

= d′ · log1.5m√
summ(1)

,
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where the second transition holds by Proposition 2.7 and the first inequality holds by the bounds

on |y|, |x| and |w(v)|. Since log2 m
summ(i+1) · α ∈ o(1) and since ey ∈ 1± 2y for y ∈ (−0.5, 0.5), it follows

that

exp

(
log2 m

summ(i+ 1)
· α
)

(48)

≤ 1 + 2 · log2 m

summ(i+ 1)
· α

≤ 1 + 2 · log2 m

summ(i+ 1)
· d′ ·

√
logm · summ(i+ 1)

≤ 1 + 2d′ · log2.5 m√
summ(i+ 1)

.

Therefore, Equation (46) yields that

Pr[Hi = v | Yi = y + x′]
Pr[Hi = v | Yi = y + x]

∈ exp

(
x− x′

summ(i+ 1)
· α
)
·
(
1± log3m√

summ(i+ 1)

)
(49)

and thus

1

ratioi,y,v(x)
=

Pr[Hi = v | Yi−1 = y,Xi ∈ Xi]

Pr[Hi = v | Yi−1 = y,Xi = x]
(50)

= E
x′←Xi|x′∈Xi

[
Pr[Hi = v | Yi = y + x′]
Pr[Hi = v | Yi = y + x]

]

∈ E
x′←Xi|x′∈Xi

[
exp

(
α(x− x′)

summ(i+ 1)

)
·
(
1± log3 m

summ(i+ 1)

)]

⊆
(
1± ϕ1(d) ·

√
logm

ℓm(i+ 1)
· (1 + |x|√

ℓm(i)
)

)
·
(
1± log3 m

summ(i+ 1)

)

⊆ 1± ϕ2(d)

√
logm

ℓm(i+ 1)
·
(
1 +

|x|√
ℓm(i)

)
,

for some universal functions ϕ1, ϕ2 : R+ 7→ R+. The first transition holds by Claim 4.14, the third
one by Equation (49) and the fourth one by Proposition 2.8. Recalling that i ≤ m − log2.5 m, it
follows that

√
logm

ℓm(i+ 1)
·
(
1 +

|x|√
ℓm(i)

)
∈ o(1) (51)

Since 1
1±z ⊆ 1± 2z for every z ∈ (−0.5, 0.5), we deduce from Equation (50) that

ratioi,y,v(x) ∈ 1± 2ϕ2(d) ·
√

logm

ℓm(i+ 1)
·
(
1 +

|x|√
ℓm(i)

)
(52)

= 1± ϕ3(λ) ·
√

logm

ℓm(i+ 1)
·
(
1 +

|x|√
ℓm(i)

)
,
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where ϕ3(λ) = 2 · ϕ2(d(λ)). Thus

|1− ratioi,y,v(x)| ≤ ϕ3(λ) ·
√

logm

ℓm(i+ 1)
· (1 + |x|√

ℓm(i)
) (53)

Finally, since the above holds for every i ≤ m − log2.5m, y ∈ Yi−1, v ∈ Hi,y and x ∈ Xi, and

recalling Equation (39), we can apply Lemma 4.6 to get that Bias(Gf,m,ε) ≤ ϕ(λ) · log3 mm , for some
universal function ϕ : R+ 7→ R+. �

Acknowledgment

We are very grateful to Yuval Ishai, Yishay Mansour, Eran Omri and Alex Samorodnitsky for very
useful discussions. We also thank Eran for encouraging us to tackle this beautiful problem. We
also thans the anonymous referees for their very useful comments.

References

[1] Abramowitz, M. and Stegun, I. A., editors. Handbook of Mathematical Functions. Dover
Publications, 1964.

[2] D. Aharonov, A. Ta-Shma, U. Vazirani, and A. C. Yao. Quantum bit escrow. In STOC: ACM
Symposium on Theory of Computing (STOC), 2000.

[3] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital goods. In
Advances in Cryptology – EUROCRYPT 2001, 2001.

[4] N. Alon and M. Naor. Coin-flipping games immune against linear-sized coalitions. SIAM
Journal on Computing, pages 46–54, 1993.

[5] A. Ambainis. A new protocol and lower bounds for quantum coin flipping. J. Comput. Syst.
Sci., 68(2):398–416, 2004.

[6] A. Ambainis, H. Buhrman, Y. Dodis, and H. Röhrig. Multiparty quantum coin flipping. In
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A Missing Proofs

This section contains missing proofs for statements given in Sections 2.2 to 2.4.

A.1 Basic Inequalities

Proposition A.1 (Restatement of Proposition 2.1). Let n ∈ N, α > 0, k ∈ [n] and let {pj}nj=k be
a set of non-negative numbers such that

∑n
j=i pj ≤ α · (n + 1 − i) for every i ∈ {k, k + 1, . . . , n}.

Then
∑n

j=k
pj

(n+1−j) ≤ α ·∑n
j=k

1
(n+1−j) .

Proof. We prove the proposition by showing that for every set S = {pj}nj=k satisfying the propo-

sition’s constrains, it holds that val(S) :=
∑n

j=k
pj

(n+1−j) ≤
∑n

j=k
α

(n+1−j) . Let S = {pj}nj=k be a

set that satisfying the proposition’s constrains with maximal val(S). Assume not all elements of S
equal α, and let i∗ ∈ {k, k + 1, . . . , n} be the largest index such that pi∗ 6= α. By the proposition’s
constrains, it follows that

∑n
j=i∗ pj ≤ α · (n + 1 − i∗). Since

∑n
j=i∗+1 pj = α · (n − i∗), it follows

that pi∗ + α(n − i∗) ≤ α · (n + 1− i∗), and thus pi∗ ≤ α. Since we assume pi∗ 6= α, it follows that
pi∗ < α.

