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Abstract

Let ACCoTHR be the class of constant-depth circuits comprised of AND, &R MODmgates (for
some constamh > 1), with a bottom layer of gates computing arbitrary lindaeshold functions. This
class of circuits can be seen as a “midpoint” betwa€&€ (where we know nontrivial lower bounds)
and depth-two linear threshold circuits (where nontriloaler bounds remain open).

We give an algorithm for evaluating an arbitrary symmetuiedtion of 2°Y ACCo THR circuits of

. 1 . . . . .
size 2° ), on all possible inputs, in2 poly(n) time. Several consequences are derived:

e The number of satisfying assignments to AGC o THR circuit of subexponential size can be
computed in 2 time (wheres > 0 depends on the depth and modulus of the circuit).

e NEXP does not have quasi-polynomial si#€C o THR circuits, andNEXP does not have quasi-
polynomial sizeACCo SYM circuits. Nontrivial size lower bounds were not known evernAND o
OR o THR circuits.

e Every 0-1 integer linear program withBoolean variables ansllinear constraints is solvable in
2n-Q(n/((logM)(10gs)°)) . poly(s, n, M) time with high probability, wheré! upper bounds the bit com-
plexity of the coefficients. (For example, 0-1 integer peaogs with weights irj—2P°Y(N) 2poly(n)]
and polyn) constraints can be solved if-22/°F°M time ) Impagliazzo, Paturi, and Schnei-

der IPS13 recently gave an algorithm fcﬁ(n) constraints; ours is the first asymptotic improve-
ment over exhaustive search for for up to subexponentiadigyntonstraints.

We also present an algorithm for evaluating depth-two litlegeshold circuits (a.k.aJHRo THR)
with exponential weights and'2* size on all 2 input assignments, running iff Zooly(n) time. This is
evidence that non-uniform lower bounds OHR o THR are within reach.

*Supported by an Alfred P. Sloan Fellowship, a Microsoft Resle Faculty Fellowship, a David Morgenthaler 1l Faculty
Fellowship, and NSF CCF-1212372. Any opinions, findingsl eanclusions or recommendations expressed in this mbdeea
those of the author(s) and do not necessarily reflect thesvidithe National Science Foundation.
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1 Introduction

Recall that in the non-uniform Boolean circuit model, onsides an infinite family of logical circuits
{Cn}, one for each input length, in order to recognize a given binary langudge {0,1}*. This model is
notoriously powerful, even when the size@fis bounded from above by a fixed polynomialnindefining
the complexity clas® /poly. With polynomial size circuits, one can already “cortgilsome undecidable
languages, such s = {1" | thenth Turing machine halts on blank tajpeNevertheless, it is strongly be-
lieved thatNP ¢ P/poly, meaning that for even modestly-sized instancellRfcomplete problems, the
sizes ofcomputationson such instances must be inevitably gigantic. Howeverwkedge ofP/poly is
rather poor, due to the “infinite” nature of the model: it isapf the huge complexity clas®ndeterminis-
tic exponential timgNEXP) is contained irP /poly. This containment would imply that problems verifiable
with exponentially-long witnesses could be efficiently IN&ml” with small circuits. It looks obviously ab-
surd; how can we rule it out?

In recent years, it has been demonstrated that the exist#nuentrivial circuit-analysis algorithms is
closely linked to theNEXP versusP /poly problem. For instance, Impagliazzo, Kabanets, anddérig
son [KWO02] showed thatNEXP ¢ P/poly follows, if there is a Y time algorithm that can approx-
imate a given circuit's acceptance probability to withipl@. They also proved a partial converse, in
that NEXP ¢ P/poly implies a certain kind of derandomization. Subsequemtk [Wil10] strengthened
the algorithms-to-lower bounds implication, proving tlaasimilar algorithm which (for everk) runs in
2n-w(logn) time on alln-input nk-size circuits still impliesNEXP ¢ P/poly. A variant of this implication
(for circuit satisfiability algorithms) was combined witln aatisfiability algorithm for a restricted circuit
class calledACC, implying thatNEXP does not have polynomial-siZeCC circuits [Willlb]. Recently, it
was shown thaNEXP ¢ P/poly is equivalent to establishing a “weak” form of naturabgfs [Wil13b],
building on Impagliazzo et &l.

To continue progress on circuit lower bounds MEXP, it is imperative to understand algorithms for
analyzing circuits, such as algorithms for circuit satlsfity, evaluating a circuit on all 2 inputs, and
approximating the acceptance probability of a ciréuitn this paper, we make this sort of algorithmic
progress for circuits with arbitrarfinear thresholdgates: such a gate outputs 1 if and only if a cer-
tain linear inequalityy;wix; >t is true, wherew;,t € Z are weightsand x; € {0,1} are inputs to the
gate. Linear threshold functions have been studied fordks;acoinciding with research on neural net-
works [MP69, Mur71]. Low-depth linear threshold circuits are powerful: marasie functions in arith-
metic, algebra, and cryptography are known to be impleniémtaith only constant-depttinear threshold
circuits [RT92 SBKH93 SP94 MT99, NR04. In terms of lower bounds for such circuits, very weak ques-
tions remain major open problems: for example, is alN&XP solvable with polynomial-size deptiwo
linear threshold circuits with exponential-size weigAt&£Pepth-two circuits correspond taultilayer per-
ceptronswith only one hidden layer. Despite considerable study wralenetworks and deep learning, we
still lack understanding of the power of depth-two.

In this paper, we report some new progress on understaningower of linear threshold gates.

Lin particular, NEXP ¢ P/poly if and only if there is a “constructive” property of Bamin functions that is “useful” against
P/poly. The natural proofs barrieRR97 states that if such a property is also “large” (true of a éafigiction of functions) then
strong cryptographic pseudorandom generators do not éésice, assuming strong crypfdEXP lower bounds must somehow
confront the framework of natural proofs but sidestep tlaeg$” condition.

2Recent surveys on these issues includ@11a San12 Coh13 Oli13].

3Note that for thresholds with polynomially-bounded weightepth-two lower bounds are known; however depth-threero
bounds are still open. The survey of RazborBaf973 is still relatively current on these points.



Algorithms and lower bounds for ACC with threshold gates Let ACCo THR denote the class of circuits
consisting of AND, OR, MOIn gates for some constanm,* and linear threshold gates, with unbounded
fan-in and constant depth, such that the inputs of all linkegashold gates connect directly to the circuit’s
input variables. LebYM o ACC o THR be the class of circuits where the output gate computes étnaayb
symmetric function, and its inputs connect to the outputd@t o THR circuits. We show that such circuits
can very efficiently evaluated on alf thputs, even if they are of” size.

Theorem 1.1 Given aSYM o ACC o THR circuit with n inputs an®™" size, we can produce its outputs on
all 2" inputs in2"- poly(n) time.

More generally, such a circuit of size s can be evaluated bimpiits in2" - poly(logs, n) + 2°0°95° time,
for some ¢ 1 depending on the depth of the circuit and the modulus m of @Dkh gates.

The proof of Theoreni.1 also carries through fo8YM o ACC o SYM, where the bottom layer gates
compute arbitrary symmetric functions (i.e., functionsietthonly depend on the number of true inputs)
of 2™ wires. This algorithm can be used ¢ountthe number of satisfying assignmentsAGC o THR
circuits.

Theorem 1.2 For every integer m> 1 and d> 0, there is are > 0 such that counting satisfying assignments
to ACC o THR circuits of size2™, depth d, and MODm gates can be don@in"™ time.

By modifying prior argumentsWilllb], we can conclude lower bounds for such circuits. The new
argument shows that the ability to count SAT assignmentailsnmion-uniform lower bounds for circuit
classes with very weak closure properties.

Theorem 1.3 NEXP does not have non-unifortiCC o THR circuits of quasi-polynomial size.

As Theoreml.1lalso holds foSYMo ACCoSYM, it follows thatNEXP doesn’'t haveACC o SYM circuits
of quasi-polynomial size. as well

Twenty years ago, Maciel and TherieMT93] considered lower bounds féxC® o MAJ circuits (which
ACCo THR subsumes), but nontrivial lower bounds have not been repoReganRReg97 studiedMOD; o
AND o THR circuits and also noted the absence of lower bounds. Lowend®have been open even for
the much weaker clagsND c ORo MAJ [HP13.

Theoreml.3moves a little closer to an “unconditional break” of the matyroofs barrier RR97. That
is, it seems plausible that pseudorandom functions can pkeimented withPACC o THR circuits, in which
case any lower bounds proved against such circuits mustm@atniralizing? Plaku [Pla0g observed that
the Naor-Reingold family of pseudorandom functiohk[04] can be implemented with quasi-polynomial
sizeOR o THR o AND circuits; it follows that the natural proofs barrier alrgaapplies to this circuit class.
It is an interesting open problemAfCC o THR can efficiently simulate such depth-three circuits.

