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Abstract

Quantum codes with low-weight stabilizers known as LDPC codes have been actively studied

recently due to their simple syndrome readout circuits and potential applications in fault-tolerant

quantum computing. However, all families of quantum LDPC codes known to this date suffer from a

poor distance scaling limited by the square-root of the code length. This is in a sharp contrast with

the classical case where good families of LDPC codes are known that combine constant encoding

rate and linear distance. Here we propose the first family of good quantum codes with low-weight

stabilizers. The new codes have a constant encoding rate, linear distance, and stabilizers acting on

at most O(
√
n) qubits, where n is the code length. For comparison, all previously known families

of good quantum codes have stabilizers of linear weight. Our proof combines two techniques:

randomized constructions of good quantum codes and the homological product operation from

algebraic topology. We conjecture that similar methods can produce good stabilizer codes with

stabilizer weight O(nα) for any α > 0. Finally, we apply the homological product to construct new

small codes with low-weight stabilizers.
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I. INTRODUCTION

Classical low density parity check codes are characterized by the property that their par-

ity checks act only on O(1) bits. Such codes have found numerous applications due to their

efficient decoding algorithms based on the belief propagation and high transmission rates

approaching the channel capacity limit1,2. In addition to showing good practical perfor-

mance, some families of LDPC codes are good in the coding theory sense featuring a linear

minimum distance and, at the same time, constant encoding rate. Some LDPC codes are

known to achieve the Gilbert-Varshamov bound on the code parameters2.

The recently emerged field of quantum error correction attempts to apply coding theory

principles to the challenging tasks of fault-tolerant quantum computing and reliable trans-

mission of quantum states through a noisy communication channel. A natural question that

we investigate here is whether good LDPC codes have a quantum counterpart. To pose this

question formally and motivate it let us highlight main distinctions between classical and

quantum error correction. Most importantly, a quantum code must protect encoded states

from both bit-flip and phase-flip errors. Accordingly, the simplest construction of quantum

codes due to Calderbank, Shor, and Steane3 (CSS) uses a pair of classical linear codes CZ

and CX that are responsible for detecting bit-flip and phase-flip errors respectively. Each

basis vector f of CZ or CX gives rise to a stabilizer operator which is a product of Pauli

operators Z or X respectively over all qubits in the support of f . Valid codewords are

quantum states invariant under the action any stabilizer, whereas corrupted codewords may

violate one or several stabilizers. The requirement that codewords must satisfy both types

of stabilizers simultaneusly translates to a peculiar condition that the two classical codes

must be pairwise orthogonal, CX ⊆ (CZ)⊥.

The second distinction between classical and quantum error correction applies to the

recovery step. Namely, one must be able to identify violated stabilizers without measuring

a state of individual code qubits (which could disturb the encoded state). This is usually

achieved by measuring only ancillary qubits that collect the syndrome information. To

determine the syndrome of a stabilizer acting on some subset of code qubits S, the corre-

sponding ancilla has to be coupled to each qubit of S by applying a CNOT gate. Since

in practice all gates have a nonzero error probability and errors introduced by each gate

accumulate, fault-tolerance considerations strongly favor codes in which all stabilizers act
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only on a few qubits, ideally O(1) qubits4. Quantum codes used in the state-of-the-art

fault-tolerant schemes such as the surface code family5,6 are of this type.

A. Quantum LDPC Codes

A quantum CSS code encoding k qubits into n qubits with the minimum distances dX , dZ

is a pair of classical linear codes CX , CZ ⊆ {0, 1}n with the following properties:

1. CX ⊆ (CZ)⊥ or, equivalently, CZ ⊆ (CX)⊥.

2. k = n− dim (CX)− dim (CZ).

3. dZ is the minimum weight of vectors in (CX)⊥\CZ .

4. dX is the minimum weight of vectors in (CZ)⊥\CX .

Here and below by a weight of a vector or a matrix we mean the number of non-zero entries.

The distances dX and dZ determine the minimum number of single-qubit X-type and Z-

type errors respectively that can corrupt a codeword without being detected. We shall use

a notation [[n, k, d]] for a CSS code defined above, where d = min {dX , dZ} is the worst-case

minimum distance. Let us say that a family of codes is good iff it has a constant encoding

rate, k/n = Ω(1), and a linear distance, d = Ω(n). A code is LDPC if its stabilizers act only

on a few qubits and each qubit is acted upon only by a few stabilizers. To define this formally

we have to assume that the code is specified by a pair of parity check matrices AZ , AX such

that CZ and CX are the linear spaces spanned by rows of AZ and AX respectively. A CSS

code has stabilizer weight w iff

5. Any row and any column of the parity check matrices AZ , AX has weight at most w.

A family of codes is called LDPC iff it has constant stabilizer weight46 w = O(1). We

will use the notation [[n, k, d, w]] for a CSS code defined above. In spite of significant

efforts, constructing good quantum LDPC codes or merely proving that such codes exist

remains an elusive goal. Here we make a step towards this goal by showing how to combine

two previously known techniques: randomized constructions of good codes and homological

constructions of LDPC codes.
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It has been realized early on by Kitaev7 that homology theory provides a natural frame-

work to construct and analyze quantum LDPC codes in a systematic way. In this framework,

described in detail below, code qubits and parity checks are identified with cells of properly

chosen dimensions in a cell decomposition of some manifold. The toric code introduced

by Kitaev7 has parameters [[2n, 2,
√
n, 4]] and can be described using homologies of a two-

dimensional torus. In spite of being one of the first quantum codes discovered, the toric code

turned out to be optimal in several respects. In particular, Aharonov and Eldar showed8 that

any quantum code with w ≤ 3 has bounded distance, d = O(1). Furthermore, it was shown

that d = O(
√
n) for any code with geometrically local stabilizers in the 2D geometry9,10.

Subsequent generalizations of the toric code11–19 described below improved its encoding rate

achieving k = Θ(n) and slightly improved the distance achieving d = Θ(
√
n log n). However,

the toric code family is not expected to contain good codes.

The randomized construction of quantum codes pioneered by Calderbank and Shor3 de-

fines a suitable random ensemble of pairwise orthogonal classical codes CX , CZ and proves

that with high probability the resulting CSS code has linear distance. In fact, such random

CSS codes attain the quantum version of the Gilbert-Varshamov bound, k/n = 1−2H(d/n),

where H(x) is the Shannon entropy3. An alternative construction of good codes based on

random encoding circuits with small depth was proposed by Brown and Omar20. One could

expect therefore that good quantum LDPC codes, if exist, are likely to be found using

random constructions, as it was the case for classical LDPC codes1.

B. Summary of Results

The present paper contains two technical contributions. First, we show how to apply the

homology theory framework to construct a random ensemble of CSS codes with low weight

stabilizers. For a code with n qubits our method produces stabilizers with weight O(
√
n).

In addition, any qubit is acted upon by at most O(
√
n) stabilizers. Secondly, we show that

a random code drawn from this ensemble is good with high probability. This leads to the

following result.

Theorem 1. For all sufficiently large n there exist a quantum CSS code with parameters

[[n, c1n, c2n, c3

√
n]], where ci > 0 are constant coefficients independent of n.

In contrast, all previous constructions of good quantum codes have stabilizer weight Θ(n),
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including randomized constructions. While this result falls short of proving the existence of

good quantum LDPC codes, we believe that it can be improved in several respects; see the

discussion below.

The key ingredient in the proof of Theorem 1 is the homological product operation in-

troduced in Ref. 19. The homological product takes as input a pair of quantum LDPC

codes and produces a larger LDPC code encoding more qubits and having larger distance

that each of the input codes. To make this more quantitative, the homological product of

two CSS codes [[na, ka, da, wa]], a = 1, 2, is a CSS code [[n, k, d, w]], where n = O(n1n2),

k = k1k2, w = w1 + w2, and d ≤ d1d2. It should be emphasized that the homological prod-

uct is different from code concatenation. Although concatenation of two codes [[na, ka, da]]

gives a code with parameters [[n1n2, k1k2, d1d2]] which are similar to the ones of the product

code, concatenation does not preserve the property of having low-weight stabilizers. The

homological product is a natural generalization of the hypergraph product construction by

Tillich and Zémor15. The latter takes as input a pair of classical LDPC codes [n, k, d] and

produces a quantum LDPC code [[O(n2), k2, d]]. Unfortunately, the hypergraph product

cannot achieve distance growing faster than O(
√
n).

We construct the desired family of codes by taking the homological product of two random

CSS codes. Since random codes are typically not LDPC, the property of having stabilizer

weight w = w1 + w2 in the product code is not really needed in our case. For this reason

we opted to work with a simplified version of the homological product which we call a

“single sector theory” to distinguish it from a “multiple sector theory” of Ref. 19. The

product code constructed using the single sector theory has parameters n = n1n2, k = k1k2,

d ≤ d1d2 and stabilizer weight w ≤ n1 + n2 (here for simplicity we assume that the input

codes have the same distance da for both X-type and Z-type errors; see Eq. (10) for the

general case). While the single sector theory does not map LDPC codes to LDPC codes, it

has an advantage of being easier to analyze and requires fewer qubits for the product code.

To prove Theorem 1 we apply the single-sector homological product to a pair of random

CSS codes with fixed length n1 = n2 and fixed number of logical qubits k1 = k2 such that

ka = cna for some small constant c. Since n = n1n2, this guarantees that the product code

has constant encoding rate, k = k1k2 = Ω(n) and stabilizer weight w ≤ n1 + n2 = O(
√
n).

Furthermore, since random codes are good with high probability, we have da = Ω(na). If we

assumed optimistically that the product code has distance d = d1d2 (with high probability),
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then d = Ω(n) implying that the product code is good. Unfortunately, obtaining a lower

bound on d in terms of d1 and d2 appears to be a hard problem. In general it is not true

that d = d1d2, see Section V for counter-examples.

Instead we use statistical arguments and prove that the fraction of input codes leading

to the output distance d < cn is less than one for a sufficiently small constant c. While

conceptually this proof is similar to proving goodness of random CSS codes as in Ref. 3, there

are several distinctions. Most notably, homological product codes are degenerate whereas

completely random CSS codes are not. Recall that a degenerate quantum code has some

undetectable errors of weight less than the code distance. Such low-weight undetectable

errors, obtained as products of stabilizers, have trivial action on any codeword and, in the

case of homological product codes, have weight O(
√
n) which is much smaller than the

code distance d = Ω(n). The proof of Ref. 3 is not applicable to degenerate codes because

it attempts to prove that all undetectable errors have high weight without differentiating

between stabilizers and logical operators.

A natural question is whether the stabilizer weight w = O(
√
n) in Theorem 1 can be

improved by considering m-fold products. For the single-sector theory, homological product

of m input codes [[na, ka, da]] has parameters n =
∏m

a=1 na, k =
∏m

a=1 ka, and stabilizer

weight w ≤
∑m

a=1 na. Suppose all input codes have the same length na = n1/m and the same

number of logical qubits ka = cna for some constant c. Then the product code has encoding

rate k/n = cm and stabilizer weight w ≤ mn1/m. Although the distance of the product code

is very difficult to compute, we hope that the statistical arguments developed in this paper

can be generalized to the m-fold product for m = O(1). Proving that the product code has

distance d = Ω(n) would establish existence of good quantum codes with stabilizer weight

w ≤ nε for any constant ε > 0. Furthermore, in Section VI, we propose a proof strategy

which, if successful, could reduce the stabilizer weight from nε to O(1) at the cost of slightly

increasing the code length.

Since first quantum devices are likely to involve only a few qubits, a natural question is

how well the homological product performs for small input codes. In Section V we consider

the smallest CSS code correcting any single-qubit error which is the Steane [[7, 1, 3]] code.

We show that the product of two Steane codes gives [[49, 1, 9]] code with stabilizer weight

w = 8. For comparison, concatenating the Steane code with itself gives [[49, 1, 9]] code with

stabilizer weight w = 12.
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C. Previous Work

The observation that the theory of CSS codes has a natural interpretation in terms of ho-

mology, in particular Z2 homology, goes back to the pioneering works by Kitaev7, Freedman

and Meyer21, and Bombin12. In this subsection we review some constructions of quantum

LDPC codes focusing on those obtained by homological tools. We leave aside alternative

constructions of LDPC codes based on algebraic and graph-theoretic methods22–25.