Assume i∗ = k, then by changing pi∗ to α, we get a set S ′ with val(S ′) > val(S) that fulfills the
proposition’s constrains, in contradiction to the maximality of S.

Assume i∗ > k and let δ = α− pi∗ > 0. Let S ′ = {p′j}nj=k defined by

p′j =





pj + δ, j = i∗,
pj − δ, j = i∗ − 1,
pj, otherwise.
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Note that S ′ fulfills proposition’s constrains, and

val(S ′) =
n∑

j=k

p
′
j

n− j + 1
=

n∑

j=k

pj
n− j + 1

+
δ

n− i∗ + 1
− δ

n− i∗ + 2
>

n∑

j=k

pj
n− j + 1

= val(S),

in contraction to the maximality of S. �

A.2 Facts About the Binomial Distribution

Recall that for a ∈ R and b ≥ 0, a ± b denotes for the interval [a − b, a + b], and that given sets
S1, . . . ,Sk and k-input function f , f(S1, . . . ,Sk) = {f(x1, . . . , xj) : xi ∈ Si}, e.g., f(1 ± 0.1) =
{f(x) : x ∈ [.9, 1.1]}.

We use the following estimation of the binomial coefficient.

Proposition A.2. Let n ∈ N and t ∈ Z be such that |t| ≤ n
3
5 and n+t

2 ∈ (n). Then

(
n

n+t
2

)
· 2−n ∈ (1± error) ·

√
2

π
· 1√

n
· e− t2

2n ,

for error = ξ · ( |t|
3

n2 + 1
n) and a universal constant ξ.

Proof. In the following we focus on n ≥ 200, smaller n’s are handled by setting the value of ξ to
be large enough on these values. We also assume that n and t are even, the proof of the odd case
is analogous. Let m := n

2 ≥ 100 and k := t
2 . Stirling’s formula states that for every ℓ ∈ N it holds

that 1 ≤ ℓ!√
2πℓ·( ℓ

e
)ℓ
≤ e

1
12ℓ which implies ℓ! ∈ (1± 1

ℓ )
√
2πℓ · ℓℓ · e−ℓ. Compute

(
2m

m+ k

)
=

(2m)!

(m+ k)!(m − k)!

∈ (1± 1
2m )
√
2π · 2m(2m)2me−2m

(1± 1
m+k )

√
2π(m+ k)(m+ k)m+ke−(m+k) · (1± 1

m−k )
√

2π(m− k)(m− k)m−ke−(m−k)

⊆
√
2π · 2m(2m)2me−2m√

2π(m+ k)(m+ k)m+ke−(m+k) ·
√

2π(m− k)(m− k)m−ke−(m−k)
· (1± 20

m
)

=
(2m)2m+ 1

2

√
2π · (m+ k)m+k+ 1

2 · (m− k)m−k+
1
2

· (1± 20

m
)

= 22m · 1
√
πm · (1 + k

m )m+k+ 1
2 · (1− k

m)m−k+
1
2

· (1± 20

m
)

= 22m · 1
√
πm · (1− k2

m2 )
m−k+ 1

2 · (1 + k
m )2k

· (1± 20

m
),

where the third transition holds by the bound on m and k which yields
(1± 1

m
)

(1± 1
m+k

)(1± 1
m−k

)
⊆ (1± 20

m ).
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Since 1 + x ∈ ex±x
2
for x ∈ (−0.5, 0.5), it follows that

(
n

n+t
2

)
· 2−n =

(
2m

m+ k

)
· 2−2m (54)

∈ 1
√
πm · e(−

k2

m2± k4

m4 )(m−k+ 1
2
) · e(

k
m
± k2

m2 )·2k
· (1± 20

m
)

=
1√
πm
· e− k2

m · e−
k3

m2±
3|k|3
m2 + k2

2m2± k4

m4 (m−k+ 1
2
) · (1± 20

m
)

⊆ 1√
πm
· e− k2

m · e±
5|k|3
m2 · (1± 20

m
)

⊆ 1√
πm
· e− k2

m · (1± 10 |k|3
m2

) · (1± 20

m
)

⊆ 1√
π
·
(
1± 20 · ( |k|

3

m2
+

1

m
)
)
· 1√

m
· e− k2

m ,

⊆
√

2

π
·
(
1± 40 · ( |t|

3

n2
+

1

n
)
)
· 1√

n
· e− t2

2n

where the third transition holds by the bounds on m and k, and the fourth one holds since 4|k|3
m2 < 1

and since ex ∈ 1± 2x for every |x| < 1. �

Recall that for n ∈ N and ε ∈ [−1, 1], we let Cn,ε be the binomial distribution induced by
the sum of n independent random variables over {−1, 1}, each takes the value 1 with probability
1
2(1+ ε) and −1 otherwise. The following proposition uses the previous estimation for the binomial
coefficient for achieving an estimation for the binomial probability Cn,ε(t) := Prx←Cn,ε [x = t].

Proposition A.3 (Restatement of Proposition 2.4). Let n ∈ N, t ∈ Z and ε ∈ [−1, 1] be such that

t ∈ Supp(Cn,ε), |t| ≤ n
3
5 and |ε| ≤ n−

2
5 . Then

Cn,ε(t) ∈ (1± error) ·
√

2

π
· 1√

n
· e−

(t−εn)2

2n ,

for error = ξ · (ε2 |t|+ 1
n + |t|3

n2 + ε4n) and a universal constant ξ.

