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Abstract

LetACC◦THR be the class of constant-depth circuits comprised of AND, OR, and MODmgates (for
some constantm> 1), with a bottom layer of gates computing arbitrary linear threshold functions. This
class of circuits can be seen as a “midpoint” betweenACC (where we know nontrivial lower bounds)
and depth-two linear threshold circuits (where nontriviallower bounds remain open).

We give an algorithm for evaluating an arbitrary symmetric function of 2n
o(1)

ACC◦THR circuits of

size 2n
o(1)

, on all possible inputs, in 2n ·poly(n) time. Several consequences are derived:

• The number of satisfying assignments to anACC ◦THR circuit of subexponential size can be
computed in 2n−nε

time (whereε > 0 depends on the depth and modulus of the circuit).

• NEXP does not have quasi-polynomial sizeACC◦THR circuits, andNEXP does not have quasi-
polynomial sizeACC◦SYM circuits. Nontrivial size lower bounds were not known even forAND◦
OR◦THR circuits.

• Every 0-1 integer linear program withn Boolean variables ands linear constraints is solvable in
2n−Ω(n/((logM)(logs)5)) ·poly(s,n,M) time with high probability, whereM upper bounds the bit com-
plexity of the coefficients. (For example, 0-1 integer programs with weights in[−2poly(n),2poly(n)]

and poly(n) constraints can be solved in 2n−Ω(n/ log6 n) time.) Impagliazzo, Paturi, and Schnei-
der [IPS13] recently gave an algorithm for̃O(n) constraints; ours is the first asymptotic improve-
ment over exhaustive search for for up to subexponentially many constraints.

We also present an algorithm for evaluating depth-two linear threshold circuits (a.k.a.,THR◦THR)
with exponential weights and 2n/24 size on all 2n input assignments, running in 2n ·poly(n) time. This is
evidence that non-uniform lower bounds forTHR◦THR are within reach.
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Fellowship, and NSF CCF-1212372. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
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1 Introduction

Recall that in the non-uniform Boolean circuit model, one designs an infinite family of logical circuits
{Cn}, one for each input lengthn, in order to recognize a given binary languageL ⊆ {0,1}⋆. This model is
notoriously powerful, even when the size ofCn is bounded from above by a fixed polynomial inn, defining
the complexity classP/poly. With polynomial size circuits, one can already “compute” some undecidable
languages, such asL′ = {1n | thenth Turing machine halts on blank tape}. Nevertheless, it is strongly be-
lieved thatNP 6⊂ P/poly, meaning that for even modestly-sized instances ofNP-complete problems, the
sizes ofcomputationson such instances must be inevitably gigantic. However, knowledge ofP/poly is
rather poor, due to the “infinite” nature of the model: it is open if the huge complexity classnondeterminis-
tic exponential time(NEXP) is contained inP/poly. This containment would imply that problems verifiable
with exponentially-long witnesses could be efficiently “solved” with small circuits. It looks obviously ab-
surd; how can we rule it out?

In recent years, it has been demonstrated that the existenceof nontrivial circuit-analysis algorithms is
closely linked to theNEXP versusP/poly problem. For instance, Impagliazzo, Kabanets, and Wigder-
son [IKW02] showed thatNEXP 6⊂ P/poly follows, if there is a 2n

o(1)
time algorithm that can approx-

imate a given circuit’s acceptance probability to within 1/10. They also proved a partial converse, in
thatNEXP 6⊂ P/poly implies a certain kind of derandomization. Subsequentwork [Wil10] strengthened
the algorithms-to-lower bounds implication, proving thata similar algorithm which (for everyk) runs in
2n−ω(logn) time on alln-input nk-size circuits still impliesNEXP 6⊂ P/poly. A variant of this implication
(for circuit satisfiability algorithms) was combined with an satisfiability algorithm for a restricted circuit
class calledACC, implying thatNEXP does not have polynomial-sizeACC circuits [Wil11b]. Recently, it
was shown thatNEXP 6⊂ P/poly is equivalent to establishing a “weak” form of natural proofs [Wil13b],
building on Impagliazzo et al.1

To continue progress on circuit lower bounds forNEXP, it is imperative to understand algorithms for
analyzing circuits, such as algorithms for circuit satisfiability, evaluating a circuit on all 2n inputs, and
approximating the acceptance probability of a circuit.2 In this paper, we make this sort of algorithmic
progress for circuits with arbitrarylinear thresholdgates: such a gate outputs 1 if and only if a cer-
tain linear inequality∑i wixi ≥ t is true, wherewi, t ∈ Z are weightsand xi ∈ {0,1} are inputs to the
gate. Linear threshold functions have been studied for decades, coinciding with research on neural net-
works [MP69, Mur71]. Low-depth linear threshold circuits are powerful: many basic functions in arith-
metic, algebra, and cryptography are known to be implementable with onlyconstant-depthlinear threshold
circuits [RT92, SBKH93, SP94, MT99, NR04]. In terms of lower bounds for such circuits, very weak ques-
tions remain major open problems: for example, is all ofNEXP solvable with polynomial-size depth-two
linear threshold circuits with exponential-size weights?3 Depth-two circuits correspond tomultilayer per-
ceptronswith only one hidden layer. Despite considerable study in neural networks and deep learning, we
still lack understanding of the power of depth-two.

In this paper, we report some new progress on understanding the power of linear threshold gates.

1In particular,NEXP 6⊂ P/poly if and only if there is a “constructive” property of Boolean functions that is “useful” against
P/poly. The natural proofs barrier [RR97] states that if such a property is also “large” (true of a large fraction of functions) then
strong cryptographic pseudorandom generators do not exist. Hence, assuming strong crypto,NEXP lower bounds must somehow
confront the framework of natural proofs but sidestep the “large” condition.

2Recent surveys on these issues include [Wil11a, San12, Coh13, Oli13].
3Note that for thresholds with polynomially-bounded weights, depth-two lower bounds are known; however depth-three lower

bounds are still open. The survey of Razborov [Raz92] is still relatively current on these points.
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Algorithms and lower bounds for ACC with threshold gates LetACC◦THR denote the class of circuits
consisting of AND, OR, MODm gates for some constantm,4 and linear threshold gates, with unbounded
fan-in and constant depth, such that the inputs of all linearthreshold gates connect directly to the circuit’s
input variables. LetSYM◦ACC ◦THR be the class of circuits where the output gate computes an arbitrary
symmetric function, and its inputs connect to the outputs ofACC◦THR circuits. We show that such circuits
can very efficiently evaluated on all 2n inputs, even if they are of 2n

o(1)
size.

Theorem 1.1 Given aSYM◦ACC◦THR circuit with n inputs and2no(1)
size, we can produce its outputs on

all 2n inputs in2n ·poly(n) time.

More generally, such a circuit of size s can be evaluated on all inputs in2n ·poly(logs,n)+2O(logs)c
time,

for some c≥ 1 depending on the depth of the circuit and the modulus m of its MODm gates.

The proof of Theorem1.1 also carries through forSYM ◦ACC ◦ SYM, where the bottom layer gates
compute arbitrary symmetric functions (i.e., functions which only depend on the number of true inputs)
of 2no(1)

wires. This algorithm can be used tocount the number of satisfying assignments toACC ◦THR
circuits.

Theorem 1.2 For every integer m> 1 and d> 0, there is anε > 0 such that counting satisfying assignments
toACC◦THR circuits of size2nε

, depth d, and MODm gates can be done in2n−nε
time.

By modifying prior arguments [Wil11b], we can conclude lower bounds for such circuits. The new
argument shows that the ability to count SAT assignments entails non-uniform lower bounds for circuit
classes with very weak closure properties.

Theorem 1.3 NEXP does not have non-uniformACC◦THR circuits of quasi-polynomial size.

As Theorem1.1also holds forSYM◦ACC◦SYM, it follows thatNEXP doesn’t haveACC◦SYM circuits
of quasi-polynomial size. as well

Twenty years ago, Maciel and Therien [MT93] considered lower bounds forAC0 ◦MAJ circuits (which
ACC◦THR subsumes), but nontrivial lower bounds have not been reported. Regan [Reg97] studiedMOD2◦
AND ◦THR circuits and also noted the absence of lower bounds. Lower bounds have been open even for
the much weaker classAND◦OR◦MAJ [HP13].

Theorem1.3moves a little closer to an “unconditional break” of the natural proofs barrier [RR97]. That
is, it seems plausible that pseudorandom functions can be implemented withACC◦THR circuits, in which
case any lower bounds proved against such circuits must be non-naturalizing.5 Plaku [Pla02] observed that
the Naor-Reingold family of pseudorandom functions [NR04] can be implemented with quasi-polynomial
sizeOR◦THR◦AND circuits; it follows that the natural proofs barrier already applies to this circuit class.
It is an interesting open problem ifACC◦THR can efficiently simulate such depth-three circuits.

Building on Theorem1.1, we also give a new method for solving 0-1 integer linear programs. In
FOCS’13, Impagliazzo, Paturi, and Schneider [IPS13] showed that for eachc > 1, there is aδ < 1 such
that 0-1 integer LPs withcnconstraints can be solved in 2δn time. We provide an improvement over exhaus-
tive search for up to subexponentially many constraints:

Theorem 1.4 Every 0-1 integer linear program with n variables and s constraints can be solved in time
2n−Ω(n/((logM)(logs)5)) ·poly(s,n,M) with high probability, where M≤ 2o(n) upper bounds the bit complexity
of the coefficients in the program.