Building on Theoreml.1l, we also give a new method for solving 0-1 integer linear mots. In
FOCS’13, Impagliazzo, Paturi, and Schneidét913 showed that for eackh > 1, there is @ < 1 such
that 0-1 integer LPs withn constraints can be solved if®time. We provide an improvement over exhaus-
tive search for up to subexponentially many constraints:

Theorem 1.4 Every 0-1 integer linear program with n variables and s coaisits can be solved in time
2n-Q(n/((logM)(logs)®)) . poly(s, n, M) with high probability, where M< 2°V upper bounds the bit complexity
of the coefficients in the program.

4A MODm gate outputs 1 if and only if the sum of its input bits is diflsi bym.

S1tis not completely settled whether the proof thEEXP ¢ ACC is “truly” non-naturalizing; it could be that the naturaloorfs
barrier is irrelevant to the problem. (If pseudorandom figms cannot be implemented ACC, then natural proofs considerations
don’t apply toACC anyway; if such functions can be implemented\i@C, then theNEXP lower bound is indeed non-naturalizing.)



Notice that the theorem allows for enormous coefficientsizd up to 2" The time bound compares
favorably with theAC® circuit satisfiability bounds of Impagliazzo, MatthewsdaPaturi [MP12]: there,
the authors use random restriction methods to solve sailitfisof ACC circuits with depthd and sizesin
2n=1/(10g9°? randomized time with zero error. Our algorithm shows thaing probabilistic polynomials
and fast rectangular matrix multiplication, one can ob#inilar running times for SAT oACO[Z] circuits
with a layer of symmetric gates at the bottom.

Depth-two linear threshold circuit evaluation. We take an important step towards depth-two linear
threshold circuit (a.k.aTHR o THR) lower bounds for the case of exponential weights, by gihangef-
ficient algorithm for evaluating such circuits on all pogsibssignments.

Theorem 1.5 Let k> 1. Given a depth-tw@"/?*-size linear threshold circuit C with integer weights in
[—Z”k, —Z”k], we can evaluate C on &' input assignments i - poly(nk) time.

Theoreml.5follows from a more general result showing that any suffidyelarge “combinatorial rect-
angle” of inputs can be evaluated in paly amortized time per input. Noting that a similar statement fo
evaluating ACC circuits forms the heart of the proofNEXP ¢ ACC [Willlb], Theoreml.5suggests that
large complexity classes (such l[d&XP) cannot have small depth-two linear threshold circuitsweleer,
we do not yet know how to turn Theoreln5into depth-two linear threshold lower bourfds.

1.1 Prior work

Considerable effort has been expended in proving lower ®w@against circuits with linear threshold
gates. Here we will provide some major highlights, in additio the work already mentioned.

It will help to introduce a little (standard) notation. DediMAJ, AND, OR, THR, andSYM to be
the class of one-gate circuits corresponding to MAJORITMDA OR, linear threshold, and symmetric
functions, respectively, with “free” NOT gates that can egpafter the output or on the input wires to the
gate. (Recall that a symmetric Boolean function’s outpuy alepends on the number of true inputs.) For
classes of circuit® and 2, define% o Z to be the class of circuits formed by taking a cirddit %, and
feeding the outputs of circuits fror® as inputs taC. That is,% o Z is simply the composition of circuits
from & and 2, with the circuits fromZ receiving the input and the circuit frofe giving the output. We
will equivocate thesizeof a circuit with the number of wires, i.e., the number of dtezl arcs in the DAG
defining the circuit. This is an important measure for citgwith symmetric gates, as the number of wires
governs the size of the symmetric function representation.

Much work on depth-two threshold lower bounds has conctdran lower bounds for inner product
modulo 2, i.e., IPRXy,..., %, Y1,...,Yn) = 3iX% -¥i mod 2. Note that IP2 is easy f&CC (being a MOD2
of AND gates). In groundbreaking work, Hajnal et diNIP™93] proved that everyMAJ o MAJ circuit
requires 2(" gates to compute IP2. They also showédJ o SYM circuits can be efficiently simulated by
MAJ o MAJ circuits, so smalMAJ o SYM circuits also cannot compute IP2. Nisawi§94] extended the
lower bound taMAJ o THR circuits, and Forster et alFKL"01] extended the lower bound fBHR o MAJ
circuits. More recently, Shersto®he09 showed thatAC® requires exponential-siZéAJ o MAJ circuits,
Razborov and SherstoRB1Q proved that depth-threaC® requires exponential-sizél AJo THR circuits,
and Beame and HuyniBH12] showed thatA\C® requiresn®(°9".size MAJ o SYM o AND circuits.

Although superpolynomial-size lower bounds agaiv#tJ o AC®, THR o AC®, MAJ o MAJo AND and
evenMAJ o MAJ o ACP circuits are knownABFR94, Gol97, RW93 HMO04], and many lower bounds are

6The current theorems connecting circuit evaluation atgors to circuit lower bounds require that, from the OR of demilon
of circuits, we can generate an equivalent circuit in theesatass. We do not know how to convert a large ORT6fR o THR
circuits into an equivalentHR o THR circuit, even assuminlEXP has smallTHR o THR circuits. (In the case of ACC, this is
trivial, because an OR of ACC circuits is still an ACC circlit



known for AC® circuits augmented with a small number of threshold gaBes94, BS94 CHOS5, Vio06,
Han07 GS1Q LS11, Pod13, lower bounds forAC° o MAJ circuits have remained open. Maciel and The-
rien [MT93] conjectured that the majority-of-majority function istrin AC® o MAJ.

Recently, Hansen and PodolskillP13 have shown an intriguing reduction: superpolynomiabdiHiR o
THR lower bounds for a functiori would follow from superlogarithmic lower bounds on the 3tpaNOF
unbounded-error communication complexityfof

1.2 Comparison and Intuition

It is instructive to discuss how this paper’s approach eslab prior work on depth-two threshold lower
bounds. A certain popular approadfKL *01, Lok08, She09 RS1Q applies ingredients from Fourier anal-
ysis of Boolean functions, linear algebra, communicatiomplexity, discrepancy theorgtc. In particular,
these works follow the general scheme:

1. Define some notion of “relaxed rank” of &2 x 22 Boolean matri>C. Intuitively, if C has “relaxed
rank” r, then there are™? x r andr x 2"/2 matricesA andB such that the entries - B correspond
to the entries o€ in a direct way.

2. Show that every functiof : ({0,1}"/? x {0,1}"/2) — {0,1} computable with a “small% circuit has
“small relaxed rank” when construed as d/¥2< 2"/2 Boolean matrix.

3. Show that some explicit family of functiomg : ({0, 1}"/2 x {0,1}"/?) — {0,1}, construed as"™? x
2"/2 Boolean matrices, requires “high relaxed rank” asympadigic

Together, these steps prove that the fargily- {g,} cannot have “small%’ circuits.

To prove ACC o THR circuit lower bounds, we define a generalized rank notion alethe symmetric
rank, informally measuring how efficiently a 0-1 matrM can be decomposed into a sum of rank-one
matrices such that, after applying a fixed symmetric fumctimeach entry of the sum, we obtain the matrix
M. Combining several elements from previous work, we show ftitraa Boolean matrix representing the
truth table of &5YM o ACC o THR circuit of sizes, its symmetric rank i9(2'°9°5) for some constant > 1,
depending on the depthand modulusn of the MODm gates in the circuit. Moreover, given such a circuit
we can efficiently compute a low-rank decomposition.

However, we do not know how to use existing methods to proat @n explicit functiong has high
symmetric rank. Instead, we take a mommputationalapproach that still exploits the low symmetric rank
property. The idea is that, if we can efficiently compute a-tanvk decomposition from a given circuit, then
the circuit’s truth table can be obtained faster than evaigahe circuit on all its inputs one-by-one. This
in turn suggests that these circuits possess considerabétuse that make them unsuitable for simulating
very complex functions, such as thoseNBXP.

Suppose we are given 8YMoACC o THR circuit C of sizeswith ninputs. LetM be a 2/2 x 2"/2 matrix
defining the function computed Iy First we show how given any su€hwe can compute? x 2/°9°s and
2/09°s 5 21/2 matricesA andB (and a symmetric functiom) giving a symmetric rank decomposition M, in
2/2.20(09°9) time. By multiplying A andB and applyingf to each entry of the output matrix, we can obtain
M. Whensis sufficiently small, a rectangular matrix multiplicatiohCoppersmith Cop89 can be applied
to compute the product ¢k andB, and the final matrixM is obtained in polyn) time per entry. Hence,
given anSYM o ACC o THR circuit C of size 2" we can evaluat€ on all its 2' inputs in only 2 poly(n)
time. This fast evaluation algorithm is combined with prork [Wil10, Will1b] along with some new
tricks to exhibit ag := {gn} € NEXP which does not have quasipolynomial-six€C o THR circuits.