Proof. In the following we focus on n ≥ 200, smaller n’s are handled by setting the value of ξ to
be large enough on these values. Let ξ1 be the universal constant from Proposition A.2. Compute

Cn,ε(t) =
(

n
n+t
2

)
2−n(1 + ε)

n+t
2 (1− ε)

n−t
2 (55)

∈
√

2

π
(1± ξ1 · (

|t|3
n2

+
1

n
)) · 1√

n
· e− t2

2n · (1− ε2)
n−t
2 (1 + ε)t,

where the second transition holds by Proposition A.2. Since 1 + x ∈ ex±x
2
for x ∈ (−0.5, 0.5), it
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follows that:

Cn,ε(t) ∈
√

2

π
(1± ξ1 · (

|t|3
n2

+
1

n
)) · 1√

n
· e− t2

2n · e(−ε2±ε4)·n−t
2 e(ε±ε

2)t

⊆
√

2

π
(1± ξ1 · (

|t|3
n2

+
1

n
)) · 1√

n
· e− t2

2n
− ε2n

2
+εt · e±(2ε2|t|+ ε4n

2
)

⊆
√

2

π
(1± ξ1 · (

|t|3
n2

+
1

n
)) · 1√

n
· e−

(t−εn)2

2n (1± 4 · (ε2 |t|+ ε4n))

⊆
√

2

π
(1± ξ · (ε2 |t|+ |t|

3

n2
+

1

n
+ ε4n)) · 1√

n
· e−

(t−εn)2

2n ,

where ξ = 4ξ1 + 4. Note that since ex ∈ 1 ± 2x for every |x| < 1, and since 2ε2 |t| + ε4n
2 <

2n−
1
5 + 1

2n
− 3

5 < 1, it follows that e±(2ε
2|t|+ ε4n

2
) ⊆ 1 ± 4 · (ε2 |t| + ε4n) which yields the third

transition. In addition, note that |t|
3

n2 + 1
n < n−

1
5 + 1

n < 1, which implies the last transition. �

Using the above estimation for the binomial probability, the following proposition estimate the
relation between two binomial probabilities.

Proposition A.4 (Restatement of Proposition 2.5). Let n ∈ N, t, x, x′ ∈ Z, ε ∈ [−1, 1] and λ > 0

be such that t− x, t− x′ ∈ Supp(Cn,ε), |x| , |x′| , |t| ≤ λ · √n log n and |ε| ≤ λ ·
√

logn
n , then

Cn,ε(t− x′)
Cn,ε(t− x)

∈ (1± error) · exp
(−2 · (t− εn) · x+ x2 + 2 · (t− εn) · x′ − x′2

2n

)
,

for error = ϕ(λ) · log1.5 n√
n

and a universal function ϕ.

Proof. Let ξ be the constant from Proposition A.3. There exists a function ϑ : R+ 7→ N such that

n
3
5 > 2λ · √n log n and ξ · (λ4 + 10λ3 + 1) · log1.5 n√

n
< 1

2 for every n ≥ ϑ(λ). In the following we

focus on n ≥ ϑ(λ), where smaller n’s are handled by setting the value of ϕ(λ) to be large enough
on these values. Let ϕ(λ) := 4 · ξ · (λ4 + 10λ3 + 1). It follows that

Cn,ε(t− x′)

Cn,ε(t− x)
∈

(
1± ξ · (ε2 |t− x′|+ 1

n + |t−x′|3
n2 + ε4n)

)
·
√

2
π · 1√

n
· e− (t−εn−x′)2

2n

(
1± ξ · (ε2 |t− x|+ 1

n + |t−x|3
n2 + ε4n)

)
·
√

2
π · 1√

n
· e− (t−εn−x)2

2n

⊆

(
1± ξ · (λ4 + 10λ3 + 1) · log1.5 n√

n

)
· e− (t−εn−x′)2

2n

(
1± ξ · (λ4 + 10λ3 + 1) · log1.5 n√

n

)
· e− (t−εn−x)2

2n

⊆ (1± ϕ(λ) · log
1.5 n√
n

) · exp
(
(t− εn− x)2

2n
− (t− εn− x′)2

2n

)

= (1± ϕ(λ) · log
1.5 n√
n

) · exp
(−2 · (t− εn) · x+ x2 + 2 · (t− εn) · x′ − x′2

2n

)
,

where the first transition holds by Proposition A.3, the second one holds by the bounds on |t|, |x|,
|x′| and |ε|, and the third one holds since 1±y

1±y ⊆ 1± 4y for every y ∈ [0, 12 ]. �
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Recall that for n ∈ N and k ∈ Z we let Ĉn,ε(k) := Prx←Cn,ε [x ≥ k] =
∑

t≥k Cn,ε(t). Assuming
that n is larger than some universal constant, the following proposition gives a useful bound on the
probability of the event that a binomial distribution is in a certain range of value.

Proposition A.5 (Restatement of Proposition 2.6). Let n ∈ N, k, k′ ∈ Z and ε ∈ [−1, 1], where n

is larger than a universal constant, |k| , |k′| ≤ n
3
5 and |ε| ≤ n−

2
5 . Then

∣∣∣Ĉn,ε(k)− Ĉn,ε(k′)
∣∣∣ ≤ |k − k′|√

n
.

Proof. By Proposition A.3, for every t ∈ Z with |t| ≤ n
3
5 , it holds that

Cn,ε(t) ∈ (1± 0.1) ·
√

2

π
· 1√

n
· e−

(t−εn)2

2n ,

and therefore

Cn,ε(t) ≤
1√
n
· e−

(t−εn)2

2n ≤ 1√
n
.

Assume without loss of generality that k′ ≥ k, it holds that Ĉn,ε(k)−Ĉn,ε(k′) =
∑k′

t=k Cn,ε(t), which
by the bound above, is at most (k′−k)√

n
. �

Recall that the function Φ: R 7→ (0, 1) defined as Φ(x) := 1√
2π

∫∞
x e−

t2

2 dt is the cumulative

distribution function of the standard normal distribution. The following fact and proposition are
the first steps towards estimating the value of Ĉn,ε(k) in Proposition A.8.

Fact A.6 ([1]). For x ≥ 0 it holds that

√
2

π
· e−

x2

2

x+
√
x2 + 4

≤ Φ(x) ≤
√

2

π
· e−

x2

2

x+
√

x2 + 8
π

.

