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Abstract

Nowhere dense graph classes, introduced by Kiedatl Ossona de Mendez [29], form a large vari-
ety of classes of “sparse graphs” including the class ofalgnaphs, actually all classes with excluded
minors, and also bounded degree graphs and graph classesnufddl expansion.

We show that deciding properties of graphs definable in déirder logic is fixed-parameter tractable
on nowhere dense graph classes. At least for graph classesialnder taking subgraphs, this result is
optimal: it was known before that for all classé®f graphs closed under taking subgraphs, if deciding
first-order properties of graphs this fixed-parameter tractable, thémmust be nowhere dense (under a
reasonable complexity theoretic assumption).

As a by-product, we give an algorithmic construction of spameighbourhood covers for nowhere
dense graphs. This extends and improves previous constrscif neighbourhood covers for graph
classes with excluded minors. At the same time, our cortitruis considerably simpler than those.

Our proofs are based on a new game-theoretic characterisgtnowhere dense graphs that allows
for a recursive version of locality-based algorithms orsthelasses. On the logical side, we prove a
“rank-preserving” version of Gaifman’s locality theorem.

1 Introduction

Algorithmic meta theorems attempt to explain and unify &thmic results by proving tractability not only
for individual problems, but for whole classes of problenifese classes are typically defined in terms of
logic. The meaning of “tractability” varies; for examplé,nhay be linear or polynomial time solvability,
fixed-parameter tractability, or polynomial time approginility to some ratio. The prototypical example of
an algorithmic meta theorem is Courcelle’s Theorem [4}irsgicthat all properties of graphs of bounded tree-
width that are definable in monadic second-order logic acéddéle in linear time. Another well-known
example is Papadimitriou and Yannakakis's|[31] result #tladptimisation problems in the class MAXSNP,
which is defined in terms of a fragment of existential secorakr logic, admit constant-ratio polynomial
time approximation algorithms. By now, there is a rich Etieire on algorithmic meta theorems (see, for ex-
ample, [2[ 5, 6,14,18, 14, 18, 25,126,/ 32] and the surveys [2022D. While the main motivation for proving
such meta theorems may be to understand the “essence” ascoibe of certain algorithmic techniques by
abstracting from problem-specific details, sometimes rietarems are also crucial for obtaining new algo-
rithmic results. A recent example is the quadratic time @digm for a structural decomposition of graphs
with excluded minors from [21], which builds on Courcell@heorem in an essential way. Furthermore,
meta theorems often give a quick and easy way to see thatrcprtzblems can be solved efficiently (in
principle), for example in linear time on graphs of boundesbtwidth. Once this has been established, a
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Figure 1: Sparse graph classes

problem specific analysis may yield better algorithms — @tilengh implementations of, for instance, Cour-
celle’s theorem have shown that the direct application dfantieeorems can yield competitive algorithms
for common problems such as the dominating set problem 258§ [

In this paper, we prove a new meta theorem for first-orderclogi nowhere dense classes of graphs.
These classes were introduced by NéSahd Ossona de Mendez [28,/129] as a formalisation of ctaefe
“sparse” graphs. All familiar examples of sparse graphsdaslike the class of planar graphs, classes of
bounded tree-width, classes of bounded degree, and indledaisaes with excluded topological subgraphs
are nowhere dense. Figlire 1 shows the containment reldt@ngen these and other sparse graph clésses.
“Nowhere density” turns out to be a very robust concept wéetvesal seemingly unrelated natural character-
isations (se€ [28, 29]). Furthermore, Né&eind Ossona de Mendez [29] established a clear-cut diampt
between nowhere dense and somewhere dense graph classesatthdefinition of nowhere dense graph
classes is technical and we defer it to Sedfibn 3.

Theorem 1.1 For every nowhere dense claSsand everye > 0, every property of graphs definable in
first-order logic can be decided in tin@(n'*¢) onC.

!Notably, classes of bounded average degree or boundedetaggrare not necessarily nowhere dense. To be precise: for
everyk > 2 the class of all graphs of degeneracy at nioi somewhere dense. This is reasonable, because everygraie
turned into a graph of degenerazZyy simply subdividing every edge once. Recall that a grapgidkegeneracyat mostd if every
subgraph has a vertex of degree at mbsbegeneracy at mogtimplies that the graph and all its subgraphs have averageeleg
at most2d and hence have a linear number of edges. Contrarily, grapgiashere dense classes can have an edge density of
and are therefore not necessarily degenerate.



In particular, deciding first-order properties is fixedgraeter tractable on nowhere dense graph clisses.
Deciding first-order properties of arbitrary graphs is kndw be complete for the parameterized complexity
class AWx] and thus unlikely to be fixed-parameter tractable [12].

NeSetil and Ossona de Mendez [28] already proved that decidimpeaties definable in existential
first-order logic is fixed-parameter tractable on nowhemsdegraphs. Dawar and Kreutzer [9] showed that
dominating set (parameterized by the size of the solutisrijxed-parameter tractable on nowhere dense
graphs. Our theorem implies new fixed-parameter tractabiéisults on nowhere dense graphs for many
other standard parameterized problems, for example, ctethelominating set and digraph kernel (both
parameterized by the size of the solution), Steiner treea(paterized by the size of the tree) and circuit
satisfiability (parameterized by the depth of the circuil #me Hamming weight of the solution). The last
result requires the generalisation of our theorem from lggatp arbitrary relational structures, which is
straightforward.

Our theorem can be seen as the culmination of a long line cd thebrems for first order logic. The
starting point is Seese’s [32] result that first-order prope of bounded degree graphs can be decided in
linear time. Frick and Grohe [18] gave linear time algorithfor planar graphs and all apex-minor-free
graph classes ar@(n'*¢) algorithms for graphs of bounded local tree-width. Flum @ndhe [16] proved
that deciding first-order properties is fixed-parametestédale on graph classes with excluded minors, and
Dawar, Grohe, and Kreutzéri[7] extended this to classesaplgrlocally excluding a minor. Finally, DkéKk,
Kral, and Thomas [14] proved that first-order properties lsamecided in linear time on graph classes of
bounded expansion and in ting®(n'*¢) on classes of locally bounded expansion. All these classes a
nowhere dense, and there are nowhere dense classes thatedtomg to any of these classes. For example,
the class of all graphs whose girth is larger than the maxirdegree is nowhere dense, but has unbounded
expansion. If to every graph in this class we add one vertdxcannect it with all other vertices, we obtain
a class of graphs that is still nowhere dense, but does nathesee locally bounded expansion. However,
what makes our theorem interesting is not primarily thas et another extension of the previous results,
but that it is optimal for classes closed under taking subgraphs: under the standard coryptbeioretic
assumption FPTE£ W[1], Kreutzer [24] and Dviak et al. [14] proved that if a clagsclosed under taking
subgraphs is somewhere dense (that is, not nowhere deimse)deéciding first-order properties of graphs
in C is not fixed-parameter tractable. Note that all classesideres] in the previous results are closed under
taking subgraphs. Hence our result supports the intuitiahriowhere dense classes are the natural limit for
many algorithmic techniques for sparse graph classes.

Technically, we neither use the structural graph theoryetgithg [7,[16] nor the quantifier elimination
techniques employed by [14]. Our starting point is the libjgddased technique introduced in [18]. In
a nutshell, this technique works as follows. Using Gaifraaheorem, the problem to decide whether a
general first-order formula is true in a graph can be reduced to testing whether a fornsulleué inr-
neighbourhoods in the graph, where the radiosly depends o, and solving a variant of the (distandg
independent set problem. Hence(ifs a class of graphs whereneighbourhoods have a simple structure,
such as the class of planar graphs or classes of boundedreeatidth, this method gives an easy way for
deciding properties definable in first-order logic.

Applying this technique to nowhere dense classes of grapinsediately runs into problems, as
neighbourhoods in nowhere dense graphs do not necessavityehsimple structure that can be exploited
algorithmically. We therefore iterate the locality basggpmach. Using locality we reduce the first-order
model-checking problem to the problems of evaluating fda®iinr-neighbourhoods and solving a variant
of the independent set problem. We then show thiagighbourhoodsV in nowhere dense graphs can be
split by deleting a sel” of only a few vertices into smaller neighbourhoods. We apipdylocality argument
again and transform our formula into formulas to be evalliate-neighbourhoods iV — W and solving

2There is a minor issue regarding non-uniform vs uniform fipadameter tractability, see Remark]3.2.



the independent set problem &h— W. We show that on nowhere dense classes of graphs this process
terminates after a constant number of steps.
The three main steps of our proof, each of which may be of iadéent interest, are the following.

e An algorithmic construction o$parse neighbourhood coveisr nowhere dense graphs (Sectidn 6).
The parameters are surprisingly good: we can cover-akighbourhoods with sets (calletusters
of radius2r such that each vertex is containedriffV) clusters. For classes of bounded expansion
(see Figuréll), we even get such covers where each vertelyisamtained in a constant number of
clusters. In particular, the small radius of the clustetsstantially improves known results for planar
graphs and graphs with excluded minars |1, 3], which all Hamended expansion.

e A new characterisation of nowhere dense graph classesnis tef a game, th&plitter GamgSec-
tion[4). We use this game to formalise the process of locaisind splitting described above and
showing that it terminates on nowhere dense graphs. It ttmhghat it only terminates on nowhere
dense graphs, thus providing a necessary and sufficieniticomfibr nowhere density.

¢ A Rank-Preserving Locality Theoref8ectiorY), strengthening Gaifman’s well-known locattigo-
rem for first-order logic by translating first-order formsilito local formulas of the same rank. The
key innovation here is a new, discounted rank measure fomdiider formulas.

We describe the main algorithm proving Theofend 1.1 in Se@io

2 Preliminaries

We assume familiarity with basic concepts of graph theony iafier to [10] for background. We denote
the set of positive integers ly. Fork € N we write [£] for the set{1,...,k}. We will often writea for
ak-tuple(ay,...,a;)anda € afora € {aq,...,ax}.

In this section, we will review the necessary backgroundhfgraph theory and parameterized complex-
ity theory. We will provide some background on logic in Senfi.

Background from graph theory. All graphs in this paper are finite and simple, i.e., they dbhave loops
or multiple edges between the same pair of vertices. Whemeyspeak of a graph we mean an undirected
graph and we will explicitly mention when we deal with diredtgraphs.

If G is a graph theV (G) denotes its set of vertices ait{G) its set of edges. We write := |V (G)|
for theorder of G.

An orientationof G is a directed grapﬁ_i on the same vertex set, which is denoté(ﬁ), such that for
each edgqu,v} € E(G) the set of arcs2(G) contains exactly one of the ar¢s, v) or (v,u). Forv €
V(G), the setN = (v) := {u : (u,v) € E(G)} denotes thén-neighboursof v and N+ (v) := {w : (v, w) €
E(G)} denotes theut-neighbourf v. Theindegreed~ (v) of a vertexv is the number in-neighbours of
We denote thenaximum indegreef G by A~(G). For any directed grapti we denote the underlying
undirected graph by.

We assume that all graphs are represented by adjacencgdititsit the total size of the representation
of a graph is linear in the number of edges and vertices. lnvwacwill often store an orientatioty’ of a
graphG and use one adjacency list for the in-neighbours and oneejs list for the out-neighbours of
each vertex. This representation allows to check adjacehegrtices in time?(A~(G)).

For a setX C V(G) we write G[X] for the subgraph of7 induced byX and we letG \ X :=
G[V(G) \ X]. Fork € N, G is k-degeneratéf for each X C V(G) the graphG[X] contains a vertex of
degree at most. If a graphG is k-degenerate the@ contains at most - n edges and an orientatia® of G
with A= (G) < k can be computed in tim@ (% - n) by a simple greedy algorithm.



Thedistancedist® (u, v) between two vertices, v € V(G) is the length of a shortest path framto v
if such a path exists ansb otherwise. Theadiusrad(G) of G is min,cy(q) max,cy (@) dist% (u,v). A
vertexu € V(G) such thatmax,cy () dist®(u, v) = rad(G) is called acentre vertexf G.