4A MODm gate outputs 1 if and only if the sum of its input bits is divisible bym.
5It is not completely settled whether the proof thatNEXP 6⊂ ACC is “truly” non-naturalizing; it could be that the natural proofs

barrier is irrelevant to the problem. (If pseudorandom functions cannot be implemented inACC, then natural proofs considerations
don’t apply toACC anyway; if such functions can be implemented inACC, then theNEXP lower bound is indeed non-naturalizing.)
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Notice that the theorem allows for enormous coefficients, ofsize up to 22
o(n)

. The time bound compares
favorably with theAC0 circuit satisfiability bounds of Impagliazzo, Matthews, and Paturi [IMP12]: there,
the authors use random restriction methods to solve satisfiability of AC0 circuits with depthd and sizes in
2n−n/(logs)O(d)

randomized time with zero error. Our algorithm shows that, using probabilistic polynomials
and fast rectangular matrix multiplication, one can obtainsimilar running times for SAT ofAC0[2] circuits
with a layer of symmetric gates at the bottom.

Depth-two linear threshold circuit evaluation. We take an important step towards depth-two linear
threshold circuit (a.k.a.THR ◦THR) lower bounds for the case of exponential weights, by givingan ef-
ficient algorithm for evaluating such circuits on all possible assignments.

Theorem 1.5 Let k> 1. Given a depth-two2n/24-size linear threshold circuit C with integer weights in
[−2nk

,−2nk
], we can evaluate C on all2n input assignments in2n ·poly(nk) time.

Theorem1.5 follows from a more general result showing that any sufficiently large “combinatorial rect-
angle” of inputs can be evaluated in poly(n) amortized time per input. Noting that a similar statement for
evaluating ACC circuits forms the heart of the proof ofNEXP 6⊂ ACC [Wil11b], Theorem1.5suggests that
large complexity classes (such asNEXP) cannot have small depth-two linear threshold circuits. However,
we do not yet know how to turn Theorem1.5into depth-two linear threshold lower bounds.6

1.1 Prior work

Considerable effort has been expended in proving lower bounds against circuits with linear threshold
gates. Here we will provide some major highlights, in addition to the work already mentioned.

It will help to introduce a little (standard) notation. Define MAJ, AND, OR, THR, andSYM to be
the class of one-gate circuits corresponding to MAJORITY, AND, OR, linear threshold, and symmetric
functions, respectively, with “free” NOT gates that can appear after the output or on the input wires to the
gate. (Recall that a symmetric Boolean function’s output only depends on the number of true inputs.) For
classes of circuitsC andD , defineC ◦D to be the class of circuits formed by taking a circuitC ∈ C , and
feeding the outputs of circuits fromD as inputs toC. That is,C ◦D is simply the composition of circuits
from C andD , with the circuits fromD receiving the input and the circuit fromC giving the output. We
will equivocate thesizeof a circuit with the number of wires, i.e., the number of directed arcs in the DAG
defining the circuit. This is an important measure for circuits with symmetric gates, as the number of wires
governs the size of the symmetric function representation.

Much work on depth-two threshold lower bounds has concentrated on lower bounds for inner product
modulo 2, i.e., IP2(x1, . . . ,xn,y1, . . . ,yn) = ∑i xi · yi mod 2. Note that IP2 is easy forACC (being a MOD2
of AND gates). In groundbreaking work, Hajnal et al. [HMP+93] proved that everyMAJ ◦MAJ circuit
requires 2Ω(n) gates to compute IP2. They also showedMAJ◦SYM circuits can be efficiently simulated by
MAJ ◦MAJ circuits, so smallMAJ ◦SYM circuits also cannot compute IP2. Nisan [Nis94] extended the
lower bound toMAJ◦THR circuits, and Forster et al. [FKL+01] extended the lower bound toTHR◦MAJ

circuits. More recently, Sherstov [She09] showed thatAC0 requires exponential-sizeMAJ ◦MAJ circuits,
Razborov and Sherstov [RS10] proved that depth-threeAC0 requires exponential-sizeMAJ◦THR circuits,
and Beame and Huynh [BH12] showed thatAC0 requiresnΩ(logn)-sizeMAJ◦SYM◦AND circuits.

Although superpolynomial-size lower bounds againstMAJ ◦AC0, THR ◦AC0, MAJ ◦MAJ ◦AND and
evenMAJ◦MAJ ◦AC0 circuits are known [ABFR94, Gol97, RW93, HM04], and many lower bounds are

6The current theorems connecting circuit evaluation algorithms to circuit lower bounds require that, from the OR of a collection
of circuits, we can generate an equivalent circuit in the same class. We do not know how to convert a large OR ofTHR ◦THR
circuits into an equivalentTHR ◦THR circuit, even assumingNEXP has smallTHR ◦THR circuits. (In the case of ACC, this is
trivial, because an OR of ACC circuits is still an ACC circuit.)
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known forAC0 circuits augmented with a small number of threshold gates [Bei94, BS94, CH05, Vio06,
Han07, GS10, LS11, Pod12], lower bounds forAC0 ◦MAJ circuits have remained open. Maciel and The-
rien [MT93] conjectured that the majority-of-majority function is not in AC0◦MAJ.

Recently, Hansen and Podolskii [HP13] have shown an intriguing reduction: superpolynomial-sizeTHR◦
THR lower bounds for a functionf would follow from superlogarithmic lower bounds on the 3-party NOF
unbounded-error communication complexity off .

1.2 Comparison and Intuition

It is instructive to discuss how this paper’s approach relates to prior work on depth-two threshold lower
bounds. A certain popular approach [FKL+01, Lok08, She09, RS10] applies ingredients from Fourier anal-
ysis of Boolean functions, linear algebra, communication complexity, discrepancy theory,etc. In particular,
these works follow the general scheme:

1. Define some notion of “relaxed rank” of a 2n/2×2n/2 Boolean matrixC. Intuitively, if C has “relaxed
rank” r, then there are 2n/2× r andr ×2n/2 matricesA andB such that the entries ofA ·B correspond
to the entries ofC in a direct way.

2. Show that every functionf : ({0,1}n/2×{0,1}n/2)→{0,1} computable with a “small”C circuit has
“small relaxed rank” when construed as an 2n/2×2n/2 Boolean matrix.

3. Show that some explicit family of functionsgn : ({0,1}n/2 ×{0,1}n/2)→{0,1}, construed as 2n/2×
2n/2 Boolean matrices, requires “high relaxed rank” asymptotically.

Together, these steps prove that the familyg := {gn} cannot have “small”C circuits.

To proveACC ◦THR circuit lower bounds, we define a generalized rank notion we call the symmetric
rank, informally measuring how efficiently a 0-1 matrixM can be decomposed into a sum of rank-one
matrices such that, after applying a fixed symmetric function to each entry of the sum, we obtain the matrix
M. Combining several elements from previous work, we show that for a Boolean matrix representing the
truth table of aSYM◦ACC ◦THR circuit of sizes, its symmetric rank isO(2logc s) for some constantc≥ 1,
depending on the depthd and modulusm of the MODm gates in the circuit. Moreover, given such a circuit
we can efficiently compute a low-rank decomposition.

However, we do not know how to use existing methods to prove that an explicit functiong has high
symmetric rank. Instead, we take a morecomputationalapproach that still exploits the low symmetric rank
property. The idea is that, if we can efficiently compute a low-rank decomposition from a given circuit, then
the circuit’s truth table can be obtained faster than evaluating the circuit on all its inputs one-by-one. This
in turn suggests that these circuits possess considerable structure that make them unsuitable for simulating
very complex functions, such as those inNEXP.

Suppose we are given anSYM◦ACC◦THR circuitC of sizeswith n inputs. LetM be a 2n/2×2n/2 matrix
defining the function computed byC. First we show how given any suchC we can compute 2n/2×2logc s and
2logc s×2n/2 matricesA andB (and a symmetric functionf ) giving a symmetric rank decomposition ofM, in
2n/2 ·2O(logc s) time. By multiplyingA andB and applyingf to each entry of the output matrix, we can obtain
M. Whens is sufficiently small, a rectangular matrix multiplicationof Coppersmith [Cop82] can be applied
to compute the product ofA andB, and the final matrixM is obtained in poly(n) time per entry. Hence,
given anSYM◦ACC◦THR circuit C of size 2n

o(1)
, we can evaluateC on all its 2n inputs in only 2n ·poly(n)

time. This fast evaluation algorithm is combined with priorwork [Wil10, Wil11b] along with some new
tricks to exhibit ag := {gn} ∈ NEXP which does not have quasipolynomial-sizeACC◦THR circuits.

Our evaluation algorithm for depth-two threshold circuits(Theorem1.5) also uses Coppersmith’s rectan-
gular matrix multiplication as a subroutine, but the rest ofthe algorithm is rather different from the evaluation
algorithm forSYM◦ACC◦THR. We reduce the problem of efficiently evaluating a depth-twothreshold cir-
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cuit on many inputs to a special type of matrix multiplication. Namely, for two matricesA andB over the
integers, we compute a “weighted” matrix product

C[i, j] = ∑
k

wk ·LEQ(A[i,k],B[k, j]),

where LEQ(x,y) is a Boolean-valued function equal to 1 if and only ifx≤ y, and thewk’s are arbitrary integer
weights given as parameters to the problem. We show how Coppersmith’s algorithm can be combined with
a mild brute force search to efficiently compute a rectangular matrix product of the above form.