Proposition A.7. Let n ∈ N, ε ∈ (−1, 1) and k, k′ ∈ Z be such that k′ ≥ k ≥ εn
2 . Then

∣∣∣∣∣
k′∑

t=k

e−
(2t−εn)2

2n −
∫ k′

k
e−

(2t−εn)2

2n dt

∣∣∣∣∣ ≤ e−
(2k−εn)2

2n .

Proof. Consider the function f(t) = e−
(2t−εn)2

2n . The function f obtains its maximum at t = εn
2

and is monotonic decreasing in [ εn2 ,∞). In particular, it is decreasing in [k,∞). Since
∑k′

t=k f(t)

is an upper Darboux sum of f with respect to {k, k + 1, . . . , k′ + 1}, it holds that
∫ k′

k f(t)dt ≤∫ k′+1
k f(t)dt ≤∑k′

t=k f(t). In addition, since
∑k′

t=k+1 f(t) is a lower Darboux sum of f with respect

to {k, k + 1, . . . , k′}, it holds that
∑k′

t=k f(t) ≤
∫ k′

k f(t)dt + f(k). The proof follows, since the

difference between the above sums is at most f(k) = e−
(2k−εn)2

2n . �

We are now ready for estimating Ĉn,ε(k) using the function Φ.
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Proposition A.8. Let n ∈ N, k ∈ Z, ε ∈ [−1, 1] and λ > 0 be such that |ε| ≤ λ ·
√

logn
n and

|k| < λ · √n log n. Then

Ĉn,ε(k) ∈ Φ(
k − εn√

n
)± error,

for error = ϕ(λ) · log1.5 n√
n
· e− (k−εn)2

2n and a universal function ϕ.

Proof. Without loss of generality, assume that λ ≥ 4. Note that there exists a function ϑ : R+ 7→ N
such that n

3
5 > 5λ · √n log n for every n ≥ ϑ(λ). In the following we focus on n ≥ ϑ(λ), where

smaller n’s are handled by setting the value of ϕ(λ) to be large enough on these values. We also
assume for simplicity that n and k are both even, where the proofs of the other cases are analogous.
Let ξ1 be the constant defined in Proposition A.3, and let ℓ := 4 ·

⌈
λ
√
n log n

⌉
< 5λ · √n log n. We

start by handling the case k ≥ εn. It holds that

ℓ∑

t=k

Cn,ε(t) =
ℓ
2∑

t= k
2

Cn,ε(2t) (56)

∈
ℓ
2∑

t= k
2

√
2

π
(1 ± ξ1 · (ε2 |2t|+

|2t|3
n2

+
1

n
+ ε4n)) · 1√

n
e−

(2t−εn)2

2n

⊆
ℓ
2∑

t= k
2

√
2

π
(1± ϕ′(λ) · log

1.5 n√
n

) · 1√
n
e−

(2t−εn)2

2n

⊆ (1± ϕ′(λ) · log
1.5 n√
n

) · A(n, k, ε, λ),

letting ϕ′(λ) := ξ1 · (λ4 + 1034λ3 + 1) and A(n, k, ε, λ) :=
∑ ℓ

2

t= k
2

√
2
π · 1√

n
· e− (2t−εn)2

2n . The first

transition holds since even n yields that Cn,ε(j) = 0 for every odd j, the second one holds by
Proposition A.3 and the third one holds by the bounds on ℓ, ε and k.
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Compute

A(n, k, ε, λ) =

ℓ
2∑

t= k
2

√
2

π
· 1√

n
· e−

(2t−εn)2

2n (57)

∈
∫ ℓ

2

k
2

√
2

π
· 1√

n
· e−

(2t−εn)2

2n dt± 1√
n
· e−

(k−εn)2

2n

=

∫ ℓ−εn√
n

k−εn√
n

1√
2π
· e−x2

2 dx± 1√
n
· e−

(k−εn)2

2n

= Φ(
k − εn√

n
)− Φ(

ℓ− εn√
n

)± 1√
n
· e−

(k−εn)2

2n

⊆ Φ(
k − εn√

n
)± 1

n4c2
± 1√

n
· e−

(k−εn)2

2n

⊆ Φ(
k − εn√

n
)± 2√

n
· e−

(k−εn)2

2n ,

where the second transition holds by Proposition A.7 (and since k ≥ εn), the third one holds by
letting x = 2t−εn√

n
, the fifth one holds by Fact A.6 which yields that Φ( ℓ−εn√

n
) ≤ Φ(3λ

√
log n) ≤

1

n4c2
, and the last one holds since 1√

n
· e− (k−εn)2

2n ≥ 1

n2λ2+1
2
≥ 1

n4λ2
. Applying Equation (57) on

Equation (56) yields that

ℓ∑

t=k

Cn,ε(t) ∈ (1± ϕ′(λ) · log
1.5 n√
n

) · (Φ(k − εn√
n

)± 2√
n
· e−

(k−εn)2

2n ) (58)

= Φ(
k − εn√

n
)± ϕ′(λ) · log

1.5 n√
n
· Φ(k − εn√

n
)± 2 · ϕ′(λ) · log

1.5 n

n
· e−

(k−εn)2

2n ± 2√
n
· e−

(k−εn)2

2n

⊆ Φ(
k − εn√

n
)± ϕ′′(λ) · log

1.5 n√
n
· e−

(k−εn)2

2n ,

letting ϕ′′(λ) := 3 · ϕ′(λ) + 2. We conclude that

Ĉn,ε(k) =
n∑

t=k

Cn,ε(t) (59)

=

ℓ∑

t=k

Cn,ε(t) + Prx←Cn,ε [x > ℓ]

∈
ℓ∑

t=k

Cn,ε(t)±
1

n4c2

⊆
(
Φ(

k − εn√
n

)± ϕ′′(λ) · log
1.5 n√
n
· e−

(k−εn)2

2n

)
± 1

n4λ2

⊆ Φ(
k − εn√

n
)± (ϕ′′(λ) + 1) · log

1.5 n√
n
· e−

(k−εn)2

2n ,
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where the third transition holds by Hoeffding’s inequality (Fact 2.2) and the fourth one holds by
Equation (58).