Notable codes include hyperpolic surface codes and color codes14,18 which are general-

izations of the toric code defined on a surface of constant negative curvature and large

injectivity radius. These codes achieve a constant encoding rate and a slowly growing dis-

tance. The toric code has been generalized to higher-dimensional manifolds by Freedman

et al11. Using a rather complicated 3D manifold the authors of Ref. 11 obtained the first

(and currently the only) example of a quantum LDPC code with the distance growing faster

than
√
n. This code however has only O(1) logical qubits. In a recent breakthrough work

Tillich and Zémor15 proposed a method of constructing quantum LDPC code from a pair

of classical LDPC codes. The hypergraph product codes of Ref. 15 were shown to admit

a natural description as a homological product of chain complexes19. An improved version

of the hypergraph product codes was proposed by Kovalev and Pryadko26. There are also

interesting examples of LDPC codes, such as Haah’s cubic code27, with a large gap between

the best known lower and upper bounds on the distance which leaves a possibility of faster

than
√
n distance scaling. We summarize parameters of the known quantum LDPC codes

and the new product codes in the table below.

k d w

Surface codes O(1) O(
√
n) 4

Hyperbolic surface codes Ω(n) Ω(log n) O(1)

Generalized 3D toric codes O(1) Ω(
√
n log n) O(1)

Hypergraph product codes Ω(n) Ω(
√
n) O(1)

Homological product codes (new) Ω(n) Ω(n) O(
√
n)

We emphasize that our construction produces stabilizer codes, rather than subsystem

codes28,29. The latter can be viewed as regular stabilizer codes in which some subset of

logical qubits, known as “gauge qubits”, is not used to encode information. Of particular

interest are subsystem LDPC codes30–35 in which the “gauge group” generated by stabilizers
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and logical operators on the gauge qubits has generators of weight O(1). The recovery step

for a subsystem LDPC code requires only measurements on subsets of O(1) qubits even

if stabilizer generators have a very large weight. Indeed, since any stabilizer S belongs to

the gauge group, it can be represented as a product of low-weight gauge group generators,

S = G1 · · ·Gm. Hence the syndrome of S can be determined by measuring eigenvalues of

individual generators Gi and classically computing the product of the observed outcomes

(here we assume for simplicity that all generators that appear in the decomposition of S

pairwise commute). However, the above is true only in the idealized settings. Since in

practice operations performed at the recovery step are noisy, fault-tolerance considerations

strongly favor subsystem codes in which both gauge generators and stabilizer generators

have low weight. Indeed, if a stabilizer S as above has too large weight, the syndrome of S

cannot be reliably deduced from noisy measurements of the gauge generators Gi since the

measurement errors tend to accumulate.

D. Discussion and Outline

The homological product can be intuitively understood by considering generalized toric

codes as an example. These codes can be defined on any D-dimensional manifold M by

applying the following three steps. First, one chooses a discretization (for example, a tri-

angulation) of the manifold. Second, one takes this discretization and constructs a chain

complex — a set of vector spaces and certain linear operators on these spaces as reviewed in

the next section. Third, one converts the chain complex into a CSS code, as reviewed also

in the next section. Given two manifolds, M1,M2, a very natural operation is to construct

the product manifold M1 ×M2. A discretization of the product manifold can be obtained

from those of M1 and M2. This gives rise to a new chain complex for M1 ×M2 and hence

a new code. Crucially for our purposes, the chain complex that corresponds to M1 ×M2

can be constructed directly from the chain complexes corresponding to M1 and to M2. This

operation of constructing a new chain complex from two other chain complexes, is called

the homological product. Since for our purposes a chain complex is equivalent to a CSS

quantum code, this allows us to construct a new code from two other codes, in a fashion

completely distinct from concatenating the codes. Rather than applying this homological

product to codes obtained from manifolds with some nice properties, we instead apply it
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directly to codes obtained from a randomized construction.

The rest of the paper is organized as follows. Section II reviews the construction of

codes from homology. Section III constructs a random ensemble of good CSS codes. The

proof of Theorem 1 is contained in Section IV which gives lower bound on the distance

for the homological product of two random codes. Section V presents numerical results

on small codes. Finally, section VI discusses several open problems. Appendix A proves

some counting results used in the main text, while Appendix B extends the homological

construction to GF (4) codes.

II. QUANTUM CODES, HOMOLOGY, AND PRODUCT COMPLEXES

In this section we introduce a homological description of CSS codes. We first review

some standard terminology which may be less familiar to a coding theory audience and then

define a homological product of two CSS codes which plays the key role in this paper. We

note that our construction of CSS codes from chain complexes is slightly different from the

one previously described in the literature19. Throughout this paper we shall use notations

kerA and imA for the kernel and the image of a linear map A.

A. Homological Description of CSS Codes

The theory of CSS codes has a natural interpretation in terms of homology, in particular

Z2 homology. Recall that the main object of a homology theory is a chain complex. It is

defined by a sequence of spaces, often written Ci, for certain integers i, and by certain linear

operators from one space to another. In the case of Z2 homology, the spaces Ci are vector

spaces over the binary field F2 (more generally, they could be vector spaces over other fields

or more generally modules). The linear operators are called boundary operators, and often

one writes ∂i to denote an operator from Ci to Ci−1. The defining requirement of a boundary

operator is that

∂i−1∂i = 0. (1)

This allows us to define a CSS code from a chain complex with three spaces C2, C1, C0. Assign

a basis to each of these three spaces. Let there be one qubit per basis vector in C1. Define
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parity check spaces CZ , CX ⊆ C1 as

CZ = im ∂2 and CX = im ∂T1 .

Here ∂T1 : C0 → C1 is obtained by transposing the matrix of ∂1 in the chosen basis. To

check that CX ⊆ (CZ)⊥ choose any vectors z = ∂2f ∈ CZ and x = ∂T1 g ∈ CX . Here

f ∈ C2 and g ∈ C0 are arbitrary vectors. Then the inner product between x and z is

(x, z) = (g, ∂1∂2f) = 0 due to Eq. (1). Thus CX , CZ indeed define a CSS code with

n = dim C1 code qubits. This construction can be readily generalized to a construction of

CSS codes for qudits rather than qubits, using Zd homology instead of Z2 homology.

In this paper, however, we use a slightly simplified construction which we call a single

sector theory to distinguish it from the “multiple sector” theory outlined above. We will

see that the single sector theory requires less qubits to build a product of two codes and is

easier to analyze. In a single sector theory, a chain complex consists of a single binary linear

space C and a linear operator ∂ mapping C to itself. This linear operator ∂ is again called

a boundary operator and is required to satisfy the condition

∂2 = 0. (2)

We will choose C as the n-dimensional binary space Fn2 equipped with the standard basis

such that all basis vectors have weight one. Then the transposed matrix ∂T is well-defined

and (∂T )2 = 0. We define a CSS code by choosing the parity check matrices as AX = ∂ and

AZ = ∂T . The rows AZ and AX span parity check spaces

CZ = im ∂ and CX = im ∂T . (3)

The condition ∂2 = 0 implies that

(CZ)⊥ = ker ∂T and (CX)⊥ = ker ∂. (4)

Since im ∂ ⊆ ker ∂, the parity check spaces are mutually orthogonal, CZ ⊆ (CX)⊥. Hence

the complex (C, ∂) defines a CSS code with n = dim (C) code qubits and

k = n− 2 rank (∂) (5)

logical qubits. The code has stabilizer weight w whenever every row and every column of ∂

has weight at most w. Thus LDPC codes correspond to sparse boundary operators that have
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O(1) non-zero entries in every row and every column. The number of linearly independent

parity checks of each type is equal to rank (∂). One can always get an independent set of

parity checks by picking any maximal independent subset of columns and rows of ∂. Finally,

the code distances dZ and dX coincide with the minimum weight of vectors in ker ∂\ im ∂

and ker ∂T\ im ∂T respectively.

In this paper we adopt some standard terms from homology theory referring to various

elements of the chain complex. For the reader’s convenience we summarize those terms

below and translate them to the coding theory language.

(C, ∂) complex CSS code

∂ : C → C boundary operator

ker ∂ cycles undetectable errors of Z-type

ker ∂T cocycles undetectable errors of X-type

im ∂ trivial cycles products of Z-type stabilizers

im ∂T trivial cocycles products of X-type stabilizers

ker ∂\ im ∂ non-trivial cycles Z-type logical operators

ker ∂T\ im ∂T non-trivial cocycles X-type logical operators

ker ∂/ im ∂ homology class equivalence class of Z-type logical operators

ker ∂T/ im ∂T cohomology class equivalence class of X-type logical operators

The middle column in lines 3-8 of the table shows the term for vectors in the particular set

defined in the left-hand column. The right-hand column shows the term for the correspond-

ing Pauli operator (here a Pauli operator P (f) corresponding to some binary vector f is

the product of Pauli X or Z over all qubits in the support of f). The term undetectable

error refers to a Pauli operator commuting with all stabilizers. An undetectable error is

called a logical operator if it has a non-trivial action on codewords. Two logical operators

are considered equivalent iff they differ by a product of stabilizers. Equivalent logical op-

erators have the same action on any codeword. Note that the sets ker ∂, ker ∂T , im ∂, im ∂T

are linear spaces, while ker ∂\ im ∂ and ker ∂T\ im ∂T are not. Equivalence classes of logical

operators are identified with cosets, that is, elements of the quotient spaces ker ∂/ im ∂ and

ker ∂T/ im ∂T .

We shall sometimes use the terms ‘complex’ and ‘code’ interchangeably: given a complex,

we can define a code in a canonical fashion as described above. The minimum weights of

a non-trivial cycle and a non-trivial cocycle coincide with the code distances dZ and dX
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respectively. Finally, define a homological dimension of a complex as

H(∂) = dim (ker ∂)− dim (im ∂) = dim(ker ∂/ im ∂). (6)

Note that the homological dimension of a complex coincides with the number of logical

qubits in the corresponding code: k = n− 2 rank (∂) = (n− rank (∂))− dim (im ∂) = H(∂).

Let us emphasize that the mapping from complexes to CSS codes is many-to-one. Indeed,

given a pair of parity check matrices AX , AZ as above, one can define a boundary operator

∂ = (AZ)TUAX , where U is an arbitrary invertible matrix. Note that the desired properties

∂2 = 0, im ∂ = CZ , and im ∂T = CX hold regardless of the choice of U . Also note that

if we start from a CSS code with low-weight stabilizers, it is generally not true that ∂ is

sparse (in the sense of having low-weight rows and columns). Finally let us comment that

any stabilizer [[n, k, d]] code can be converted to a CSS code [[4n, 2k, 2d]] with CX = CZ ,

see Ref. 36. Moreover, this conversion preserves the stabilizer weight up to a factor O(1).

In that sense the restriction to CSS codes is not essential.

For product complexes (defined in the next subsection) we shall reserve the notation ∂ for

the boundary operator of the product complex and denote boundary operators of individual

complexes as δ1 and δ2. Unless stated otherwise, below we shall always work with the single

sector theory.

B. Product Complex and Künneth Formula

Let (C1, δ1) and (C2, δ2) be an arbitrary pair of complexes. Define an operator

∂ = δ1 ⊗ I + I ⊗ δ2 (7)

acting on the tensor product space C1⊗C2. Here I is the identity operator. We shall always

equip the space C1 ⊗ C2 with the product basis i ⊗ j, where i and j are basis vectors of C1

and C2. The property δ2
a = 0 implies that ∂2 = 2δ1 ⊗ δ2 = 0 since we consider linear spaces

over the binary field (working with more general vector spaces would require a definition

∂ = δ1 ⊗ I − I ⊗ δ2). Thus ∂ is a valid boundary operator. We shall refer to the complex

(C1 ⊗ C2, ∂) as a product of complexes (C1, δ1) and (C2, δ2).

One important property of the product complex is that we can easily compute its homo-

logical dimension (the number of logical qubits) from the ones of individual complexes. The
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following simple fact is a special case of the well-known Künneth formula, see for instance

Ref. 37.

Lemma 1 (Künneth formula). Let δ1, δ2 be any boundary operators and ∂ = δ1⊗I+I⊗δ2.