2 Algorithms and lower bounds for ACC with a layer of threshold gates

The main theorem of this section is:

Reminder of Theorem1.1 Given aSYM◦ACC◦THR circuit with n inputs and2no(1)
size, we can produce

its outputs on all2n inputs in2n ·poly(n) time.

More generally, such a circuit of size s can be evaluated on all inputs in2n ·poly(logs,n)+2O(logs)c
time,

for some c≥ 1 depending on the depth of the circuit and the modulus m of its MODm gates.

Depth reduction. The first stage of the proof is to convert an arbitrarySYM◦ACC◦THR circuitC of size
s into a depth-two circuitC′′ of symmetric gates, i.e., aSYM◦SYM circuit. The size of the depth-two circuit
will be O(2logc s) for a constantc≥ 1, depending on the (constant) depth and (constant) modulusof circuit
C. This stage requires several different pieces from prior work.

Lemma 2.1 There is an algorithm which given anSYM◦ACC ◦THR circuit C of size s≥ n, depth d, and
MODm gates, outputs an equivalentSYM ◦ SYM circuit C′′ with at most2(logs)c

wires, and runs in time
O(2(logs)c

), for c≥ 1 depending only on d and m.

The following paragraphs give the proof of Lemma2.1. LetC be aSYM◦ACC◦THR circuit with inputs
x1, . . . ,xn, sizes, depthd, and MODm gates, for constantsd > 2 andm> 1. In the proof, several constants
arise; we will denote all of them by the same constantb which is assumed to be the maximum of these
quantities.

The first step in Lemma2.1is to translate theTHR layer ofC into aSYM layer, by absorbing some of its
complexity into theACC part. Without loss of generality, we can assume that the weights of all threshold
gates inC have absolute value at most 2bnlog2 n [MTT61, Mur71]. (EveryTHR function is equivalent to one
with weights of bit-complexity at mostbnlog2 n.)7

Maciel and Therien [MT98] provided several fairly tight low-deph circuits for various tasks. We need:

Theorem 2.1 ([MT98], Theorem 3.3) Addition of n distinct n-bit numbers can be performed with polynomial-
sizeAND◦OR◦SYM circuits. Furthermore, the circuits can be constructed in polynomial time.

We can therefore replace everyTHR gate ofC with anAC0 ◦MAJ circuit, as follows. Fix a threshold
gate ofC, with weightswi1, . . . ,wit for t ≤ n, computing∑t−1

j=1wi j xi j ≥ wit for somei j ∈ {1, . . . ,n}. Note

|wi j | ≤ 2bnlog2 n for j = 1, . . . , t. SetW = bnlog2 n.

Let D be a circuit for the addition oft −1W-bit numbers, provided by Theorem2.1. For j = 1, . . . , t −1,
we connect to thejth W-bit input of D a circuit which, givenxi j , feedswi j to D if the input bitxi j = 1, and
the all-zeroW-bit string if xi j = 0. Note this extra circuit actually contains no gates: it simply has a wire
from xi j to all bits of thejthW-bit input where the corresponding bit ofwi j equals 1. Letting this new circuit

7In fact, this “small-weight” representation can be efficiently obtained, by evaluating the large-weight representation at only
n+1 points, then solving a linear system inn+1 variables to determine the weights. See [MTT61], Theorem 16.
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beD′, we haveD′(x1, . . . ,xn) = ∑t−1
j=1wi j xi j . This can be compared to the valuewit with anAC0 circuit, using

the fact that the “less-than-or-equal-to” comparison of two integers can be performed inAC0 [CSV84]. We
now have anAC0 ◦SYM circuit D′′ of size poly(W, t) ≤ nb computing the given threshold gate. Applying
this construction to each threshold gate in theTHR layer ofC, we obtain anSYM◦ACC◦SYM circuit C′ of
size at mosts·nb.

The next step of Lemma2.1is to convert theSYM◦ACC part into aSYM◦AND circuit, using a reduction
of Beigel-Tarui [BT94] (with important details on constructibility filled in by Allender-Gore [AG91]).

Theorem 2.2 ([BT94, AG91]) EverySYM◦ACC circuit of size s can be simulated by aSYM◦AND circuit

of 2(logs)c′

size for some constant c′ depending only on the depth d and MODm gates of theACC part.
Moreover, theAND gates of the final circuit have only(logs)c′ fan-in, the final circuit can be constructed

from the original in2O((logs)c′) time, and the final symmetric function at the output can be computed in

2O((logs)c′ ) time.

Applying this reduction to the topSYM ◦ACC part of the circuitC′ results in an equivalentSYM ◦

AND(log(s·nb))c′ ◦ SYM circuit C′′ of sizes′ = 2O((log(s·nb))c′ ) (where the subscript on theAND denotes the

fan-in of each AND gate). For simplicity of notation, lett = (log(s·nb))c′ in the following.

Extending a trick of Beigel [Bei94] to symmetric gates, we can convert everyANDt ◦SYM subcircuit of
C′′ with nb wires into a singleSYM gate withO(nb·t) wires. LetS1(x1, . . . ,xn)∧ ·· · ∧St(x1, . . . ,xn) be one
such subcircuit, whereSi denotes theith symmetric gate. In particular, fori = 1, . . . , t, let fi : Z→{0,1} be
such thatfi(∑n

j=1ci, j x j) = Si(x1, . . . ,xn), whereci, j denotes the number of copies ofx j that feed intoSi .

Let B= 1+maxi(∑n
j=1ci, j); note thatB≤ nb. Consider the linear form

L(x1, . . . ,xn) =
t

∑
i=1

Bi−1 ·

(

n

∑
j=1

ci, j x j

)

.

For any Boolean assignment to thex j ’s, the number encoded by the linear formL(x1, . . . ,xn) is an integer
encoded inO(t · blogn) bits. By construction, the bit representation of this integer contains, for every
i = 1, . . . , t, the number of wires input toSi which are set true, as a string of(blogn) bits. Therefore, from
the linear formL(x1, . . . ,xn) we can easily infer whether allSi(x1, . . . ,xn) output 1 or not, and hence output
the value ofS1∧ ·· ·∧St .

To implement this linear form with a singleSYM gate, for all j = 1, . . . ,n we put∑t
i=1Bi−1ci, j wires from

the input variablex j into the newSYM gate. Hence there areO(nb·t) wires from the inputs into this new
SYM gate. By choosing the appropriate symmetric function (which outputs 1 if and only ifL(x1, . . . ,xn)
encodes a number such thatS1∧·· ·∧St is true) we can simulate anyANDt ◦SYM circuit of nb wires with a
singleSYM gate ofO(nb·t) wires.

Replacing eachAND◦SYM subcircuit in this manner results in aSYM◦SYM circuit of sizeO(s′ ·nb·t)≤
2O(logs)c

for some constantc≥ 1. This concludes the proof of Lemma2.1.

Symmetric rank. Next, we prove that the truth table of anySYM ◦ SYM circuit C′′ of t wires andn
inputs represents a 2n/2×2n/2 matrix of symmetric rankat most poly(t), and this rank decomposition can
be efficiently computed. For given matricesA andB over the integers, letA ·B denote their matrix product
over the integers. LetM ∈ {0,1}m×n. We define thesymmetric rank of Mto be the minimumr ∈ N such
that there are matricesA ∈ {0,1}m×r , B ∈ {0,1}r×n and a functionf : {0,1, . . . , r} → {0,1} satisfying
M[i, j] = f ((A ·B)[i, j]) for all i, j. We call the triple(A,B, f ) a symmetric rank decompositionof M. The
symmetric rank is similar to the typical notion of rank, except for the additional functionf providing a
“filter” from arbitrary integers back to{0,1}. This filter function could potentially lead to smaller rank
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decompositions than the typical notion. However, note the symmetric rank ofM is not necessarily at most
(for instance) the rank ofM overR, becauseA andB are required to have Boolean entries.

For simplicity letn be even, and letz1, . . . ,z2n/2 be the list of all 2n/2 n/2-bit strings in lexicographical
order. For a circuitC with n inputs, define thetruth table matrix MC to be the 2n/2×2n/2 matrix withMC[i, j]
equal to the output ofC(zi ,zj).

Lemma 2.2 Given aSYM◦SYM circuit C with t wires and n inputs, its truth table matrix MC has symmetric
rank O(t3), and a symmetric rank decomposition of MC can be computed from C in2n/2 ·poly(t) time.

Proof. For simplicity we assumen is even; the case of oddn will be apparent. Index the input variables of
C by x1, . . . ,xn. Let g1, . . . ,gs be an indexing of the gates ofC on the bottom layer (closest to the inputs) and
let g′ denote the output gate ofC. (Note thats≤ t.) Let f : {0,1, . . . ,s} → {0,1} be the symmetric function
of gateg′: for all a∈ {0,1, . . . ,s}, f (a) = b if and only if a true inputs makeg′ outputb.

We shall show how to efficiently construct matricesAandBwith the appropriate properties. Letz1, . . . ,z2n/2

be the list of alln/2-bit strings in lexicographical order, in the following. For every pair(a,b)∈ {0,1, . . . , t}2

such thata+ b≤ t, let Sa,b ⊆ {g1, . . . ,gs} denote the subset of gatesg j such thata+ b true inputs makes
gateg j output 1.