Our evaluation algorithm for depth-two threshold circ\fiiheoreml.5) also uses Coppersmith’s rectan-
gular matrix multiplication as a subroutine, but the reshefalgorithm is rather different from the evaluation
algorithm forSYM o ACCo THR. We reduce the problem of efficiently evaluating a depth-tlweshold cir-



cuit on many inputs to a special type of matrix multiplicatioNamely, for two matriceé andB over the
integers, we compute a “weighted” matrix product

Cli,jl = ZWk‘ LEQ(A[i, K], Bk, j]),

where LEQx,y) is a Boolean-valued function equal to 1 if and only # y, and thewy’s are arbitrary integer
weights given as parameters to the problem. We show how Campiita’s algorithm can be combined with
a mild brute force search to efficiently compute a rectargulatrix product of the above form.

2 Algorithms and lower bounds for ACC with a layer of threshold gates

The main theorem of this section is:

Reminder of Theorem1.1 Given aSYM o ACCo THR circuit with n inputs an@™"” size, we can produce
its outputs on alR" inputs in2" - poly(n) time.

More generally, such a circuit of size s can be evaluated bimpiits in2" - poly(logs,n) + 20(1099)° time,
for some ¢> 1 depending on the depth of the circuit and the modulus m of @Dkh gates.

Depth reduction. The first stage of the proof is to convert an arbitr&M o ACC o THR circuit C of size
sinto a depth-two circui€” of symmetric gates, i.e.,8YMo SYM circuit. The size of the depth-two circuit
will be O(2°°9°S) for a constant > 1, depending on the (constant) depth and (constant) mod#ikiscuit
C. This stage requires several different pieces from priakwo

Lemma 2.1 There is an algorithm which given &¥M o ACCo THR circuit C of size s> n, depth d, and
MODm gates, outputs an equivalesi¥M o SYM circuit C” with at most2(°99° wires, and runs in time
0(2(1095%)  for ¢ > 1 depending only on d and m.

The following paragraphs give the proof of Lem4. LetC be aSYM o ACCo THR circuit with inputs
X1,...,X%n, Sizes, depthd, and MODm gates, for constani$ > 2 andm > 1. In the proof, several constants
arise; we will denote all of them by the same constanthich is assumed to be the maximum of these
guantities.

The first step in Lemma.1is to translate th& HR layer ofC into aSYM layer, by absorbing some of its
complexity into theACC part. Without loss of generality, we can assume that the higf all threshold
gates irC have absolute value at mo$"™9%" [MTT61, Mur71]. (Every THR function is equivalent to one
with weights of bit-complexity at moginlog,n.)’

Maciel and TherienjIT98] provided several fairly tight low-deph circuits for vaus tasks. We need:

Theorem 2.1 (MT98], Theorem 3.3) Addition of n distinct n-bit numbers can be performed witlypomial-
sizeAND o OR o SYM circuits. Furthermore, the circuits can be constructed atymomial time.

We can therefore replace evefHR gate ofC with an AC® o MAJ circuit, as follows. Fix a threshold

gate ofC, with weightsw, ,...,w;, fort <n, computingztj;llwijxij > w;, for someij € {1,...,n}. Note
wi;| < 2Pn0%N for j = 1,....t. SetW = bnlog,n.

Let D be a circuit for the addition df— 1 W-bit numbers, provided by Theoreml. Forj=1,...,t—1,
we connect to thgth W-bit input of D a circuit which, given;, feedsw;, to D if the input bitx; =1, and
the all-zeroW-bit string if x;; = 0. Note this extra circuit actually contains no gates: it@yrhas a wire
from x;; to all bits of thejth W-bit input where the corresponding bitwf; equals 1. Letting this new circuit

7In fact, this “small-weight” representation can be effitierobtained, by evaluating the large-weight represeatasit only
n+ 1 points, then solving a linear systemrin- 1 variables to determine the weights. SR T61], Theorem 16.



beD’, we haveD'(x1,..., %)) = ztj;llwijxij . This can be compared to the vaklug with an ACP circuit, using
the fact that the “less-than-or-equal-to” comparison af tategers can be performed AC° [CSV84. We
now have amAC®o SYM circuit D” of size polyW,t) < n° computing the given threshold gate. Applying
this construction to each threshold gate in TH¢R layer ofC, we obtain arsYM o ACC o SYM circuit C’' of
size at moss- nP.

The next step of Lemm2 1is to convert th&YMo ACC part into aSYM o AND circuit, using a reduction
of Beigel-Tarui BT94] (with important details on constructibility filled in by Adnder-Gore AG91]).

Theorem 2.2 (BT94, AG91]) EverySYMoACC circuit of size s can be simulated byp&M o AND circuit

of 20099° size for some constant depending only on the depth d and MODm gates of A€ part.
Moreover, theAND gates of the final circuit have onljogs)® fan-in, the final circuit can be constructed

from the original in 20((logs)®) time, and the final symmetric function at the output can beptded in
20((1099%) time.

Applying this reduction to the toSYM o ACC part of the circuitC’ results in an equivaler§YM o
AND (545 mby)e © SYM circuit C” of sizes' = 20((og(sn*)) (where the subscript on th&ND denotes the
fan-in of each AND gate). For simplicity of notation, let (log(s-n°))¢ in the following.

Extending a trick of BeigelBei94] to symmetric gates, we can convert ev&liD; o SYM subcircuit of
C” with n® wires into a singl&SYM gate withO(n!) wires. LetSy(xq,..., %) A---AS(Xq,...,X%) be one
such subcircuit, wher§ denotes théth symmetric gate. In particular, for=1,...t, let f; : Z — {0,1} be
such thatfi(zli]:]_CLij) = §(x1,...,%), wherec; ; denotes the number of copiesxgfthat feed intd§.

LetB=1+ max(z’j‘:lci,j); note thatB < n°. Consider the linear form

L(X1,- -, %) ZlB' ! (Z c,,x,)

For any Boolean assignment to tkgs, the number encoded by the linear folrfxy,...,X,) is an integer
encoded inO(t - blogn) bits. By construction, the bit representation of this ietegontains, for every
i =1,...,t, the number of wires input t§ which are set true, as a string @flogn) bits. Therefore, from
the linear formL(x1,...,X,) we can easily infer whether & (xy,...,%,) output 1 or not, and hence output
the value ofS A---AS.

To implement this linear form with a singleYM gate, forallj=1,... nwe putz}:1 Bi_]'Ci’j wires from
the input variablex; into the newSYM gate. Hence there a@(n!) wires from the inputs into this new
SYM gate. By choosing the appropriate symmetric function (Wtdatputs 1 if and only iL(xs,...,%y)
encodes a number such ti8atA - -- A S is true) we can simulate alyND; o SYM circuit of n° wires with a
singleSYM gate ofO(nP*) wires.

Replacing eacAND o SYM subcircuit in this manner results irf¥ Mo SYM circuit of sizeO(s - n®!) <
20(099° for some constant > 1. This concludes the proof of Lemnial.

Symmetric rank. Next, we prove that the truth table of a8yYM o SYM circuit C” of t wires andn
inputs represents &2 x 22 matrix of symmetric rankat most polyt), and this rank decomposition can
be efficiently computed. For given matricAsandB over the integers, leA- B denote their matrix product
over the integers. La¥l € {0,1}™". We define thesymmetric rank of Mo be the minimunr € N such
that there are matrice& € {0,1}™", B € {0,1}'*" and a functionf : {0,1,...,r} — {0,1} satisfying
MIi, j] = f((A-B)[i, j]) for all i, j. We call the triple(A, B, f) a symmetric rank decompositiaf M. The
symmetric rank is similar to the typical notion of rank, eptéor the additional functiorf providing a
“filter” from arbitrary integers back td0,1}. This filter function could potentially lead to smaller rank
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decompositions than the typical notion. However, note marsetric rank ofM is not necessarily at most
(for instance) the rank d¥l overR, becausé\ andB are required to have Boolean entries.

For simplicity letn be even, and lety, ...,z be the list of all 2/2 n/2-bit strings in lexicographical
order. For a circui€ with ninputs, define théruth table matrix M to be the 2/2 x 2"/2 matrix with Mcli, j]
equal to the output oE(z,z;).

Lemma 2.2 Given aSYMoSYM circuit C with t wires and n inputs, its truth table matrixdWhas symmetric
rank Q(t3), and a symmetric rank decomposition of ban be computed from C B2 - poly(t) time.