Then

ker ∂ = ker δ1 ⊗ ker δ2 + im ∂ (8)

and

H(∂) = H(δ1) ·H(δ2). (9)

Proof. Consider any vector f ∈ ker ∂. Define a vector g = (δ1 ⊗ I)f = (I ⊗ δ2)f . By

construction, g ∈ (im δ1 ⊗C2)∩ (C1 ⊗ im δ2) = im δ1 ⊗ im δ2, that is, g = (δ1 ⊗ δ2)h for some

h ∈ C1 ⊗ C2. Identities δ2
a = 0 then lead to (δ1 ⊗ I)(f + ∂h) = 0 and (I ⊗ δ2)(f + ∂h) = 0,

that is, f + ∂h ∈ (ker δ1 ⊗ C2) ∩ (C1 ⊗ ker δ2) = ker δ1 ⊗ ker δ2 This proves the inclusion ⊆

in Eq. (8). The inclusion ⊇ follows trivially from δ2
a = 0 and ∂2 = 0. It remains to prove

Eq. (9). One can easily check that im δ1 ⊗ ker δ2 ⊆ im ∂ and ker δ1 ⊗ im δ2 ⊆ im ∂. Thus

Eq. (8) implies that ker ∂/ im ∂ has a basis hi1 ⊗ h
j
2, where {hia}i is a basis of ker δa/ im δa.

This proves Eq. (9).

Next we compute parameters of the CSS code corresponding to the product complex. Let

wa be the maximum weight of rows and columns of the boundary operator δa. Let dZa , d
X
a be

the minimum weight of non-trivial cycles or co-cycles, respectively, in the complex (Ca, δa).

Lemma 2. Any row and any column of ∂ has weight at most w1 + w2. Furthermore, let

dZ , dX be the minimum weight of non-trivial cycles or co-cycles, respectively, in the complex

(C1 ⊗ C2, ∂). Then,

max {dα1 , dα2} ≤ dα ≤ dα1d
α
2 , α = X,Z. (10)

We note that the upper bound in Eq. (10) may or may not be tight depending on the choice

of input complexes (Ca, δa), see Section V for more details. For the product of complexes

constructed using the multiple sector theory one can prove a similar lemma and, moreover,

derive simple sufficient conditions under which the upper bound in Eq. (10) is tight38.

Proof of Lemma 2. Consider the case α = Z; the case α = X can be handled by replacing

δa by δTa . The matrices δ1 ⊗ I and I ⊗ δ2 have both row and column weights at most w1

and w2 respectively. By triangle inequality, ∂ has row and column weights at most w1 +w2.
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Given any nontrivial cycles ha ∈ ker δa\ im δa, the vector h1 ⊗ h2 is a nontrivial cycle for

∂. If ha has weight dZa then h1 ⊗ h2 has weight dZ1 d
Z
2 . This proves dZ ≤ dZ1 d

Z
2 . To prove

the lower bound on dZ , assume without loss of generality that dZ1 ≥ dZ2 . Suppose ψ is a

minimum weight non-trivial cycle for ∂. Then we can always choose a pair of non-trivial

cocycles ha ∈ ker δTa \ im δTa such that ψ and h1 ⊗ h2 have odd overlap. Using the Künneth

formula Eq. (8) one can represent ψ as ψ = φ+ θ + ω, where

φ ∈ ker δ1 ⊗ ker δ2, θ ∈ im δ1 ⊗ C2, ω ∈ C1 ⊗ im δ2.

Let us identify vectors from C1 ⊗ C2 with matrices of size n1 × n2. Using matrix-vector

notations we have hT1 ψh2 = 1. Furthermore, θh2 ∈ im δ1 and ωh2 = 0 since h2 is a cocycle.

Thus ψh2 ∈ φh2+im δ1 ⊆ ker δ1. On the other hand, ψh2 /∈ im δ1 since otherwise hT1 ψh2 = 0.

Thus ψh2 is a non-trivial cycle for δ1 and as such it must have weight at least dZ1 . Since ψh2

is a linear combination of columns of ψ, the triangle inequality implies that ψ itself must

have weight at least dZ1 .

As was shown in the previous subsection, the complex (Ca, δa) describes a CSS code

[[na, ka, da, wa]], where na = dim (Ca), ka = H(δa), and da = min {dXa , dZa }. Lemmas 1,2

imply that the product complex (C1 ⊗ C2, ∂) describes a CSS code [[n, k, d, w]], where

n = n1n2, k = k1k2, w = w1 + w2, d = min{dX , dZ}, (11)

and dX , dZ are the two distances of the product code which are bounded as in Eq. (10).

Remark: The multiple sector version of the product is defined analogously. In this case,

given complexes with vector spaces Ci and C ′i and boundary operators δi and δ′i, define a new

complex with spaces

Di = ⊕jCj ⊗ C ′i−j, (12)

and boundary operators ∂i defined as follows. The operator ∂i has nonzero matrix elements

from each space Cj ⊗ C ′i−j to the spaces Cj−1 ⊗ C ′i−j and Cj ⊗ C ′i−j. The matrix elements

to the first space are given by the matrix elements of the operator δj ⊗ I while the matrix

elements to the second space are given by the matrix elements of the operator (−1)jI⊗δ′i−j.

This construction gives an operator ∂ such that ∂i−1∂i = 0 for any field.
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III. RANDOM CODES FROM RANDOM COMPLEXES

In this section we define a random ensemble of boundary operators used throughout this

paper. We will show that the corresponding CSS code is good with high probability. First

we derive a canonical form of a boundary operator.

Lemma 3. Consider any complex (C, δ) such that δ has homological dimension H and rank

L. Then δ = Uδ0U
−1, where U is some invertible matrix and δ0 is the canonical boundary

operator defined as block matrix

δ0 =


0 0 0

0 0 I

0 0 0

 . (13)

Here rows and columns are grouped into blocks of size H,L, L. Furthermore, the number of

invertible matrices U such that δ = Uδ0U
−1 does not depend on δ.

Proof. Let M = dim (C). By definition of the homological dimension, Eq. (6), one has

L + H = dim (ker δ) = M − L, that is, M = 2L + H. Choose an arbitrary H-dimensional

subspace H such that ker δ = H⊕ im δ is a direct sum. Let I1, I2, . . . , IL+H be any basis of

ker δ such that I1, . . . , IH span H and IH+1, . . . , IH+L span im δ. Then IH+j = δ(IH+L+j)

for some vectors IH+L+1, . . . , IM . LetM be the subspace spanned by IH+L+1, . . . , IM . Since

δ ·M = im δ, dim (M) ≤ L, and dim (im δ) = L, one must have dim (M) = L. The property

δ2 = 0 implies that M∩ ker δ = 0, as otherwise δ · M would have dimension less than L.

Thus vectors I1, . . . , IM form a basis of the full space C. In this basis δ has the desired form

Eq. (13). Hence δ = Uδ0U
−1 for some invertible U .

To prove the last statement, define a normalizer group G = {U : Uδ0U
−1 = δ0}. Then

UδU−1 = V δV −1 implies V −1U ∈ G. Thus for any a given δ there are |G| invertible matrices

U such that δ = Uδ0U
−1.

Let us fix M and H. Below we consider a random boundary operator δ distributed

uniformly on the set of all M ×M matrices satisfying δ2 = 0 and H(δ) = H. By Lemma 3,

such random boundary operator can be represented as δ = Uδ0U
−1, where U is a random

invertible matrix drawn from the uniform distribution. Define an encoding rate

ρenc = H/M. (14)
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We shall be interested in the limit M,H →∞ such that the encoding rate remains constant.

Let us show that in this limit a random boundary operator gives a code with linear distance

with high probability.

Lemma 4. For any ε > 0 one can choose c, ρenc > 0 such that the following is true for

all large enough integers M and for all H ≤ ρencM . Let δ be a random M ×M boundary

operator with H(δ) = H. Then the probability that ker δ contains a vector with weight less

than cM is at most O(1) · 2−M/2+Mε and the same bound also holds for ker(δT ).

Proof. We just consider the case of ker(δ); the proof for ker(δT ) is identical since δ and δT

are drawn from the same distribution.

Let M = 2L + H. We will say that a vector has low weight iff its weight is less than

cM . By Lemma 3, we can assume that δ = Uδ0U
−1, where U is a random invertible matrix.

Note that ker δ = U ·ker δ0. For a fixed vector v ∈ ker δ0 the rotated vector Uv is distributed

uniformly on the set of all M -bit vectors. Thus the probability that Uv has low weight is

equal to ∑
w<cM

2−M
(
M

w

)
≤ O(1) · 2−M+S(c)M+o(M),

where S(c) = −c log2(c) − (1 − c) log2(1 − c) is the Shannon entropy. The total number of

vectors in ker δ0 is 2L+H = 2(M+H)/2. The union bound implies that ker δ contains a low

weight vector with probability at most

O(1) · 2(M+H)/2−M+S(c)M+o(M) = O(1) · 2−M/2+H/2+S(c)M+o(M).

It remains to choose small enough c and ρenc such that S(c)M + ρencM/2 + o(M) ≤ εM .

IV. PRODUCT OF TWO RANDOM COMPLEXES: DISTANCE BOUNDS

In this section we study the product of two random complexes (Ca, δa) defined above. Both

complexes have the same dimension, dim (C1) = dim (C2) = M , and the same homological

dimension H = H(δ1) = H(δ2) = ρencM . We prove that for sufficiently small c > 0

and ρenc > 0, the product code has distance at least cM2 with high probability. The

distance bound in the previous section was based on a “first moment” method: we showed

that the average number of low weight cycles is small, implying that with high probability
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there are no low weight cycles. There are two reasons why this kind of estimate will not

work for the product code. One obvious reason is that, by construction, the product code

always has cycles with weight O(M). These are trivial cycles (boundaries) obtained as

∂(i ⊗ j) = (δ1i) ⊗ j + i ⊗ (δ2j), where i, j are any basis vectors. Thus some steps in the

proof must differentiate between trivial and non-trivial cycles. The second reason is that,

if by chance we pick a poor choice of the boundary operators δ1, δ2 such that ∂ has a low

weight non-trivial cycle, then in fact ∂ will have many low weight non-trivial cycles. To

see this, note that if ∂ has a non-trivial cycle ψ with weight o(M2) then the sum of ψ and

any low weight trivial cycle as above is a non-trivial cycle with weight o(M2). As a result,

even though most codes will not have any low weight non-trivial cycles, the average number

of such cycles will not be small. This problem motivates our introduction of “uniform low

weight” condition below.

Assume that a vector ψ in the product complex C1⊗C2 exists that is a nontrivial cycle for ∂

and has weight less than cM2. We regard ψ as an M -by-M matrix, with rows corresponding

to the first complex and columns corresponding to the second. Choose any constant r such

that c < r < 1. Clearly, ψ has at least (1 − r)M columns with weight at most cMr−1.

Similarly, ψ has at least (1 − r)M rows with weight at most cMr−1. Let M ′ = (1 − r)M .

Then, if we consider the M ′-by-M ′ submatrix of ψ consisting just of those rows and columns,

then every row has weight at most cMr−1 = c′M ′ where

c′ = cr−1/(1− r), (15)

and similarly every column also has weight at most c′M ′. We refer to this submatrix as

the reduced matrix. We refer to the condition that an M ′-by-M ′ matrix has weight at most

c′M ′ in every row and column as the uniform low weight condition. The above shows that

ψ must have at least one M ′-by-M ′ submatrix obeying the uniform low weight condition.

Note that for any fixed r > 0 one can make c′ arbitrarily small by choosing small enough c.

In subsection IV A we show that if each input code has distance at least M−M ′+1, then

in the product complex there is no nontrivial cycle which gives a vanishing reduced matrix.

The probabilistic estimates from the previous section imply that for sufficiently large M ′

the desired distance bound on the input codes will hold with high probability. The number

of possible choices of M ′ rows out of M is
(
M
M ′

)
. Thus, the number of possible choices of M ′

rows and M ′ columns is
(
M
M ′

)2
. Fix any choice of M ′ rows and M ′ columns and let Pred(M

′)
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denote the probability that there is a cycle (trivial or nontrivial) which gives a nonvanishing

reduced matrix obeying the uniform low weight condition. Note that this probability is

independent of the particular choice of the set of M ′ rows and columns.

Summing over all choices of M ′ rows and columns and using a union bound, the probabil-

ity that there is a cycle which contains a non-vanishing reduced matrix obeying the uniform

low weight condition is bounded by
(
M
M ′

)2
Pred(M

′). Thus the probability that there is a

nontrivial cycle ψ with weight at most cM2 is bounded by(
M

M ′

)2

Pred(M
′) + o(1), (16)

where the o(1) accounts for the exponentially small probability that one of the input codes

has distance less than M −M ′ + 1.

The proof of the distance bound for the product code will be based on bounding Pred(M
′).