By N%(v) we denote the-neighbourhoodf v in G, i.e., the set of vertices of distance at mo&iom v
in G. AsetlV C V(G) isr-independent it if dist”(u,v) > r for all distinctu, v € W. A 1-independent
set is simply called independent. A dét C V(G) is r-scattered inG if N%(u) N N&(w) = 0 for all
distinctu, w € W, i.e., if it is 2r-independent.

A graph H is aminor of a graphG, written H < G, if H can be obtained from a subgraph®@fby
contracting edges. Equivalentli is a minor ofG if there is a map that associates with every vertex
V(H) atre€eT,, C G suchthafl,, andT, are disjoint foru # v and whenever there isan edge v} € E(H)
there is an edge it/ between some node ifj, and some node ifi;,. The subgraph¥, are calledbranch
sets

Letr € N. H is adepths+ minor of GG, denotedH =, G, if H is a minor ofG and this is witnessed by a
collection of branch set§T, : v € V(H)}, each of which is a tree of radius at mest

Fors > 1 we denote the complete graph omertices byK;.

Parameterized complexity. The complexity theoretical framework we use in this papgrasameterized
complexity theory, see [11, 17]. parameterized problens a pair(P, x), whereP is a decision problem
andy is a polynomial time computable function that associatdh esery instancev of P a positive integer,
called theparameter Themodel-checking problefior first-order logic on a clasS of graphs is the following
decision problem. Given an FO-sentence and a géaghC, decide whethe€ satisfiesp, written G' = .
The parameter i§p|. We say that the model-checking problem on a classfixed-parameter tractableor

in the complexity class FPT, if there is an algorithm thatides on input(G, ¢) whetherG |= ¢, in time
f(el) - |V(G)|O(1) for some computable functiofi: N — N. The model-checking problem for first-order
logic on the class of all graphs is known to be complete forgammeterized complexity class AW[*],
which is widely believed to strictly contain the class FPTUS, it is widely believed that model-checking
for first-order logic is not fixed-parameter tractable.

3 Nowhere Dense Classes of Graphs

Nowhere dense classes of graphs were introduced by Ne§at Ossona de Mendez [28,/29] as a formali-
sation of classes of “sparse” graphs.

Definition 3.1 (Nowhere dense classes) classC of graphs isnowhere densé for every r there is a
graph H, such thatH, #£, G forall G € C.

It is immediate from the definition that & excludes a minor then it is nowhere dense. But note that
excluding some graph as a depthminor is a “local” condition that is much weaker than exchgliit
“globally” as a minor.

Remark 3.2 We call a clasg effectively nowhere dengehere is a computable functiofsuch thats () 2
G for all G € C. All natural nowhere dense classes are effectively nowtlense, but it is possible to con-
struct artificial classes that are nowhere dense, but nettefély so.

The way Theoremh_ 111 is stated in the introduction only assldt deciding first-order properties of
nowhere dense graphs m®n-uniformlyfixed-parameter tractable. That is, for every> 0 and every
sentencep of first-order logic there is an algorithm deciding the pnopéefined byyp in time O (n'*¢). This
allows for the algorithms for different sentences to be lateel. For effectively nowhere dense clas€es
we obtain uniform fixed-parameter tractability, that isjregke algorithm that, given an-vertex graphz €
C, e > 0 and a sentence of first-order logic, decides whetherholds inG in time f(|p|,e) - n'*e, for
some computable functiof. -



“Nowhere density” turns out to be a very robust concept witiesal seemingly unrelated natural char-
acterisations (seé [28, 29]). We will use several differdraracterisations, each supporting different algo-
rithmic techniques. In the rest of this section we will rétlaé required equivalences.

The following characterization relates nowhere densigpiarsity, albeit sparsity in the liberal sense that
the number of edges of anvertex graph is:! o).

Lemma 3.3 (NeSdil-Ossona de Mendez([29]) A classC of graphs is nowhere dense if, and only if, for
everyr € N

. log |[E(H)| ,
1 DOV <, G owith [V(H)| > n, <1 3.1
nLH;osup{log\V(H)] =, Gwith|V(H)| > n,G €C (3.1)

Here we tak gi{g%gg} to be—oco if E(H) = (), and we take the supremum to ®é the set is empty, that

is, if C contains no graphs of order at least

Note that the supremum ih.(3.1) always exists, bec R Egg; < 2 for all H. The lemma states that,

asn gets large, the number of edges inahallow minors ofn-vertex graphs i, is n't°). Thus the
graphs inC are very uniformly sparse: not only the graphs and all thaigsaphs are sparse, but even all
graphs that can be obtained from subgraphs by “local” cotitras are. As a further justification of why
nowhere dense classes are inherently interesting as & 8insparse graph classes”, NéddeDssona de
Mendez proved a trichotomy stating that for all graph clagsé¢he limit in (3.1) approachesor 1 or 2 asr
goes to infinity. This means that if a claSss not nowhere dense, then in the limit it is really dense.

For our algorithmic purpose, we state the result in a diffeferm which follows immediately from the
proof of Lemmd 3.8.

Lemma 3.4 A classC of graphs is nowhere dense if, and only if, there is a funcfisuch that for every €
N and every > 0, every depth- minor H of a graphG € C withn > f(r, <) vertices satisfiefF (H )| <
n!*e. Furthermore is effectively nowhere dense if, and only if, the functida computable.

We close the section with stating another characterisatfamowhere dense classes that will be used
below.

Definition 3.5 (Uniformly quasi-wide classes)A classC of graphs isuniformly quasi-widewith margin
s:N—NandN :NxN — Nifforal rkeN,ifGeCandW C V(G) with |IW| > N(r, k), then
there is a setS C V(G) with |S| < s(r), such thai¥ contains anr-scattered set of size at ledstn G \ S.

We callC effectively uniformly quasi-wide if the marginsand N are computable functions.

Lemma 3.6 (NeSdil-Ossona de Mendez([29]) A classC of graphs is (effectively) nowhere dense if, and
only if, it is (effectively) uniformly quasi-wide.

4 Game theoretic characterisation of nowhere dense classes

We now provide a new characterisation of nowhere denseedasserms of a game.

Definition 4.1 (Splitter game) Let G be a graph and let, m,r > 0. The (¢, m,r)-splitter gameon G is
played by two players, “Connector” and “Splitter”, as folles. We letGy := G. In roundi + 1 of the
game, Connector chooses a vertex; € V(G;). Then Splitter picks a subsBf;; C Nﬁi (vi41) Of size at
mostm. We letG; 1 := G;[N% (viy1) \ Wiy1]. Splitter wins ifG;; = (). Otherwise the game continues
at G;1. If Splitter has not won aftef rounds, then Connector wins.



A strategyfor Splitter is a functionf that associates to every partial play;, Wi, ..., vs, W) with
associated sequencs,, . . ., G, of graphs and move, | € V(G,) by Connector aséi/,, 1 C N (v,y1)
of size at most:. A strategyf is awinning strategyfor Splitter in the(¢, m, r)-splitter game or@ if Splitter
wins every play in which he follows the stratefly If Splitter has a winning strategy, we say thatwims
the (¢, m, r)-splitter game orG.

Theorem 4.2 LetC be a nowhere dense class of graphs. Then for ewery0 there are/, m > 0, such that
for everyG € C, Splitter wins thg?, m, r)-splitter game orG.
If C is effectively nowhere dense, théandm can be computed from

Proof. As C is nowhere dense, it is also uniformly quasi-wide. kgtand N¢ be the margin of. Letr > 0
and letl := N¢(r,2s¢(r)) andm := ¢ - (r 4+ 1). Note that bott andm only depend o andr. We claim
that for anyG € C, Splitter wins thg¢, m, r)-splitter game ort.

Let G € C be a graph. In thé/, m,r)-splitter game on, Splitter uses the following strategy. In
the first round, if Connector chooses € V(Gy), whereGy := G, then Splitter chooseB’; := {v;}.
Now leti > 1 and suppose thaty,...,v;, G1,...,G;, Wq,..., W, have already been defined. Suppose
Connector chooses; € V(G;). We definelV;,; as follows. For each < j < i, choose a patl#; ;1
in Gj_l[Nf;H (v;)] of length at most connectingy; andv; 1. Such a path must exist ag,.; € V(G;) C
V(G]) - NrGjil(Uj). We |etWZ’+1 = U1<j<z' V(Pj7i+1) N ]VTGZ (vi—l—l)- Note that’Wi+1’ <7- (7” + 1) (the
paths have length at mostaind hence consist of+ 1 vertices). It remains to be shown is that the length of
any such play is bounded b#.

Assume towards a contradiction that Connector can plag dor ¢ = ¢ + 1 rounds. Let{vy, ..., vy,
Gi,...,Gp,Wq,...,Wy) be the play. A¥ > N¢(r,2s¢(r)), for W := {v1,...,vp} there is a sef C
V(G) with |S| < s¢(r), such tha@l contains anr-scattered sef of sizet := 2s¢(r) in G\ S. Suppose
that! = {us, ..., u}, whereu; = v;; forindicesl <i; <ip < ... <1y < /.

We now consider the paif@iz; 1, uz;) for 1 < j < s(r). By construction,P; := P;,._, ;,. is a path
of length at most- from ug; 1 t0 ug; in Gy, _, —1. Any path P; must necessarily contain a vertexe S,
as otherwise the path would exist@\ S, contradicting the fact that is r-scattered irG \ S. We claim
that fori # j, s; # s;, but this is not possible, as there are strictly less thgm) vertices inS. The
claim follows easily from the following observation. Assam > j. ThenV(P;) N V(Ggj—1 C Wha;,
thUSV(Pj) N V(G2j+1) = @, andV(B) - V(G2j+1) - V(GQZ) ThUSV(PZ') N V(PJ) = () for ¢ 75 7. O

Remark 4.3 In the proof of our main theorem, we will also have to computéitter's winning strategy
efficiently in the following sense.

Suppose that we are in a play, W1, ..., v;, W;, and letGy, G4, . . . , G; be the graphs associated with
the play (that isGy = G and Gj+1 = Gj [N7«GJ (Uj+1) \ Wj+1]). Forl <j <i,let Tj be a breadth-first
search tree of depthin G;_; with rootv;.

Then, givervy, Wi, ..., v;, Wy, vi4q andTh, ..., T; and Connector's move;; in round (i + 1), we
can compute Splitter’'s answé¥; ., according to her winning strategy in tin@(r:|V (G;)| + |E(G;)])).

To see this, recall thdl/; ; := Ulgjgi V(Pjiv1) N N% (vii1), whereP; ;1 can be any shortest path
from v; to v;11 In Gj_1. We choose the path fromy,; to v; in the treeT;. We can compute this path in
time O(r) and thus all paths in timé(ri). We can comput&V i (v,,1) in time O(|V (G;)| + | E(G;)|) and
the intersection in tim&(ri|V (G;|).

Remark 4.4 If Splitter wins the(¢, m, r)-splitter game on a grapf¥, then he also wins if we remove in
each step of the game a superset of his choseiset

We implicitly use this remark when sometimes in a gréhlreached after rounds of the game and after
choicesv; 1, Wi, 1 in the next round we do not continue the game the giGph = G;[N (v; 1)\ Wis1],
but in a subgraph aof7; ;.



We close the section by observing the converse of Thebrerantihence show that the splitter game
provides another characterisation of nowhere dense slagggaphs.

Theorem 4.5 Let C be a class of graphs. If for every > 0 there are/,m > 0 such that for every
graphG € C, Splitter wins th€¢, m, r)-splitter game, thed is nowhere dense.

Proof. We show that i is not nowhere dense, i.€. ,contains all graphs as depthminors at some depth
then for all, m > 0 there is a grapliz € C such that Connector wins thié, m, 4r + 1)-splitter game.