Proof. For simplicity we assuma is even; the case of oddwill be apparent. Index the input variables of
Cbyxy,...,%n. Letgs,...,gs be an indexing of the gates Gfon the bottom layer (closest to the inputs) and
let g denote the output gate 6f (Note thats<t.) Let f : {0,1,...,s} — {0,1} be the symmetric function
of gateg': forallac {0,1,...,s}, f(a) =bif and only if a true inputs make’ outputb.

We shall show how to efficiently construct matriceandB with the appropriate properties. L&at. .., Zy
be the list of alin/2-bit strings in lexicographical order, in the followingoiFevery pair(a,b) € {0,1,...,t}?
such thata+b <t, let Sy C {g1,...,0s} denote the subset of gatgssuch thata+ b true inputs makes
gateg; output 1.

The matriceA andB to be constructed show that the symmetric rankigfis at most

r= > |Sup| < O(t3).
abe{0,1,... t}:a+b<t

In other words, each pair, b) will add |S, | additional components to the rowsAfind the columns ds.

Fori = 1,...,2"2, theith row of A andith column ofB are defined as follows. For every pa&a,b),
allocate|S, | additional components for the rows Afand columns oB.

Forj=1,...,|Sp|, put a1 in thejth additional component of théh row of A if and only if there area
true wires going into thgth gate ofS,, when the input variables,, ..., X, > are given assignment. That
is, the jth component is 1 if and only if the contribution (from the filnglf of variables) to the overall sum
for the jth gate isa.

Similarly, for j =1,...,|Sap/, put a 1 in thejth additional component of thiéh column ofB if and only
if there areb true wires going into thgth gate ofS,, when the input variableg, ;. 1,...,%, are given
assignment;.

Note that each entry &% andB can be determined in pdlt) time.

For every fixeda,b), the product of twgith components for thigh row of A and thekth column ofB is
either 0 or 1, and the product is 1 if and only if:
e the sum of true inputs into thigh gate ofS,p from the inputs(xy, . .., X,/2) equalsa when the inputs
(X1,...,%y/2) are assigned,
e the sum of true inputs into the same gate froR)21, - - -, Xn) equalso when the input$x, o1, .-, Xn)
are assigned, and
e the jth gate outputs 1 when its sum of true inputs eqaaj.

It follows that theinner productof theith row of A and thekth column ofB equals the total numbe; ¢ of
true wires going into the output gate ©fon the variable assignmefty,...,x,) — (z,z). By definition,
f(Nik) equals the output d@ on that variable assignment. O

We need one more lemma to complete the proof of Thedrdm

Lemma 2.3 For all sufficiently large N, andr < .172, multiplication of an Nx N¥ matrix with an N x N
matrix can be done in R poly(logN) arithmetic operations, over any field with(29°¥(1°9N)) elements.

8See Appendi for an exposition of this result.



Proof of Theorem1.1. Given aSYMoACCo THR circuit C and sizes, convertC into aSYM o SYM circuit
C” of 20099° sjze using Lemma.1. Compute a symmetric rank decompositiorCafto 2V/2 x 23(1099° gnd
23(1099)° » 21/2 0-1 matricesA andB respectively, along with a functiof: [23(°99°] — {0, 1}. Compute the
product ofAandB in 2" - poly(logs,n) time, using Lemma&.3. Finally, evaluate functiorf on all entries of
the matrix product. This can be done by numerically sortirgentries, replacing each entrpy f(v), then
inverting the sorted order, in timé 2poly(logs, n) + 2°0°98° Fors < 2™ the runtime is 2- poly(n). O

2.1 Counting satisfying assignments to ACC of linear thresblds

The evaluation algorithm of Theorefnlis quite powerful, substantially extending the class ofits
for which we can perform non-trivial circuit analysis.

Reminder of Theorem 1.2 For every m> 1 and d> O, there is ane > 0 such that counting satisfying
assignments tACC o THR circuits of size2™, depth d, and MODm gates can be don@n™ time.

Proof. For allk e N and fori = 1,...,2k, define a Bi}f function with 2Z¥ inputs as follows: for all
i =1,...,2k Bitf outputs theth bit of the sum of its input bits. Clearly, a Bitunction is symmetric.

Suppose we are given &CC o THR circuit C of sizesandn inputs, and we wish to count its satisfying
assignments. Let< n/2 be a parameter to set later. For every assigngeat{0, 1}? to the last 2 inputs
of C, make a copy o€ with the assignmemd; plugged into thoseZinputs, calling this copZa,. Note that
eachCp, has (the same) — 2/ inputsxy, ..., Xn_2/-

For everyi =1... ,2€, defineB; (X]_, . ,anzg) = Bitiﬁ(CAl(Xl, . ,anzg), . ,C/_\sz (Xl, e ,M,QZ)). Each
function B; can be implemented igl = 2% - s size, as &YM o ACC o THR circuit. Applying Theorem.1,
B; can be evaluated on all of it§"2* possible assignments in time

2n72Z . poly(n) + 2poly(|ogs’) < 2n72ﬁ3 . poly(n) + 2poly(£‘+log ).

The above for-loop over ailproduces 2- 2"~ bits: for each of the 2% partial assignments to— 2¢
variables, we learn the number (i Bits) of partial assignments on the othén&riables which result in
satisfaction. The number of all satisfying assignmentsbisioed by simply summing alléZbit numbers
obtained from the 2% assignments, in"22 - poly(¢) time.

Letting ¢ = n¢ /2 for sufficiently smalle > 0, we have a ™ time algorithm. O

2.2 Faster 0-1 linear programming

ACCoTHR circuits are definitely powerful enough to simulate 0-1dgaelinear programming; a straight-
forward application of Theorerh.2would yield a faster algorithm for the problem. However, ittigrove-
ment over exhaustive search would be rather minor, andusdm calculate. By modifying the proof of
Theoreml.lin appropriate places, we can derive a better algorithmiincse:

Reminder of Theorem 1.4 Every 0-1 integer linear program with n variables and s coaisits can be
solved in time"~2(n/((logM)(0gs)*)) . noly(s n, M) with high probability, where M< 2° upper bounds the
bit complexity of the coefficients in the program.

Proof. Consider a 0-1 linear program of the forAx < b, along with a cost functior{c,x) we wish
to maximize, whereA € Z", b € Z8, andc € ([-2",2M] N Z)" by assumption oM. First, reduce the
optimization problem to one of feasibility, in a standardywanclude (c,x) > v as an additional constraint
for variousv € Z, and by binary searching on we maximize the value of such that thes+ 1 constraint
system remains feasible. Since thare Boolean valued, the binary search uses at @@gt+ logn) calls
to feasibility questions.



Next, observe the feasibility questions can be viewed agistiahility question for a depth-two circuit

D with an AND at the top gate, and linear threshold gates on thiim layer, by directly translating each
constraint in the program into a linear threshold gate. Bgdrem?2.1 and the argument in Lemnial,
each threshold gate in the circliitcan be replaced with a polynomial-sizeHQ o AND c ORo SYM circuit,
whereLEQ computes om-bit integersa andb whethera < b. As LEQ has anOR o AND o XOR circuit of
O(r?) size forn-bit inputs (seeCSV84 for a reference), the satisfiability question for the cirdd reduces
to the SAT question for aACO[Z] oSYM circuit C where theACO[Z] part has depth 5. Following the strategy
of Theorem1.2 (and the author's ACC SAT algorithmWil11b]), the satisfiability question fo€ with n
inputs and size pol) can be efficiently converted into the problem of evaluatirigrgerACo[Z] oSYM
circuitC’, whereC' hasn’ = n—kinputs, - poly(s,M) size,k < n/2 is a parameter, and t#°[2] part has
depth 6. More precisel{’ is an OR of # copies of the depth-5 circull, and each copy has its filstnputs
assigned to a distinct string frof®, 1}*. Clearly, this circuiC’ is satisfiable if and only i€ is satisfiable.

Now we wish to evaluat€’ on all 2K inputs, efficiently. Rather than applying Beigel-Taruikistpoint,
as in Lemma2.1, we instead apply the probabilistic polynomials of Smokgr{$Smo87 to convertC’ into a
SYMoSYM circuitC”. In particular, we use a slight modification of Smolenskgsstruction, as described
by Kopparty and SrinivasaikKg17.

Theorem 2.3 (Bmo87 KS12]) For everyACP circuit C of depth d, size s, and n inputs, and 0, there is a
distribution of n-variate polynomialgc over[F, with the following properties. Each p with nonzero support
in Zc has degree at mo$tilogs)®~1- (log 1/¢), a polynomial p can be sampled frafg in nO(logs)* *(log1/e)
time, and for every x {0,1}", Pry_g.[p(X) = C(x)] > 1—¢.