From here on, when we refer to a reduced matrix, we use the fixed choice of submatrix

corresponding to the first M ′ rows and columns. To bound Pred(M
′), in subsection IV B we

estimate the number of different M ’-by-M ′ matrices of given rank R which correspond to

the reduced matrix of a cycle. Then in subsection IV D, we estimate the probability that an

M ′-by-M ′ random matrix of given rank obeys the uniform low weight condition. Combining

these two with a union bound, we show that with exponentially high probability, there are

no cycles which contain a reduced matrix of rank R ≥ 1 obeying the uniform low weight

condition. Our bounds will be sufficiently tight so that
(
M
M ′

)2
Pred(M

′) will be bounded by

an exponentially small quantity. Thus the probability that the product code has non-trivial

cycle with weight less than cM2 is o(1). Since exactly the same bounds apply to cocycles,

this shows that the product code has distance less than cM2 with probability o(1). Thus

there exist a family of codes [[M2, (ρencM)2, cM2, O(M)]], as promised in Theorem 1.

Some comments on notation: we use O(...) and o(...) notation referring to scaling with

M . We work at fixed ρenc throughout, so the big-O notation equivalently refers to scaling

with L or H.

A. No Vanishing Reduced Matrices

Lemma 5. Suppose each input code has minimum distance at least M−M ′+1. If h ∈ ker ∂

is a cycle with vanishing reduced matrix, then h is trivial, that is, h ∈ im ∂. The same holds
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for cocycles.

We shall need the following simple fact proved in Ref. 39.

Lemma 6 (Cleaning Lemma). Suppose a stabilizer code has minimum distance d. Let P

be any logical operator and S be any subset of less than d qubits. Then there exists a logical

operator P ′ equivalent to P modulo stabilizers, such that P ′ acts trivially on S.

Now we can easily prove Lemma 5.

Proof. Consider any non-trivial co-cycle h̄a ∈ ker δTa \ im δTa . Note that h̄a represents a logical

operator of the a-th input code. Let S = {M ′ + 1,M ′ + 2, . . . ,M}. Since the size of S is

less than the code distance, Cleaning Lemma guarantees that there exists a trivial co-cycle

ω̄a ∈ im δTa such that h̄a + ω̄i has support only on the interval [1,M ′]. Thus we can choose

a basis set of non-trivial co-cycles

ker δTa = span (h̄1
a, h̄

2
a, , . . . , h̄

H
a ) + im δTa (17)

such that h̄ia have support only on the interval [1,M ′]. Let us now choose basis sets of

non-trivial cycles dual to the ones defined in Eq. (17), that is,

ker δa = span (h1
a, h

2
a, . . . , h

H
a ) + im δa (18)

such that

(h̄ia, h
j
a) = δi,j. (19)

Here (f, g) =
∑M

p=1 fpgp is the binary inner product between vectors f, g. Applying Künneth

formula Eq. (8) to ∂ and ∂T one gets

ker ∂ = span {hi1 ⊗ h
j
2, 1 ≤ i, j ≤ H}+ im ∂ (20)

and

ker ∂T = span {h̄i1 ⊗ h̄
j
2, 1 ≤ i, j ≤ H}+ im ∂T . (21)

Suppose now that h ∈ ker ∂ is a cycle with vanishing reduced matrix. Using Eq. (20), one

can write h as

h =
H∑

i,j=1

xi,j h
i
1 ⊗ h

j
2 + ω, (22)
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for some ω ∈ im ∂ and some coefficients xi,j ∈ {0, 1}. Since (ω, h̄i1 ⊗ h̄
j
2) = 0 for all i, j, the

duality Eq. (19) implies that xi,j = (h, h̄i1 ⊗ h̄
j
2). However, since h̄i1 ⊗ h̄

j
2 has support only

on the reduced matrix and h has vanishing reduced matrix, xi,j = 0 for all i, j. This shows

that any cycle with vanishing reduced matrix must be trivial.

B. Counting Reduced Cycles

In this subsection we consider a fixed reduced matrix formed by the first M ′ rows and

columns. We say that an M ′ ×M ′ matrix h is a reduced cycle if there exists a full cycle

g ∈ ker ∂ such that g contains h in the first M ′ rows and columns. Let Γ(R) be the number

of reduced cycles h such that h has rank R. The main goal of this subsection is to derive

an upper bound on Γ(R). To this end we define a reduced boundary operator ∂′ acting on

a properly defined coarse-grained space. We show that the task of counting reduced cycles

with a given rank is closely related to counting matrices in ker ∂′ with a given rank.

Definition 1. A boundary operator δ is called good iff no non-zero vector in ker δ has support

on the last M −M ′ coordinates.

The main result of the subsection is the following.

Theorem 2. Suppose the boundary operators δ1, δ2 are good. Suppose also that δa have

homological dimension H. Let Γ(R) be the number of reduced cycles with rank R. Then

Γ(R) ≤ O(1) · 2(M+H)R−R2

if R ≤ H, (23)

and

Γ(R) ≤ O(1) · 2(M+H/2)R−R2/2 if R ≥ H. (24)

Furthermore, Γ(R) does not depend on δa as long as δa are good.

In the rest of this subsection we prove the theorem. Let C = span {1, 2, . . . ,M} be the

full M -dimensional binary space. We begin by defining several subspaces of C and linear

operators acting on those subspaces. First, decompose

C = V ⊕ V>, V = span {j : 1 ≤ j ≤M ′}, V> = span {j : M ′ < j ≤M}. (25)
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Let W and W> be projectors onto the sectors V and V> in Eq. (25). Here by a projector

we mean a linear operator on C that sends all vectors in one sector to zero and acts as the

identity on the other sector. Thus W +W> = I is the identity operator on C.

Let δ : C → C be the boundary operator describing one of the two input codes. Recall

that δ2 = 0. Define subspaces

S> = Wδ(V>) ⊆ V and V ′ = V/S>.

By definition, vectors of the quotient space V ′ are cosets x+S>, where x ∈ V . The following

lemma defines a reduced boundary operator δ′ which will play the key role in what follows.

Lemma 7. There exists a unique linear operator δ′ : V ′ → V ′ such that (δ′)2 = 0 and

δ′(x+ S>) = Wδ(x) + S> for any x ∈ V . (26)

Proof. Let us first show that

im (WδWδ) ⊆ S>. (27)

Indeed, suppose x = WδWδ(y) for some y. Then x = Wδ(I + W )δ(y) = WδW>δ(y) ∈

Wδ(V>) = S> which proves Eq. (27). To show that Eq. (26) indeed defines a linear operator

on V ′ we need to check that the right-hand side of Eq. (26) depends only on the coset of

x. Equivalently, we need to check that Wδ(S>) ⊆ S>. However, this follows from Eq. (27)

since Wδ(S>) = (WδWδ)(V>) ⊆ imWδWδ. Thus δ′ is well-defined. The property (δ′)2 = 0

follows trivially from Eq. (27).

We first establish some basic properties of δ′. Given a vector h ∈ V , let h′ ∈ V ′ be the

coset of h, that is, h′ = h+ S>.

Lemma 8. For any vector g ∈ C one has (Wδg)′ = δ′(Wg)′. Furthermore,

ker δ′ = {(Wg)′ : δg ∈ V>} and im δ′ = {((Wg)′ : g ∈ im δ}. (28)

Proof. Indeed, (Wδg)′ = Wδg + S> = Wδ(W + W>)g + S> = WδWg + S> = δ′(Wg)′.

Here we used the fact that WδW>g ∈ Wδ(V>) = S>.

Let us show that ker δ′ = {(Wg)′ : δg ∈ V>}. Indeed, suppose δ′h = 0. Then the coset

h has a representative f ∈ V such that Wδf ∈ S>, that is, Wδ(f + k) = 0 for some k ∈ V>.

Let g = f + k. Then δg ∈ V> and h = f + S> = Wg + S> proving that h = (Wg)′ has

the desired form. Conversely, if δg ∈ V> then δ′(Wg)′ = (Wδg)′ = 0 since WV> = 0. The

second equality in Eq. (28) follows trivially from the identity (Wδg)′ = δ′(Wg)′.
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Recall that we define a homological dimension of a boundary operator δ as H(δ) =

dim (ker δ)−dim (im δ). Below we show that the boundary operators δ and δ′ have the same

homological dimension, as long as δ is good, see Definition 1. Note that the condition of

being good can be rephrased as

ker δ ∩ V> = 0. (29)

Lemma 9. Suppose a boundary operator δ is good. Then dimV ′ = 2M ′ −M and

dim (ker δ′) = dim (ker δ)− (M −M ′), dim (im δ′) = dim (im δ)− (M −M ′). (30)

Proof. Since dimV ′ = M ′−dimS>, it suffices to show that dimS> = M−M ′. By definition,

S> = Wδ(V>) and thus dimS> ≤ dimV> = M −M ′. Suppose dimS> < dimV>. Then

there must exist a non-zero vector g ∈ V> such that Wδ(g) = 0. From Eq. (29) we infer

that h = δ(g) 6= 0 but Wh = 0, that is, h ∈ V>. This contradicts to Eq. (29) since

δh = δ2(g) = 0.

The goodness condition implies that δg ∈ V> is only possible for δg = 0. Thus the first

equality in Eq. (28) becomes ker δ′ = {(Wg)′ : g ∈ ker δ}. Noting that S> ⊆ W (im δ) ⊆

W (ker δ) and using Eq. (28) we arrive at

dim (ker δ′) = dim (W ker δ)− dim (S>) and dim (im δ′) = dim (W im δ)− dim (S>).

Using the goodness condition again one can easily show that dim (W ker δ) = dim (ker δ)

and dim (W im δ) = dim (im δ). It remains to substitute dim (S>) = M −M ′.

The above lemma implies that H(δ′) = H(δ) whenever δ is good. From now on we

consider a pair of good boundary operators δ1, δ2 : C → C such that

dim (im δa) = L and dim (ker δa) = L+H, where M = 2L+H.

Define subspaces S>a and V ′a as above for each boundary operator δa. Let δ′a : V ′a → V ′a be

the corresponding reduced boundary operator. By Lemma 9 we have

dimV ′a = 2M ′ −M ≡ K. (31)

Consider a tensor product space C ⊗ C and define

∂′ = δ′1 ⊗ I + I ⊗ δ′2 (32)
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acting on the space V ′1 ⊗ V ′2. Note that

V ′1 ⊗ V ′2 ∼= (V ⊗ V)/S>12, where S>12 = S>1 ⊗ V + V ⊗ S>2 . (33)

Given any vector h ∈ V ⊗ V , let h′ ∈ V ′1 ⊗ V ′2 be the coset h + S>12. One can easily check

that (f ⊗ g)′ = f ′ ⊗ g′ for any f, g ∈ V . The lemma below shows that a coset is a cycle for

the reduced boundary operator ∂′ iff it has a representative which is a reduced matrix of a

cycle for ∂.

Lemma 10. Suppose δa are good. Then

ker ∂′ = {((W ⊗W )g)′ : g ∈ ker ∂} and im ∂′ = {((W ⊗W )g)′ : g ∈ im ∂}. (34)

Proof. Let us first show that ∂′((W⊗W )h)′ = ((W⊗W )∂h)′ for any h ∈ C⊗C. By linearity,

it suffices to consider product vectors h = g1 ⊗ g2. Then

((W ⊗W )∂h)′ = (Wδ1g1)′ ⊗ (Wg2)′ + (Wg1)′ ⊗ (Wδ2g2)′

= δ′1(Wg1)′ ⊗ (Wg2)′ + (Wg1)′ ⊗ δ′2(Wg2)′

= ∂′((Wg1)′ ⊗ (Wg2)′) = ∂′((W ⊗W )h)′. (35)

Here the second equality uses Lemma 8. This immediately proves the second equality in

Eq. (34) and the inclusion ker ∂′ ⊇ {((W ⊗W )g)′ : g ∈ ker ∂}.

It remains to prove ker ∂′ ⊆ {((W ⊗W )g)′ : g ∈ ker ∂}. Suppose ∂′f = 0 for some coset

f ∈ V ′1 ⊗ V ′2. We need to show that f has a representative g which is a reduced matrix

of a cycle. By Künneth formula, ker ∂′ = im ∂′ + ker δ′1 ⊗ ker δ′2. By linearity, it suffices to

consider two cases. Case 1: f ∈ im ∂′. Then the second equality in Eq. (34) implies that f

has a representative which is a reduced matrix of a boundary (and thus a cycle). Case 2:

f ∈ ker δ′1 ⊗ ker δ′2. Since δa are good, Lemma 8 implies that ker δ′a = {(Wg)′ : g ∈ ker δa}.

Hence f has a representative g = (W ⊗W )gfull, where gfull ∈ ker δ1 ⊗ ker δ2. Clearly, ffull

is a cycle and we are done.