The matricesA andB to be constructed show that the symmetric rank ofMC is at most

r = ∑
a,b∈{0,1,...,t}:a+b≤t

|Sa,b| ≤ O(t3).

In other words, each pair(a,b) will add |Sa,b| additional components to the rows ofA and the columns ofB.

For i = 1, . . . ,2n/2, the ith row of A and ith column ofB are defined as follows. For every pair(a,b),
allocate|Sa,b| additional components for the rows ofA and columns ofB.

For j = 1, . . . , |Sa,b|, put a 1 in thejth additional component of theith row of A if and only if there area
true wires going into thejth gate ofSa,b when the input variablesx1, . . . ,xn/2 are given assignmentzi . That
is, the jth component is 1 if and only if the contribution (from the first half of variables) to the overall sum
for the jth gate isa.

Similarly, for j = 1, . . . , |Sa,b|, put a 1 in thejth additional component of theith column ofB if and only
if there areb true wires going into thejth gate ofSa,b when the input variablesxn/2+1, . . . ,xn are given
assignmentzi .

Note that each entry ofA andB can be determined in poly(t) time.

For every fixed(a,b), the product of twojth components for theith row of A and thekth column ofB is
either 0 or 1, and the product is 1 if and only if:

• the sum of true inputs into thejth gate ofSa,b from the inputs(x1, . . . ,xn/2) equalsa when the inputs
(x1, . . . ,xn/2) are assignedzi ,

• the sum of true inputs into the same gate from(xn/2+1, . . . ,xn) equalsbwhen the inputs(xn/2+1, . . . ,xn)
are assignedzk, and

• the jth gate outputs 1 when its sum of true inputs equalsa+b.

It follows that theinner productof the ith row of A and thekth column ofB equals the total numberNi,k of
true wires going into the output gate ofC on the variable assignment(x1, . . . ,xn) 7→ (zi ,zk). By definition,
f (Ni,k) equals the output ofC on that variable assignment. �

We need one more lemma to complete the proof of Theorem1.1:

Lemma 2.3 For all sufficiently large N, andα ≤ .172, multiplication of an N×Nα matrix with an Nα ×N
matrix can be done in N2 ·poly(logN) arithmetic operations, over any field with O(2poly(logN)) elements.8

8See AppendixA for an exposition of this result.
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Proof of Theorem1.1. Given aSYM◦ACC◦THR circuitC and sizes, convertC into aSYM◦SYM circuit
C′′ of 2(logs)c

size using Lemma2.1. Compute a symmetric rank decomposition ofC into 2n/2×23(logs)c
and

23(logs)c
×2n/2 0-1 matricesA andB respectively, along with a functionf : [23(logs)c

]→{0,1}. Compute the
product ofA andB in 2n ·poly(logs,n) time, using Lemma2.3. Finally, evaluate functionf on all entries of
the matrix product. This can be done by numerically sorting the entries, replacing each entryv by f (v), then
inverting the sorted order, in time 2n ·poly(logs,n)+2O(logs)c

. Fors≤ 2no(1)
, the runtime is 2n ·poly(n). �

2.1 Counting satisfying assignments to ACC of linear thresholds

The evaluation algorithm of Theorem1.1 is quite powerful, substantially extending the class of circuits
for which we can perform non-trivial circuit analysis.

Reminder of Theorem 1.2 For every m> 1 and d> 0, there is anε > 0 such that counting satisfying
assignments toACC◦THR circuits of size2nε

, depth d, and MODm gates can be done in2n−nε
time.

Proof. For all k ∈ N and for i = 1, . . . ,2k, define a Bitki function with 22k inputs as follows: for all
i = 1, . . . ,2k, Bitki outputs theith bit of the sum of its input bits. Clearly, a Bitk

i function is symmetric.

Suppose we are given anACC◦THR circuit C of sizes andn inputs, and we wish to count its satisfying
assignments. Letℓ < n/2 be a parameter to set later. For every assignmentA j ∈ {0,1}2ℓ to the last 2ℓ inputs
of C, make a copy ofC with the assignmentA j plugged into those 2ℓ inputs, calling this copyCA j . Note that
eachCA j has (the same)n−2ℓ inputsx1, . . . ,xn−2ℓ.

For everyi = 1, . . . ,2ℓ, defineBi(x1, . . . ,xn−2ℓ) := Bitℓi (CA1(x1, . . . ,xn−2ℓ), . . . ,CA22ℓ (x1, . . . ,xn−2ℓ)). Each
functionBi can be implemented ins′ = 22ℓ ·s size, as aSYM◦ACC ◦THR circuit. Applying Theorem1.1,
Bi can be evaluated on all of its 2n−2ℓ possible assignments in time

2n−2ℓ ·poly(n)+2poly(logs′) ≤ 2n−2ℓ ·poly(n)+2poly(ℓ+logs).

The above for-loop over alli produces 2ℓ ·2n−2ℓ bits: for each of the 2n−2ℓ partial assignments ton−2ℓ
variables, we learn the number (in 2ℓ bits) of partial assignments on the other 2ℓ variables which result in
satisfaction. The number of all satisfying assignments is obtained by simply summing all 2ℓ-bit numbers
obtained from the 2n−2ℓ assignments, in 2n−2ℓ ·poly(ℓ) time.

Letting ℓ= nε/2 for sufficiently smallε > 0, we have a 2n−nε
time algorithm. �

2.2 Faster 0-1 linear programming

ACC◦THR circuits are definitely powerful enough to simulate 0-1 integer linear programming; a straight-
forward application of Theorem1.2would yield a faster algorithm for the problem. However, theimprove-
ment over exhaustive search would be rather minor, and tedious to calculate. By modifying the proof of
Theorem1.1in appropriate places, we can derive a better algorithm in this case:

Reminder of Theorem 1.4 Every 0-1 integer linear program with n variables and s constraints can be
solved in time2n−Ω(n/((logM)(logs)5)) ·poly(s,n,M) with high probability, where M≤ 2o(n) upper bounds the
bit complexity of the coefficients in the program.

Proof. Consider a 0-1 linear program of the formAx≤ b, along with a cost function〈c,x〉 we wish
to maximize, whereA ∈ Z

s×n, b ∈ Z
s, andc ∈ ([−2M ,2M ]∩Z)n by assumption onM. First, reduce the

optimization problem to one of feasibility, in a standard way: include〈c,x〉 ≥ v as an additional constraint
for variousv∈ Z, and by binary searching onv, we maximize the value ofv such that thes+1 constraint
system remains feasible. Since thexi are Boolean valued, the binary search uses at mostO(M+ logn) calls
to feasibility questions.
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Next, observe the feasibility questions can be viewed as a satisfiability question for a depth-two circuit
D with an AND at the top gate, and linear threshold gates on the bottom layer, by directly translating each
constraint in the program into a linear threshold gate. By Theorem2.1 and the argument in Lemma2.1,
each threshold gate in the circuitD can be replaced with a polynomial-sizedLEQ◦AND◦OR◦SYM circuit,
whereLEQ computes onn-bit integersa andb whethera≤ b. As LEQ has anOR◦AND ◦XOR circuit of
O(n2) size forn-bit inputs (see [CSV84] for a reference), the satisfiability question for the circuit D reduces
to the SAT question for anAC0[2]◦SYM circuitC where theAC0[2] part has depth 5. Following the strategy
of Theorem1.2 (and the author’s ACC SAT algorithm [Wil11b]), the satisfiability question forC with n
inputs and size poly(s) can be efficiently converted into the problem of evaluating alargerAC0[2] ◦SYM
circuitC′, whereC′ hasn′ = n−k inputs, 2k ·poly(s,M) size,k< n/2 is a parameter, and theAC0[2] part has
depth 6. More precisely,C′ is an OR of 2k copies of the depth-5 circuitC, and each copy has its firstk inputs
assigned to a distinct string from{0,1}k. Clearly, this circuitC′ is satisfiable if and only ifC is satisfiable.

Now we wish to evaluateC′ on all 2n−k inputs, efficiently. Rather than applying Beigel-Tarui at this point,
as in Lemma2.1, we instead apply the probabilistic polynomials of Smolensky [Smo87] to convertC′ into a
SYM◦SYM circuitC′′. In particular, we use a slight modification of Smolensky’s construction, as described
by Kopparty and Srinivasan [KS12].

Theorem 2.3 ([Smo87, KS12]) For everyAC0 circuit C of depth d, size s, and n inputs, andε > 0, there is a
distribution of n-variate polynomialsDC overF2 with the following properties. Each p with nonzero support
in DC has degree at most(4logs)d−1 ·(log1/ε), a polynomial p can be sampled fromDC in nO(logs)d−1(log1/ε)

time, and for every x∈ {0,1}n, Prp∼DC[p(x) =C(x)]≥ 1− ε .