Let ¢, m > 0. We choos&~ € C such thatz contains the complete grapgkl := Ky, as a depth-
minor. Connector uses the following strategy to win tlhen, 4r)-splitter game. Connector chooses any
vertex from the branch set of a vertex &f. The4r + 1-neighbourhood of this vertex contains the branch
sets of all vertices of{. Splitter removes any vertices. We actually allow him to remove the complete
branch sets of ak» vertices he chose. In rourzddve may thus assume to find the complete graph_,),,, 11
as a depth- minor and continue to play in this way until in roudct least the branch set of a single vertex
remains. 0

5 Independent Sets in Nowhere Dense Classes of Graphs

In this section we use the splitter game to show that tr&erANCE INDEPENDENT SET problem, which is
NP-complete in general, is fixed-parameter tractable orheogvdense classes of graphs. This will be used
later in the proof of our main theorem but is also of indepemdeaterest. Recall from Sectidd 2 that, for
r > 0, a set of vertices in a graphssindependenif their mutual distance is greater than

Theorem 5.1 LetC be a nowhere dense class of graphs. There is a fungtismch that for every > 0 the
following problem can be solved in tinfée, r, k) - |V (G)|'*=.

DISTANCE INDEPENDENT SET
Input: GraphG € C, W C V(G), k,r € N.
Problem: Determine whethefs contains am-independent set of size

Furthermore, ifC is effectively nowhere dense, thgils computable.

We will show that we can solve a coloured version of the pnoblealled the RINBOW DISTANCE
INDEPENDENT SET problem, and reduce the original distance independent reétgm to the rainbow
distance independent set problem. We first give a formal itiefirof rainbow sets.

Definition 5.2 A coloured grapiG, C,...,C}) is a graphG together with relationg™, ... C; C V(G),

called colours such thatC; N C; = 0 for all ¢ # j. A vertexv ¢ |J,-;, C; is calleduncoloured A set

X C V(G) is arainbow seff all of its elements have distinct colours (and no vertesrisoloured).
TheRAINBOW DISTANCE INDEPENDENT SET problem on a clas€ of graphs is the following problem.

RAINBOW DISTANCE INDEPENDENT SET (RAINBOW DIS)
Input: GraphG €C, Cy,...,C; CV(G), k,r € N.
Problem: Determine whetheé contains a rainbow-independent set of size

k.

Before we describe the algorithm for solving theIRBow DISTANCE INDEPENDENT SET problem,
let us show how the plain BTANCE INDEPENDENT SET problem can be reduced to the rainbow version.
Thelexicographic productG e H of two graphs andH is defined by (Ge H) = V(G) x V(H) and

E(GeH) = {{(z,y),(«',y)} : {z,2'} € E(G) or (x = 2’ and{y,y'} € E(H))}. The graph= e H has
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a natural coloured versioff o H: we associate a colour with every vertexiéfand colour every vertex of

G e H by its projection onH. That is, the colour ofzx, y) is y (or the colour associated witf). It is easy

to see that a grapfy has anr-independent set of sizZeif and only if G o K}, has a rainbow-independent

of sizek. This gives us the reduction from distance independenttgeteir rainbow variant. Furthermore,
observe that if Splitter wins th@, m, r)-splitter game on a grap&, for somer,l,m > 0, then he also
wins the(l, k - m, r)-splitter game o1z e K, for all k. As a consequence, together with Theofem 4.2 and
Theorem 4.b this implies a different and very simple proaheffollowing result by NeS&t and Ossona de
Mendez (Theorem 13.1 df [28]) that nowhere dense classasphg are preserved by taking lexicographic
products in the following sense.

Corollary 5.3 If C is a nowhere dense class of graphs then for eveey 0, {G ¢ K}, : G € C} is also
nowhere dense.

Note, however, that the reduction above reducesTENCE INDEPENDENT SET on a clas¥ of graphs
to RAINBOW DISTANCE INDEPENDENTSET on the clas$ J,~., C e K, whereCe K, := {Ge H : G € C}.
For the non-uniform version of our results, this is no pralléecause by the previous resul( is nowhere
dense theld o K. is nowhere dense as well, and in the nonuniform setting we lneave to deal with fixed
k. We need to be slightly more careful for the uniform versiorhe key insight is that we can easily
translate a winning strategy for Splitter in tte m, r)-splitter game on a grapfi to a winning strategy in
the (¢, km, r)-splitter game o1 @ K.

We are now ready to use this reduction to complete the prodhebreni 5.11. Let > 0 and let/, m be
chosen according to Theorém#.2 such that Splitter has angrstrategy for thé/, m, 4k>r)-splitter game
on every graph irf. Chooseny = ng(e) according to Theorein 3.4 such that every grépk C of order
n > ngo has at most!+¢ many edges.

Suppose we are given an instar@ek, r, W of DISTANCE INDEPENDENT SET, whereG € C. We
first compute the coloured graghl := Go K. LetC4,...,C;, wheret := k, be the colours ofi’. As
explained above, Splitter wins ttig mk, 4k?r)-splitter game or’ and his winning strategy can easily be
computed from any winning strategy for th& m, 4k%r)-splitter game orG.

We need to decide {fG’, C1, . .., C;) has a rainbow-independent set of size If n = |V (G)| < no,
we test whether this set exists by brute force. In this caseuhning time is bounded by a function o
ande. So let us assume > ny.

Let G; := G’. We compute an inclusion-wise maximal rainbevindependent sel; = {x1,... ,x’fl}
of sizek; < k by a greedy algorithm. Ik; = k, we are done and return the independent set. Otherwise,
we may assume without loss of generality thathas colourj. Let X; := N, (I;). Then all elements with
coloursk; + 1,...,t are contained inX;. LetY; := N, (X;). Then all paths of length at mostbetween
elements of colouk; + 1,. ..,k lieinsideY;. LetGy := G1 \ V3.

We continue by computing an inclusion-wise maximal rainbemdependent set ir2. Denote this
setbyl, = {zi,... ,acé”}. Note that all occurring colours are amohg .., k; and in particular we have
ko < ki because no other colours occurGh \ Y;. Again we may assume without loss of generality that
x% has colouri. Let X, := N,(I3). Then we find all elements with colouks + 1,...,¢in X; U Xs. We
letYs = NT(XQ) LetGs := Gy \ Y.

We repeat this construction unil = &, or until G,4; = 0. Note thats < k, becausés; < k. In
the first case we have constructed- 1 setsl; = {z},... ,xfi}, X; andY; such thatz] has colour; for
1<i<s+1,1<j <k, Furthermore, the colours; 4+ 1,...,¢t occur only inX; U... U X, and all
paths of length at most between vertices of these colours lie¥pu ... U Y;. By construction, no vertex
of colourks + 1, ..., t has distance at mostto any vertex ofl; ;. Hence we may assume that any rainbow
r-independent set includes the vertio;%gl, e ,acl;il of colourl,..., ks. It remains to solve the rainbow
r-independent set problem with parametér= k — ks and coloursis +1,...,tonG’ := G[Y1 U...UYy].



In the other case;; = 0) we also letG” := G[Y; U ...Y;]. The only difference is that we have to
solve the original problem with parameter= k.

If G” is not connected, let/y,...,U. C G” be the components @”. For all possible partitions of
the setC, ..., C; of colours into partd/y, ..., V. we proceed as follows. For all < i < ¢ we delete all
colours fromU; not in V;, i.e. work in the coloured graptU;, V;). We then solve the problem separately
for all componentgU;, V;) and for each component determine the maximal valuec £’ so that(U;, V;)
contains a rainbow-independent set. We then simply check whether for soméipartVi, ..., V,) of the
colours the maximal values for the individual components sip to at least’.

Hence, we can assume ti@t is connected. Thet”” has diameter at mogt? - r (there are at most
Zlez' < k2 many vertices in the independent sets surrounded by 2haieighbourhoods of diameter at
most4r). Hence the radius af” is at also at mostk? - r.

Let v be a centre vertex of”. We letv be Connector’s choice in the, km, 4k?r)-splitter game
and letM be Splitter's answer. Without loss of generality we assuha ¥/ = {mq,...,m;,} # 0.
We letG” := G” \ M and continue with a different colouring @ as follows. LetX C M be a
rainbowr-independent set if’, possibly X = () (we test for all possible set& C M whether they are
rainbowr-independent sets and recurse with every possible suchWetjemove the colours occurring in
X completely from the graph and furthermore we remove theurabvertices fromVS" (X).

We now change the colours 6f” as follows. For every colouf’;, with 1 < 7 < ¢, and evenydistance
vectord := (di,...,d,,), whered; € {1,...,r,00}, we add a new colout’; ; and set’; ; to be the set of
all verticesw € C; such thadistg» (w, m;) = d;, forall 1 <4 < r, where we definelistg (w, m;) = 0o
if the distance is bigger then Note that the number of colours added in this way is anlyl’, where
d' := (r+1)™ is the number of distance vectors, and hence only depend®anitber of original colours
andr andm. We call a subset’; ;,...,C; , 4, of the colours aalid sub-colouringf the colours satisfy
the following constraints:

1. If C;, 4, # 0 for a colour which states that the distance to some elemert M is r’ < r, then
D, , 7, = 0 for all colours which state that the distancentds at most- — 7.
AR}
2. 1 Cy, 4, andC; , ;, are colours such thaj = i andd; # dj thenC; 5 =0 or Cia, =0
We now check for all possible sub-colourin@%@i1 ,oor C

i,nd,, Of G" whether they are valid and for

each valid sub-colouring we recursively call the algoritamG”” with colouring Cil,(iil -G a4, and
parameterk” := k' — | X|. The number of valid sub-colourings only depends on theimlghumber of
colours and omn andr.

We claim that this procedure correctly decides whetiécontains a rainbow-independent set of size
K'. If there exists such a set, let X := M N Z. ThenX will be considered as one of the potential sets
to be extended by the algorithm. No vertex frafm\ X may have a colour ok, hence we may remove
these colours completely from the graph. Furthermgne,N,. (X) = X, hence we may remove the colours
from N,(X). Also, if u € Z with distg»(u,m) = ' < r for somem € M, thenv ¢ Z for all v with
distgr (v,m) < r—r’. Hence we will findZ in the graph where all colours which state that the distanee t
is at mostr — 7’ are removed. Conversely assume that the algorithm hasrchasénbowr-independent set
I'in G" of sizek’ — | X| for someX C M and some valid sub-colouring of a colouring which is corsist
with X. By Condition (1) of valid sub-colouringd, is also an--independent set i6”. By Condition (2) of
valid sub-colourings] is also rainbow irG”.

We now analyse the running time of the algorithm. First obséhat in a recursive call the parameters
r andm are left unchanged anid can only decrease. Moreover it follows from the definition®f that
Splitter has a winning strategy for tiié — 1, km, 4k>r)-splitter game orG””. Thus in each recursive call
we can reduce the parameteby 1. Once we have reacheéd= 0, the graphG"”" will be empty and the
algorithm terminates.
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There is one more issue we need to attend to, and that is hovomypute Splitter's winning strategy,
that is, the setd/. We use Remark4.3. This means that to computen some recursive call, we need the
whole history of the game (in a sense, the whole call stackaddition, we need a breadth-first search tree
in all graphs that appeared in the game before. It is no pmolitbecompute a breadth-first search tree once
when we first need it and then store it with the graph; this amtyeases the running time by a constant
factor.

Let us first describe the running time of the algorithm onllgwef the recursion. The time for computing
k maximalr-independent sets of size at mésind their2r-neighbourhoods can be bounded by tigpe. ' +°.
The factorn!*¢ stems from the breadth-first searches we have to perfornder ¢o find the set¥ (i) and
Splitter’s strategy and, is a constant depending only enk, e andC.

As the initial number of colours wasand the number of colours in every recursive step increages b
factor depending only onandm (which depends only on &k andC), the total number of colours depends
only onr, k andC. Hence the number of rainbowindependent subsel§ of an occurring sed/ is bounded
by a constant; depending only om, £ andC. The number of valid sub-colourings in any recursive step is
bounded by a constant depending only om, k andC.