The first equality in Eq. (34) implies that the set of rank-R matrices of size M ′ ×M ′

which are reduced matrices of cycles coincides with the set of rank-R matrices g ∈ V ⊗ V

such that the coset g′ is a cycle for the reduced boundary operator. Thus

Γ(R) =
∑

h∈ker ∂′

#{g ∈ V ⊗ V : rank (g) = R and g′ = h}. (36)
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Choose any basis set of cosets h1
a, . . . , h

K
a ∈ V ′a and let gia ∈ V be any fixed vector in the coset

hia. One can always choose a basis of V such that the first K basis vectors are g1
a, . . . , g

K
a

and the last M ′ −K = M −M ′ basis vectors belong to S>a . Then any vector g ∈ V ⊗ V in

the coset h can be regarded as an M ′ ×M ′ matrix that contains a given K ×K matrix h

in the first K rows and columns.

Definition 2. Let X and Y be arbitrary matrices of size a× a and A×A respectively. We

will say that Y is an extension of X iff Y contains X in the first a rows and columns. Let

EA,R
a,r be the number of rank-R extensions Y of a given rank-r matrix X.

Note that the number of rank-R matrices Y extending a given matrix X is invariant

under a transformation X → UXV , where U , V are arbitrary invertible matrices. This

means that the number of rank-R extensions Y depends only on the rank of X and thus the

coefficient EA,R
a,r is well-defined. In Appendix A we prove that

EA,R
a,r ≤ O(1) · 2(2A−a)R−ar−R2+(r+R)2/4 (37)

and

EA,R ≡ EA,R
0,0 = O(1) · 22AR−R2

. (38)

Note that EA,R is the total number of rank-R matrices of size A×A. Using these notations,

Eq. (36) can be written as

Γ(R) =

min {K,R}∑
r=0

#{h ∈ ker ∂′ : rank (h) = r} · EM ′,R
K,r . (39)

The remaining step is to compute the number of matrices h′ ∈ ker ∂′ with a given rank

r. This is done in the next lemma; while the lemma is stated in terms of ∂, we will apply it

to the reduced boundary operator ∂′, using dim (im δ′a) = L− (M −M ′).

Lemma 11. Let δ1, δ2 be boundary operators with dim (im δa) = L and dim (ker δa) = L+H.

Define ∂ = δ1 ⊗ I + I ⊗ δ2 and let Z(r) be the number of rank-r matrices in ker ∂. Then

Z(r) is only a function of r, L,H and

Z(r) ≤ O(1) · 22(H+L)r−r2 ·
min (r/2,L)∑

f=0

2−2f2+2f(r−H). (40)
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Proof. By Lemma 3, there exist invertible matrices Ua such that a transformation δa →

UaδaU
−1
a brings δa into the canonical form

δa =


0 0 0

0 0 I

0 0 0

 , (41)

where rows and columns are grouped into blocks of size H,L, L. Let U = U1 ⊗ U2. Noting

that (U1δ1U
−1
1 ) ⊗ I + I ⊗ (U2δ2U

−1
2 ) = U∂U−1 and ker (U∂U−1) = U · ker ∂, it suffices to

count rank-r matrices in ker ∂ for the special case when both matrices δa have the canonical

form. Using Künneth formula Eq. (8) one can easily check that ker ∂ coincides with the set

of matrices h having the following form:

h =


A B 0

C D F

0 F 0

 . (42)

As above, we group rows and columns into blocks of size H,L, L. Consider the set of matrices

h as above where the block F has some fixed rank f . For a fixed choice of F let Srow and

Scol be the set of first f linearly independent rows and columns of F respectively. Choose

any invertible L×L matrices U and V such that UFV has zero rows outside Srow and zero

columns outside Scol. A transformation

h→


I 0 0

0 U 0

0 0 U

 · h ·

I 0 0

0 V 0

0 0 V


does not change rank of h and preserves its block structure. Keeping in mind that there are

EL,f choices of F with a given rank f , see Eq. (38), we can now assume that F has zero rows

outside of Srow and zero columns outside Scol. Removing all rows of Srow and all columns of

Scol from h reduced its rank by 2f regardless of the choice of the remaining blocks A,B,C,D.

After this removal the non-zero part of h forms a matrix of size (H+L−f)×(H+L−f) which

can be completely arbitrary as long as its rank is r − 2f . Combining all these observations

we arrive at

Z(r) =

min (r/2,L)∑
f=0

EL,f · 22f(H+L)−f2 · EH+L−f,r−2f . (43)
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Here the factor 22f(H+L)−f2 represents possible choices of A,B,C,D in f rows of Srow and

in f columns of Scol. Substituting Eq. (38) and collecting similar terms gives Eq. (40).

We conclude that the number of reduced cycles with a given rank R is

Γ(R) =

min {K,R}∑
r=0

Z(r) · EM ′,R
K,r . (44)

This shows that Γ(R) does not depend on δa as long as δa are good. From Eq. (37) we get

EM ′,R
K,r = O(1) · 2MR−(2M ′−M)r−R2+(r+R)2/4. (45)

Applying Lemma 11 to the reduced boundary operators δ′a and noting that dim (im δ′a) =

L− (M −M ′), see Eq. (30), we can rewrite Eq. (44) as

Γ(R) ≤ O(1) · 2MR−3R2/4

R∑
r=0

2(H+R/2)r−3r2/4

∞∑
f=0

2−2f2+2f(r−H). (46)

Here we extended the range of the sum over f in Eq. (40) to all integers f ≥ 0 since we

just need an upper bound on Γ(R). Likewise, we extended the range of the sum over r in

Eq. (44) to 0 ≤ r ≤ R. The function 2−2f2+2f(r−H) has maximum at f = f0 = (r − H)/2

and decays exponentially away from f0. Note that f0 is in the range of the sum over f iff

r ≥ H. If this is the case, then the sum over f can be approximated, up to a factor O(1),

by the single term 2−2f20 +2f0(r−H) = 2(r−H)2/2. In the remaining case, r < H, the sum over

f can be approximated by a constant O(1). Let Γ1(R) and Γ2(R) be contributions to the

righthand side of Eq. (46) that come from the terms with r ≤ H and r ≥ H respectively.

We have

Γ1(R) = O(1) · 2MR−3R2/4

min {H,R}∑
r=0

2(H+R/2)r−3r2/4. (47)

The function 2(H+R/2)r−3r2/4 achieves maximum at r = r0 = (2/3)H + R/3 and decays

exponentially away from r0. Note that r0 ≥ min {H,R} with the equality iff H = R. Hence

the sum over r can be approximated, up to a factor O(1), by the last term r = min {H,R}.

Simple algebra shows that

Γ1(R) ≤ O(1) · 2(M+H/2)R−R2/2 if R ≥ H, (48)

and

Γ1(R) ≤ O(1) · 2(M+H)R−R2

if R ≤ H. (49)
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Next let us bound Γ2(R). Note that terms with r ≥ H can only appear for R ≥ H. Replacing

the sum over f by O(1) · 2(r−H)2/2 in Eq. (46) and simplifying the resulting expression one

gets

Γ2(R) = O(1) · 2MR−3R2/4+H2/2

R∑
r=H

2−r
2/4+Rr/2. (50)

The function 2−r
2/4+Rr/2 achieves maximum at r = R and decays exponentially away from

the maximum. Approximating the sum over r by the last term r = R, we get

Γ2(R) = O(1) · 2MR−R2/2+H2/2 ≤ O(1) · 2(M+H/2)R−R2/2, (51)

since R ≥ H. This proves Eqs. (23,24).

C. Parameterization of Reduced Cycles

For any pair of good boundary operators δ1, δ2, let ZR(δ1, δ2) be the set of M ′-by-M ′

matrices which are reduced cycles and have rank R. Note that ZR(δ1, δ2) has size Γ(R), see

Theorem 2. Our ultimate goal is to use the union bound to prove that with high probability

(over the choice of δa) no matrix in ZR(δ1, δ2) obeys the uniform low weight condition. To

this end we shall parameterize reduced cycles in ZR(δ1, δ2) by integers j = 1, . . . ,Γ(R) for

each good pair δ1, δ2. Moreover, this parameterization will have certain symmetry such that

for any fixed j and for a random pair of good boundary operators δ1, δ2 the j-th reduced

cycle in ZR(δ1, δ2) is distributed uniformly on the set of all rank-R matrices of size M ′-by-

M ′. In the rest of this subsection we define a parameterization with the desired symmetry

properties.

Below we consider block-diagonal M ×M matrices

Ua =

U ′a 0

0 I

 , (52)

where U ′1 and U ′2 are arbitrary invertible M ′×M ′ matrices. Given a pair of good boundary

operators δ1, δ2, define

δ̃a = UaδaU
−1
a . (53)

Lemma 12. Suppose δa are good boundary operators. Then δ̃a are also good boundary

operators.
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Proof. Let δ ≡ δa, U ≡ Ua, and δ̃ = UδU−1. It is clear that δ̃2 = 0, so it suffices to check

that δ̃ is good. By definition of goodness, see Eq. (29), no vector in ker δ has support on

the last M −M ′ coordinates, that is, ker δ ∩ V> = 0. Furthermore, since U is invertible, we

have ker δ̃ = U · ker δ. Taking into account that V> = U · V> we get

ker δ̃ ∩ V> = (U · ker δ) ∩ (U · V>) = U · (ker δ ∩ V>) = 0.

Hence δ̃ is good.

The following lemma provides the desired parameterization of reduced cycles.

Lemma 13. One can parameterize reduced cycles in each set ZR(δ1, δ2) by integers j =

1, . . . ,Γ(R) such that the following properties hold. (1) The parameterization is defined for

any good pair δ1, δ2. (2) Choose random boundary operators δ1, δ2 from the uniform distri-

bution. Conditioned on δ1, δ2 being good, the j-th reduced cycle in ZR(δ1, δ2) is distributed

uniformly on the set of all M ′ ×M ′ matrices with rank R.

Proof. Define ∂̃ = δ̃1 ⊗ I + I ⊗ δ̃2. Noting that ∂̃ = (U1 ⊗ U2)∂(U1 ⊗ U2)−1 one easily gets

ker ∂̃ = (U1 ⊗ U2) ker ∂. (54)

Suppose g ∈ V ⊗ V is a reduced cycle for ∂, that is, g = (W ⊗ W )gfull for some full

cycle gfull ∈ ker ∂. Let g̃ = (U ′1 ⊗ U ′2)g. Taking into account that U ′aW = WUa we get

g̃ = (W ⊗W )(U1⊗U2)gfull. Since (U1⊗U2)gfull ∈ ker ∂̃, see Eq. (54), we conclude that g̃ is

a reduced cycle for ∂̃, that is, g̃ ∈ ZR(δ̃1, δ̃2). The same argument shows that (U ′1 ⊗ U ′2)−1g̃

is a reduced cycle for ∂ whenever g̃ is a reduced cycle for ∂̃. Hence

ZR(δ̃1, δ̃2) = (U ′1 ⊗ U ′2)ZR(δ1, δ2). (55)

Consider some fixed good pair δ1, δ2. By theorem 2, the set ZR(δ1, δ2) has size Γ(R). Choose

an arbitrary parameterization of the set ZR(δ1, δ2) by integers j = 1, . . . ,Γ(R). Let ψj be

the j-th reduced cycle in ZR(δ1, δ2). Then consider all possible pairs δ̃1, δ̃2 as defined in

Eqs. (52,53) and choose (U ′1 ⊗ U ′2)ψj as the j-th reduced cycle of ZR(δ̃1, δ̃2). By Eq. (55),

this parameterizes the sets ZR(δ̃1, δ̃2). Next choose any good pair δ1, δ2 which has not been

considered yet. Choose an arbitrary parameterization on the set ZR(δ1, δ2) and extend it to

all sets ZR(δ̃1, δ̃2) as described above. Repeating these steps we can parameterize the sets

ZR(δ1, δ2) for all good pairs δ1, δ2.
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It remains to note that we choose boundary operators from a distribution invariant under

the transformation δa → δ̃a. Hence the distribution of the j-th reduced cycle ψj is invariant

under a transformation ψj → (U ′1 ⊗ U ′2)ψj, where U ′a are arbitrary invertible matrices. This

is only possible if ψj is distributed uniformly on the set of all rank-R matrices.

D. Probability of Having Uniform Low Weight

In this subsection we derive an upper bound on the probability that a random rank-R

matrix has low weight in all rows and in all columns (uniform low weight condition). To

simplify notation, the lemma below is stated for M ×M matrices. However, it should be

kept in mind that the lemma will be applied to reduced matrices of cycles which have size

M ′ ×M ′.