We apply Theorem2.3 as follows. Recall thatC′ is an OR of someAC0[2] ◦SYM circuitsC1, . . . ,C2k,
each with (the same)n− k inputs. Moreover, the topAC0[2] part of eachCi has depth 5, and eachCi takes
poly(s,M) inputs (coming from the outputs ofSYM gates). For everyi, we take the topAC0 part ofCi,
and invoke Theorem2.3with ε = 1/(10·2k) to samplepi ∼ DCi of degree at mostO(k(logs)4) and at most
poly(s,M)O(k·(logs)4) monomials. We replace theAC0 part ofCi with the XOR of ANDs circuitpi . Now the
circuitC′ is an OR of 2k XOR of AND of SYM circuits; call themC′′

1 , . . . ,C
′′
2k. For every inputx∈ {0,1}n−k,

the SYM gates ofC′ produce a single poly(s,M)-bit length inputy. Taking the union bound over all 2k

subcircuits, everyC′′
1 , . . . ,C

′′
2k outputs the same values asC1, . . . ,C2k on x, with probability at least 1−1/10.

Now we randomly convert the topmost OR inC′ to an XOR, with the usual Razborov-Smolensky subsum
trick: we pickr1,1, r2,1, r1,2, r2,2, . . . , r1,2k, r2,2k ∈{0,1} uniformly at random, and replaceC=OR(C′′

1 , . . . ,C
′′
2k)

with

C′′(x1, . . . ,xn−k) :=

(

2k

∑
i=1

r1,i ·C
′′
i (x1, . . . ,xn−k) mod 2

)

∨

(

2k

∑
i=1

r2,i ·C
′′
i (x1, . . . ,xn−k) mod 2

)

=
2k

∑
i=1

r1,i ·C
′′
i (x1, . . . ,xn−k)+

2k

∑
i=1

r2,i ·C
′′
i (x1, . . . ,xn−k)

+

(

2k

∑
i=1

r1,i ·C
′′
i (x1, . . . ,xn−k)

)

·

(

2k

∑
i=1

r2,i ·C
′′
i (x1, . . . ,xn−k)

)

mod 2,

which means thatC′′ equals

2k

∑
i=1

r1,i ·C
′′
i (x1, . . . ,xn−k)+

2k

∑
i=1

r2,i ·C
′′
i (x1, . . . ,xn−k)+

2k

∑
i, j=1

r1,i · r2, j ·C
′′
i (x1, . . . ,xn−k) ·C

′′
i (x1, . . . ,xn−k) mod 2.
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Now for everyx∈ {0,1}n−k,

Pr
pi∼D ,r i, j∈{0,1}

[C′′(x) 6=C′(x)]

≤ Pr
p1,...,p2k∼DCi

[∃ i,C′′
i (x) 6=Ci(x)]+ Pr

r i, j∈{0,1}
[OR(C′′

1(x), . . . ,C
′′
2k(x)) =C′(x) | ∀ i,C′′

i (x) =Ci(x)]

≤ 1/10+1/4≤ 1/3.

That is, for every inputx∈ {0,1}n−k, the probability thatC′(x) =C′′(x) will be greater than 2/3.

Since each polynomialpi has degree at mostO(k · (logs)4), the AND gates representing the monomials
of pi havet ≤ O(k · (logs)4) fan-in. Applying another part of Lemma2.1, theANDt ◦SYM subcircuits of
C′′ with poly(s,M) wires can be replaced by a singleSYM gate with poly(s,M)O(t) input wires. This results
in anXOR◦SYM circuit C′′ of poly(s,M)O(k·(logs)4) total wires; this is also aSYM◦SYM circuit.

Let ε > 0 be a parameter, and setk := max{1, εn
(logM)(logs)5}. (Note that ifk = 1, the statement of The-

orem1.4 is trivially true.) Following the proof of Theorem1.1, we can apply fast rectangular matrix mul-
tiplication to evaluateC′′ on all 2n−k inputs. For sufficiently smallε > 0, the matrix multiplication runs in
time

2n−k ·poly(O(k · (logs)4), logM,n−k)+poly(s,M)O(k·(logs)4) ≤ 2
n−Ω

(

n
(logM)(logs)5

)

·poly(s,M,n).

The output of this procedure is a 2n−k-bit string which, for everyx∈ {0,1}n−k, contains the correct output
C′(x) with probability at least 2/3.

Suppose we repeat the above randomized procedure forn2 times: that is, forn2 times, we independently
sample 2k polynomialspi for eachCi and sampler i, j ∈ {0,1}, constructingn2 different circuitsC′′

1, . . . ,C
′′
n2

from C′. Then, standard tail bound arguments show that the majorityvalue output byC′′
1(x), . . . ,C

′′
n2(x)

equalsC′(x) for everyx∈ {0,1}n−k, with high probability. If some assignmentx⋆ has majority value 1, we
conclude that the integer program isfeasible; otherwise, we outputinfeasible. �

2.3 Non-uniform ACC◦THR lower bounds

We now turn to the main application of the evaluation algorithm:

Reminder of Thm 1.3 NEXP does not have non-uniformACC◦THR circuits of quasi-polynomial size.

To set the context, let us discuss the prior connection between known circuit satisfiability algorithms and
circuit lower bounds.

Definition 2.1 LetC be a circuit class.C is said to betypical if, given any circuit D from one of the classes
C ◦C , AND◦C , OR◦C , NOT◦C , an equivalent D′ ∈ C can be produced in poly(size(D)) time.

That is,C is typical if it is efficiently closed under composition, unbounded fan-in AND, OR, and nega-
tions. Most well-studied circuit classes have this property.

From prior work, we know there are connections between the existence of good SAT algorithms for
typical circuit classes, and lower bounds against those classes:

Theorem 2.4 ([Wil11b]) LetC be typical. Suppose for every c≥ 1, there is anε > 0 and an an algorithm
for satisfiability ofC circuits running in time O(2n−nε

) on circuits with n inputs and nlogc n size. ThenNEXP
does not have quasi-polynomial sizeC circuits.

For example, the proof thatNEXP 6⊂ ACC follows from giving a faster-than-exhaustive-search ACC
satisfiability algorithm, noting thatACC is typical, and applying Theorem2.4.
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This theorem cannot be directly applied to a class such asACC ◦THR, because it is not known whether
ACC ◦THR ◦ACC ◦THR can be efficiently simulated withACC ◦THR. However, by modifying the argu-
ment of Theorem2.4 and using an algorithm forcountingSAT assignments, we can extend the theorem to
circuits with a very weak closure property.9

Definition 2.2 Let C be a circuit class. We sayC is weakly closed under ANDif, given the AND of two
circuits ofC , an equivalent circuit inC can be produced in polynomial time.

Weak closure under AND is satisfied by strictly more circuit classes than the property of being typical.
To give an example, any class of the formSYM ◦ · · · is weakly closed under AND, because an AND oft
SYM gates withswires can be collapsed into a single symmetric gate withO(st) wires (as seen in the proof
of Lemma2.1). However, classes likeSYM◦SYM arenotknown to be efficiently closed under composition
or unbounded-fan in AND/OR, hence Theorem2.4does not apply to such classes. We prove:

Theorem 2.5 Let C be weakly closed under AND. Suppose for every c≥ 1, there is anε > 0 and an
algorithm for counting the satisfying assignments ofC circuits in time O(2n−nε

) on circuits with n inputs
and nlogc n size. ThenNEXP does not have quasi-polynomial sizeC circuits.

Note that Theorem1.3 (theACC ◦THR lower bound) follows immediately from Theorem2.5 and the
counting algorithm of Theorem1.2. It is our hope that Theorem2.5may be applicable in the future to depth-
two classes, such asSYM◦SYM and depth-twoexactthreshold circuits [HP10]: an nontrivial counting SAT
algorithm for one of these classes would entail new lower bounds.

Proof of Theorem 2.5. (Sketch) Let us start withC as typical. We survey what is needed to concludeC

lower bounds in the proof of Theorem2.4, and show that the new hypothesis supplies these needs.

The idea is to show thatNEXP ⊂ C and the hypothesis implies everyL ∈ NTIME[2n] can be simulated
in nondeterministic 2n/n time, contradicting the nondeterminstic time hierarchy [Ž8́3]. In particular, the
assumptions imply that theNEXP-complete problem SUCCINCT 3SAT on circuits of AND/OR/NOT with
fan-in two, n inputs, and poly(n) size can be nondeterministically solved inO(2n−nε

) time, which is also
provably false [Wil11a]. Recall that SUCCINCT 3SAT is the problem:given an AND/OR/NOT circuit C of
fan-in two, does the truth table of C encode a satisfiable 3-CNF formula? That is, SUCCINCT 3SAT is a
“compressed” version of the 3SAT problem.

Suppose we are given an (arbitrary) circuitC of sizes and wish to determine if it is a yes-instance of
SUCCINCT 3SAT. AssumingNEXP has quasipolynomial-size circuits, it is proved that for everyC encod-
ing a satisfiable 3-CNFF, there is a quasipolynomial-size circuitD which succinctly encodes a satisfying
assignment forF: for all i, D(i) outputs the value of variablexi in the satisfying assignment. Our “fast” non-
deterministic algorithm for SUCCINCT 3SAT guesses this circuitD, and uses it to construct a circuitE with
n inputs andnlogc n size for somec, which is unsatisfiable if and only ifD encodes a satisfying assignment
to the formulaF encoded byC.

AssumingNEXP has quasipolynomial-sizeC circuits and that there is anO(2n−nε
) time algorithm for

C satisfiability, it is proved that there is a nondeterministic algorithmA running in 2n−Ω(nε ) time which,
given an AND/OR/NOT of fan-in two circuitE of sizes andn inputs, outputs an equivalentE′ of slogc s

size from the classC on at least one nondeterministic branch (and printsno on other branches). Running
this algorithmA, obtainingE′, then running theC satisfiability algorithm onE′, we nondeterministically
determine thatC is a yes-instance of SUCCINCT-3SAT in 2n−Ω(nε ) time.