Furthermore, fon < ng the running time can be bounded by a constgrthat only depends oh, r, ¢
andC. Forj = 0, the running time can be bounded by a constardepending only otk, r,¢ andC. We
obtain the following recurrence fdr.

T(0) <3+ cy,
T(j)<cs+co-n' ™ +eci-c-T(j—1) forall j > 1.

We conclude that there is a constartepending only ot , ¢ andC such thatl'(¢) < ¢ - n'*e.
This completes the proof of Theorém15.1. O

6 Sparse Neighbourhood Covers

Neighborhood covers of small radius and small size play adleyin the design of many data structures for
distributed systems. Such covers will also form the basth®@fdata structure constructed in our first-order
model-checking algorithm on nowhere dense classes of grdpithis section we will show that nowhere
dense classes of graphs admit sparse neighbourhood cdwarsal radius and small size and present an
fpt-algorithm for computing such covers.

Definition 6.1 For r € N, anr-neighbourhood covet’ of a graphG is a set of connected subgraphs(of
called clusters such that for every vertexc V(G) there is someX € X with N, (v) C X.

Theradiusrad(X) of a coverX is the maximum radius of any of its clusters. Tegreel” (v) ofvin &
is the number of clusters that contain Themaximum degree\ (X') of X' is A(X) = max,cy () d¥ (v).
The size oft is | X = Y xcx [X] = X er () 4% (v).

The main result of this section is the following theorem.

Theorem 6.2 Let C be a nowhere dense class of graphs. There is a fungtisnch that for allr € N
ande > 0 and all graphsG € C withn > f(r,e) vertices, there exists arneighbourhood cover of
radius at mos2r and maximum degree at most and this cover can be computed in tirfier, ) - n'*=.
Furthermore, ifC is effectively nowhere dense, thgins computable.

To prove the theorem we use the concept of generalised @ojpuumbers introduced by Kierstead
and Yang in[[23]. For a graptv, let II(G) be the set of all linear orderings of(G). Foru,v € V(G)
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andk € N, we say that: is weaklyk-accessibldrom v with respect to<e II(G) if v < v and there is
au—v-path P of length at mosk: such that for alkw € V(P) we haveu < w. We write < for the reflexive
ordering induced by. Let WReachy (G, <,v) be the set of vertices that are weakhaccessible from
and letWReach[G, <, v] := WReachi (G, <,v) U {v}. Theweakk-colouring numbenvcol,(G) of G is
defined as

weolg(G) = min  max |WReaChk[G <, v]|.
<eTl(G) veV (G)

Zhu [33] (and in fact also Kierstead and Yang but they weream@re of the depth-minor terminology)
showed that general colouring numbers and densities ohdeptinors are strongly related. From this,
NeSefil and Ossona de Mendez conclude that the weak colouringbruron nowhere dense classes is
small.

Lemma 6.3 ([33/29]) Let C be a nowhere dense class of graphs. Then there is a fungtismch that
for everyr € N, everye > 0, every graphG € C withn > f(r,e) vertices satisfiesvcol,.(G) < nf.
Furthermore, ifC is effectively nowhere dense, thgins computable.

For our purpose, we need an efficient algorithm for orderirg\tertices ofZ in an order witnessing
weol,.(G) < nf. Dvorak [13] conjectures that in general computingol, (G) is NP-complete. We are able
to prove his conjecture for al > 3. He provides an approximation algorithm to solve the pnoblbut its
running time isO(r-n3) which is too expensive for our purpose. We propose a moreesffiapproximation
algorithm, based on Neg#tand Ossona de Mendez’s transitive fraternal augmemntatchnique and an
argument from Zhu’s proof.

In the following we will work with ordered representationsgraphs where each vertex stores an adja-
cency list for its in-neighbours and an adjacency list feroitit-neighbours.

Definition 6.4 Let G be a directed graph. Aight 1-transitive fraternal augmentatiayf G is a directed
graph H on the same vertex set such that for all distinct verticas w

e if (u,v) € E(G), then(u,v) € E(H).
if (u, w), (w,v) € B(G), then(u,v) € BE(H),
o if (u,w), (v,w) € E(G), then(u, v) or (v, ) are arcs ofH and

o for all (u,v) € E(H), either (u,v) € E(G) or there is somev such that(u, w), (w,v) € E(G) or
(u, ), (v,w) € B(G).
G

We writeaug(G, 1) for any tight1-transitive fraternal augmentation of and forr > 1 we wrlteaug(G T)
for aug(aug(G,r — 1),1). We callaug(G,r) a tight r-transitive fraternal augmentation af. We will
often writeaug (G, r) and speak of an-transitive fraternal augmentation @f instead ofaug(G, r)and an
r-transitive fraternal augmentation of an orientatichof G.

In [30], NeSetil-Ossona de Mendez show how to efficiently compute tiglmsitive fraternal augmen-
tations. They state the result in terms of average densifidepth+ minors, for our purpose it suffices to
state their result for nowhere dense classes. All functjtmse) in the following lemmas are computable
if C is effectively nowhere dense.

Lemma 6.5 (Nesdil-Ossona de Mendez[[30], Corollary 4.2, Theorem 4.3Let C be a nowhere dense
class of graphs. There is a functigh such that for allr € N ande > 0 and all graphsG € C
withn > f (r,e) vertices, there exists amtransitive fraternal augmentatiodd = aug(G,r) of G such
that A= (H) < nc. Furthermore,H can be computed fro@¥ in time f(r, ) - nl*e.
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We will write aug (G, r, €) for an augmentatiod/ = aug(G, r) such thatA~(H) < n°.
The following property of transitive fraternal augmentat is noted in the proof of Theorem 5.1(in[30].

Lemma 6.6 ([30]) Let G be a graph and let- € N. LetH = aug(G,r) be anr-transitive fraternal
augmentation ofy. Letv € V(G) andw € NF(v). Letv = vy,vs,...,1 = w be a path of length

— —

at mostr from v to w in G. Then either(v,w) € E(H) or (w,v) € E(H) or there is some; such

—

that (v;, v), (v, w) € E(H).

In fact, for the results in the previous lemma it would sufficeuse an|log;, TW + l-augmentation.

While this would make the construction more efficient, weaigf from doing so for ease of presentation.
We now show how to approximatecol,.(G) with the help ofr-transitive fraternal augmentations.

Lemma 6.7 LetG be a graph and let > 0. LetH = aug(G, r) be anr-transitive fraternal augmentation
of @ such thatA~ (H) < d. Thenwcol,(G) < 2(d + 1)2.
Proof. As A‘(ﬁ) < d, the underlying undirected gragh is 2d-degenerate and we can order the vertices
of H such that each vertex has at m@gtsmaller neighbours. Denote this order -ty For each vertex €
V(G) we count the number of end-vertices of paths of length at mé®tm v such that the end-vertex is
the smallest vertex of the path. This number bouMi&each,.[G, <, v)]|.

By Lemmal6.6, for each such path with end-vertexwe either have an edde, w) or an edggw, v)
or there isu on the path and we have edgesv), (u,w) in H. By construction of the order there are at
most2d edges(v, w) or (w,v) such thatw < v. Furthermore, we have at mastedges(u,v), asv has
indegree at most and for each such there are at mostd edges(u, w) such thatv < u by construction
of the order. These are exactly the pairs of edges we havengiday, as no vertex on the path franto w
may be smaller thaw. Hence in total we havBVReach,.[G, <,v]| < 2d + 2d? + 1 < 2(d + 1)%. O

Corollary 6.8 LetC be a nowhere dense class of graphs. There is a fungtisoch that for allr € N
ande > 0 and everyG € C withn > f(r,e) vertices, we can order the vertices @Gfin order < such
that [WReach,[G, <,v]| < nf for all v € V(G) in time f(r,¢) - n'™¢. Furthermore, ifC is effectively
nowhere dense, thefis computable.

Proof. Letd := £/4. We compute am-transitive fraternal augmentatiod = aug(G,r,d) of G in
time g(r,d) - n'*t% by Lemmal6.5, wherg is the function from the lemma. We can order the vertices
as in the proof of Theorem 8.7 by a simple greedy algorithninie 0 (n' ) and obtain an order witness-
ing weol,.(G) < 2(nd +1)2 < n®. O

In the next lemma we use the weak colouring humber to provexisence of sparse neighbourhood
covers in nowhere dense classes of graphs.

Definition 6.9 LetG be a graph, let< be an ordering of’(G) and letr > 0. For a vertexv € V(G) we
define
X, [G,<,v] :=={w € V(G) : v € WReach, |G, <,w]}.

Lemma 6.10 Let G be a graph such thatcols,.(G) < s and let< be an order witnessing this. Thet =
{X2, |G, <,v] : v € V(G)} is anr-neighbourhood cover @F with radius at mos2r and maximum degree
at mosts.

Proof. Clearly the radius of each cluster is at mdstbecause it is weakly2r-accessible fromw thenw €

Ny, (v). Furthermore, every-neighbourhood lies in some cluster. To see thisyletV(G). Letu be the
minimum of N,.(v) with respect to<. Thenu is weakly2r-accessible from every € N,.(v) \ {u} as there
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is a path fromw to v which uses only vertices a¥,.(v) and has length at mo8t and is the minimum
element ofN,.(v). ThusN, (v) C X, [G, <,u]. Finally observe that for every € V(G),

d*(v) = |{u € V(G) : v € Xo,[G, <, u]}|
= |{u € V(GQ) : u € WReachy, [G-,v]|}| = [WReachs, [G-,v]| < s.

O

Proof of Theoreh 6]2Let ¢ := /2. We order the vertices @ in order< as in Corollary 6.8, wheréplays
the role ofe in the corollary, such tha@Reachy, [G, <,v] < n° for all v € V(G) in time g(r,6) - n'*9,
whereg is the function from the corollary.

Let us first note the following observation.

Claim 1. Forv € V(G) let S(v) == {u : u < v}. ThenXy,[G, <,v] = NSO (v).

Our algorithm computes the seb,, [G, <,v] in ascending order. To do so, it chooses the smallest
vertexv, performs2r levels of a breadth-first search and then deleté®m the graph. Correctness of the
algorithm follows immediately from Claif 1. Let us analybe running time.

We construct the following representation@fwhich is easily seen to be computable in tifién'*?)

. We split the edges off into edges going to larger elements and into edges going &dlemelements
with respect to the ordering. For eache V(G) we write N~ (v) (resp.N.(v)) for the neighbours of
that are larger (resp. smaller) than We write d-. (v) for | N~ (v)| andd<(v) for |[N-(v)|. Note that we
haved. (v) < n? for eachv € V(Q), asd-(v) < [WReachs, [G, <, ]|

Let G’ be a subgraph af with n’ vertices. We can count the edges#fby counting the sum of - (v)
over allv € V(G’), henceG’ has at most’ - n’ many edges. We can thus perform each breadth-first search
to computeXy, [G, <,v] in time O(| X2, [G, <,v]| - n®) for each vertew € V(G). Furthermore, we have
the following overhead in the breadth-first search for dedeedges that point to, which must be deleted.
As we store the edges of each vertex in separate lists, foneatexw € N~ (v) (this is the first level of the
breadth-first search), we have to access only the edgesticegeof N (w). No other vertex is connected
towvin G\ S(v). Hence, the deletion af from the adjacency list ofs can be done in timé_ (w) < n°.
The number of such vertices is d-. (v), which at the time of deletion af is bounded by X5, (G, <, v]].

For ease of presentation l&f, := X,,.[G, <,v] and let us drop any constant factors in the following
estimation. We get a total running time of

Z (’Xu"né‘F Z d<(w))

veV (G) WEN> (v)
=Y s Y Y
veV(G) veV(G) weN> (v)
< D Xt Y X
veV(G) veV(G)
= 2n? Z
veV(Q)

<ot = f(r ) - nlte
O

Remark 6.11 By definition, anr-neighbourhood cove&” of a graphG contains for eachv € V(G) a
cluster X € X such thatN“(v) € X. For the algorithmic applications below it will be useful $tore
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along with the neighbourhood cover a functiggp : V(G) — X which associates with every vertexuch
a clusterX containing itsr-neighbourhood.