Lemma 14. For any ε > 0 one can choose c > 0 such that the following is true for all

integers 1 ≤ R ≤ M . Let Z be a random rank-R matrix of size M ×M drawn from the

uniform distribution on the set of such matrices. Then the probability that every row and

every column of Z has weight at most cM is upper bounded by

O(1) · 2R2−2(1−ε)MR. (56)

Proof. Let A,B be random rank-R matrices of size M × R drawn from the uniform distri-

bution on the set of such matrices. Then Z = ABT is uniformly distributed on the set of

rank-R matrices of size M ×M . Below we fix some pair A,B and define two submatrices

of Z; one of size M ×R and the other of size R×M .

Since Z has rank R, one can choose an M×R submatrix of Z which has rank R. Let Zred

be any such submatrix. Since each column of Z is a linear combination of columns of A, we

conclude that Zred = AU for some invertible R × R matrix U . For each matrix A as above

let Ared be some fixed R×R submatrix of A with rank R (say, order all R×R submatrices of

A lexicographically and choose Ared as the first submatrix with rank R). Note that AredB
T

is a submatrix of Z which has size R×M .

Let say that a vector has low weight if the fraction of non-zero entries in this vector is at

most c. Define three classes of matrices. A matrix is Column-Low-Weight (CLW) if each of

its columns has low weight. A matrix is Row-Low-Weight (RLW) if each of its rows has low

weight. Finally, a matrix is Column-Row-Low-Weight (CRLW) if it is both CLW and RLW.
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Our goal is to bound the probability that Z = ABT is CRLW. Clearly, if Z is CRLW then

any R ×M submatrix of Z must be RLW and any M × R submatrix of Z must be CLW.

The above arguments and the union bound imply that

Pr[ ABT is CRLW ] ≤
∑
U

Pr[ AredB
T is RLW and AU is CLW ] , (57)

where the sum runs over all R × R invertible matrices U . Note that the number of such

matrices is at most 2R
2
. Furthermore, for any fixed A the matrix AredB

T is distributed

uniformly on the set of all R×M matrices of rank R. Likewise, for any fixed U the matrix

AU is distributed uniformly on the set of all M ×R matrices of rank R. This shows that

Pr[ ABT is CRLW ] ≤ 2R
2 · Pr[ BT is RLW ] · Pr[ A is CLW ]. (58)

Let us show that for any ε > 0 one can choose c > 0 such that

Pr[ A is CLW ] ≤ O(1) · 2−MR(1−ε) (59)

for all integers 1 ≤ R ≤ M . Indeed, let Ã be a random M × R matrix drawn form the

uniform distribution on the set of all such matrices. Since columns of Ã are independent

and uniformly distributed, one can easily check that

Pr[ Ã is CLW ] ≤ 2−MR(1−ε), (60)

where ε can be made arbitrarily small by choosing small enough c. On the other hand, A

and Ã have the same distribution conditioned on the event rank (Ã) = R. Thus

Pr[ A is CLW ] = Pr[ Ã is CLW | rank (Ã) = R ] ≤ Pr[ Ã is CLW ]

Pr[ rank (Ã) = R ]
(61)

It is well-known that a random uniformly distributed matrix has full rank with probability

Ω(1). Thus the denominator in Eq. (61) is Ω(1). Combining Eqs. (60,61) proves Eq. (59).

Applying exactly the same arguments to B one can show that Pr[ BT is RLW ] ≤ O(1) ·

2−MR(1−ε). The lemma now follows from Eq. (58).

E. Union Bound

In this subsection we combine all ingredients developed above to complete the proof of

Theorem 1.
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Lemma 15. For any η > 0 one can choose constants r, c, ρenc > 0 such that the following

is true for all sufficiently large integers M ≥ 1 and M ′ = (1 − r)M . Let δ1, δ2 be random

M×M boundary operators with the homological dimension H = Mρenc. Let Pred(M
′) be the

probability that there exists a nonzero reduced cycle obeying the uniform low weight condition

with a constant c. Then

Pred(M
′) ≤ O(1) · 2−M(1−η)/2 (62)

Proof. Let P bad(M) be the probability that δ1 or δ2 is not good. Then

Pred(M
′) ≤ P good

red (M ′) + P bad(M), (63)

where P good
red (M ′) is the probability that there exists a nonzero reduced cycle obeying the

uniform low weight condition with a constant c conditioned on both boundary operators

δ1, δ2 being good. Lemma 4 guarantees that

P bad(M) ≤ O(1) · 2−M/2+ηM/2 (64)

for small enough constants r, ρenc. Let us now bound P good
red (M ′). By lemma 13, for random

good δ1, δ2, the j-th reduced cycle in ZR(δ1, δ2) is distributed uniformly on the set of matrices

with rank R. For any fixed r, we can choose a c such that c′ = cr−1/(1 − r) is arbitrarily

small. Hence, by Lemma 14, for any r < 1 and for any ε > 0, there is a c such that the

probability that the j-th reduced cycle in ZR(δ1, δ2) obeys the uniform low weight condition

with the constant c is upper bounded by

O(1) · 2R2−2(1−ε)M ′R. (65)

By Theorem 2, the number of reduced cycles in ZR(δ1, δ2) is bounded by

Γ(R) ≤ O(1) · 2(M+H)R−R2

if R ≤ H, (66)

and

Γ(R) ≤ O(1) · 2(M+H/2)R−R2/2 if R ≥ H. (67)

Applying the union bound to account for all Γ(R) reduced cycles we get

P good
red (M ′) ≤ O(1) ·

M ′∑
R=1

Γ(R) · 2R2−2(1−ε)M ′R. (68)
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We break the sum over R into the sum over 1 ≤ R < H and the sum over H ≤ R ≤M ′.

The sum over 1 ≤ R ≤ H in Eq. (68) is upper bounded by

O(1) ·
∑
R≥1

2(M+H)R−R2 · 2R2−2(1−ε)M ′R = O(1) ·
∑
R≥1

2−MR(1−ρenc−2ε′), (69)

where ε′ = 1− (1− ε)(1− r). The last sum can be upper bounded, up to a factor O(1), by

its first term O(1) · 2−M(1−ρenc−ε′). For sufficiently small r, ε, ρenc this is upper bounded by

O(1) · 2−M/2. The sum over H ≤ R ≤M ′ in Eq. (68) is upper bounded by

O(1) ·
M ′∑
R=H

2(M+H/2)R−R2/2 · 2R2−2(1−ε)M ′R ≤ O(1) ·
M ′∑
R=H

2−MR(1/2−σ), (70)

where σ = 2ε′ + ρenc/2. Here we used a trivial bound 2R
2/2 ≤ 2RM/2. Note that σ can

be made arbitrarily small by choosing small enough r, ρenc, c. Let us make σ < 1/2. Then

the sum over R in Eq. (70) can be upper bounded, up to a factor O(1), by its first term

O(1)·2−MH(1/2−σ) ≡ F (M,H). Note that for any fixed M the function F (M,H) is monotone

decreasing for H ≥ 0. Since H is a non-negative integer, one has F (M,H) ≤ F (M, 1) =

O(1) · 2−M(1/2−σ). If we make σ < η/2 then F (M,H) ≤ O(1) · 2−M/2+ηM/2. Combining the

two contributions to the sum in Eq. (68) we arrive at P good
red (M ′) ≤ O(1) · 2−M/2+Mη/2. The

lemma now follows from Eqs. (64,63).

Theorem 3. For sufficiently small c and ρenc, the probability that the distance of the product

code is less than cM2 is o(1).

Proof. For any fixed choice of the reduced matrix the probability of having a cycle with a non-

vanishing reduced matrix obeying the uniform low weight condition is Pred(M
′) which is at

most O(1) ·2−M/2+ηM/2, see Lemma 15. The number of possible choices of rows and columns

for the reduced matrix is
(
M
M ′

)2
. A union bound implies that the probability of having a

cycle with a non-vanishing reduced matrix obeying the uniform low weight condition for

some choice of rows and columns is bounded by
(
M
M ′

)2
Pred(M

′), and for sufficiently small

r, c, ρenc this probability is o(1). By Lemma 5, if the input codes have distance at least

M −M ′ + 1, then there is no nontrivial cycle which gives a vanishing reduced matrix. By

Lemma 4, the probability that the input codes have distance at least M −M ′+ 1 is 1− o(1)

for sufficiently small r. By a union bound, the probability that there is a nontrivial cycle

with weight less than cM2 is o(1) for sufficiently small c and ρenc.
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To lower bound the distance of the product code, it is also necessary to lower bound

the weight of a nontrivial cocycle. The proof of this is identical to the proof to the weight

bound for a nontrivial cycle since ∂ and ∂T are drawn from the same distribution. So, the

probability of a nontrivial cocycle with weight less than cM2 is also o(1) for sufficiently small

c and ρenc. The theorem follows by a union bound.

Note that some of the intermediate lemmas, such as lemma 5 and lemma 15 depend

upon the particular choice of r = (M ′−M)/M ; however, once we have chosen a sufficiently

small r, the result holds for all sufficiently small c and ρenc and so r does not enter into the

statement of the theorem.

V. NUMERICAL RESULTS ON SMALL CODES

In this section we apply the homological product operation to combine two small codes

correcting a single error and produce larger codes correcting multiple errors. Since the

same task can be accomplished by code concatenation, a natural question is how the two

methods compare with each other. We will see that sometimes the homological product

and concatenation produce codes with the same parameters [[n, k, d]], but the homological

product leads to stabilizers with smaller weight.

A. Homological Product of Two [[7, 1, 3]] codes

To simplify notations, we shall restrict consideration to CSS codes satisfying CZ = CX

known as self-orthogonal codes. A generalization to arbitrary CSS codes is straightforward.

Let C = CZ = CX ⊆ Fn2 be the parity check space describing some self-orthogonal CSS

code Q = [[n, k, d]]. Note that C ⊆ C⊥ by definition of a CSS code. We shall assume that

C is equipped with some fixed basis with basis vectors a1, . . . , am ∈ C. The code Q can be

described by a complex with a boundary operator δ : Fn2 → Fn2 satisfying im δ = C and

im δT = C, see Section II A for details. A general solution δ of these equations has a form

δ =
m∑

i,j=1

Ui,j a
i(aj)T , (71)

where U is an arbitrary invertible m ×m matrix. This shows that a mapping from a CSS

code to a boundary operator is not unique. The freedom in choosing matrix U in Eq. (71)
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roughly correspond to a freedom in choosing a basis set of parity checks (stabilizers) for a

given code. We will see below that this freedom can be exploited to obtain better products

codes.

Define a product complex with a boundary operator ∂ = δ1⊗I+I⊗δ2 acting on Fn2⊗Fn2 ,

where

δ1 =
m∑

i,j=1

Ui,j a
i(aj)T and δ2 =

m∑
i,j=1

Vi,j a
i(aj)T . (72)

Here U and V are arbitrary invertible matrices. Applying Eqs. (11,10) we conclude that

the product complex describes a CSS code [[n2, k2, d′]], where d ≤ d′ ≤ d2 may depend on

the choice of U, V . Note that the product code is self-orthogonal whenever U and V are

symmetric matrices, UT = U and V T = V . Indeed, in this case δTa = δa and thus ∂T = ∂.

The property of being self-orthogonal may be useful in fault-tolerance applications, since it

enables transversal application of the Hadamard gate.

Let us now apply this construction to the Steane code, Q = [[7, 1, 3]]. We choose basis

parity checks a1, a2, a3 ∈ F7
2 as columns of the following matrix:

A =

1 0 0

0 1 0

0 0 1

0 1 1

1 0 1

1 1 0

1 1 1

. (73)

It is well-known that all non-zero vectors in the codespace C = span(a1, a2, a3) have weight

4. Since any column and any row of δa belongs to C, it follows that any row and any column

of ∂ = δ1 ⊗ I + I ⊗ δ2 has weight at most 8 regardless of the choice of U, V .

We computed the distance of the product code described by ∂ numerically by performing

an exhaustive search over all non-trivial cycles and co-cycles. Note that there are 2 ×

2(49−1)/2 = 225 cycles and cocyles to be examined. The distance was computed for all

possible choices of U and for V = I. We observed that the product code always has

parameters [[49, 1, 7]] or [[49, 1, 9]]. The first case occurs if and only if U is a symmetric

matrix, UT = U . While this might be merely a coincidence, we note that the product code

has distance 9 whenever it is not self-orthogonal. In all cases stabilizers of the product code

have weight at most 8. The product code [[49, 1, 7]] is an example when the upper bound on

the distance in Lemma 2 is not tight. In the general case when both U and V are arbitrary
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invertible matrices, one can show38 that the product code has parameters [[7, 1, 3]] if and

only if δ1 = σδT2 σ
−1 for some 7× 7 permutation matrix σ.