We apply Theoren?.3 as follows. Recall tha€’ is an OR of someé\C°[2] o SYM circuits Cy, ...,Cx,
each with (the samea)— k inputs. Moreover, the topC°[2] part of eactC; has depth 5, and each takes
poly(s,M) inputs (coming from the outputs &YM gates). For every, we take the topAC® part of G;,
and invoke Theorerl.3with € = 1/(10- 2¥) to samplep; ~ Zc, of degree at mogD(k(logs)*) and at most
poly(s,M)°k(1035") monomials. We replace th&C® part ofC; with the XOR of ANDs circuitp. Now the
circuitC' is an OR of 2 XOR of AND of SYM circuits; call thenCy, ... ,C},. For every inpuk € {0, 1}",
the SYM gates ofC’ produce a single polg, M)-bit length inputy. Taking the union bound over alk2
subcircuits, evergy, ... ,C’z’k outputs the same values@s ...,Cx onx, with probability at least 3-1/10.

Now we randomly convert the topmost ORGhto an XOR, with the usual Razborov-Smolensky subsum
trick: we pickry1,r21,112,122,.-,r1 2,2 € {0, 1} uniformly at random, and replaée= OR(Cy, ...,C})
with

2 2
C'(Xq, ..., %nk) = (erl.i -C' (X1, -+ ,%—k) Mod 2) V (erg.i -C'(X1,- -+ ,%—k) Mod 2)

i=
2 2K
= Zirl.i'Ci”(Xl,---,ank)+erz,i'C{/(Xl,---,ank)
= &

2K 2
+ (i;rLi -Ci”(xl,...,xn_k)> . (i;rg,i -Ci”(xl,...,xn_k)> mod 2

which means thaE” equals

2K 2k 2K
erl,i Cl' (X1, -y Xn_k) + ngi Gl (X1, -, Xn—k) + Z rei-r2j-G'(Xe,. .., Xn—k) -C' (X1, . .., Xn—k) mod 2
i= i= i,j=1



Now for everyx € {0,1}",

. %Fi’jfe 01 [C"(x) # C'(x)]
< Pro [3i,C'(x) #Ci(x)]+ Pr [OR(C{(x),...,Cx(x)) =C'(x) | Vi,G(x) =Ci(x)]
P, Pk~ Zc; rije{0,1}

< 1/10+1/4<1/3.

That is, for every inpuk € {0,1}" ¥, the probability thaC’(x) = C”(x) will be greater than 23.

Since each polynomigh has degree at mo&(k- (logs)?), the AND gates representing the monomials
of pi havet < O(k- (logs)?) fan-in. Applying another part of Lemnia1, the AND; o SYM subcircuits of
C” with poly(s,M) wires can be replaced by a sin@¥M gate with polys, M)O(t) input wires. This results
in anXOR o SYM circuit C” of poly(s, M)°k (099 total wires; this is also 8YM o SYM circuit.

Let € > O be a parameter, and det= max{1, W}. (Note that ifk = 1, the statement of The-
orem1.4is trivially true.) Following the proof of Theorer.1, we can apply fast rectangular matrix mul-
tiplication to evaluat€€” on all 2K inputs. For sufficiently smal > 0, the matrix multiplication runs in

time
2"k poly(O(k- (logs)*),logM, n— k) + poly(s, M)k (109s)) < 2”*Q(<IogM>n<logs>5> -poly(s,M,n).

The output of this procedure is & Z-bit string which, for every € {0,1}"K, contains the correct output
C'(x) with probability at least 23.

Suppose we repeat the above randomized procedure fones: that is, fon? times, we independently
sample ¥ polynomialsp; for eachC; and sample; j € {0,1}, constructingn? different circuitsCy, ... ,Cl
from C'. Then, standard tail bound arguments show that the majaaitye output byCy(x),...,Cl>(X)
equalsC’(x) for everyx e {0,1}" ¥, with high probability. If some assignmexit has majority value 1, we
conclude that the integer progranféasible otherwise, we outpunfeasible O

2.3 Non-uniform ACCo THR lower bounds

We now turn to the main application of the evaluation aldyonit

Reminder of Thm 1.3 NEXP does not have non-unifordaCC o THR circuits of quasi-polynomial size.
To set the context, let us discuss the prior connection letwaown circuit satisfiability algorithms and
circuit lower bounds.

Definition 2.1 Let% be a circuit class% is said to betypical if, given any circuit D from one of the classes
€ o%¢,ANDo%, ORo%,NOT 0¥, an equivalent De ¢ can be produced in polgizegD)) time.

That is, % is typical if it is efficiently closed under composition, unbounded fan-in AQR, and nega-
tions Most well-studied circuit classes have this property.

From prior work, we know there are connections between th&temce of good SAT algorithms for
typical circuit classes, and lower bounds against thosseka

Theorem 2.4 (Willlb]) Let% be typical. Suppose for every>cl, there is anc > 0 and an an algorithm
for satisfiability of# circuits running in time @2""") on circuits with n inputs and'?¥°" size. ThetNEXP
does not have quasi-polynomial siZecircuits.

For example, the proof thatEXP ¢ ACC follows from giving a faster-than-exhaustive-search ACC
satisfiability algorithm, noting thaACC is typical, and applying Theoregh4.
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This theorem cannot be directly applied to a class sudh(@So THR, because it is not known whether
ACCoTHRoACCo THR can be efficiently simulated witACC o THR. However, by modifying the argu-
ment of Theoren?2.4 and using an algorithm farountingSAT assignments, we can extend the theorem to
circuits with a very weak closure property.

Definition 2.2 Let ¥ be a circuit class. We say is weakly closed under ANDX, given the AND of two
circuits of ', an equivalent circuit ir¢” can be produced in polynomial time.

Weak closure under AND is satisfied by strictly more circlgtsses than the property of being typical.
To give an example, any class of the foB¥Mo --- is weakly closed under AND, because an ANDt of
SYM gates withs wires can be collapsed into a single symmetric gate @it) wires (as seen in the proof
of Lemma2.1). However, classes likeYM o SYM arenot known to be efficiently closed under composition
or unbounded-fan in AND/OR, hence Theor@m does not apply to such classes. We prove:

Theorem 2.5 Let ¥’ be weakly closed under AND. Suppose for evely I; there is ane > 0 and an
algorithm for counting the satisfying assignments¢otircuits in time G2""") on circuits with n inputs
and r°9°" size. TheNEXP does not have quasi-polynomial sizecircuits.

Note that Theoreni.3 (the ACCo THR lower bound) follows immediately from Theoretn5 and the
counting algorithm of Theorer.2. It is our hope that Theoregh5may be applicable in the future to depth-
two classes, such &M o SYM and depth-twaxactthreshold circuitsfiP1Q: an nontrivial counting SAT
algorithm for one of these classes would entail new lowendsu

Proof of Theorem 2.5, (Sketch) Let us start witl#” as typical. We survey what is needed to concl@#de
lower bounds in the proof of Theore®¥, and show that the new hypothesis supplies these needs.

The idea is to show thadEXP C % and the hypothesis implies evelye NTIME[2"] can be simulated
in nondeterministic 2/n time, contradicting the nondeterminstic time hierarcﬁfz?,]. In particular, the
assumptions imply that theEXP-complete problem ScciNcT 3SAT on circuits of AND/OR/NOT with
fan-in two, n inputs, and polyn) size can be nondeterministically solved@i2™") time, which is also
provably false Willla]. Recall that ccINCT 3SAT is the problemgiven an AND/OR/NOT circuit C of
fan-in two, does the truth table of C encode a satisfiable F=@Nmula? That is, SYJCCINCT 3SAT is a
“compressed” version of the 3SAT problem.

Suppose we are given an (arbitrary) cirdQiof sizes and wish to determine if it is a yes-instance of
SuUCCINCT 3SAT. AssumingNEXP has quasipolynomial-size circuits, it is proved that foem\C encod-
ing a satisfiable 3-CNFF, there is a quasipolynomial-size circitwhich succinctly encodes a satisfying
assignment foF: for all i, D(i) outputs the value of variablg in the satisfying assignment. Our “fast” non-
deterministic algorithm for 8ccINCT 3SAT guesses this circul, and uses it to construct a circltwith
n inputs andh’°°" size for somee, which is unsatisfiable if and only B encodes a satisfying assignment
to the formulaF encoded by.

AssumingNEXP has quasipolynomial-siz& circuits and that there is a@(Z”*”g) time algorithm for
% satisfiability, it is proved that there is a nondetermiwistigorithmA running in 2-2(™) time which,
given an AND/OR/NOT of fan-in two circuiE of sizes andn inputs, outputs an equivalef of g°9°s
size from the clas® on at least one nondeterministic branch (and prirt®n other branches). Running
this algorithmA, obtainingE’, then running thes” satisfiability algorithm orE’, we nondeterministically
determine tha€ is a yes-instance ofl&cINCT-3SAT in 2 20™) time.