The proof of the previous theorem can easily be modified tgpatensuch a function along with the
neighbourhood cover as follows: we associate with V' (G) the setXs,[G, <, u| for the <-minimalu €
V(G) such thatv € NES®) (u), whereS(u) is defined as in Clairnl1 in the proof of Theoreml 6.2. As the
setsXy, [G, <, u] are computed in increasing order, this can be done at no ecdsd.

We remark that our construction also yields very good cof@rsther restricted classes of graphs, in
particular for classes with excluded minors and classesraplg of bounded expansion, where we can
replace the maximum degreé of the neighbourhood cover by a constant. See the conchig®ectiorn D)
for further comments.

7 Locality of First-Order Logic

In this chapter, we prove the “rank-preserving” version aff@an’s locality theorem stated in the introduc-
tion.

7.1 Background on First-Order Logic

We start with a brief review of first-order logic. For backgna, we refer the reader to [15]. @elational)
vocabularyis a finite set of relation symbols, each with a prescribety.afihroughout this paper, we let
be a vocabulary. Ar-structure A consist of a (not necessarily finite) 9étA), called theuniverseor vertex
setof A, and for eaclk-ary relation symboR € o ak-ary relationR(A) C V(A)¥. A structureA is finite
if its universe is.

For example, graphs may be viewed{ds}-structures, wheré is a binary relation symbol.

Let A be ao-structure. For a subséf C V' (A), theinduced substructuref A with universeX is the
o-structureA[X ] with V (A[X]) = X andR(A[X]) = R(A)n X* for everyk-ary R € . For a vocabulary
o' C o, theo’-restrictionof A is theo’-structureA’ with V(A’) = V(A) andR(A’") = R(A) forall R € ¢’.
ConverselyA is ac-expansiorof ao’-structureAd’ if A’ is theo’-restriction ofA.

First-order formulasof vocabularys are formed from atomic formulas = y and R(x1,...,x%),
where R € o is ak-ary relation symbol and:, y, x4, ...,z are variables (we assume that we have an
infinite supply of variables) by the usual Boolean connestiv (negation),A (conjunction), and/ (disjunc-
tion) and existential and universal quantificatian, Vz, respectively. The set of all first-order formulas of
vocabularyo is denoted by F{¥|, and the set of all first-order formulas by FO. The free vdeatf a
formula are those not in the scope of a quantifier, and we wtg, . . . , z1) to indicate that the free vari-
ables of the formulg are amongy, . .., zx. A sentenceés a formula without free variables. Tlygantifier
rank qr(y) of a formulay is the nesting depth of quantifiers¢n defined recursively in the obvious way. A
formula without any quantifiers is callepiantifier-free

To define the semantics, we inductively define a satisfaatdetion =, where for as-structureA, a

formulay(xy,...,zx), and elements,, ..., ax € V(A4),
A plar, ... a)
means thatd satisfiesy if the free variablesey, ..., z; are interpreted byiq, ..., ar, respectively. If

o(x1,...,x) = R(x1,...,x) IS atomic, thend = ¢(aq,...,a) if (a1,...,ar) € R(A). The meaning
of the equality symbol, the Boolean connectives, and thatifiexs is the usual one.

For example, consider the formulgz,z2) = Vy(x; = yV z2 = y V E(z1,y) V E(z2,y)) in the
vocabulary{ E'} of graphs. For every grapfi and vertices;,v2 € V(G) we haveG = (v1,vs) if any
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only if {v1,v,} is a dominating set off. ThusG satisfies the sentené:;3zop (21, x2) if, and only if, it
has a (honempty) dominating set of size at n#st

Whenever ar-structure occurs as the input of an algorithm, we implcgssume that it is finite and
encoded in a suitable way. Similarly, we assume that forenglappearing as input are encoded suitably.

By |¢|, we denote the length of the encodingyof

Aformulay(zy,...,z;) € FO[o] is valid if for all o-structuresd and all elements,, ..., a; € V(A)
it holds thatA = ¢(as,...,ar). The Completeness Theorem for First-Order Logic implied the set
of valid formulas is recursively enumerable. Two formula&ey, ..., x), ¥(x1,...,z,) € FO[o] are
equivalentif for all o-structuresA and all elements;,...,a; € V(A) we haveA = ¢(ay,...,a;) <
AEY(al,...,a).

Up to logical equivalence, for atl, ¢ there are only finitely many FO-formulagz, . . . , ;) of quantifier-

rank at mosy. Indeed, by systematically renaming the bound variableeging Boolean combinations
into conjunctive normal form, and deleting duplicate ergrirom the disjunctions and conjunctions, we can
normalise FO-formulas in such a way that every formula caefiectively translated into an equivalent
normalised formula of the same quantifier rank, and forkall the set®(o, k, ¢) of all normalised FO-
formulasp(x1, ..., x) of quantifier rank at most is finite and computable.

The Gaifman graphG 4 of a o-structure A is the graph with vertex sét'(A) and an edge between
ai,as € V(A) if a1, as appear together in some tuple of some relationtinThe distancedist (a, b), or
justdist(a, b), between two elements b € V(A) in A is the length of the shortest path framo b in G 4,
and ther-neighbourhoodf a in A is the setN (a), or justN,.(a), of all b € V(A) such thatlist(a, b) < r.
For atuplea = (aq,...,a), we letN,(a) = Ule Ny (a;).

A first-order formulay(z) is calledr-local if its truth value at a tuple of vertices in a structurel only
depends on the-neighbourhood ofi in A, that is,A = ¢(a) <= A[N,(a)] = ¢(a). Foralld > 0
there is an FO-formuld<4(x,y) stating that the distance betweemndy is at mostd. We writed~ 4(z, y)
instead of~d<4(x,y). A basic local sentencis a first-order sentence of the form

k

E|$1E|$k( /\ 5>2r(xi>xj) A /\(p(l’l)), (7.2)

1<i<j<k i=1
wherep is r-local.

Theorem 7.1 (Gaifman’s Locality Theorem [19]) Every first-order sentence is equivalent to a Boolean
combination of basic local sentences.

The algorithm of Frick and Grohé [18] for deciding first-orgeoperties on graph classes of bounded
local tree width relies on Gaifman’s theorem. Unfortunatele cannot use Gaifman’s theorem here, at least
not directly, because it does not give us sufficient contvel the quantifier rank of the basic local sentences
we translate a sentence to. As we intend to apply the theogpeatedly, such control will be crucial. To
get around these difficulties, we need a discounted rankumeashich does not charge the full quantifier
rank to distance formulas, and a refined version of Gaifmidn@srem.

7.2 The Logic FO"

We define an extension POof first-order logic by adding new atomic formuldsst(z,y) < d, for all
variablesz, y and alld € N. We call these formuladistance atomsThe meaning of the distance atoms is
obvious. Note that every FGformula is equivalent to an FO-formula— obtained fromy by replacing
each distance atomtist(x,y) < d by the FO-formulad<,(x,y). Thus FO is only a syntactic extension
of FO. However, the quantifier rank 8¢ ;(x, y) € FOis atleasflog d|, whereas by definition the quantifier
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rank of the atomic FO-formuladist(z,y) < d is 0. With this definition as one of the base steps, we can
define the quantifier ranr(y) for FO*-formulasy recursively as for FO-formulas.

We now define the discounted rank measure.gL.etN.

We say thaty hasg-rank at most? if ¢ has quantifier-rank at mogt and if each distance atom
dist(x, ) < din the scope of < ¢ quantifiers satisfied < (4¢)7+*—.

For example, the sentence

Elxﬂy(dist(x,y) < 12° A Jz(dist(z, 2) < 120 AV (= dist(z, 2/) < 120 v dist(2/,y) < 124)))

has3-rank 6, because for the distance atalist(z, z) < 12° in the scope oB quantifiers we havé26 =
(4 - 3)3t6=3, Note that the quantifier-rank of this formuladignd hence< ¢ = 6.
For convenience, we let

fa(0) = (49)7". (7.2)

This is is the largest value a@fwhich may occur in a distance atatist(z,y) < d of a formula ofg-rank?.
The definition of thej-rank arises from the necessities of the proof of ThedreinNde that this rank
measure makes it cheaper to define distances as in FO-fanwikh an FO -formula of g-rank ¢ we can
define distances up t@q)??, which is much more than the distarewe can define with an FO-formula
of quantifier ranky. Also note that defining distances becomes more expenstie iscope of quantifiers.
Up to logical equivalence, for all, ¢, ¢ there are only finitely many FQo]-formulasy(z1, . . . , zx) of ¢-
rank at most. As FO-formulas, we can normalise FGormulas such that every formula can be effectively
translated into an equivalent normalised formula of theeseank, and for alk, ¢, ¢ the set® " (o, k, ¢, £) of
all normalised FO-formulasy(z1, . .., zx) of g-rank at most is finite and computable.

7.3 An Ehrenfeucht-Fraissé Game for FO

Forg-structuresA, B and tuplesi = (a1, ..., ax) € V(A)*, b= (bi,...,by) € V(B)* wewrite(A,a) =7,
(B,b) (and say thafA, a) and (B, b) are(q, )" -equivalent) if for allp(z) € FO of g-rank at mos¥ we
have A |= p(a) < B k ¢(b). Observe thatd,a) =/, (B,b) implies for alli,j € [k] that ei-
therdiSt(ai,CL]’) = diSt(bi, b]) or diSt(ai,CL]’) > fq(g) anddist(bi, b]) > fq(g)

We generalise the well-known characterisation of firsteoreuivalence by means of the Ehrenfeucht-
Fraissé (EF) game (see, for example,l [15]) to the logic” F@rameterized by-ranks. A partial d-
isomorphisnmbetween two structured, B is a mapping with domaindom(p) C V(A) and rangeg(p) C
V(B) thatis an isomorphism between the induced substruet{item (p)] and the induced substructubgrg(p)]
and in addition, preserves distances ug,tthat is, for alla, ’ € dom(p) eitherdist(a, a’) = dist(p(a), p(a’))
ordist(a,a’) > d anddist(p(a), p(a’)) > d.

Definition 7.2 (EF} -game) Let A, B be o-structuresg = (a1,...,ax) € V(A" b = (br,...,b) €
V(B)* andg € N. Let0 < ¢ < ¢. The/-round EF;;—gameon (A,a, B,b) is played by two players,
called Spoiler and Duplicator. The game is played fof rounds. In roundi, Spoiler picks an element
ag+i € V(A) or an elementy; € V(B). If Spoiler picksax; € V(A), then Duplicator must choose
an elementy; € V(B) and if Spoiler picksb;; € V(B), then Duplicator must choose an element
ag+i € V(A). Duplicator wins the game if fob < ¢ < ¢, the mappinga; — b; for1 < j < k+iisa
partial f,(¢ — i)-isomorphism.
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Theorem 7.3 Forall ¢,0 < ¢ < q,A, B anda € V(A)*,b € V(B)¥, the following are equivalent.

1. Duplicator has a winning strategy for théround EF game on(A, a, B, b).
2. (4,a) E;_Z (B,b).

The proof of Theorer 713 requires some familiarity with gt is similar to the proof that equivalence
in first-order logic is characterised by the standard Electiit-Fraissé game (see, for example, [15]).

Fora = (ay,...,a;) € V(A)* anda € V(A), write dist(a,a) =, d € ({0,..., f,(0)} U {oc})* if
for all i € [k] we havedist(a;,a) = d; < f,(¢) ordist(a;,a) > f,(¢) andd; = co. Note that we can easily
write a quantifier-free FO-formula of g-rank¢ expressinglist(z, x) =, ¢ d.