It is left to handle the case k < εn. For such k, it holds that

Ĉn,ε(k) = 1− Ĉn,−ε(−k) + Cn,ε(k) (60)

∈ 1− Ĉn,−ε(−k)±
1√
n
· e−

(k−εn)2

2n

⊆
(
1− Φ(

−k + εn√
n

)± (ϕ′′(λ) + 1) · log
1.5 n√
n
· e−

(k−εn)2

2n

)
± 1√

n
· e−

(k−εn)2

2n

⊆ Φ(
k − εn√

n
)± (ϕ′′(λ) + 2) · log

1.5 n√
n
· e−

(k−εn)2

2n ,

where the second transition holds by evaluating the value of Cn,ε(k) using Proposition A.3 and the
third one holds by Equation (59) applied to −k and −ε. �

Recall that for n ∈ N and δ ∈ [0, 1] we let Ĉ−1n (δ) be the value ε ∈ [−1, 1] with Ĉn,ε(0) = δ. The

following proposition gives an estimation for Ĉ−1n (δ) using Proposition A.8.

Proposition A.9. Let n ∈ N, δ ∈ [0, 1] and λ > 0 be such that δ ∈ ( 1
nc , 1− 1

nc ). Then,

Ĉ−1n (δ) ∈ −Φ−1(δ)√
n
± error

for error = ϕ(λ) · log1.5 nn and a universal function ϕ.

Proof. Let ϕ′ : R+ 7→ R+ be the function from Proposition A.8, and let ϕ(λ) := 6 ·ϕ′(
√
2λ+1)+1.

There exists a function ϑ : R+ 7→ N such that the two conditions

1. min(2λ, λ2) · log n > 1

2. max(
√
2λ, 1√

2λ
) ·max(ϕ2(λ), 1) · log2 n√

n
< 1

8

holds for every n ≥ ϑ(λ). In the following we focus on n ≥ ϑ(λ), where smaller n’s are handled by

setting the value of ϕ(c) to be large enough on these values. Let x := Φ−1(δ) and ∆ := ϕ(λ)· log1.5 n√
n

,

and let ε+ := − x√
n
+ ∆√

n
and ε− := − x√

n
− ∆√

n
. We prove that ε− < Ĉ−1n (δ) < ε+, yielding the

required bound. For simplicity, we focus on the upper bound, whereas the lower bound can be
proven analogously.

Since δ ∈ ( 1
nλ , 1− 1

nλ ), it follows by Fact A.6 and condition 1 that |x| ≤ √2λ · log n and hence,

using condition 2 it follows that |ε+| < (
√
2λ+ 1) ·

√
logn
n . Therefore, Proposition A.8 yields that

Ĉn,ε+(0) ∈ Φ(−ε+ · √n)± ϕ′(
√
2λ+ 1) · log

1.5 n√
n
· e− ε+

2·n
2 (61)

= Φ(x−∆)± ϕ′(
√
2λ+ 1) · log

1.5 n√
n
· e−

(x−∆)2

2

= δ +
1√
2π
·
∫ x

x−∆
e−

t2

2 dt± ϕ′(
√
2λ+ 1) · log

1.5 n√
n
· e−

(x−∆)2

2 .
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Note that

e−
(x−∆)2

2 − e−
x2

2 = (1− e
−2∆x+∆2

2 ) · e−
(x−∆)2

2 (62)

= (1− e−2∆(x
2
−∆

4
)) · e−

(x−∆)2

2

∈ (1− e±2∆·
√
2λ·logn) · e−

(x−∆)2

2

⊆ ±4∆ ·
√

2λ · log n · e−
(x−∆)2

2 ,

where the third transition holds since |x| ,∆ <
√
2λ · log n, and the fourth one holds by the bound

on ∆ and using condition 2 since ey ∈ 1± 2 |y| for y ∈ (−1, 1). Therefore,
∫ x

x−∆
e−

t2

2 dt ∈ ∆ · [min(e−
(x−∆)2

2 , e−
x2

2 ),max(e−
(x−∆)2

2 , e−
x2

2 )] (63)

∈ ∆ · e−
(x−∆)2

2 · (1± 4∆ ·
√

2λ · log n).

Applying Equation (63) on Equation (61) yields that

Ĉn,ε+(0) − δ ∈ 1√
2π
·∆ · e−

(x−∆)2

2 ·
(
1± 4∆ ·

√
2λ · log n

)
± ϕ′(

√
2λ+ 1) · log

1.5 n√
n
· e−

(x−∆)2

2

=
1√
2π
·
(
∆±

(
4∆2 ·

√
2λ · log n+

√
2π · ϕ′(

√
2λ+ 1) · log

1.5 n√
n

))
· e−

(x−∆)2

2 .

By the definition of ϕ and ∆, and using condition 2, it follows that

4∆2 ·
√

2λ · log n+
√
2π · ϕ′(

√
2λ+ 1) · log

1.5 n√
n

= 4∆ ·
√
2λ · ϕ(λ) · log

2 n√
n

+

√
2π

6
(ϕ(λ)− 1) · log

1.5 n√
n

< 4∆ · 1
8
+

1

2
∆

= ∆,

and thus, Ĉn,ε+(0) > δ, as required. �

In order to use Proposition A.9 with δ = Ĉn,ε(k), the following proposition first estimate the
value of Φ−1(δ).