Now assumeC is weakly closed under AND. The point where closure properties are relevant is precisely
in the argument that the nondeterministic algorithmA exists. In fact, if our hypothesis and the assumption

9See also [JMV13, Oli13] which consider other (stronger) closure properties.
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thatNEXP has quasipolynomial-sizeC circuits implies such an algorithm, it can be observed that the rest
of the proof carries over without modification. We now construct such an algorithmA.

The algorithmA starts by guessing aC circuit E′′ of nlogc n size which takes as input a pair(x,g) ∈
{0,1}n×{0,1}log(size(E)), and outputs 1 if and only if the gateg in E outputs 1 whenE is given the inputx.
(Such anE′′ exists, assumingP has quasi-polynomial sizeC circuits.)

Now we need to verify that for every gateg indexed by 1,2, . . . ,size(E), E′′(x,g) outputs what gateg of
E(x) outputs, on allx. Each gateg is either an input, an AND of two previous gatesg1 andg2, an OR of two
previous gatesg1 andg2, or a NOT of a previous gateg1.

To aid this verification, we show how to efficiently check for arbitrary C circuits G and H whether
G(x) =H(x) for all inputsx, using an algorithm for counting SAT assignments. Let #SAT(C) be the number
of satisfying assignments to a circuitC. Observe thatG(x) = H(x) for all x if and only if #SAT(G) =
#SAT(H) = #SAT(G∧H). (Note the third quantity can be efficiently computed, assuming C is weakly
closed under AND.) Moreover,G(x) 6=H(x) for all x if and only if #SAT(G)+#SAT(H)= 2n and #SAT(G∧
H) = 0. Therefore, by counting SAT assignments, we have algorithms checking whetherG is equivalent to
H, and whetherG is equivalent to the negation ofH, both running in timeO(2n−nε

).

We claim that the verification problem forE′′ can be reduced to a number of calls to the above kinds of
checks. First, nondeterministically guess a circuitE′′

not, intended to satisfyE′′
not(x,g) = ¬E′′(x,g) for all x

andg. Verifying this condition can be done by counting SAT assignments, as described above.

CheckingE′′ is correct on the input gates ofE means that for alli = 1, . . . ,n, E′′(x1, . . . ,xn, i) = xi .
Both E′′(x1, . . . ,xn, i) andI(x1, . . . ,xn) = xi areC circuits, hence their equivalence can be verified by #SAT
calls. Checking a NOT gateg of E with input gateg1 is equivalent to checking thatE′′

not(x,g1) = E′′(x,g)
on all x. Checking an AND gateg of two previous gatesg1 andg2 amounts to checking thatE′′(x,g) =
E′′(x,g1)∧E′′(x,g2) on all x. To do this, computeGand(x) := E′′(x,g1)∧E′′(x,g2) (assumingC is weakly
closed under AND), then checkGand(x) = E′′(x,g) for all x. Finally, for an OR gateg with inputs g1

andg2, we want to check thatE′′(x,g) = E′′(x,g1)∨E′′(x,g2) on all x. This is equivalent to¬E′′(x,g) =
((¬E′′(x,g1))∧ (¬E′′(x,g2))) for all x. This can be checked by formingGor(x) := E′′

not(x,g1)∧E′′
not(x,g2),

then checking thatGor(x) = E′′
not(x,g) for all x.

On a circuitE with s≤ nlogc n gates, the above procedure runs inO(2n−nε
· s) ≤ 2n−Ω(nε ) time. When it

concludes, we know that for all gatesg and allx thatE′′(x,g) outputs the correct value. The circuitE′(x)
output byA simply evaluatesE′′(x,g⋆), whereg⋆ is the output gate ofE. �

3 Fast evaluation of depth-two threshold circuits

Finally, we show a strong sense in which depth-two thresholdcircuits areweak, by giving a fast algorithm
for evaluating such circuit on many assignments in batch. The general theorem is:

Theorem 3.1 Given a depth-two linear threshold circuit C with2k inputs and at most n1/12 gates with
weights on the bottom layer of absolute value at most Wb, weights on the output gate of absolute value at
most Wo, and given two sets A,B⊆ {0,1}k where|A|= |B|= n, we can evaluate C on all n2 points in A×B
using n2 ·poly(logWo, logn)+n1+1/12 ·poly(logn, logWb) time.

The following is immediate from Theorem3.1:

Reminder of Theorem1.5 Let k> 1. Given a depth-two2n/24-size linear threshold circuit C with integer
weights in[−2nk

,−2nk
], we can evaluate C on all2n input assignments in2n ·poly(nk) time.

While the proof of Theorem3.1also ultimately depends on Coppersmith’s rectangular matrix multiplica-
tion, the rest of the algorithm is rather different from the evaluation algorithm of Theorem1.1.
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Proof of Theorem 3.1. We reduce the evaluation task to a special kind of matrix multiplication, then
combine Coppersmith’s matrix multiplication with a mild brute force to expedite the matrix multiply.

Define LEQ :Z×Z→{0,1} to output 1 on(a,b) if and only if a≤ b. Given a vectorw= (w1, . . . ,wd)∈
Z

d, and given two matricesM andN which aren×d andd×n, define theirw-weighted threshold product
to be(M⊛w N)[i, j] := ∑d

k=1wk ·LEQ(M[i,k],N[k, j]).

We shall show that thew-weighted threshold product of ann×n1/12 matrix and ann1/12×n matrix can
be computed in essentiallyn2 ·poly(logn) time (with some additional but negligible overhead in termsof
the weights). Let us postpone this algorithm for the moment,and first show how to embed the evaluation
problem into the weighted threshold product.

Let C be a depth-two circuit of sizes, with the 2k input variablesx1, . . . ,xk,y1, . . . ,yk. Let w1, . . . ,ws

be the weights of the top threshold gate ofC, and letℓ1, t1, . . . , ℓs, ts be the corresponding linear forms and
threshold values from the bottom layer of threshold gates: that is, the output of LEQ(ti , ℓi) is multipled by
wi in the output gate. Without loss of generality, we may assumethat all weightswi are multiplied by the
output of some threshold gate at the bottom layer (there are at mostn wires from the input directly to the
output gate, and they can be replaced byO(n) dummy gates at the bottom layer with wires to the output
gate). LetA= {A1, . . . ,An} ⊆ {0,1}k andB= {B1, . . . ,Bn} ⊆ {0,1}k.

We partition each linear formℓ j on the bottom layer into two sumsℓ(x)j andℓ(y)j , such thatℓ(x)j involves

only input variablesx1, . . . ,xk, ℓ
(y)
j involves onlyy1, . . . ,yk, andℓ(x)j + ℓ

(y)
j = ℓ j . Let Ai(ℓ

(x)
j ) andB j(ℓ

(y)
j )

denote the value of the linear formℓ(x)j (respectively,ℓ(y)j ) evaluated on assignmentAi (respectively,B j ).

Define the matrixM with rows indexed by elements ofA, and columns indexed by the bottom layer gates
1, . . . ,s. SetM[i,k] to the valuetk −Ai(ℓ

(x)
k ). The matrixN has rows indexed by the bottom layer gates

1, . . . ,s, and columns indexed by elements ofB. SetN[k, j] to the valueB j(ℓ
(y)
k ).

Now consider thew-weighted threshold productM⊛w N, wherew is the same as above. Thei, j entry of
this product equals

s

∑
k=1

wk ·LEQ
(

tk−A(ℓ(x)k ),B j(ℓ
(y)
k )
)

=
s

∑
k=1

wk ·LEQ
(

tk,Ai(ℓ
(x)
k )+B j(ℓ

(y)
k )
)

.

This is precisely the value of the linear form in the output gate ofC, whenx1, . . . ,xk are given the assignment
Ai andy1, . . . ,yk are assignedB j . The truth table ofC on A×B can be recovered by simply checking which
entries in(M⊛w N) exceed the output gate’s threshold.

Next, we shall show how to compute a weighted threshold matrix product efficiently. Letδ be a param-
eter, and letM andN be n× nδ andnδ × n matrices, respectively. The first step is to reduce the weights
significantly. For allk= 1, . . . ,nδ , let Sk be a list of all entries in thekth column ofM, plus thekth row of
N. SortSk, obtaining a ranking of 2n items, and replace each entry in thekth column ofM and thekth row
of N by their rank in the sorted listSk. This step reduces the domains ofM andN to {1, . . . ,2n}, and the
w-weighted threshold matrix product remains the same: all inequalitiesM[i,k]≤ N[k, j] are preserved. Note
this step takesn1+δ ·poly(logn, logWb) time.

In order to reduce to matrix multiplication, we perform two strategies with different advantages. (The
reduction is inspired by work of Matousek [Mat91] on computing dominances in high dimensions.) Let
s∈ {1, . . . ,n} be a parameter. Partition each sorted listSk into t = ⌈n/s⌉ contiguous bucketsT1, . . . ,Tt ,
where each bucketTi contains at mosts entries. (For alli < j, the largest entry inTi is at most the smallest
entry inTj .)