We can rephrase the existence of a winning strategy for Batpli in the/-round EF game on(A, a, B, b)
as follows.

e Duplicator has a winning strategy for theound Fq—game on(A,a, B,b) if, and only if,a + b is
a partial f,(0)-isomorphism.

e For0 < ¢ < g, Duplicator has a winning strategy for tligound FCZ-game on(A,a, B,b) if, and
only if,
(1) a andb satisfy the same distance formulas upfg¢) and
(2) foreverya € V(A) thereis @ € V(B) such that Duplicator has a winning strategy for thel-
round FQ -game on(4, aa) and (B, bb) and
(3) for everyb € V(B) there is ama € V(A) such that Duplicator has a winning strategy for
the/ — 1-round FQ -game on(A, aa) and (B, bb).

This description of winning strategies can be defined in"F3 follows. LetA andgq € N be given.
Fora = (a1,...,ax) € V(A)¥, 7 := (z1,...,7x) and0 < £ < g, let

92 (z) = /\ dist(zs,2;) =d A /\ dist(z;, ;) > fo(0).
a;,a; €a a;,a;€a
dist(a;,a; )J:dgfq 6) dist(a; :“;)>fq )
For/ =0, let
(@) =0 A N e@).
p(z)eP(o,k,0)
Akp(@)

Recall that® (o, k, 0) denotes the (finite) set of all quantifier free normalisedd@rmulasy(z). Forl <
£ <q,let

7Z ) o — 7Z ~ 76_1 T 7Z_1 s
Sog (aj) = 19% (aj) A /\ Elﬂi‘k+1(,0ga (:L'v wk’-‘rl) A vxk—i—l \/ @ga (:L'v wk’-‘rl)'
acV(A) acV(A)

If we remove repeated entries from the big conjunction aedbily disjunction in the definition Qﬁg’z(f),
we obtain a well-defined finite formula even for infinite sttres A. Moreover, it is easy to see that the
rank of this formula ig. The following lemma implies Theorem 7.3.

Lemma 7.4 Giveng,0 < ¢ < q,A, B anda € V(A)*,b € V(B)¥, the following are equivalent.

1. Duplicator has a winning strategy for tiferound EF} game on(A, a, B, b).
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2. B ¢¥(b).
3. (A,a) =, (B.D).

Proof. Assertion [B) implies assertionl (2), as tpeank of o2 is ¢ and A = % (a).

Letq € N. We prove the equivalence 6f (1) and (2) by inductior/on

For¢ =0, (A,a) =}, (B,b) if, and only if,a — b is a partial f,(0)-isomorphism. This is exactly the
meaning of2".

For? > 0,

Duplicator has a winning strategy for tiieound EF game on(A, a, B, b)
+= a andb satisfy the same distance formulas ugf§¢¢) and

o foreverya € V(A) there is @ € V(B) such that Duplicator has a winning strategy for thel-
round FQ -game on(4, aa) and(B, bb) and

e for everyb € V(B) there is ana € V(A) such that Duplicator has a winning strategy for
the/ — 1-round FQ -game on(A, aa) and (B, bb)

< a andb satisfy the same distance formulas ugf§¢¢) and

o foreverya € V(A) there is @ € V(B) such thatB = % (bb) and

a

o foreveryb € V(B) there is aru € V(A) such thatB = goq’é_l(gb) (by induction hypothesis)

= Bt (b) (by construction ofs3").

It remains to show thaf{1) impliegl(3). The proof is by indoicton ¢. Casel = 0 is handled as above.
Let ¢ > 0 and suppose that Duplicator has a winning strategy for/thaind EEIF game starting in po-
sition (4, a, B,b). Then the truth of atomic formulas and distances ugd) in a andb are preserved.
Clearly, the set of formulas whose truth values are predes/elosed under negation and disjunction. Sup-
pose thatp(z) = Jyy(z,y) andy is of rank at mostq, ¢). Assume, for instanced = ¢(a). Then there
isa € V(A) such thatd |= ¢(a,a). By assumption Duplicator has a winning strategy fordheund EF
game starting in positiofA, a, B, b) and thus there is € V (B) such that Duplicator has a winning strategy
for the/ — 1-round EF game starting in positiofA, aa, B, bb). Since they-rank of is at most/ — 1, the
induction hypothesis yieldB = (b, b) and hence3 = ¢(b). O

7.4 The Rank-Preserving Locality Theorem

We expando-structuresA by adding definable information about neighbourhoods toyevertex. Let
X be anr-neighbourhood cover ofl. For everya € V(G), we fix some cluste®t’(a) € X such that
N,(a) C X(a). Actually, we view this assignments of clusters to the eesias being given with the
neighbourhood cover. Formally, we thus viewaneighbourhood covek’ as a mapping that associates
with every vertexa € V(G) a sett(a) C V(G) such thatV,(a) C X(a). Forallg € N, leto x ¢ be the
vocabulary obtained from by adding a fresh unary relation symt®)j for eachy = () € ®* (0,1, ¢, q).
For ao-structure A, let A xx ¢ be theo x g-expansion ofA in which F, is interpreted by the set of
all a € V(A) such thatd[X(a)] E ¢(a). We leto % ¢ := o and A +% ¢ := A. Fori > 0, we
letox*t! g := (0% q)xgandA *gj'l q:= (A *h q) *x q.

A (g, r)-independence sentenisea sentence of the form

EI;Ul...Elmq< /\ dist(x;, z;) > 2r A /\ @(%))

1<i<j<q 1<i<q
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for a quantifier-free first-order formula(x;). Note that the independence sentences have the same form as
the basic local sentences in Gaifman’s Theorem, excepthbaormulay(x) is required to be quantifier-
free, which implies that it is-local for everys > 0. We denote the set of ali, )-independence sentences

of vocabularyo by ¥ (o, ¢, 7).

Theorem 7.5 (Rank-Preserving Locality Theorem)Letq € Nandr = f,(q). For everyFO[s]-formulay(z)
of quantifier rankg there is anFO™ [0 x4*! g]-formula@(x), which is a Boolean combination ¢f + 1,7)-
independence sentences and atomic formulas, such thavéoy e-structure A, everyr-neighbourhood
coverX of A, and everyn € V(4),

AE pla) < A = 3la).
Furthermore,p is computable frony.

Even though we need the theorem in this general form, it maydyéhwhile to state, as a corollary, a
version that does not refer to any neighbourhood cover.olviained by applying the theorem to the generic
r-neighbourhood covet = {N,(v) | v € V(G)}. We omit the indexY’ in thex-notation when we refer to
this neighbourhood cover. As a further simplification, wéyatate the corollary for sentences.

Corollary 7.6 Let¢q € N andr = f,(¢q). For everyFO[s]-sentencep of quantifier rankq there is
anFO'[o x9t! ¢]-sentencep, which is a Boolean combination ¢f + 1, )-independence sentences, such
that for everyo-structure A and everys € V(A),

AEgp <= AxT g E .
Furthermore,p is computable fronp.

To prove the theorem, it will be convenient to introduce theguage of types. Thgy, ¢)-type of a
tuplea € V(A)* in aco-structureA is the settp(‘;z(A, a) of all formulasy(z) € ®* (o, k, ¢, ¢) (normalised
FO*[o]-formulas ofg-rank at most) such thatd = ¢(a). Note that

(A,a) =7, (B,b) <= tp,(A,a) =t} ,(B,b).

We callatpj[(A,a) = thO(A, a) theatomicg-typeof a in A. We denote the set of all, ¢)-types ofk-
tuples ino-structures byl'(o, k, q, ).

The (¢, )-independence typef a structured is the settp/,.(A) of all (¢, ")-independence sentences
for ¢ < g andr’ < r that are satisfied byl. The set of all(¢, )-independence types ofstructures is
denoted byl (o, q, 7).

Lemma 7.7 Letqg € Nandr := f,(q). LetA, B beo-structures andt’, ) r-neighbourhood covers of, B,
respectively. Lety € V(A), by € V(B) such that

itp;]:u (A x4 q) = itp;]:u (B *%, q)
1 1
and atp; (A *E g a0) = atp, (B *Slf q,bo).

Then(A,ao) =/, (B, bo).
Proof. We start by fixing some notation. For< k < ¢, we letoy, := o 9% gandA4, = A *g(_k q

andB; := B *31,_"” g andry := f,(¢ — k). Throughout the proof; always denotes a tupley, . . ., zx) (for
varying k), and similarlya, b denote tuplesay, . . ., ax) and(by, . . ., bx). We write J C H to denote that/
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is a connected component of a grafih Furthermore, i (H) = {0,...,k} andJ C H, thenz ; denotes
the sub-tuple of with entriesz; for j € V(.J), anda,, b, denote the corresponding sub-tuplesiof.

We shall prove that Duplicator has a winning strategy for gheund EI?]L game on(A4, ag, B, by).
We describe a winning strategy for Duplicator satisfying thllowing conditions for every positiop =
(A,a, B,b), wherea = (ag, a1, ...,ax) andb = (bg, by, ..., bs), of the game that can be reached if Dupli-
cator plays according to this strategy. L€} be the graph with vertex sét(H,) = {0,...,k} and edge
set

E(H,) := {ij : dist(a;,a;) < ry, or dist(b;, bj) <y}

Then for every component T H, there are induced substructurdg C Ay, B; C By such that the
following conditions are satisfied:

() Ny.(aj) CV(Ay)andN,, (b;) CV(By)forall j € V(J);
(i) (Asas) =5, _p (Bs,by).

Note that this implies that — b is a partialf,(¢ — k)-isomorphism.

The proof is by induction ork. For the base step = 0, note that the graptf := H, is the
one-vertex graph, which is connected. We Mgt := Ay[X(ag)] and By := By[Y(b)]. Then (i)
holds, becausel,) are r-neighbourhood covers and = ry3. By the assumption of the lemma, we
haveatp; (Ao *4" ¢, a0) = atp (Bo 5" ¢, bo). In particular, for every formulg(z) € ®* (0, 1,4, q)
we havedo +4 ¢ |= Py(ag) <= By} q |= P,(bo), which impliesAy |= ¢(ag) <= Bp = ¢(bo)
by the definition of the--operator. As every FO[oy]-formulap(xg) of g-rank at mosy is equivalent to a
formula in®* (09, 1, ¢, q), this implies(Ag, ao) =f, (B, bo), that is, assertion (ii).

For the inductive step, suppose that we are in a positien (A, a, B, b), wherea = (ag, a1, ..., ax)
andb = (bo, b1, ..., b;) for somek < ¢. Again, letH := H,. Suppose that in the: + 1)st round of the

game, Spoiler picka,.1 € V(A).

Case 1: dist(ag+1,a;) < ry for somei € {0,...,k}.
Let I C H be the connected componentipind letA; C Ay, By C By, be substructures satisfying

(i) and (ii). By (i), ax+1 € V(Ar). By (i), (A7, ar) z;q_k (By,bs), and thus Duplicator has a

winning strategy for theg — k-round EFqF-game onAy,az, Br,br). Letby ., be Duplicator's answer
if Spoiler picksay 1 in this game. Then
(Ar,araps1) =5y (Br,brbesr). (7.3)
This impliesatp, (Ag, ax41) = atp, (By, by11) and thus
(Ap1[X (as1)]s ane) =5 my (B [V (Ons1)], bigr)- (7.4)

We chooséy,,; as Duplicator’'s answer in the game dnB. Thus the new position is

p/ = (A> aak+1, B, Bbk-ﬁ-l)‘

LetH' := H,.
Case la: dist(ag+1,a;) < ri41 for somei € {0,...,k}.
Then
NTk+1(ak+1) - Nrk (d) - V(AI)7 (75)
because, > 27,1, and
Nryyy (brt1) © Ny (b) € V(Br), (7.6)
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becauséq, ¢ — k — 1)"-equivalence preserves distances upto, .
LetJ' C H'. Thenthere is & C H such thatV(J') N {0,...,k} C V(J). To see this, just
note that ifj(k + 1) € E(H') and(k + 1)j/ € E(H') thenjj' € E(H), becaus@ry1 < 7.
Thus, whenever there is a path between two verticgsc {0, ..., k} in H' there also is a path
in H. We letA;» C Ay bethe restriction ofl ; C Ax tooy 1 andBj C By 1 the restriction
of By C Ay toogyy. ThenifJ = I and hencé + 1 € V(J'), (i) for p’ and A ;/, B follows
from (Z.8) and[(7.6), and (ii) follows fromi (74.3). If +# I, then (i) and (ii) forp’ and A ;/, B
are inherited from (i) and (ii) fop and Ay, Bj.