Now assumés” is weakly closed under AND. The point where closure propstrére relevant is precisely
in the argument that the nondeterministic algoritAraxists. In fact, if our hypothesis and the assumption

9See also JMV13, Oli13] which consider other (stronger) closure properties.
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that NEXP has quasipolynomial-siz& circuits implies such an algorithm, it can be observed thatrest
of the proof carries over without modification. We now coustrsuch an algorithrA.

The algorithmA starts by guessing & circuit E” of n'°°" size which takes as input a pdix,g) €
{0,1}" x {0,1}'°9(sz8E)) ‘and outputs 1 if and only if the gatgin E outputs 1 wherE is given the inpuk.
(Such arE” exists, assuming has quasi-polynomial siz€& circuits.)

Now we need to verify that for every gatgindexed by 12,...,sizeE), E”(x,g) outputs what gateg of
E(x) outputs, on alk. Each gate is either an input, an AND of two previous gatgsandg,, an OR of two
previous gateg; andgy, or a NOT of a previous gatg .

To aid this verification, we show how to efficiently check fabitrary € circuits G and H whether
G(x) = H(x) for all inputsx, using an algorithm for counting SAT assignments. L2AFC) be the number
of satisfying assignments to a circ@ Observe thaG(x) = H(x) for all x if and only if #SAT(G) =
#SAT(H) = #SAT(GAH). (Note the third quantity can be efficiently computed, assgn® is weakly
closed under AND.) Moreove6(x) # H (x) for all xif and only if #SAT(G) + #SAT(H) = 2" and #SAT(GA
H) = 0. Therefore, by counting SAT assignments, we have algostbhecking whetheg is equivalent to
H, and whethef is equivalent to the negation &f, both running in timeO(Z”*”g).

We claim that the verification problem f&” can be reduced to a number of calls to the above kinds of
checks. First, nondeterministically guess a cirff;, intended to satisff//;(x,g) = —E”(x,g) for all x
andg. Verifying this condition can be done by counting SAT assigmts, as described above.

CheckingE” is correct on the input gates & means that for all = 1,...,n, E"(xg,...,Xn,i) = X.
BothE"(x1,...,%n,i) @andl(xy,...,%,) = X are¥ circuits, hence their equivalence can be verified by #SAT
calls. Checking a NOT gatg of E with input gateg; is equivalent to checking th&/(x,91) = E"(x,9)
on all x. Checking an AND gatg of two previous gateg; andg, amounts to checking th&” (x,g) =
E”(x,01) AE”(x,02) on allx. To do this, comput&anq(x) := E”(x,91) AE"(X,02) (@assumingé’ is weakly
closed under AND), then chedB,n4(X) = E”(x,g) for all x. Finally, for an OR gatey with inputs g;
andg,, we want to check theE”(x,g) = E”(x,01) VE”(x,02) on all x. This is equivalent to-E”(x,g) =
((-E"(x,91)) A (mE"(x,02))) for all x. This can be checked by formir@, (x) := E/,(X,01) A E/loi(X, 02),
then checking thaBor (X) = Epi(x,9) for all x.

On a circuitE with s < n'°9°" gates, the above procedure rung@" " .s) < 22 time. When it
concludes, we know that for all gatgsand allx thatE”(x,g) outputs the correct value. The circiit(x)
output byA simply evaluate&” (x,g*), whereg* is the output gate dE. O

3 Fast evaluation of depth-two threshold circuits

Finally, we show a strong sense in which depth-two thresbiotdiits areweak by giving a fast algorithm
for evaluating such circuit on many assignments in batcke géneral theorem is:

Theorem 3.1 Given a depth-two linear threshold circuit C wigk inputs and at most2 gates with
weights on the bottom layer of absolute value at magtWéights on the output gate of absolute value at
most W, and given two sets,B C {0,1} where|A| = |B| = n, we can evaluate C on alPrpoints in Ax B
using rf - poly(logWs, logn) 4+ n'+1/12. poly(logn, log\W,) time.

The following is immediate from Theoref 1

Reminder of Theorem1.5 Let k> 1. Given a depth-tw@"/?*-size linear threshold circuit C with integer
weights in[—znk, —2”k], we can evaluate C on &' input assignments i” - poly(n¥) time.

While the proof of Theorem3.1also ultimately depends on Coppersmith’s rectangularirnatultiplica-
tion, the rest of the algorithm is rather different from tivaleation algorithm of Theorerh. 1
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Proof of Theorem 3.1.  We reduce the evaluation task to a special kind of matrix iplidation, then
combine Coppersmith’s matrix multiplication with a mildute force to expedite the matrix multiply.

Define LEQ :Z x Z — {0,1} to output 1 on(a,b) if and only ifa < b. Given a vectow = (wy,...,Wqy) €
74, and given two matrice andN which aren x d andd x n, define theiw-weighted threshold product
to be(M@®wN)Ji, j] == T, wi- LEQ(M[i, K], N[k, j]).

We shall show that the-weighted threshold product of anx n'/12 matrix and am'/12 x n matrix can
be computed in essentially - poly(logn) time (with some additional but negligible overhead in tewhs
the weights). Let us postpone this algorithm for the momand first show how to embed the evaluation
problem into the weighted threshold product.

Let C be a depth-two circuit of size, with the X input variablesxy, ..., X, Y1,...,Yk. Letwy,..., Wg
be the weights of the top threshold gateGyfand letlq,ty, .. ., s, ts be the corresponding linear forms and
threshold values from the bottom layer of threshold gatest i, the output of LEQ;, ¢) is multipled by
w; in the output gate. Without loss of generality, we may asstiraeall weightsw; are multiplied by the
output of some threshold gate at the bottom layer (theretareatn wires from the input directly to the
output gate, and they can be replacedQiy) dummy gates at the bottom layer with wires to the output
gate). LetA= {Aq,..., Ay} C {0,1}KandB = {B,...,Bn} C {0,1}K.

We partition each linear form; on the bottom layer into two suni#x) andégy), such thang) involves

only input variablesx, ... , X, Eﬁy) involves onlyys, ..., Vi, andﬁgx) +£§y) = {j. LetAi(EEX)) and Bj(ég"))
denote the value of the linear forﬁfﬁ() (respectivelyﬁ%”) evaluated on assignmeAt (respectivelyB;).

Define the matriXM with rows indexed by elements 8f and columns indexed by the bottom layer gates
1,...,s. SetM][i,K] to the valuetk—Ai(el((X)). The matrixN has rows indexed by the bottom layer gates
1,...,s and columns indexed by elementsBfSetN[k, ] to the valueB; (Kf(y)).

Now consider thev-weighted threshold produdd ®,, N, wherew is the same as above. Theg entry of
this product equals

2 WeLEQ (A, By(¢)) = 3 weLEQ (oA + By ().
—1 =]

This is precisely the value of the linear form in the outpueg#C, whenxa, ..., xx are given the assignment
A andys,...,yk are assigne®;. The truth table o€ on A x B can be recovered by simply checking which
entries in(M @y N) exceed the output gate’s threshold.

Next, we shall show how to compute a weighted threshold mptoduct efficiently. Letd be a param-
eter, and leM andN benx n® andn? x n matrices, respectively. The first step is to reduce the weigh
significantly. For allk = 1,...,n%, let S be a list of all entries in th&th column ofM, plus thekth row of
N. SortS;, obtaining a ranking of 2items, and replace each entry in #tb column ofM and thekth row
of N by their rank in the sorted lisk. This step reduces the domainsMfandN to {1,...,2n}, and the
w-weighted threshold matrix product remains the same: etjualitiesM[i, k] < N[k, j] are preserved. Note
this step takes’*? - poly(logn,log\W,) time.

In order to reduce to matrix multiplication, we perform twioasegies with different advantages. (The
reduction is inspired by work of Matousekpt91] on computing dominances in high dimensions.) Let
se {1,...,n} be a parameter. Partition each sorted 8stinto t = [n/s] contiguous bucketdy,..., T,
where each buckéf contains at moss entries. (For all < j, the largest entry iff; is at most the smallest
entry inT;.)

Start with ann x n output matrixP that is all zeroes. For everfj,k) € [n] x [n°], look up the bucket
T, containingM[i, K] in the sorted lisS.. For allN[k, j] contained inT, such thatM[i,k] < NIk, j], add the

13



weightw to the entryP[i, j]. This loop adds td® all termsw - LEQ(M[i, k], N[k, j]) such thatM[i,k] and
N[k, j] appear in the same bucket®&f Observe that this step tak€$n-n° - s) time.