Start with ann× n output matrixP that is all zeroes. For every(i,k) ∈ [n]× [nδ ], look up the bucket
Tℓ containingM[i,k] in the sorted listSk. For all N[k, j] contained inTℓ such thatM[i,k] ≤ N[k, j], add the

13



weight wk to the entryP[i, j]. This loop adds toP all termswk ·LEQ(M[i,k],N[k, j]) such thatM[i,k] and
N[k, j] appear in the same bucket ofSk. Observe that this step takesÕ(n·nδ ·s) time.

To handle the(M[i,k],N[k, j]) pairs that do not appear in the same bucket, we use matrix multiplication.
For each(i,k) ∈ [n]× [nδ ], replace the entryM[i,k] with a row vectorvi,k ∈ {0,wk}

t , such thatvi,k[ℓ] := wk if
and only ifM[i,k] is in bucketTℓ of Sk. That is,vi,k haswk in exactly one entry, and zeroes elsewhere. This
forms a matrixM′ of dimensionsn× (nδ · t). For(k, j) ∈ [nδ ]× [n], replace each entryN[k, j] with a column
vectoruk, j ∈ {0,1}t , such thatvi,k[ℓ

′] := 1 if and only if N[k, j] is in bucketTℓ of Sk andℓ > ℓ′. This forms
a matrixN′ of dimensions(nδ · t)×n. The matrix productM′ ·N′ over the integers computes a sum of inner
products

(M′ ·N′)[i, j] = ∑
nδ

〈vi,k,uk, j 〉.

If M[i,k]> N[k, j], or M[i,k] andN[k, j] are in the same bucket ofSk, then〈vi,k,uk, j 〉= 0. If M[i,k]≤ N[k, j]
but N[k, j] andM[i,k] are in different buckets ofSk then〈vi,k,uk, j 〉= wk.

Letting P := P+(M′ ·N′), this procedure adds toP all termswk ·LEQ(M[i,k],N[k, j]) such thatM[i,k]
andN[k, j] appear in different buckets ofSk. ThereforeP[i, j] contains the value of the linear form for the
output gate ofC, under variable assignment(Ai,B j), for all i, j.

The above algorithm runs in timeO(n·nδ ·slogWo+MM(n,n1+δ/s,n) ·poly(logWo)), whereMM(a,b,c)
is the running time for multiplyinga×b andb×c matrices. If we setn1+δ/s= n0.172, then Coppersmith’s
algorithm (Lemma2.3) can be applied to the second term of the running time, implementing it in n2 ·
poly(logn) time. Under this setting,s= nδ · n0.828 and the first term of the running time isn1+2δ+0.828.
Settingδ = 0.086> 1/12, the first term becomesn2 (note thats= n.914). �

It is easy to see that, since the above algorithm actually evalutes the linear form at the output gate of a
depth-two threshold circuit, we can also efficiently evaluate largeSYM◦THR circuits as well.

Acknowledgements. I thank Igor Carboni Olivera for sending a preliminary version of his survey, which
helped the ideas in the proof of Theorem2.5to congeal. I also thank Rahul Santhanam for helpful comments
on an earlier draft.
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A Appendix: An exposition of Coppersmith’s algorithm

In 1982, Don Coppersmith proved that the rank (that is, the number of essential multiplications) of
N ×N0.172 and N0.172× N matrix multiplication is at mostO(N log2 N). Prior work has observed that
his algorithm can also be used to show that the total number ofarithmetic operations for the same ma-
trix multiply is N ·poly(logN). However, the implication is not immediate, and uses specific properties of
Coppersmith’s algorithm. Because this result is so essential to this work and a recent algorithm for all-pairs
shortest paths [Wil13a], we give here a self-contained exposition.

Theorem A.1 (Coppersmith [Cop82]) For all sufficiently large N, the rank of N×N.172××N matrix mul-
tiplication is at most O(N2 log2 N).

We wish to derive the following consequence of Coppersmith’s construction, which has been mentioned
in the literature before [SM83, ACPS09, Wil11b]:

Reminder of Lemma2.3 For all sufficiently large N, andα ≤ .172, multiplication of an N×Nα matrix with
an Nα ×N matrix can be done in N2 ·poly(logN) arithmetic operations, over any field with O(2poly(logN))
elements.

For brevity, we will use the notation “ℓ×m×n matrix multiply” to refer to the multiplication ofℓ×m
andm×n matrices (hence the above gives an algorithm forN×Nα ×N matrix multiply).

Note Lemma2.3has been “improved” in the sense that the upper bound onα has been increased mildly
over the years [Cop97, HP98, KZHP08, Gal12]. However, these later developments only run inN2+o(1)

time, notN2 ·poly(logN) time (which we require). Our exposition will expand on the informal description
given in recent work [Wil11b].

First, observe that the implication from TheoremA.1 to Lemma2.3 is not immediate. For example, it
could be that Coppersmith’s algorithm is non-uniform, making it difficult to apply. As far as we know,
one cannot simply take “constant size” arithmetic circuitsimplementing the algorithm of TheoremA.1
and recursively apply them. In that case, the poly(logN) factor in the running time would then become
Nε for some constantε > 0 (depending on the size of the constant-size circuit). To keep the overhead
polylogarithmic, we have to unpack the algorithm and analyze it directly.

A.1 A short preliminary

Coppersmith’s algorithm builds on many other tools from prior matrix multiplication algorithms, many
of which can be found in the highly readable book of Pan [Pan84]. Here we will give a very brief tutorial of
some of the aspects.
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Bilinear algorithms and trilinear forms. Essentially all methods for matrix multiplication are bilinear
(and if not, they can be converted into such algorithms), meaning that they can be expressed in the so-called
trilinear form

∑
i jk

AikBk jCji + p(x) =
5

∑
ℓ=1

(∑
i j

αi j Ai j ) · (∑
i j

βi j Bi j ) · (∑
i j

γi jCi j ) (1)

whereαi j , βi j , andγi j are constant-degree polynomials inx over the field, andp(x) is a polynomial with
constant coefficient 0. Such an algorithm can be converted into one with no polynomials and minimal extra
overhead (as described in Coppersmith’s paper). Typicallyone thinks ofAik andBk j as entries in the input
matrices, andCji as indeterminates, so the LHS of (1) corresponds to a polynomial whoseCji coefficient is
the i j entry of the matrix product. Note thetransposeof the third matrixC corresponds to the final matrix
product.

To give an explicit example, we assume the reader is familiarwith Strassen’s famous method for 2×2×2
matrix multiply. Strassen’s algorithm can be expressed in the form of (1) as follows:

∑
i, j,k=0,1

AikBk jCji = (A00+A11)(B00+B11)(C00+C11) (2)

+(A10+A11)B00(C01−C11)+A00(B01−B11)(C10+C11)

+(A10−A00)(B00+B01)C11+(A00+A01)B11(C10−C00)

+A11(B10−B00)(C00+C01)+ (A01−A11)(B10+B11)C00.

The LHS of (1) and (2) represents the trace of the product of three matricesA, B, andC (where thei j entry
of matrix X is Xi j ). It is well known that every bilinear algorithm naturally expresses multiple algorithms
through this trace representation. Since

tr(ABC) = tr(BCA) = tr(CAB) = tr((ABC)T) = tr((BCA)T) = tr((CAB)T),

if we think of A as a symbolic matrix and consider (1), we obtain a new algorithm for computing a matrixA
when givenB andC. Similarly, we get an algorithm for computing aB when givenA andC, and analogous
statements hold for computingAT , BT , andCT . So the aforementioned algorithm for multiplying a sparse
2×3 and sparse 3×2 yields several other algorithms.

Schönhage’s decomposition paradigm. Coppersmith’s algorithm follows a specific paradigm introduced
by Schönhage [Sch81] which reduces arbitrary matrix products to slightly larger matrix products with “struc-
tured nonzeroes.” The general paradigm has the following form. Suppose we wish to multiply two matrices
A′′ andB′′.

1. First wepreprocess A′′ andB′′ in some efficient way, decomposingA′′ andB′′ into structured matrices
A,A′,B,B′ so thatA′′ ·B′′ = A′ ·A ·B ·B′. (Note, the dimensions ofA′ ·A may differ fromA′′, and
similarly for B′ ·B andB′′.) The matricesA andB are sparse “partial” matrices directly based onA′′

andB′′, but they have larger dimensions, and only contain nonzeroes in certain structured parts. The
matricesA′ andB′ are very simple and explicit matrices of scalar constants, chosen independently of
A′′ andB′′. (In particular,A′ andB′ are Vandermonde-style matrices.)

2. Next, we apply a specialized constant-sized matrix multiplication algorithm in a recursive manner, to
multiply the structuredA andB essentially optimally. Recall that Strassen’s famous matrix multipli-
cation algorithm has an analogous form: it starts with a seven-multiplication product for 2× 2× 2
matrix multiplication, and recursively applies this to obtain a general algorithm for 2M × 2M × 2M

matrix multiplication. Here, we will use anoptimalalgorithm for multiplying constant-sized matrices
with zeroes in some of the entries; when this algorithm is recursively applied, it can multiply sparse
A andB with nonzeroes in certain structured locations.
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3. Finally, wepostprocessthe resulting productC to obtain our desired productA′′ ·B′′, by computing
A′ ·C ·B′. Using the simple structure ofA′ and B′, the matrix productsD := A′ ·C and D ·B′ can
be performed very efficiently. Our aim is to verify that each step of this process can be efficiently
computed, for Coppersmith’s full matrix multiplication algorithm.