Proposition A.10. Let n ∈ N, k ∈ Z, ε ∈ [−1, 1] and λ > 0 be such that |k| ≤ λ · √n log n,

|ε| ≤ λ ·
√

logn
n , and let δ = Ĉn,ε(k). Then,

Φ−1(δ) ∈ k − εn√
n
± error,

for error = ϕ(λ) · log1.5 n√
n

and a universal function ϕ.
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Proof. Let ϕ′ : R+ 7→ R+ be the function from Proposition A.8, let ∆ := 2ϕ′(λ) · log1.5 n and let

k0 := k − εn. Note that there exists a function ϑ : R+ 7→ N such that e
−4ϕ′(λ)(ϕ′(λ)+λ)· log

3 n√
n ≥ 1

2 for
every n ≥ ϑ(λ). In the following we focus on n ≥ ϑ(λ), where smaller n’s are handled by setting
the value of ϕ(λ) to be large enough on these values.

We prove that Φ(k0+∆√
n

) ≤ δ ≤ Φ(k0−∆√
n

), which yields the required bound since Φ is monotonic

decreasing. We focus on the upper bound, whereas the lower bound can be proven analogously.
Since

∆√
n
· e−

k20
2n ≥ ϕ′(λ) · log

1.5 n√
n
· e−

k20
2n (64)

and

∆√
n
· e−

(k0−∆)2

2n =
∆√
n
· e−

k20
2n · e

2k0∆−∆2

2n (65)

≥ ∆√
n
· e−

k20
2n · e−4ϕ

′(λ)(ϕ′(λ)+λ)· log
3 n√
n

≥ ∆√
n
· e−

k20
2n · 1

2

= ϕ′(λ) · log
1.5 n√
n
· e−

k20
2n ,

it follows that

δ ≤ Φ(
k0√
n
) + ϕ′(λ) · log

1.5 n√
n
· e−

k20
2n (66)

≤ Φ(
k0√
n
) +

∆√
n
·min(e−

k20
2n , e−

(k0−∆)2

2n )

≤ Φ(
k0√
n
) +

∫ k0√
n

k0−∆√
n

e−
t2

2 dt

= Φ(
k0√
n
− ∆√

n
),

where the first inequality holds by Proposition A.8 and the second one by Equation (64) and
Equation (65). �

We are now ready for estimating the value of Ĉ−1n′ (δ) for δ = Ĉn,ε(k) and for some n′ ≥ n.

Proposition A.11 (Restatement of Proposition 2.7). Let n, n′ ∈ N, k ∈ Z, ε ∈ [−1, 1] and λ > 0

be such that n ≤ n′, |k| ≤ λ · √n log n, |ε| ≤ λ ·
√

logn
n , and let δ = Ĉn,ε(k). Then

Ĉ−1n′ (δ) ∈
εn − k√
n · n′

± error,

for error = ϕ(λ) · log1.5 n√
n·n′ and a universal function ϕ.
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Proof. Let ϕ1 be the function from Proposition A.8, ϕ2 be the function from Proposition A.9, ϕ3

be the function from Proposition A.10 and let ϕ(λ) := ϕ2(2λ
2+1)+ϕ3(λ). There exists a function

ϑ : R+ 7→ N such that the two conditions

1. min(λ, 1) · log n > 4

2. max(λ, ϕ1(λ)) · log
2 n√
n

< 1
8

holds for every n ≥ ϑ(λ). In the following we focus on n ≥ ϑ(λ), where smaller n’s are handled
by setting the value of ϕ(c) to be large enough on these values. In order to use Proposition A.9,
we first prove that δ ∈ ( 1

n2λ2+1
, 1 − 1

n2λ2+1
). Let k0 := k − εn. For simplicity, we assume k0 ≥ 0,

whereas the case k0 < 0 holds by symmetry. Compute

δ ∈ Φ(
k0√
n
)± ϕ1(λ) ·

log1.5 n√
n
· e−

k20
2n (67)

⊆


 1

k0√
n
+

√
k20
n + 4± 2

± ϕ1(λ) ·
log1.5 n√

n


 · e−

k20
2n ,

⊆ 1± 1
2

k0√
n
+

√
k20
n + 4± 2

· e−
k20
2n

⊆ (
1

8λ · √log n · n2λ2 ,
3

4
)

⊆ (
1

n2λ2+1
, 1 − 1

n2λ2+1
)

where the first transition holds by Proposition A.8, the second one holds by Fact A.6, the third one
holds by condition 2 and since k0 ≤ 2λ · √n log n, the fourth one also holds since k0 ≤ 2λ · √n log n
and the last one holds by conditions 1 and 2.

Finally, it holds that

Ĉ−1n′ (δ) ∈ −
Φ−1(δ)√

n′
± ϕ2(2λ

2 + 1) · log
1.5(n′)
n′

(68)

⊆ −

(
k−εn√

n
± ϕ3(λ) · log

1.5 n√
n

)

√
n′

± ϕ2(2λ
2 + 1) · log

1.5(n′)
n′

⊆ εn − k√
n · n′

± ϕ(λ) · log
1.5 n√
n · n′

,

where the first transition holds by Proposition A.9, the second one by Proposition A.10 and the
last one holds since n ≤ n′. �

For the following two propositions, recall that for n ∈ N and i ∈ [n] we let ℓn(i) = n − i + 1
and sumn(i) =

∑n
j=i ℓn(i) =

1
2 · ℓn(i)(ℓn(i)+1). The following proposition is the main step towards

proving Proposition 2.8.
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Proposition A.12. Let n ∈ N, integer i ∈ [n −
⌊
log2.5 n

⌋
], x, β, α ∈ Z, ε ∈ [−1, 1] and λ > 0 be

such that |α| ≤
√

λ · sumn(i) · log n, |x| ≤
√

λ · ℓn(i) · log n, |β| ≤ 1 and |ε| ≤
√

λ · logn
sumn(i)

. Then

exp

(
α · x+ β · x2
sumn(i+ 1)

)
∈ 1± ϕ(λ) ·

√
log n · |x|
ℓn(i)

,

for a universal function ϕ.