To handle thgM]i, k], N[k, j]) pairs that do not appear in the same bucket, we use matrixpiizdtion.
For each(i,k) € [n] x [n°], replace the entriyl[i,k] with a row vectow; x € {0,wi}!, such thaw; x[/] := w if
and only ifM[i,K] is in bucketT, of .. That is,vix hasw in exactly one entry, and zeroes elsewhere. This
forms a matrixM’ of dimensions x (n® -t). For (k, j) € [n°] x [n], replace each entiy[k, j] with a column
vectoruy j € {0,1}!, such that;[¢'] := 1 if and only if N[k, j] is in bucketT, of Scand¢ > ¢'. This forms
a matrixN’ of dimensiongn® -t) x n. The matrix producM’- N’ over the integers computes a sum of inner
products

(M-NOi, j] = 5 (Vige, Ui )-
no
If M[i,k] > Nk, j], or M[i,k] andN[k, j] are in the same bucket &, then(vi ., ux ;) = 0. If M[i, k] < N[k, j]
butN[k, j] andM[i, k] are in different buckets d& then (v; x, Uk j) = Wk.

Letting P:= P+ (M’ - N’), this procedure adds 1 all termsw - LEQ(M|i,k],N[k, j]) such thatM[i, k]
andN[k, j] appear in different buckets &. ThereforeP]i, j] contains the value of the linear form for the
output gate oC, under variable assignme(®#;, B;), for all i, j.

The above algorithm runs in tin@(n-n? - slogW, + MM (n,n**2 /s n) - poly(logW,) ), whereMM (a, b, c)
is the running time for multiplyingx x b andb x ¢ matrices. If we sen'*%/s= n%172 then Coppersmith’s
algorithm (Lemma2.3) can be applied to the second term of the running time, imekeing it in n?-
poly(logn) time. Under this settings = n® - n>828 and the first term of the running time g +20+0828,
Settingd = 0.086 > 1/12, the first term becomea® (note thats = n914). O

It is easy to see that, since the above algorithm actualljumsthe linear form at the output gate of a
depth-two threshold circuit, we can also efficiently evéduargeSYM o THR circuits as well.

Acknowledgements. | thank Igor Carboni Olivera for sending a preliminary verspf his survey, which
helped the ideas in the proof of Theor@mdto congeal. | also thank Rahul Santhanam for helpful comsnent
on an earlier draft.
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A Appendix: An exposition of Coppersmith’s algorithm

In 1982, Don Coppersmith proved that the rank (that is, thelmer of essential multiplications) of
N x NO172 and N%172 x N matrix multiplication is at mosO(Nlog?N). Prior work has observed that
his algorithm can also be used to show that the total numbarigfmetic operations for the same ma-
trix multiply is N - poly(logN). However, the implication is not immediate, and uses spepifdperties of
Coppersmith’s algorithm. Because this result is so essdntihis work and a recent algorithm for all-pairs
shortest patha/J/il13a], we give here a self-contained exposition.

Theorem A.1 (Coppersmith [Cop82)) For all sufficiently large N, the rank of M N-172x x N matrix mul-
tiplication is at most @N?log?N).

We wish to derive the following consequence of Coppersmitionstruction, which has been mentioned
in the literature before§M83, ACPS09 Will1lb]:

Reminder of Lemma2.3 For all sufficiently large N, andr <.172, multiplication of an Nx N9 matrix with
an N% x N matrix can be done in N poly(logN) arithmetic operations, over any field with(2r°Y(0IN))
elements.

For brevity, we will use the notatior/*x mx n matrix multiply” to refer to the multiplication of x m
andm x n matrices (hence the above gives an algorithmNfor N9 x N matrix multiply).

Note Lemma2.3 has been “improved” in the sense that the upper bound bas been increased mildly
over the yearsQop97 HP98 KZHP08 Galld. However, these later developments only rurNfio()
time, notN?- poly(logN) time (which we require). Our exposition will expand on théoimal description
given in recent work\Vil11b].

First, observe that the implication from Theoréil to Lemma2.3is not immediate. For example, it
could be that Coppersmith’s algorithm is non-uniform, nmakit difficult to apply. As far as we know,
one cannot simply take “constant size” arithmetic circutglementing the algorithm of Theore#.1
and recursively apply them. In that case, the plolgN) factor in the running time would then become
N¢ for some constant > 0 (depending on the size of the constant-size circuit). Tepkihe overhead
polylogarithmic, we have to unpack the algorithm and aralydirectly.

A.1 A short preliminary

Coppersmith’s algorithm builds on many other tools fronoprnatrix multiplication algorithms, many
of which can be found in the highly readable book of PRar{84. Here we will give a very brief tutorial of
some of the aspects.
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Bilinear algorithms and trilinear forms.  Essentially all methods for matrix multiplication are baar
(and if not, they can be converted into such algorithms),mmggthat they can be expressed in the so-called

trilinear form
ZA'kBkJCJmLIO ; Za.JA. (3 BijBij) - (3 wiCij) 1)
1] 1]

wherea;j, Bij, andy; are constant-degree polynomialsxmver the field, and(x) is a polynomial with
constant coefficient 0. Such an algorithm can be convertedoime with no polynomials and minimal extra
overhead (as described in Coppersmith’s paper). Typicalg/thinks ofAy andBy;j as entries in the input
matrices, an€; as indeterminates, so the LHS dj Corresponds to a polynomial whoSg coefficient is
theij entry of the matrix product. Note theansposeof the third matrixC corresponds to the final matrix
product.

To give an explicit example, we assume the reader is fanuilihr Strassen’s famous method fox2 x 2
matrix multiply. Strassen’s algorithm can be expressetienform of () as follows:

AiBiCii = (Aoo+A11)(Boo+ B11)(Coo+Ci1) (2)
i.j.f0.1

+(A10+ A11)Boo(Co1 — C11) + Aoo(Bo1 — B11)(Cio+ Ci1)
+(A10— Aoo) (Boo+ Bo1)C11+ (Ago + Ao1)B11(C10 — Coo)
+A11(B10— Boo) (Coo + Co1) + (Aor — A11) (B1o+ B11)Coo.

The LHS of (1) and @) represents the trace of the product of three matigéy andC (where thej entry
of matrix X is Xjj). It is well known that every bilinear algorithm naturallxgesses multiple algorithms
through this trace representation. Since

tr(ABC) =tr(BCA) =tr(CAB) =tr((ABC)") =tr((BCAT) =tr((CAB)"),

if we think of A as a symbolic matrix and considdr)(we obtain a new algorithm for computing a matfix
when givenB andC. Similarly, we get an algorithm for computingBawhen givenA andC, and analogous
statements hold for computing’, BT, andCT. So the aforementioned algorithm for multiplying a sparse
2 x 3 and sparse 3 2 yields several other algorithms.

Schinhage’s decomposition paradigm. Coppersmith’s algorithm follows a specific paradigm introeld
by Schonhagejch8] which reduces arbitrary matrix products to slightly largeatrix products with “struc-
tured nonzeroes.” The general paradigm has the followinm f&uppose we wish to multiply two matrices
A’ andB’.

1. First wepreprocess AandB” in some efficient way, decomposiig andB” into structured matrices
A A',B,B so thatA”.-B” = A'-A-B-B'. (Note, the dimensions o - A may differ fromA”, and
similarly for B'- B andB”.) The matricesA andB are sparse “partial” matrices directly basedAdn
andB”, but they have larger dimensions, and only contain nonseiroeertain structured parts. The
matricesA’ andB’ are very simple and explicit matrices of scalar constartssen independently of
A’ andB”. (In particular,A’ andB’ are Vandermonde-style matrices.)

2. Next, we apply a specialized constant-sized matrix plidation algorithm in a recursive manner, to
multiply the structuredh andB essentially optimally. Recall that Strassen’s famous imatultipli-
cation algorithm has an analogous form: it starts with a sewaltiplication product for X 2 x 2
matrix multiplication, and recursively applies this to aiot a general algorithm for™2x 2M x 2M
matrix multiplication. Here, we will use amptimalalgorithm for multiplying constant-sized matrices
with zeroes in some of the entries; when this algorithm isirgeely applied, it can multiply sparse
A andB with nonzeroes in certain structured locations.
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3. Finally, wepostprocesshe resulting produdE to obtain our desired produét’ - B”, by computing
A .C-.B'. Using the simple structure & andB’, the matrix product® := A'-C andD - B’ can
be performed very efficiently. Our aim is to verify that eatbpsof this process can be efficiently
computed, for Coppersmith’s full matrix multiplicationgalrithm.

