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Abstract

Fourier PCA is Principal Component Analysis of a matrix obtained from higher order derivatives of

the logarithm of the Fourier transform of a distribution. We make this method algorithmic by developing

a tensor decomposition method for a pair of tensors sharing the same vectors in rank-1 decompositions.

Our main application is the first provably polynomial-time algorithm for underdetermined ICA, i.e.,

learning an n × m matrix A from observations y = Ax where x is drawn from an unknown product

distribution with arbitrary non-Gaussian components. The number of component distributions m can

be arbitrarily higher than the dimension n and the columns of A only need to satisfy a natural and

efficiently verifiable nondegeneracy condition. As a second application, we give an alternative algorithm

for learning mixtures of spherical Gaussians with linearly independent means. These results also hold in

the presence of Gaussian noise.
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1 Introduction

Principal Component Analysis [55] is often an “unreasonably effective” heuristic in practice, and some of its
effectiveness can be explained rigorously as well (see, e.g., [43]). It consists of computing the eigenvectors of
the empirical covariance matrix formed from the data; the eigenvectors turn out to be directions that locally
maximize second moments. The following example illustrates the power and limitations of PCA: given
random independent points from a rotated cuboid in Rn with distinct axis lengths, PCA will identify the
axes of the cuboid and their lengths as the eigenvectors and eigenvalues of the covariance matrix. However,
if instead of a rotation, points came from a linear transformation of a cuboid, then PCA does not work.

To handle this and similar hurdles, higher moment extensions of PCA have been developed in the lit-
erature e.g., [5, 40, 53, 6, 3, 39, 65] and shown to be provably effective for a wider range of unsupervised
learning problems, including special cases of Independent Component Analysis (ICA), Gaussian mixture
models, learning latent topic models etc. ICA is the classic signal recovery problem of learning a linear
transformation A from i.i.d. samples x = As where s ∈ Rn has an unknown product distribution. The
example above, namely learning a linearly transformed cuboid, is a special case of this problem. Although
PCA fails, one can use it to first apply a transformation (to a sample) that makes the distribution isotropic,
i.e., effectively making the distribution a rotation of a cube. At this point, eigenvectors give no further
information, but as observed in the signal processing literature [26, 41], directions that locally maximize
fourth moments reveal the axes of the cube, and undoing the isotropic transformation yields the axes of
the original cuboid. Using this basic idea, Frieze et al. [35] and subsequent papers give provably efficient
algorithms assuming that the linear transformation A is full-dimensional and the components of the product
distribution differ from one-dimensional Gaussians in their fourth moment. This leaves open the important
general case of underdetermined ICA, namely where A is not necessarily square or full-dimensional, i.e., the
observations x are projections to a lower-dimensional space; in the case of the cuboid example, we only see
samples from an (unknown) projection of a transformed cuboid.

In this paper, we give a polynomial-time algorithm that (a) works for any transformation A provided the
columns of the linear transformation satisfy a natural extension of linear independence, (b) does not need
the fourth moment assumption, and (c) is robust to Gaussian noise. As far as we know, this is the first
polynomial-time algorithm for underdetermined ICA. The central object of our study is a higher derivative
tensor of suitable functions of the Fourier transform of the distribution. Our main algorithmic technique is
an efficient tensor decomposition method for pairs of tensors that share the same vectors in their respective
rank-1 decompositions. We call our general technique Fourier PCA. This is motivated by the fact that in
the base case of second derivatives, it reduces to PCA of a reweighted covariance matrix.

As a second application, Fourier PCA gives an alternative algorithm for learning a mixture of spherical
Gaussians, under the assumption that the means of the component Gaussians are linearly independent. Hsu
and Kakade [39] already gave an algorithm for this problem based on third moments; our algorithm has the
benefit of being robust to Gaussian noise.

We now discuss these problems and prior work, then present our results in more detail.