A.2 The algorithm

The construction of Coppersmith begins by taking input matricesA′′ of dimensions 24M/5×
( M

4M/5

)

24M/5

andB′′ of dimensions
( M

4M/5

)

24M/5 ×2M/5 whereM ≈ logN, and obtains anO(5Mpoly(M)) algorithm for
their multiplication. Later, he symmetrizes the construction to get anN×N×Nα matrix multiply. We
will give this starting construction and show how standard techniques can be used to obtain anN×Nα ×N
matrix multiply from his basic construction.

The multiplication ofA′′ andB′′ will be derived from an algorithm which computes the productof 2×3
and 3×2 matrices with zeroes in some entries. In particular the matrices have the form:

(

a11 a12 a13

0 a22 a23

)

,





b11 b12

b21 0
b31 0



 ,

and the algorithm is given by the trilinear form

(a11+x2a12)(b21+x2b11)(c11)+ (a11+x2a13(b31)(c11−xc21)+ (a11+x2a22)(b21−xb21)(c22) (3)

+(a11+x2a23)(b31+xb12)(c12+xc21)− (a11)(b21+b31)(c11+c12)

= x2(a11b11c11+a11b12c21+a12b21c11+a13b31c11+a22b21c12+a23b31c12)+x3 ·P(a,b,c,x).

That is, by performing the five products of the linear forms ofai j andbkℓ on the LHS, and using theci j to
determine how to add and subtract these products to obtain the output 2×2 matrix, we obtain a polynomial
in each matrix entry whosex2 coefficients yield the final matrix productci j .

When the algorithm given by (3) is applied recursively to 2M ×3M and 3M ×2M matrices (analogously
to how Strassen’s algorithm is applied to do 2M × 2M × 2M matrix multiply), we obtain an algorithm that
can multiply matricesA andB with dimensions 2M × 3M and 3M × 2M, respectively, whereA hasO(5M)
nonzeroes,B hasO(4M) nonzeroes, and these nonzeroes appear in a highly regular pattern (which can be
easily deduced). This recursive application of (3) will result in polynomials inx of degreeO(M), and
additions and multiplications on such polynomials increase the overall time by anM · poly(logM) factor.
Therefore we can multiply theseA andB with structured nonzeroes inO(5M ·poly(M)) field operations.

The decomposition ofA′′ and B′′ is performed as follows. We chooseA′ and B′ to have dimensions
24M/5×2M and 2M ×2M/5, respectively, and such that all 24M/5 ×24M/5 submatrices ofA′ and 2M/5×2M/5

submatrices ofB′ are non-singular. Following Schönhage, we pickA′ andB′ to be rectangular Vandermonde
matrices: thei, j entry of A′ is (α j)

i−1, whereα1,α2, . . . are distinct elements of the field;B′ is defined
analogously. Such matrices have three major advantages: (1) they can be succinctly described (withO(2M)
field elements), (2) multiplying these matrices with arbitrary vectors can be done extremely efficiently, and
(3) inverting an arbitrary square submatrix can be done extremely efficiently. More precisely,n×n Vander-
monde matrices can be multiplied with arbitraryn-vectors inO(n ·poly(logn)) operations, and computing
the inverse of ann× n Vandermonde matrix can be done inO(n · poly(logn)) operations (for references,
see [CKY89, BP94]). In general, operations on Vandermonde matrices, their transposes, their inverses, and
the transposes of inverses can be reduced to fast multipointcomputations on univariate polynomials. For
example, multiplying ann×n Vandermonde matrix with a vector is equivalent to evaluating a polynomial
(with coefficients given by the vector) on then elements that comprise the Vandermonde matrix, which takes
O(nlogn) operations. This translates toO(n·poly(logn)) arithmetic operations.
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The matricesA andB have dimensions 2M × 3M and 3M × 2M , respectively, whereA has onlyO(5M)
nonzeroes,B has onlyO(4M) nonzeroes, and there is an optimal algorithm for multiplying 2× 3 (with
5 nonzeroes) and 3× 2 matrices (with 4 nonzeroes) that can be recursively applied to multiply A andB
optimally, inO(5M ·poly(M)) operations. MatricesA andB are constructed as follows: take any one-to-one
mapping between the

( M
4M/5

)

2M/5 columns of the inputA′′ and columns of the sparseA with exactly 24M/5

nonzeroes. For these columnsq of A with 24M/5 nonzeroes, we compute the inverseA−1
q of the 24M/5×24M/5

minor Aq of A′ with rows corresponding to the nonzeroes in the column, and multiply A−1
q with columnq

(in 24M/5 ·poly(M) time). After these columns are processed, the rest ofA is zeroed out. Then, there is a
one-to-one correspondence between columns ofA′′ and nonzero columns ofA′ ·A. Performing a symmetric
procedure forB′′ (with the same mapping on rows instead of columns), we can decompose it intoB andB′

such that there is a one-to-one correspondence between rowsof B′′ and nonzero rows ofB ·B′. It follows
that this decomposition takes onlyO(

( M
4M/5

)

24M/5 ·24M/5 ·poly(M)) time. Since 5M ≈
( M

4M/5

)

44M/5 (within

poly(M) factors), this quantity is upper bounded by 5M ·poly(M).

After A andB are constructed, the constant-sized algorithm for 2×3 and 3×2 mentioned above can be
applied in the usual recursive way to multiply the sparseA andB in O(5M ·poly(M)) operations; call this
matrix Z. BecauseA′ andB′ are Vandermonde, the productA′ ·Z ·B′ can be computed inO(5M ·poly(M))
operations. Hence we have an algorithm for multiplying matrices of dimensions 24M/5 ×

( M
4M/5

)

24M/5 and
( M

4M/5

)

24M/5×2M/5 that is explicit and takes 5M ·poly(M) operations.

Call the above algorithm ALGORITHM 1. Observe ALGORITHM 1 also works when the entries ofA′′ and
B′′ are themselves matrices over the field. (The running time will surely increase in proportion to the sizes
of the underlying matrices, but the bound on the number ofoperations on the entriesremains the same.)

Up to this point, we have simulated Coppersmith’s construction completely, and have simply highlighted
its efficiency. By exploiting the symmetries of matrix multiplication algorithms in a standard way, we can
extract more algorithms from the construction. The trace identity tells us that

tr(ABC) = tr(BCA),

implying that the expression (3) can also be used to partially multiply a 3M ×2M matrix B with at most 4M

structured nonzeroes and “full” 2M ×2M matrixC in 5M ·poly(M) operations, obtaining a 3M ×2M matrix
AT with at most 5M nonzeroes. In our ALGORITHM 1, we have a decomposition ofA andB; in terms of the
trace, we can derive:

tr(A′′B′′ ·C′′) = tr(A′A ·BB′ ·C′′) = tr(B ·B′C′′A′ ·A).

This can be applied to obtain an algorithm for
( M

4M/5

)

24M/5 × 2M/5 × 24M/5 matrix multiplication, as

follows. Given input matricesB′′ andC′′ of the respective dimensions, decomposeB′′ into a 3M × 2M B
with O(4M) nonzeroes and 2M ×2M/5 VandermondeB′, as described above. LettingA′ be a Vandermonde
24M/5 ×2M matrix, compute the matrixC := B′ ·C′′ ·A′ in at most 4M ·poly(M) operations. Noting thatC
is 2M ×2M , we can then multiplyB andC in 5M ·poly(M) operations. This results in a 3M ×2M matrix AT

with at most 5M nonzeroes. The final outputA′′ is obtained by using the one-to-one mapping to extract the
appropriate

( M
4M/5

)

24M/5 rows fromAT , and multiplying each such row by the appropriate inverse minor ofA′

(corresponding to the nonzeroes of that row). This takes at most
( M

4M/5

)

24M/5 ·2M ·poly(M)≤ 5M ·poly(M)
operations. Call this ALGORITHM 2.

From ALGORITHM 2 we immediately obtain an algorithm for 24M/5 ×2M/5 ×
( M

4M/5

)

24M/5 matrix mul-

tiplication as well: given input matrices(C′′)T and (B′′)T of the respective dimensions, simply compute
B′′ ·C′′ using ALGORITHM 2, and output the transpose of the answer. Call this ALGORITHM 3.
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Finally, by “tensoring” ALGORITHM 2 with ALGORITHM 3, we derive an algorithm for matrix multipli-
cation with dimensions

(

M
4M/5

)

24M/5 ·24M/5×22M/5×

(

M
4M/5

)

24M/5 ·24M/5 ≥ 5M/M×4M/5×5M/M.

That is, we divide the two input matrices of large dimensionsinto blocks of 24M/5 × 2M/5 and 2M/5 ×
( M

4M/5

)

24M/5 dimenisons, respectively. We execute ALGORITHM 2 on the blocks, and call ALGORITHM 3
when the product of two blocks is needed.

As both ALGORITHM 2 and ALGORITHM 3 are explicit and efficient, their “tensorization” inherits these
properties. ALGORITHM 2 uses 5M ·poly(M) operations, and each operation can take up to 5M ·poly(M)
time (due to calls to ALGORITHM 3). Therefore, we can perform a 5M ×42M/5 ×5M matrix multiply over
fields with 2poly(M) elements, in 52M · poly(M) time. Settingn = log(M)/ log(5), the algorithm runs in
n2 ·poly(logn) time for fields with 2poly(logn) elements.
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