For comparison, concatenating the Steane [[7, 1, 3]] code with itself produces [[49, 1, 9]]

code with stabilizers of weight 12. Indeed, any non-trivial stabilizer of the Steane code has

weight 4. Concatenation replaces each single-qubit Pauli operator by a three-qubit logical

Pauli operator which produces stabilizers with weight 12.

VI. OPEN PROBLEMS

In this section, we discuss certain open problems. For some of these problems, we give

partial results and sketches of a solution, while others are left completely open.

A. Higher Powers and Weight Reduction

The most obvious open quetion is whether similar distance bounds can be proven for

higher powers. In this case, we must overcome the same obstacles as in the case of the

product of two codes, that there are low weight cycles by construction and that the first

moment method does not work in its simplest form. However, we lose many of the advantages

of working with matrices and are instead forced to work with higher rank tensors. In

addition, the reduced matrix approach will need modification as the most natural “reduced

tensor” ideas do not work. Thus, while we conjecture that we maintain linear distance for

a product of O(1) random codes, this may be rather difficult to prove.

If, however, we were able in this fashion to construct codes of linear distance with gen-

erators of weight O(nα), then for sufficiently small α we would likely be able to use these

codes to produce stabilizer codes on n qubits with stabilizer weight O(1) and with distance

Ω(n1/2+ε) for some ε > 0. This would be accomplished using an idea of weight reduction that

we now sketch. This weight reduction idea is distinct from the idea in Ref. 35; in particular,

it would still produce a stabilizer code rather than a subsystem code. Before discussing the

weight reduction idea, we give some topological motivation for the idea. Some may prefer

to skip the remainder of this paragraph as well as the next paragraph, and proceed to the

paragraph after that which gives a way of reducing weight that acts directly on the code

without introducing a cell complex or manifold. The ideas following in this subsection were
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obtained in discussion with M. Freedman and we only present a very brief sketch here. Given

a CSS code, we can construct a multiple sector chain complex. For reasons that will become

clear, instead of labeling sectors 2, 1, 0 we label them by 3, 2, 1 so that the vector spaces are

C3, C2, C1, with boundary operators ∂3, ∂2. Unlike the single sector case, this multiple sector

chain complex can be constructed in a canonical fashion from the code, up to an arbitrary

permutation of the stabilizers: each column of the boundary operator ∂3 corresponds to a

given Z stabilizer while each row of ∂2 corresponds to a given X stabilizer. We ask the

question ∗: given this chain complex, can we construct a manifold and a cellulation of that

manifold that gives rise to that chain complex, or to a chain complex with the same homol-

ogy and with the same distance and weight up to Θ(1) factors? At this point, the reason

for using sectors 3, 2, 1 rather than 2, 1, 0 becomes clear: if we had used sectors 2, 1, 0, then

since a 1-cell can have at most two 0-cells in its boundary, we would be restricted to the case

that each qubit had at most two X stabilizers supported on that qubit and so the answer to

the question ∗ would have been negative for many codes for purely local reasons. However,

using sectors 3, 2, 1 we can give ∗ a positive answer. Define a cell complex with a single 0-

cell. One then attaches 1-cells to this 0-cell in closed loops, with one 1-cell per X stabilizer.

Then, 2-cells are attached to the 1-cells, using ∂2 to define the attachment. Similarly, one

attaches 3-cells to the 2-cells, using ∂3 to define the attachment. This gives a 3-complex

with boundary; one can then construct a 7-manifold without boundary by embedding this

complex in general position in high enough dimension to avoid intersection, thickening it,

and then attaching another copy of the manifold and identifying the boundaries.

While this question ∗ might be interesting for topological reasons (for example, it enables

us to turn interesting codes into interesting manifolds), it also suggests a useful weight

reduction procedure for the code. The cell complex we produce may be quite complicated

locally, as each cell attaches to many other cells if the stabilizers are high weight. However,

we can refine the cellulation of the manifold until we have a cellulation with bounded local

geometry, so that each cell attaches only to a bounded number of other cells. This refined

cellulation then defines a new code; it has the same number of encoded qubits as the original

code because the homology has not changed, and by construction the weight of the generators

is now O(1). However, we have increased the number of qubits by increasing the number of

cells, and we have possibly changed the distance of the code, and so a detailed analysis is

needed to see how these change.
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Rather than giving this detailed analysis in the language of manifolds, we present a

procedure to reduce weight that acts directly on codes. The basic step in the reduction

procedure is a “splitting step”. This procedure is inspired by the idea of refining a cellulation;

one can see that, for example, the splitting step we introduce for Z stabilizers corresponds

to the step of taking a 3-cell and refining it into two 3-cells by adding an additional 2-cell.

There are two types of splitting steps, Z-type and X-type. The Z-type splitting step acts

as follows on a CSS code with n qubits and nZ Z-type stabilizers and nX X-type stabilizers.

Let S denote some chosen Z stabilizer. This Z stabilizer can be written as the product of

Pauli operators S =
∏

i∈T S
z
i , where T is some subset of qubits with |T | equal to the weight

of the stabilizer. Pick a set T1 ⊂ T , with |T1| ≈ |T |/2. Then, define a new code as follows.

The new code has n + 1 qubits. We label the qubits as 1, ..., n and by a, where a is a new

qubit added to the code. The new code has nZ + 1 Z-type stabilizers. Of these, nZ − 1 of

them are given by the Z-type stabilizers of the original code other than stabilizer S. The

other two stabilizers are

Sza
∏
i∈T1

Szi Sza
∏
i∈T2

Szi . (74)

There are nX X-type stabilizers. For each X-type stabilizer R of the old code, we define an

X-type stabilizer R′ of the new code, with R′ = R if R commutes with
∏

i∈T1 S
z
i and with

R′ = SxaR
′ if R anti-commutes with

∏
i∈T1 S

z
i . This completes the description of the Z-type

splitting step. The X-type splitting step is defined analogously, with X and Z interchanged.

We see that the splitting step roughly halves the weight of one stabilizer, while increasing

the weight of some other stabilizers by 1. A useful reduction procedure would be to first

reduce the weight of all Z-type stabilizers to O(1); then reduce the weight of all X-type

stabilizers to O(1); then repeat until all weights are O(1). Alternately, one could simply

applying the splitting step to randomly chosen stabilizers of either Z-type or X-type. A

brief heuristic analysis (not given here) suggests that for a code given by a homological

product of random codes, if we start with a code with n qubits and weight O(nα), then this

procedure will terminate, and for all ε > 0, there is an α such that it produces a code on

n′ qubits with stabilizers of weight O(1) and distance Θ((n′)1−ε). We leave this also as an

open problem.
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B. Applications to Quantum Memories

Another question is applications of these codes. While the asymptotic scaling is of inter-

est, early hardware implementations of quantum memories using stabilizer codes will likely

be restricted to small number of qubits. Here, small codes such as the [[49, 1, 9, 8]] CSS code

that we found might be of interest. Note that any [[n, 1, 9]] CSS code must obey n ≥ 35, as

shown in Ref. 40 and thus the [[49, 1, 9]] code is close to optimal for a CSS code with the

given distance, while keeping the stabilizer weight small. The analysis of the performance

of these small codes under random noise is an open problem.

Another possible code to consider is the homological product of the toric code with a

code such as the [[7, 1, 3]] CSS code or other code with n = O(1). In this case, it will be

necessary to consider the multiple sector version of the product as the toric code arises from

such a multiple sector chain complex (one can write the toric code in terms of a single sector,

but the boundary operator is no longer sparse in this case). One might hope that such a

product would improve the error correction properties of the toric code while maintaining

approximately local interactions in two-dimensions, while preserving other desirable features

of the toric code, such as braid and fusion rules.

C. Encoding and Decoding Homological Product Codes

One last set of problems concerns encoding and decoding circuits for homological product

codes. Let us start with the encoding. Consider first a single CSS code on M = 2L+H qubits

with H logical qubits, L stabilizers of X type and L stabilizers of Z type. It is well-known

that the encoding for such code can be performed by starting with H qubits containing the

state to be encoded, adjoining L additional pairs of qubits in the |0〉 ⊗ |+〉 state, and then

applying some unitary M -qubit operator Û composed of CNOT gates. Consider now a pair

of such codes described by complexes (C, δa), a = 1, 2. Let Ûa be the corresponding encoding

circuits composed of CNOTs. We claim that the product code described by the complex

(C ⊗ C, ∂) can be encoded by applying the following steps.

1. Arrange M2 code qubits on a two-dimensional M ×M grid.

2. Initialize some pairs of qubits in |0〉 ⊗ |+〉 state.

39



3. Initialize some pairs of qubits in the EPR state (|00〉+ |11〉)/
√

2.

4. Apply Û1 to each row of the grid.

5. Apply Û2 to each column of the grid.

Here the order of the last two steps does not matter as they commute with each other. The

number of qubits initialized at the steps (2,3) is exactly M2 −H2, such that there remains

H2 free qubits that contain the state to be encoded.

Indeed, Lemma 3 implies that δa = Uaδ0U
−1
a , where δ0 is the canonical boundary operator

defined in Eq. (13) and Ua are some invertible M×M matrices. One can easily check that the

canonical complex (C, δ0) describes a CSS code in which all stabilizers have weight 1. This

canonical CSS code can be encoding simply by starting with H logical qubits and adjoining L

pairs of qubits in |0〉⊗|+〉 state. The code (C, δa) has stabilizer spaces CZ
a = im δa = Ua ·im δ0

and CX
a = im δTa = (U−1

a )T im δT0 . Using Gaussian elimination, one can show that any M×M

invertible matrix Ua can be written as a product ofO(M2) elementary matrices with 1s on the

diagonal and a single non-zero off-diagonal entry. Replacing each elementary matrix in the

decomposition of Ua by a suitable CNOT gate one obtains a CNOT circuit Ûa transforming

codewords of the canonical code to codewords of the input code (C, δa). Consider now the

product code with the complex (C ⊗ C, ∂), ∂ = δ1 ⊗ I + I ⊗ δ2. Let U = U1 ⊗ U2. Then

∂ = U(δ0⊗ I+ I⊗ δ0)U−1. Define a “canonical product code” corresponding to the complex

(C ⊗ C, δ0 ⊗ I + I ⊗ δ0). Note that this code has single-qubit stabilizers X and Z on some

qubits and two-qubit stabilizers XX,ZZ on some pairs of qubits. Hence the canonical

product code can be encoded by starting with H2 logical qubits and adjoining remaining

M2 −H2 qubits initialized in |0〉, |+〉, or (|00〉+ |11〉)/
√

2 state. The encoding for the code

(C⊗C, ∂) is the same as the encoding for the canonical code followed by a CNOT circuit Û .

Furthermore, since U = (U1⊗ I)(I⊗U2) the CNOT circuit corresponding to U is equivalent

to applying the circuit Û2 in every row of the grid and then applying the circuit Û1 in every

column of the grid. This leads to the steps (1-5) defined above. Note that in the worst case

Ûa consists of O(M2) CNOT gates. Hence the product code encoding requires a circuit of

size O(n3/2) and depth O(n), where n = M2 is the code length. One can similarly construct

encoding circuits for the m-fold homological product. In this case the encoding circuit has

size O(M (m+1)/m) and depth O(n2/m). Here we assumed that m = O(1). One interesting

open question is whether the encoding for the m-fold product code can be implemented in a
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fault-tolerant fashion, such that the overall encoding circuit is represented as a composition

of small-depth circuits and error correction operations. Another interesting open question

arises if (C, δa) has a short preparation circuit for code states taking o(M2) operations that

does not give us a short circuit to implement Ûa; in this case, it is not clear if there must be

an similarly fast preparation circuit for the product code.

Let us now discuss the decoding. Given a noise model, such as a random Pauli channel,

and a set of syndromes measured on a corrupted codeword, how efficiently can we determine

the optimal recovery operation composed of Pauli X and Z that minimizes the probability

of a logical error? For a random code on M qubits, we expect this to take time exponential

in M as finding optimal decodings of stabilizer codes is #P-complete41. However, for a

product of two such codes, with n = M2 qubits, a decoding time exponential in M would be

exponential in O(
√
n); while this would not be polynomial, it might be practical for small

enough n, and so it would be very desirable if a decoding algorithm with that complexity

could be found for product codes. A natural candidate is a message passing algorithm as

in Ref. 42. Such messsage passing algorithms encounter problems for quantum LDPC codes

with stabilizers of weight O(1) due to degeneracy of the code because some low-weight errors

are not uniquely determined by their syndromes. However, since the homological product

of two random codes has stabilizers of weight Θ(
√
n), one might hope that message passing

will converge quickly to the optimal recovery operator. Such a message passing algorithm

would take time O(n)2
√
n per round, as the number of possible combinations of messages

would be 2
√
n. We leave the analysis of such an algorithm as an open problem.