Case 1b: dist(ag+1,ai) > ry+q foralli € {0,... k}.
Let J' C H'. Then eitherV(J') = {k + 1}, or there is a/ C H such thatV/(J') C V(J).
If V(J,) = {k? + 1}, we IetAJ/ = Ak+1 [X(ak+1)] andBJ/ = Bk+1 [y(bk+1)] . Then (I)
holds becaus&’ and) arer-neighbourhood covers, and (ii) follows frofm_(I7.4). If tkes a
connected component of H such thatV'(J') C V(J), we letA; C A, be the restriction
of Ay C A toory1 and By C By the restriction ofB; C By to ox1. Then (i) and (ii)
for p’ and A/, B are inherited from (i) and (ii) fop and A, B;.

Case 2: dist(ag41,a;) > riforalli e {0,..., k}.
Lett := atp (Ax, ar41). We will prove the existence ofla. 1 € V(B) with atp, (B, bry1) =t
anddist(bg11,b;) > 41 forall i € {0, ..., k}. We can then argue as in Case 1b. Assume towards a
contradiction that

(A) there is nob € V(B) with atp/ (B, b) = t and dist(b, b;) > ry11 foralli € {0,...,k}.

The first step is to construet, D, ¢ such thar;.y < d < D — 4ryp andD < rp and? < k
and there are elementd, ... a" € V(A) with atp] (Ay,a’) = t anddist(a’,a’) > D for i #
j €{0,...,¢}, but no elementa?, ..., af*! € V(A) with atp} (Ay, al) = t anddist(al, al) > d
fori#je€{0,....0+1}.

We letdy := 2,11, and we le¥, be maximal such that there ai§, . . . , af® with atp (Ag,ah) =t
foralli € {0,...,4} anddist(ag,ag) > dg foralli # j € {0,...,4}. Suppose first thatty > k.
As A and B satisfy the samék + 1,d/2)-independence sentences (note thais even), there are
elementdf, ..., b € V(B)with atp} (By, b)) = tforalli € {0,...,k+1} anddist(b}, b)) > do.
By (A), for everyi € {0,...,k + 1} there is aj(i) € {0,...,k} such thadist(by, b;;)) < rrq1 =
do/2. As dist(bh, b)) > do, we havej(i) # j(i') fori # i’ € {0,...,k + 1}. This is a contradiction,
which proves that, < k.

Now suppose that,,, ¢, are defined for somé > 0. Letd,; := dp + 4ris1, and letéy, be
maximal such that there ate2+l,...,afl’j11 with atp (Ay, aj,,) = tforalli € {0,... 0,41}
anddist(a’,'ﬁl,aiéﬂ) > dpyq foralli # 5 € {0,...,0h11}. Thenlyy < by If £, = £y, for the
first time, we stop the construction. Thén< k and thusd;1 = (4(h + 1) — 2)rp1 < ri. We
letd := dj, andD := dh+1 and/ .= ¢, = Eh-i—l-

As A and B satisfy the samék + 1, D/2)-independence sentences, there are elenténts. , b’ ¢
V(B) with atp/ (B, b") = ¢ anddist(b’, ') > D. Then for everyi € {0,...,(} there is aj(i) €
{0,..., k} such thatdist(b*, b;;)) < 7x+1. Thej(i) are mutually distinct, becaussst(b’,v’) >
2,41 for i # j. To simplify the notation, let us assume thdé) = i for all i € {0,...,¢}.
As dist(b?, ) > D, we havedist(b;, b;) > D — 2r,41. Then it follows from (ii) thatdist(a;, a;) >
D — 21y, becauseD — 2r, 1 < 7. It also follows from (ii) that for alli € {0,...,¢} there is
anal such thatist(a’, a;) < rg41 andatp; (Ag,al) = t. Then fori # j we havedist(a?,al) >
D — 4r,1 > d. Furthermore, we hawéist(ay1,a’) > 7 — rp1 > d. Lettingat™! := aj41, we
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have foundal, ..., al*! € V(A) with atp] (Ay, a’) = t anddist(a?,al) > d. This is a contradic-
tion.
O
We will show next how the Rank Preserving Locality Theorerofes from this lemma by standard
techniques from logic.

Proof of the Rank Preserving Locality Theorentet ¢(z) € FO[o] be a first-order formula of quantifier
rankq. Letr := f,(q) ando; := o x? g andor := o x9™! q. Furthermore, lef := I(o7,q+1,r) andT :=
T(o7,1,q4,0). A pair (n,6) € I x T is satisfiableif there are as-structureA and anr-neighbourhood
coverX of A and anu € V/(A) such thaitp,, , (4% ¢) = nandatp] (4 x4 g a) = 6.

It follows from Lemm& 7.\ that for all satisfiable pairg, §) € I x T the following two statements are
equivalent.

(A) There are ar-structured and an--neighbourhood covet’ of Aand aru € V(A) such thattp;;l’r(A*g(
q) = nandatp, (A x4 g a) =0 and A | ¢(a).

(B) For allo-structuresA andr-neighbourhood coverd of A anda € V(A), if itp,, (A% @) =7
andatp; (A+%" ¢,a) = 0, thenA = ¢(a).

Thus there is a subsgt, C I x T such that for alb-structuresA, all -neighbourhood coverd’ of A, and
alla € V(A),

Al pla) <= 3I(n,0) e S, : itp;rJrl’r(A *% ¢) =nand atp;r(A x4 q,a) = 0. (7.7)

Recall that everyq + 1, r)-independence type € I is a subset of the finite s&t(o7,q + 1, r), and for
everyoj-structureA we have

itpf,,,(A)=n <= Ak \vA A —ap.

Yen VeV (or,q+1,m)\n

We denote the senten¢¢w6n WA /\we,l,(al7q+1m)\77 —) by i and say that ilefineshe typen. But we can
actually definej for every subset) C ¥(oy,q + 1,r). Then eithen; is unsatisfiable or there is sorng-
structureA such thatitp,, , .(A) = 7.

Similarly, every atomic typ# € T'(or,1,q,0) is a subset of the finite sé@*(or,1,¢,0), and for
everyop-structureA and everys € V(A) we have

atpf (A,a) =0 <= A /\ Cla) A /\ —((a).
C(x)€o C(x)€®(or,1,9,0)\0
We denote the formuld\ ., C() A A¢(ayca(ort.q0ne ¢ (@) by 6(x). Again, we can definé(x) for

every subset C (o7, 1,¢,0). Then eithed(x) is unsatisfiable, or there is some-structureA anda €
V(A) such thattp, (4, a) = 6.
It follows from (7.7) that for allo-structuresA, all »-neighbourhood cover®' of A, and alla € V' (A),

AEga) = AxqE \/ @Frb (7.8)
(m,0)€S,

Here we use that ther-structure4 *"“ ¢ is an expansion of the;-structureA +%, q.

We could letp(z) = v(nﬂ)ésw (?7 A H(w)). Clearly, this formula has the desired syntactic form, and b
(7.8) satisfies the assertion of the theorem. However, we $@ar) to be computable fromp(z), and with
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this definition, it is not, because the choiceSfis not unique and, so far, arbitrary. However, we will prove
that we can compute some sgt satisfying [7.8).

We need to incorporate theneighbourhood covers into the logical framework. Eebe a fresh binary
relation symbol and, := o U {R}. For everyo-structureA and every mapping’ : V(4) — 2V, we
let AY be theo U { R}-expansion ofd with

R(AY) ={ab|be X(a)}.

Recall that we view--neighbourhood covers of as mappingst : V(4) — 2V whereN, (a) C X (a)
for eacha € V(A). We lety := VaVy(dist(z,y) < r — R(x,y)). ThenX is anr-neighbourhood
cover of A if, and only if, A* |= ~. It is not hard to see that the structufiexy ¢ is definable withinA?,
which means that for every (unary) relation symbBbE (o % ¢) \ o there is ar U { R}-formulax p(z) such
that P(A xx q) = {a € V(A) | AY |= xp(a)}. By the so-called Lemma on Syntactical Interpretations
(seel[15]), this implies that for evepyg-formulai)(z) there is aU{ R}-formulay z(x) such thatdxyq =
Y(a) <= AY = ¥p(a). Using this, we can inductively prove that<, q is definable withind? and that
for everyo ¢ g-formulay(z) there is ar U { R}-formulayr(z) such thatd 4 ¢ = ¥(a) < AY &
Yr(a). In particular, for every; C (o7, q + 1,7) there is arg-sentencejy such thatd *‘},jl ET =
AY = 7z and for everyd(z) C ® (o, 1, ¢,0) there is arg-sentenc@ g (x) such thatd «4 ¢ |= 0(a) —
A% |= O(a).

It follows from (7.8) that for allo-structures4, all r-neighbourhood cover&’ of A, and alla € V' (4),

Ak gla) < A\ (irA0R(a). (7.9)
(n,0)€S,

As A% is an expansion afl, on the left-hand side of (7.9) we can replat®y A" and thus rewrite(7]9) as

AY =) «— \/  (TrAOr(a). (7.10)
(n,0)€S,

Recalling that arp-structureA equalsA® for somer-neighbourhood covel’ of a o-structureA if any
only if Ag |= 7, for all oz-structuresd and alla € V(Ag) we thus have

ARF7—>( <—>(6)\/ES (7 A Ora )) (7.11)
n

For every subset C I x T, let

as@) =7 — (p@) <= \/ (A Oa(@)).
(n,0)esS

By (Z.11), the formulaxs, () is valid. Note that so far we thought efs(x) as an FO-formula, but we
can directly translate every PGformula into an equivalent FO-formula by substituting agpiate distance
formulas for the distance atoms. This changes the rank,thhtsapoint we no longer care about the rank.
Thus we viewag(x) as an FQug|-formula.

The set of all valid FQr z]-formulas is recursively enumerable. We start an enunaeratigorithm and
wait for the first formulacs () it produces. This will happen eventually, because we kn@vdi, () is
valid. The setS C I x T of the first formulaas(x) returned by enumeration algorithm is not necessarily
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the same as the sét, we started with. However, by retracing our constructionkiaads, it is easy to see
that S satisfies[(7.8), that is, for ali-structuresA, all r-neighbourhood cover® of A, and alla € V(A),

AR gla) <= A« gl \/ (TA0(0).
(n,0)es
We define@(z) =V, ges (71 A f(z)). As argued above, this formula satisfies the conditions ef th
theorem, and by construction it is computable fro(x).
Note that if, given a formula, we first compute an equivalent normalised formgleand then apply
the procedure above tg, then we can compute an upper bound for the running time. O

8 The Main Algorithm

We are now ready to prove our main result, Thedrerh 1.1. Weabgtorove a slightly more general theorem.
A coloured-graph vocabulargonsists of the binary relation symbaél and possibly finitely many unary
relation symbols. In particular, i is a coloured-graph vocabulary thenx ¢ (as defined in Sectidn 7.4)
is a coloured graph vocabulary. #-coloured graphis a o-structure whosd E'}-restriction is a simple
undirected grapE.We call the{ E'}-restriction of as-colored graph thenderlying graphof G.

Theorem 8.1 For every nowhere dense claGseverye > 0, every coloured graph vocabulasy, and every
first-order formulap(x) € FO[o], there is an algorithm that, given@coloured graph whose underlying
graph is inC, computes the set of allc V(G) such thatG |= ¢(v) in time O(n!*¢).