Proof. Assume that n ≥ 4. By taking the maximum possible values of |α|, |β| and |x| it follows
that

∣∣∣∣
α · x+ β · x2
sumn(i+ 1)

∣∣∣∣ ≤
√

λ · sumn(i) · log n ·
√

λ · ℓn(i) · log n+ λ · ℓn(i) · log n
sumn(i+ 1)

(69)

= λ ·
√

2(n− i+ 2)

n− i
· log n+ 2λ · log n

n− i

≤ 2λ · log n√
n− i

+ 2λ · log n
n− i

≤ 2λ · 1

log0.25 n
+ 2λ · 1

log1.5 n
,

where the second inequality holds since n−i+2
n−i < 2. Therefore, there exists a function ϑ : R+ 7→ N

such that
∣∣∣ α·x+β·x2

sumn(i+1)

∣∣∣ < 1 for every n ≥ ϑ(λ). In the following we focus on n ≥ ϑ(λ), where smaller

n’s are handled by setting the value of ϕ(λ) to be large enough on these values. Since ey ∈ 1± 2 |y|
for y ∈ [−1, 1], it follows that

exp

(
α · x+ β · x2
sumn(i+ 1)

)
∈ 1± 2 ·

∣∣∣∣
α · x+ β · x2
sumn(i+ 1)

∣∣∣∣

⊆ 1± 4 ·
∣∣∣∣
α · x+ β · x2

sumn(i)

∣∣∣∣

⊆ 1± 4 ·
( |α| · |x|+ |β| · x2

sumn(i)

)

⊆ 1± 4 ·
(√

λ · sumn(i) · log n · |x|+ x2

sumn(i)

)

⊆ 1± 4 ·
(√

λ · log n
sumn(i)

· |x|+
√

λ · ℓn(i) · log n
sumn(i)

· |x|
)

= 1± 4 ·
(√

λ · log n
1
2ℓn(i)(ℓn(i) + 1)

· |x|+
√

λ · ℓn(i) · log n
1
2ℓn(i)(ℓn(i) + 1)

· |x|
)

⊆ 1± 8 ·
√

λ · log n
ℓn(i)

(
|x|√
ℓn(i)

+
|x|
ℓn(i)

)

⊆ 1± 16
√
λ ·
√
log n · |x|
ℓn(i)

,

where the second transitions holds since sumn(i)
sumn(i+1) < 2, the fourth one holds by taking the maximum

possible values of |α| and |β| and fifth one by taking the maximum possible value of |x|. �
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Using the above fact, we can prove Proposition 2.8.

Proposition A.13 (Restatement of Proposition 2.8). Let n ∈ N, integer i ∈ [n −
⌊
log2.5 n

⌋
],

x, β, β′, α, α′ ∈ Z, ε ∈ [−1, 1], S ⊆ Z and λ > 0 such that |α| , |α′| ≤
√

λ · sumn(i) · log n, |β| , |β′| ≤
1, S ⊆ [−

√
λ · ℓn(i) · log n,

√
λ · ℓn(i) · log n], x ∈ S, |ε| ≤

√
λ · logn

sumn(i)
and Ex′←Cℓn(i),ε|x′∈S [|x′|] ≤

Ex′←Cℓn(i),ε
[|x′|]. Then

E
x′←Cℓn(i),ε|x′∈S

[
exp

(
α · x+ β · x2 + α′ · x′ + β′ · x′2

sumn(i+ 1)

)]
∈ 1± ϕ(λ) ·

√
log n

ℓn(i)

(
1 +

|x|√
ℓn(i)

)
.

for a universal function ϕ.

Proof. Let ϕ′ be the function from Proposition A.12. Compute

E
x′←Cℓn(i),ε|x′∈S

[
exp

(
α · x+ β · x2 + α′ · x′ + β′ · x′2

sumn(i+ 1)

)]

= exp

(
α · x+ β · x2
sumn(i+ 1)

)
· E
x′←Cℓn(i),ε|x′∈S

[(
α′ · x′ + β′ · x′2
sumn(i+ 1)

)]

∈
(
1± ϕ′(λ) ·

√
log n · |x|
ℓn(i)

)
· E
x′←Cℓn(i),ε|x′∈S

[
1± ϕ′(λ) ·

√
log n · |x′|
ℓn(i)

]

=

(
1± ϕ′(λ) ·

√
log n · |x|
ℓn(i)

)
·
(
1± ϕ′(λ) ·

√
log n · Ex′←Cℓn(i),ε|x′∈S [|x′|]

ℓn(i)

)

⊆
(
1± ϕ′(λ) ·

√
log n · |x|
ℓn(i)

)
·
(
1± 2ϕ′(λ) ·

√
log n

ℓn(i)

)

⊆ 1± 4(ϕ′(λ) + ϕ′(λ)2) ·
√

log n

ℓn(i)
·
(
1 +

|x|√
ℓn(i)

)
,

where the second transition holds by Proposition A.12 and the fourth one holds by Fact 2.3. �

A.3 Facts About the Hypergeometric Distribution

Recall that for a vector v ∈ {−1, 1}∗ we let w(v) :=
∑

i∈[|I|] vi, and given a set of indexes I ⊆ [|v|],
we let vI = (vi1 , . . . , vi|I|) where i1, . . . , i|I| are the ordered elements of I. In addition, recall that
for n ∈ N, ℓ ∈ [n], and an integer p ∈ [−n, n], we define the hypergeometric probability distribution
HGn,p,ℓ by HGn,p,ℓ(k) := PrI [w(vI) = k], where I is an ℓ-size set uniformly chosen from [n] and
v ∈ {−1, 1}n with w(v) = p. The following proposition gives an estimation for the hypergeometric
probability HG2n,p,n(t) using the binomial coefficient’s estimation done in Proposition A.2.