Appendix A: Counting Matrix Extensions

The purpose of this section is to prove Eqs. (37,38). We first prove Eq. (38). Let Y be

a rank-R matrix of size A × B. Any such matrix can be represeted as Y = FG for some

full-rank matrix F of size A × R and full-rank matrix G of size R × B. Moreover, this

representation is unique up to a transformation F → FM and G→M−1G, where M is an

arbitrary invertible R×R matrix. It is well-known that the number of full-rank matrices of

size a× b is O(1) · 2ab. Hence the total number of rank-R matrices of size A×B is

EA,B,R = O(1) · 2(A+B)R−R2

.
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This proves Eq. (38). Let us now prove Eq. (37). Recall that EA,R
a,r is the number of ways to

extend a given rank-r matrix X of size a× a to an arbitrary rank-R matrix Y of size A×A.

We shall extend X to Y in two steps as shown below.

X → Z =

 X
U

→ Y =
[
Z V

]
. (75)

Denoting z = rank (Z) we arrive at

EA,R
a,r =

min {R,a}∑
z=r

EA,a,z
a,a,r · E

A,A,R
A,a,z . (76)

Here EA,B,R
a,b,r denotes the number of ways to extend a given rank-r matrix of size a× b to an

arbitrary rank-R matrix of size A× B. Let M(a, b) be the set of all binary a× b matrices.

Since the number of extension depends only on the rank of the original matrix, we can

compute EA,a,z
a,a,r by choosing X as any fixed matrix of rank r. Choose X be the diagonal

matrix such that Xi,i = 1 for 1 ≤ i ≤ r and Xi,j = 0 otherwise. Then Z can be written as a

block matrix

Z =


I 0

0 0

V W

 , V ∈M(A− a, r), W ∈M(A− a, a− r).

Here I is the identity matrix in M(r, r). The first r columns of Z are independent from

each other and from other columns of Z regardless of the choice of V,W . Thus z = r + w,

where w = rank (W ). Since there are 2(A−a)r ways to choose V and EA−a,a−r,z−r ways to

choose W , we get

EA,a,z
a,a,r = 2(A−a)r · EA−a,a−r,z−r = O(1) · 2(A+r)z−ar−z2 . (77)

Repeating exactly the same arguments yields

EA,A,R
A,a,z = 2(A−a)z · EA−z,A−a,R−z = O(1) · 2(2A−a)R−Az−R2+Rz. (78)

Substituting Eqs. (77,78) into Eq. (76) results in

EA,R
a,r = O(1) · 2(2A−a)R−ar−R2

min {a,R}∑
z=r

2−z
2+(r+R)z. (79)
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The function 2−z
2+(r+R)z has a maximum at z = z0 = (r + R)/2 and decays exponentially

away from the maximum. We can bound the sum over z from above by extending the

summation range to all integer z ≥ 0 and approximating the sum, up to a factor O(1), by

the largest term 2−z
2
0+(r+R)z0 = 2(r+R)2/4. This gives Eq. (37).

Appendix B: GF (4)-linear codes

Chain Complexes from GF (4)-linear Codes

In this section we propose one possible way to extend the mapping between quantum

codes and chain complexes to GF (4)-linear codes43. We begin by recalling the construction

of GF (4)-linear codes introduced in Ref. 43. Let ω be the multiplicative generator of F4 ≡

GF (4) such that F4 = {0, 1 = ω3, ω, ω2}. The addition in F4 is defined by identities

1 + ω + ω2 = 0 and x+ x = 0 for any x ∈ F4. Below we consider vectors and matrices with

entries from F4. A subset C ⊆ Fn4 is called a linear subspace iff C is closed under addition

of vectors and under a scalar multiplication by ω. To describe quantum F4-linear codes,

parameterize single-qubit Pauli operators X, Y, Z and the identity operator I by elements

of F4 as

P (0) = I, P (ω) = X, P (ω2) = Z, P (1) = Y. (80)

Note that addition in F4 corresponds to multiplication of Pauli operators, that is, P (a)P (b) =

eiθP (a+ b) for some phase factor eiθ ∈ {1,±i} that depends on a and b. Furthermore,

P (a)P (b) = (−1)āb+ab̄P (b)P (a), where ā ≡ a2. (81)

Note that c̄+ c takes values 0 or 1 for any c ∈ F4, so that Eq. (81) is well-defined. Given a

vector f = (f1, . . . , fn) ∈ Fn4 , let P (f) be the n-qubit Pauli operator that acts on the j-th

qubit as P (fj). Then Eq. (81) implies

P (f)P (g) = (−1)(f,g)+(g,f)P (g)P (f), (82)

where (f, g) ∈ F4 is the inner product between vectors f, g ∈ Fn4 defined as

(f, g) =
n∑
j=1

f̄jgj. (83)

Given a linear subspace C ⊆ Fn4 , the following three conditions are known to be equivalent43:

43



1. (f, g) + (g, f) = 0 for any f, g ∈ C.

2. P (f)P (g) = P (g)P (f) for any f, g ∈ C.

3. (f, g) = 0 for any f, g ∈ C.

If one of the above conditions is satisfied, we will say that C is self-orthogonal. Given any

self-orthogonal linear subspace C ⊆ Fn4 one can define a quantum stabilizer code with a

stabilizer group G = {P (f) : f ∈ C}. Note that G has size 4dim (C). The subspace C defines

parity checks of the quantum code and plays the same role as the pair of parity check spaces

CZ , CX in the case of CSS codes. To describe Pauli operators commuting with stabilizers

define an orthogonal subspace

C⊥ = {f ∈ Fn2 : (f, g) = 0 for all g ∈ C}.

Then P (f) commutes with all stabilizers iff f ∈ C⊥. Logical Pauli operators have a form

P (f), where f ∈ C⊥\C. Note that C is self-orthogonal iff C ⊆ C⊥. This condition plays

the same role as the orthogonality condition CZ ⊆ (CX)⊥ in the case of CSS codes. As was

shown in Ref. 43, the quantum code corresponding to C has parameters [[n, k, d]], where

k = n− 2 dim (C) and d = min
f∈C⊥\C

wt(f). (84)

Here wt(f) is the weight of f defined as the number of non-zero components of f .

Given a linear operator δ mapping Fn4 to itself, define an adjoint operator δ∗ such that

(f, δg) = (δ∗f, g) for all f, g ∈ Fn4 . One can easily check that δ∗ = δ̄T , that is, δ∗i,j = δ̄j,i.

Note that (δ∗)∗ = δ since x4 = x for any x ∈ F4. Here and below by a linear operator we

always mean F4-linear operator. By analogy with the single sector theory for CSS codes,

see Section II A, let us introduce a notion of a boundary operator such that im δ is a self-

orthogonal linear subspace for any boundary operator δ.

Lemma 16. Suppose δ is a linear operator. Then im δ is self-orthogonal iff δ∗δ = 0.

Proof. Suppose im δ is self-orthogonal. Then for any vectors f, g ∈ Fn4 one has (g, δ∗δf) =

(δg, δf) = 0. This is only possible if δ∗δ = 0. Conversely, suppose δ∗δ = 0. Choose any

vectors f, g ∈ im δ. Then f = δ(h) and g = δ(k) for some h, k ∈ Fn4 . Thus (f, g) = (δh, δk) =

(h, δ∗δk) = 0, that is, im δ is self-orthogonal.
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The above lemma suggests that a boundary operator could be defined by a condition

δ∗δ = 0. This definition however is not quite satisfactory because it is not stable under the

product of complexes. Indeed, suppose δ1, δ2 are linear operators satisfying δ∗aδa = 0. Define

∂ = δ1 ⊗ I + I ⊗ δ2. Then ∂∗∂ = δ∗1 ⊗ δ2 + δ1 ⊗ δ∗2 and thus generally ∂∗∂ 6= 0. Instead, we

choose the following definition.

Definition 3. A linear operator δ mapping Fn4 to itself is called a boundary operator if it is

self-adjoint, δ∗ = δ, and satisfies δ2 = 0.

Lemma 16 implies that im δ is a self-orthogonal linear subspace for any boundary operator

δ and (im δ)⊥ = ker δ. Thus any boundary operator δ on Fn4 defines a quantum code [[n, k, d]]

with parameters

k = dim (ker δ)− dim (im δ) ≡ H(δ) and d = min
f∈ker δ\ im δ

wt(f).

Conversely, given a self-orthogonal linear subspace C ⊆ Fn4 , choose any linear basis

a1, . . . , am ∈ C and define a linear operator

δ =
m∑

i,j=1

Ui,j a
i(āj)T (85)

for some invertible self-adjoint matrix U with F4 entries. Self-orthogonality of C implies

(ai, aj) = 0 for all i, j, that is, δ2 = 0. Furthermore,

δ∗ =
m∑

i,j=1

Ūj,i a
i(āj)T = δ

since Ūj,i = Ui,j. Finally, im δ = C since U is invertible. This shows how to represent any

F4-linear quantum code by a boundary operator.

Consider some F4-linear quantum code [[n, k, d]] described by a self-orthogonal subspace

C ⊆ Fn4 . Let

δ1 =
m∑

i,j=1

Ui,j a
i(āj)T and δ2 =

m∑
i,j=1

Vi,j a
i(āj)T (86)

be the boundary operators constructed above such that im δa = C. Define ∂ = δ1⊗I+I⊗δ2.

One can easily check that ∂2 = 0 and ∂∗ = ∂, that is, ∂ is a boundary operator on Fn4 ⊗ Fn4 .

Using exactly the same arguments as in the proof of Lemmas 1,2 one can show that the

F4-linear quantum code with the parity check space im ∂ has parameters [[n2, k2, d′]] for

some d ≤ d′ ≤ d2. Furthermore, if C has basis vectors with weight at most w then im ∂ has

basis vectors with weight at most 2w, that is, the product code has parity checks of weight

at most 2w.
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Homological Product of Two [[5, 1, 3]] Codes

Let us apply the product construction defined above to the 5-qubit code [[5, 1, 3]] which

is the simplest quantum code correcting any single-qubit error44,45. Recall that the [[5, 1, 3]]

code has two-dimensional parity check space C ⊆ F5
4 with basis vectors

a1 = (0, ω, ω2, ω2, ω)T and a2 = (ω, 0, ω, ω2, ω2)T .

Note that a2 is a cyclic shift of a1. Moreover any non-zero vector of C can be obtained from

a1 by cyclic shifts and a scalar multiplication by ω. Hence any non-zero vector of C has

weight 4. Let δ1, δ2 be the boundary operators defined in Eq. (86) and ∂ = δ1 ⊗ I + I ⊗ δ2.

Since any column and any row of δa has weight 0 or 4 for any choice of U and V , the product

code described by ∂ has parity checks of weight at most 8. One can easily check that there

are only 10 invertible self-adjoint matrices of size 2 × 2 with F4 entries. We computed the

distance of the product code numerically for each choice of the pair U, V by performing the

exhaustive search over all non-trivial cycles. Note that there are 225−1 = 224 cycles to be

considered. We observed that the product code has parameters [[25, 1, 5]] regardless of the

choice of U, V . For comparison, concatenation of two 5-qubit codes gives [[25, 1, 9]] code

with parity checks of weight 12.

Another simple example of an F4-linear code is the Steane code [[7, 1, 3]]. It has three-

dimensional parity check space C ⊆ F7
4 with basis vectors a1, a2, a3 defined in Eq. (73).

Thus the product of F4-linear codes [[5, 1, 3]] and [[7, 1, 3]] is well-defined and has parameters

[[35, 1, d]] for some 3 ≤ d ≤ 9. By computing the distance of the product code numerically

we observed that d ≤ 6 for all possible choices of boundary operators δ1, δ2 describing the

codes [[5, 1, 3]] and [[7, 1, 3]] (the exhaustive search over non-trivial cycles was terminated as

soon as the first cycle with weight at most 6 has been found).

These observations suggest that the single sector theory does not perform very well when

applied to F4-linear codes. We leave explanation of this phenomenon for a future work.
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