Furthermore, ifC is effectively nowhere dense, then there is a computabt@ifumf and an algorithm
that, givens > 0, a formulay(z) € FO[g] for some coloured-graph vocabulary, and aco-coloured
graph G, computes the set of alle V(G) such thatG' = ¢(v) in time f(|¢|, €) - ntte.

Clearly, this implies Theorem 1.1.
We need one more lemma for the proof. It describes a standdicttion that allows us to remove a
bounded number of elements from a structure in which we vaetaluate a formula.

Lemma 8.2 Leto be a coloured-graph vocabulary aikd/¢, m, ¢ € Nwith 0 < £ < q. Then there are
1. a coloured-graph vocabulary’ O o,

2. foreveryFO*[o]-formulap(xy, ..., 2k, Y1, - - ., ym) Of g-rank? and every atomig-typed € T'(c, m, q,0)
anFO™ [o'] formulay? (1, ..., z;) of g-rank at most,

3. for everyo-coloured graphG and all wy, . . ., wy, € V(G) ao’-expansionG’ of G \ {ws, ..., wn},

such that ifatp, (G, w1, ..., wy) = O thenforallvy, ..., vp € V(G) \ {w1, ..., wp}

GEo,...,vpw,. .., 0n) <= G E(v,...,0).

Furthermore»? is computable fronp andé, andG’ is computable frond’ andwy, . . . , wy, intime f (¢, m, q)-
(V&) + [E(G))).

Proof. We use a game theoretic argument similar to (but simpler)tti@n proof of the rank preserving
locality theorem.

3To see that this is consistent with the definition of colougeabhs in Sectiohl5, we may define tt@lour of a vertexv in a
o-coloured grapl@ to be the set of all unary relation symbdfse o such thaw € P(G).
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Forl <i < f,(¢) andl < j < m, we letQ;; be a fresh unary relation symbol, and wedéte the
union of o with all theseQ;;. For everyo-coloured graphG and allwy, ..., w, € V(G) we letG’ be
the o’-expansion of7 \ {w, ..., wy,} with

Qi (G ={v e V(G)\ {wr, ..., wn} | dist?(v,w;) = i}

Clearly, G’ can be computed fror¥ in time f(¢,m, q) - (|[V(G)| + |E(G)

), for some functionf.

Clam2. Let G1,Gs be o-coloured graphs and vi1,...,v1%, Wi, ..., Wim €
V(G1), 021, ..., Vg, W, . .. ,Wam € V(Gy) such that

atp, (Gr,wit, ..., wim) = atp) (Ga, wa1, . . ., wap)
and
G, (v, - .-, v1k) E?(_Lg) G, (va1, ..., V2k).
Then
G17 (Ullv ceey U1k, W1l - - - 7w1m) E;:g G27 (U217 ey U2k, W21, - - - ,UJQm).

Proof.ltis easy to see that Duplicator has a winning strategy iefﬂtmundEF;-game onG, (V11 .-, U1k,
WL, - - Wim), G2, (V21, . . ., Vo, Wa1, . . ., o)) She simply plays according to a winning strategy for the
¢-round EF,S-game oG, (v11, - - ., v1x), G, (v21, - . - ,v21) ), and whenever Spoiler selectsug she an-
swers by selecting(_);- -

The claim implies that there isa s§} o C T'(¢o’, k, ¢, £) such that

GEop,... vpw,. .. wy) <= G E \/ /\ vy, ..., k).

NESe,0 Y(x1,....x1)EN

It remains to prove that we can compute such a%ej from ¢ andfd. We use an argument based on
the recursive enumerability of the valid first-order sen&nsimilar to the one in the proof of the Rank
Preserving Locality Theorem. O

Proof of Theorerh 8]1.Let C be a nowhere dense class of graphs and0. Without loss of generality we
may assume that < 1/2, which impliess? < £/2, and that is closed under taking subgraphs.

The input to our algorithm is aa < 1/2, ao-coloured graphG whose{E}-restriction is inC and
an FO" [g]-formula (), for some coloured-graph vocabulary Our algorithm will compute the set of
all v € V(G) such thalG' |= ¢(v) in time O(n!*¢).

We start by fixing a few parameters. We chogssuch that thej-rank of ¢ is at mostg and letr =
f(q). By the Rank-Preserving Locality Theorem, we can find arf pG“+! ¢]-formula@(x), which is a
Boolean combination dfg+ 1, r)-independence sentences and atomic formulas, such traksecoloured
graphs, all r-neighbourhood cover® of G, and allv € V(G) we haveG = ¢(v) <— G*gjlq E o(v).
We choose, m according to Theoreim 4.2 such that Splitter has a winniredesiy for thg¢, m, 2r)-splitter
game on every graph id. Note thatq,r, ¢, m and ¢ only depend onp and the clasg, but not one
or the input graphZ. Now e« comes into play. Let = ¢/(2¢). Chooseny = ng(d,r) according to
Theoren 6.2 such that every graph e C of ordern > ng has anr-neighbourhood cover of radius at
most2r and maximum degree at mast. Choosen; > ng such thal‘n‘;/2 > 2 and that every grapty € C
of ordern > n; has at mosi:! 9 edges. The existence of such anfollows from Lemmd3.8. All the
parameters and the formufgz) can be computed from, ¢ and the nowhere-density parameterg af C
is effectively nowhere dense.
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Now consider ther-coloured input grapld. If n = |[V(G)| < n1, we compute the set of all € V(G)
such thatG = ¢(v) by brute force; in this case the running time can be boundedrins ofp, ¢, andC.
So let us assume that> n;. We compute am-neighbourhood covet’ of GG of radius2r and maximum
degreen’. The main task of our algorithm will be to compufé*gjl q. Before we describe how to do
this, let us assume that we have compuﬁ’edggrl ¢ and describe how the algorithm proceeds from there.
The next step is to evaluate &fl, r)-independence sentences in the Boolean combinatienin G *‘},jl q.

Consider such a sentence

1/1:3361---3%( /\ dist(z;, zj) > 2r A /\ X(%))

1<i<j<q 1<i<q

Remember thay(z;) is an atomic formula. Thus we can easily compute thé/setall v € V(G) such that
G *gjl q = x(v). Then we can use the algorithm of Theorlen 5.1 to decidehsk elements of pairwise
distance greater thalr. This is the case if and only *‘},jl q = 1. This way, we decide whicly, r)-
independence sentencesyifr) are satisfied it *‘},jl q. It remains to evaluate the atomic formulaszfx)
and combine the results to evaluate the Boolean combindBioth tasks are easy.

Let us now turn to computing- *‘},(“ q. We inductively compute? +4, g for 0 < i < ¢ + 1. The
base step = 0 is trivial, becauseZ x5, ¢ = G. As eachG %%, ¢ is ac’ coloured graph for some’ (to
be preciseg’ = o «' q), it suffices to show how to computé «» ¢ from G. To do this, for each formula
(z) € (0, 1,q,9) we need to compute the sBt(G xx ¢) of all v € V(G) such thatG [ X (v)] = £(v).
Let us fix a formulaé(z) € &1 (0,1, q,q).

For everyX € X, letvy € X be a “centre” ofG[X], that is, a vertex withY C Ny, (vx). Such
avy exists because the radius GfX] is at mos2r. Let Wx C N§ be Splitter's response if Connector
chooses x in the first round of thé/, m, 2r)-splitter game org=. Without loss of generality we assume that
Wx # 0. Letwy,...,w,, be an enumeration d¥’x. We apply Lemma8]2 with = 1, / = ¢, andm, q
to the formulaso(z1,y1 ..., ym) = &(z1) and&;(z1,y1...,ym) = &(y;) for j = 1,...,m. Leto’ be
the vocabulary obtained by Lemrmal8.2 (1), anddst be the graph obtained frod andwy, ..., w,, by
Lemmal8.2 (3). (Neithes’ nor Gx depend on the formula.) For < j < m, let{;(x1) be the formula
obtained from¢; by Lemmd38.R (2). We recursively evaluate the formugs. ., £} in Gx. This gives us
the seEx of all v € V(G) such thatG [ X ] [= £(v). Doing this for allX € X, we can compute the set

Pe(Grxq) = {v e V(G) |GX)] @)} = | (Ean{ve V()| X() = X}).
Xex

The crucial observation to ensure that the algorithm teaemis that in a recursive call with inp@ty, 53- the
parameterg and hence: = f,(¢) can be left unchanged. Moreover, it follows from the defimitdf G x
that Splitter has a winning strategy for té— 1, m, 2r)-splitter game orGx. Thus we can reduce the
parametef by 1. Once we have reachéd= 0, the graph x will be empty, and the algorithm terminates.

There is one more issue we need to attend to, and that is hovomypute Splitter's winning strategy,
that is, the set¥l’y. We use Remark 4.3. This means that to complte in some recursive call, we need
the whole history of the game (in a sense, the whole call stdckaddition, we need a breadth-first search
tree in all graphs that appeared in the game before. It is oblgm to compute a breadth-first search tree
once when we first need it and then store it with the graphathiig increases the running time by a constant
factor.

This completes the description of the algorithm.

Let us analyse the running time. The crucial parametersharertem of the input graph and the levgl
of the recursion. As argued above, we have ¢. We write the running time as a functidh of j; andn.
We first observe that the time used by the algorithm withoetréitursive calls can be bounded dy.!+9
for a suitable constant; depending on the input sentengethe parametes, and the clasg, but not onn

27



or j. Furthermore, fom < n; the running time can be bounded by a constarthat again only depends
on y, e, andC, and forj = 0 the running time can be bounded by Furthermore, there is@ such that
for eachX € X at mostcy recursive calls are made to the gra@lk. Letny = |[V(Gx)| < |X| and
¢ = max{cy, c2, c3, c4 }. We obtain the following recurrence f@r.

T0,n) <c,
T(j,n) <c foralln < ny,
T(j,n) < Y cT(j —1,nx) +cn'? forallj > 1,n > n

XeXx

We claim that for all» > 1 and0 < j < £ we have
T(j,n) < Inlt20 = fplte, (8.1)

As c and/ are bounded in terms of, ¢, C, this proves the theorem.
(8.3) can be proved by a straightforward induction. Theiatuabservation is

anz Z HX € X |ve X} <nnd=n'To (8.2)
Xex veV(G)

The base steps= 0 andn < n; are trivial. In the inductive step, we have

T(j,n) < Y T(j —1,nx) +en't

Xex
<Y I RO o149 (Induction Hypothesis)
Xex
. 1+2(j—1)6
§c7( Z nX> vy +entto
Xex
< IpH)I+20G-1)9) 4 opl+d (by (8.2))
< Cj(n1+(2j—1)5+2(j—1)52 +nl+5)
(14256 L 14(3/2)8 2
<d (n ;;72 ) (because2(j — 1)6% < ;7 <4§/2)
< In%o (becauser’’? > 2).

9 Conclusion

We prove that deciding first-order properties is fixed-patantractable on nowhere dense graph classes.
This generalises a long list of previous algorithmic metotems for first-order logic. Furthermore, it is
optimal on classes of graphs closed under taking subgréiglesnains open to find an optimal meta theorem
for first-order properties on classes that are not closeéruiafting subgraphs, but only satisfy some weaker
closure condition like being closed under taking inducdasaphs.

Our theorem underlines that nowhere dense graph classes/agvfavourable algorithmic properties.
As opposed to Robertson and Seymour’s structure theoryriyimdemost algorithms on graph classes with
excluded minors, the graph theory behind our algorithms ¢ cause enormous hidden constants in the
running time.
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A particularly interesting property of nowhere dense @asand classes of bounded expansion that
we uncover here for the first time is that they have simplesspaeighbourhood covers with very good
parameters. We have focussed on the radius of the coverimgrse have not tried to optimise the degree of
the cover, that is, the number of covering sets a vertex maypbtined in. As the graph theory underlying
our result is not very complicated, we believe that it is juesto obtain good degree bounds as well,
probably much better than those obtained through graphmtieory [1,[3] (even though the classes we
consider are much larger). However, this remains futurekwor
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