A.2 The algorithm

The construction of Coppersmith begins by taking input inesA” of dimensions £%/5 x (4|\'>|"/5) 24M/5

andB” of dimensions(4|\')|"/5) 2*M/5 5 2M/5 whereM ~ logN, and obtains a®(5"poly(M)) algorithm for
their multiplication. Later, he symmetrizes the constiarctto get anN x N x N9 matrix multiply. We
will give this starting construction and show how standa&achhiques can be used to obtainhar N x N

matrix multiply from his basic construction.

The multiplication ofA” andB” will be derived from an algorithm which computes the prodofc? x 3
and 3x 2 matrices with zeroes in some entries. In particular theioest have the form:

b b
( a1 12 13 > bz 62
0 ap a3/’ by O '

and the algorithm is given by the trilinear form

(a11 + ¥%ay2) (b1 + X2by11) (Cr1) + (A11 + XPa13(b31) (Cr1 — XCa1) + (11 + XPa22) (b1 — Xbp1) (C22) (3)
+(a11 4 X%ap3) (b1 4 Xby2) (C12 + XCo1) — (A11) (b1 + ba1) (Cr1+ C12)
= X?(a11011C11 + A11012C21 + A12D21C11 + 813D31C11 + B22bp1Cr2 + B23031C12) + X - P(a, b, ¢, X).

That is, by performing the five products of the linear formspfandby, on the LHS, and using the; to
determine how to add and subtract these products to obtiouiput 2< 2 matrix, we obtain a polynomial
in each matrix entry whose coefficients yield the final matrix product;.

When the algorithm given bya is applied recursively to" x 3¥ and 3! x 2 matrices (analogously
to how Strassen’s algorithm is applied to dd 2 2M x 2M matrix multiply), we obtain an algorithm that
can multiply matricesA and B with dimensions ¥ x 3 and 3! x 2 respectively, wheré hasO(5M)
nonzeroesB hasO(4M) nonzeroes, and these nonzeroes appear in a highly regtlamp@vhich can be
easily deduced). This recursive application 8f (ill result in polynomials inx of degreeO(M), and
additions and multiplications on such polynomials incestige overall time by aM - poly(logM) factor.
Therefore we can multiply thegeandB with structured nonzeroes @(5" - poly(M)) field operations.

The decomposition oA” andB” is performed as follows. We choog¢ and B’ to have dimensions
2M/5 5 oM and 2 x 2M/5, respectively, and such that af> x 2*M/5 submatrices of and /5 x 2M/5
submatrices oB’ are non-singular. Following Schonhage, we p¥lkandB’ to be rectangular Vandermonde
matrices: thd,j entry of A’ is (a,-)ifl, whereay, ay, ... are distinct elements of the fiel® is defined
analogously. Such matrices have three major advantagesiiefican be succinctly described (witi2M)
field elements), (2) multiplying these matrices with adoiyrvectors can be done extremely efficiently, and
(3) inverting an arbitrary square submatrix can be doneemeity efficiently. More precisely) x n Vander-
monde matrices can be multiplied with arbitrarvectors inO(n- poly(logn)) operations, and computing
the inverse of am x n Vandermonde matrix can be done@tn- poly(logn)) operations (for references,
see CKY89, BP94). In general, operations on Vandermonde matrices, theiisposes, their inverses, and
the transposes of inverses can be reduced to fast multipomputations on univariate polynomials. For
example, multiplying am x n Vandermonde matrix with a vector is equivalent to evalgatnpolynomial
(with coefficients given by the vector) on thelements that comprise the Vandermonde matrix, which takes
O(nlogn) operations. This translates @(n- poly(logn)) arithmetic operations.
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The matricesA and B have dimensions™x 3V and 3 x 2V, respectively, wheré has onlyO(5M)
nonzeroesB has onlyO(4™) nonzeroes, and there is an optimal algorithm for multiglyix 3 (with
5 nonzeroes) and 8 2 matrices (with 4 nonzeroes) that can be recursively agpgbemultiply A and B
optimally, inO(5M - poly(M)) operations. Matriceé andB are constructed as follows: take any one-to-one
mapping between thé4h'>|"/5) 2M/5 columns of the inpuf\” and columns of the spargewith exactly ZM/5

nonzeroes. For these colummef Awith 2°Y/5 nonzeroes, we compute the inverggh of the 2M/5 x 24M/5
minor Aq of A" with rows corresponding to the nonzeroes in the column, anltipty Aal with columnq
(in 2*M/5. poly(M) time). After these columns are processed, the restisfzeroed out. Then, there is a
one-to-one correspondence between columms’@nd nonzero columns & - A. Performing a symmetric
procedure folB” (with the same mapping on rows instead of columns), we caandpose it intoB andB’
such that there is a one-to-one correspondence betweerofd/sand nonzero rows dB- B'. It follows
that this decomposition takes orﬂ}((m&"/S) 24M/5. 24M/5  noly(M)) time. Since 8 ~ (4&"/5)44""/5 (within
poly(M) factors), this quantity is upper bounded BY Foly(M).

After A andB are constructed, the constant-sized algorithm farand 3x 2 mentioned above can be
applied in the usual recursive way to multiply the spaksandB in O(5M - poly(M)) operations; call this
matrix Z. Because)' andB’ are Vandermonde, the produst- Z - B' can be computed i®(5M - poly(M))
operations. Hence we have an algorithm for multiplying iwes of dimensions®/5 x (4,3"'/5) 2*M/5 and

(4,\')"/5) 24M/5 5 2M/5 that is explicit and takes's. poly(M) operations.

Call the above algorithm AGORITHM 1. Observe AGORITHM 1 also works when the entries Af and
B” are themselves matrices over the field. (The running timeswikly increase in proportion to the sizes
of the underlying matrices, but the bound on the numbepeafrations on the entrieemains the same.)

Up to this point, we have simulated Coppersmith’s consimaatompletely, and have simply highlighted
its efficiency. By exploiting the symmetries of matrix mplication algorithms in a standard way, we can
extract more algorithms from the construction. The traemiidy tells us that

tr(ABC) = tr(BCA),

implying that the expressiorB) can also be used to partially multiply & 3 2™ matrix B with at most #
structured nonzeroes and “ful’™2x 2¥ matrix C in 5M - poly(M) operations, obtaining a8x 2M matrix
AT with at most %' nonzeroes. In our AGORITHM 1, we have a decomposition AfandB; in terms of the
trace, we can derive;:

tr(A’B"-C") =tr(AA-BB -C") = tr(B-BC"A - A).

This can be applied to obtain an algorithm f@g,;’}l"/S)Z“M/E’ x 2M/5 % 24M/5 matrix multiplication, as
follows. Given input matrice®” andC” of the respective dimensions, decomp@seinto a 3 x 2V B
with O(4™) nonzeroes and"2x 2\/5 Vandermondé®', as described above. Lettirg be a Vandermonde
2M/5 5 2M matrix, compute the matri€ := B'-C” - A’ in at most ¥ - poly(M) operations. Noting that
is 2" x 2M we can then multiply8 andC in 5M - poly(M) operations. This results in &'3< 2V matrix AT
with at most %' nonzeroes. The final outp’ is obtained by using the one-to-one mapping to extract the
appropriate(M')I"/S) 2*M/5 rows fromAT, and multiplying each such row by the appropriate inverseomof A’

(corresponding to the nonzeroes of that row). This takesost (‘g&"/S) 2*M/5.2M  noly(M) < 5M - poly(M)
operations. Call this AGORITHM 2.

From ALGORITHM 2 we immediately obtain an algorithm fof'%® x 24/5 x (i, 1) 2*™/5 matrix mul-

tiplication as well: given input matrice&C”)T and (B”)" of the respective dimensions, simply compute
B”.C” using ALGORITHM 2, and output the transpose of the answer. Call this@RrITHM 3.
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Finally, by “tensoring” AL.GORITHM 2 with ALGORITHM 3, we derive an algorithm for matrix multipli-
cation with dimensions

<4|\I>|A/5> R <4|\|>|/I /5> 25 IS > 8M /M 5 45 5 8M /M.

That is, we divide the two input matrices of large dimensionie blocks of 2M/5 x 2M/5 and M/5 x
(am/5)2*™/° dimenisons, respectively. We execute@oRITHM 2 on the blocks, and call KGORITHM 3
when the product of two blocks is needed.

As both ALGORITHM 2 and ALGORITHM 3 are explicit and efficient, their “tensorization” inherthese
properties. AGORITHM 2 uses 8 - poly(M) operations, and each operation can take uptegoly(M)
time (due to calls to AGORITHM 3). Therefore, we can perform &5¢ 42M/5 » 5M matrix multiply over
fields with 2°YM) elements, in 3" . poly(M) time. Settingn = log(M)/log(5), the algorithm runs in
n? - poly(logn) time for fields with 2°%(1°9" elements.
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