Proposition A.14 (Restatement of Proposition 2.10). Let n ∈ N, p, t ∈ Z be such that |p| , |t| ≤ n
3
5

and t ∈ Supp(HG2n,p,n). Then

HG2n,p,n(t) ∈ (1± error) · 2√
π · n · e

− (t− p
2 )2

n ,

for error = ξ · (n+|p|
3+|t|3
n2 ) and a universal constant ξ.
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Proof. Let ξ1 be the constant from Proposition A.2 and let ω := p
2 . In the following we focus on

n ≥ 1000(1 + ξ21), smaller n’s are handled by setting the value of ξ to be large enough on these
values. Note that for any vector v ∈ {−1, 1}2n with w(v) = p, the number of ones in v is n+ ω. It
follows that

HG2n,p,n(t) =
(n+ω

n+t
2

)
·
(n−ω

n−t
2

)
(
2n
n

) (70)

=

( n+ω
n+ω
2

+ t−ω
2

)
·
( n−ω

n−ω
2
− t−ω

2

)
(2n
n

)

∈

√
2
π (1± ξ1 · ( 1n + |t−ω|3

n2 )) 1√
n+ω

e
− (t−ω)2

2(n+ω) ·
√

2
π · (1± ξ1 · ( 1n + |t−ω|3

n2 )) 1√
n−ωe

− (t−ω)2

2(n−ω)

√
2
π · (1± ξ1 · 1n) 1√

2n

⊆
√

2

π
· (1± ξ2 · (

1

n
+
|t− ω|3

n2
)) ·A(n, t, ω),

where the third transition holds by Proposition A.2, ξ2 := 8 · (ξ1 + ξ21) and A(n, t, ω) :=
√
2n ·

1√
n+ω

e
− (t−ω)2

2(n+ω) · 1√
n−ωe

− (t−ω)2

2(n−ω) . Compute

A(n, t, ω) =

√
2

n
· n√

n+ ω · √n− ω
· e−

(t−ω)2

2(n+ω) · e−
(t−ω)2

2(n−ω) (71)

=

√
2

n
· 1√

1− ω2

n2

· e−
(t−ω)2

n · e−(t−ω)
2( 1

2(n+ω)
+ 1

2(n−ω)
− 1

n
)

∈
√

2

n
·
(
1± 2 · ω

2

n2

)
· e−

(t−ω)2

n · e−
(t−ω)2ω2

n(n2−ω2)

⊆
√

2

n
· e−

(t−ω)2

n ·
(
1± 2 · ω

2

n2

)
·
(
1± 2 · (t− ω)2ω2

n(n2 − ω2)

)

⊆
√

2

n
· e−

(t−ω)2

n ·
(
1± 4 · ((t− ω)2ω2

n3
+

ω2

n2
)

)
,

where the third transition holds since 1√
1−x ∈ 1± 2x for x ∈ [0, 14 ], and the fourth one holds since

ex ∈ 1± 2x for |x| < 1.
We conclude from Equations (70) and (71) that

HG2n,p,n(t) ∈
√

2

π
· (1± ξ3 · (

n+ |ω|3 + |t|3
n2

)) ·
√

2

n
· e−

(t−ω)2

n

∈ (1± ξ · (n+ |p|3 + |t|3
n2

)) · 2√
π · n · e

− (t−p
2 )2

n ,

where ξ3 := 16 · (1 + ξ2) and ξ := 8 · ξ3. �

Using the above estimation for the hypergeometric probability, the following proposition esti-
mates the relation between two hypergeometric probabilities.
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Proposition A.15 (Restatement of Proposition 2.11). Let n ∈ N, p, t, x, x′ ∈ Z and λ > 0 be such
that t− x, t− x′ ∈ Supp(HG2n,p,n) and |p| , |t| , |x| , |x′| ≤ λ · √n log n. Then

HG2n,p,n(t− x′)
HG2n,p,n(t− x)

∈ (1± error) · exp
(−2(t− p

2 )x+ x2 + 2(t− p
2)x
′ − x′2

n

)
,

for error = ϕ(λ) · log1.5 n√
n

and a universal function ϕ.

Proof. Let ξ be the constant from Proposition A.14. There exists a function ϑ : R+ 7→ N such that

n
3
5 > 2λ · √n log n and ξ · (10λ3 + 1) · log1.5 n√

n
< 1

2 for every n ≥ ϑ(λ). In the following we focus on

n ≥ ϑ(λ), where smaller n’s are handled by setting the value of ϕ(λ) to be large enough on these
values. Let ϕ(λ) := 4 · ξ · (10λ3 + 1). It follows that

HG2n,p,n(t− x′)

HG2n,p,n(t− x)
∈

(
1± ξ · n+|p|

3+|t−x′|3
n2

)
· 2√

π·n · e
− (t− p

2−x′)2
n

(
1± ξ · n+|p|

3+|t−x′|3
n2

)
· 2√

π·n · e
− (t− p

2−x)2

n

⊆

(
1± ξ · (10λ3 + 1) · log1.5 n√

n

)
· e−

(t− p
2−x′)2
n

(
1± ξ · (10λ3 + 1) · log1.5 n√

n

)
· e−

(t− p
2−x)2

n

⊆ (1± ϕ(λ) · log
1.5 n√
n

) · exp
(
(t− p

2 − x)2

n
− (t− p

2 − x′)2

n

)

= (1± ϕ(λ) · log
1.5 n√
n

) · exp
(−2 · (t− p

2) · x+ x2 + 2 · (t− p
2 ) · x′ − x′2

n

)
,

where the first transition holds by Proposition A.14, the second one holds by the bounds on |t|, |x|,
|x′| and |p|, and the third one holds since 1±y

1±y ⊆ 1± 4y for every y ∈ [0, 12 ]. �
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