ICA Blind source separation is a fundamental problem in diverse areas ranging from signal processing to
neuroscience to machine learning. In this problem, a set of source signals are mixed in an unknown way,
and one would like to recover the original signals or understand how they were mixed given the observations
of the mixed signals. Perhaps the most influential formalization of this problem is ICA (see the books
[26, 41] for comprehensive introductions). In the basic formulation of ICA, one has a random vector s ∈ R

n

(the source signal) whose components are independent random variables with unknown distributions. Let
s(1), s(2), . . . be independent samples of s. One observes mixed samples As(1), As(2), . . . obtained by mixing
the components of s by an unknown invertible n×n mixing matrix A. The goal is to recover A to the extent
possible, which would then also give us s(1), s(2), . . . , or some approximations thereof. One cannot hope to
recover A in case more than one of the si are Gaussian; in this case any set of orthogonal directions in this
subspace would also be consistent with the model. Necessarily, then, all ICA algorithms must require that
the component distributions differ from being Gaussian in some fashion.

A number of algorithms have been devised in the ICA community for this problem. The literature is vast
and we refer to [26] for a comprehensive account. The ICA problem has been studied rigorously in theoretical
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computer science in several previous papers [35, 54, 9, 12, 5]. All of these algorithms either assume that
the component distribution is a very specific one [54, 9], or assume that its kurtosis (fourth cumulant) is
bounded away from 0, in effect assuming that its fourth moment is bounded away from that of a Gaussian.
The application of tensor decomposition to ICA has its origins in work by Cardoso [21], and similar ideas
were later discovered by Chang [24] in the context of phylogenetic reconstruction and developed further in
several works, e.g. Mossel and Roch [53], Anandkumar et al. [3], Hsu and Kakade [39] for various latent
variable models. Arora et al. [9] and Belkin et al. [12] show how to make the algorithm resistant to unknown
Gaussian noise.

Underdetermined ICA, where the transformation matrix A is not square or invertible (i.e., it includes a
projection), is an important general problem and there are a number of algorithms proposed for it in the
signal processing literature, many of them quite sophisticated. However, none of them is known to have
rigourous guarantees on the sample or time complexity, even for special distributions. See e.g. Chapter 9 of
[26] for a review of existing algorithms and identifiability conditions for underdetermined ICA. For example,
FOOBI [22, 32] uses fourth-order correlations, and its analysis is done only for the exact setting without
analyzing the robustness of the algorithm when applied to a sample, and bounding the sample and time
complexity for a desired level of error. In addition, the known sufficient condition for the success of FOOBI
is stronger than ours (and more elaborate). We mention two other related papers [27, 2].

Gaussian mixtures Gaussian mixtures are a popular model in statistics. A distribution F in Rn is
modeled as a convex combination of unknown Gaussian components. Given i.i.d. samples from F , the
goal is to learn all its parameters, i.e., the means, covariances and mixing weights of the components. A
classical result in statistics says that Gaussian mixtures with distinct parameters are uniquely identifiable,
i.e., as the number of samples goes to infinity, there is unique decomposition of F into Gaussian components.
It has been established that the sample complexity grows exponentially in m, the number of components
[14, 13, 42, 51]. In a different direction, under assumptions of separable components, a mixture is learnable
in time polynomial in all parameters [64, 28, 58, 30, 25, 19]. Our work here is motivated by Hsu and Kakade’s
algorithm [39], which uses a tensor constructed from the first three moments of the distribution and works
for a mixture of spherical Gaussians with linearly independent means.

Robust tensor decomposition As a core subroutine for all problems above, we develop a general theory
of efficient tensor decompositions for pairs of tensors, which allows us to recover a rank-1 tensor decomposition
from two homogeneous tensor relations. As noted in the literature, such a pair of tensor equations can be
obtained from one tensor equation by applying two random vectors to the original equation, losing one in
the order of the tensor. Our tensor decomposition “flattens” these tensors to matrices and performs an
eigenvalue decomposition. The matrices in question are not Hermitian or even normal, and hence we use
more general methods for eigendecomposition (in particular, tensor power iterations cannot be used to find
the desired decompositions). The algorithm for tensor decomposition via simultaneous tensor diagonalization
is essentially due to Leurgans et al [48]; to the best of our knowledge, ours is the first robust analysis. In
subsequent work, Bhaskara et al. [15] have outlined a similar robustness analysis with a different application.

1.1 Results

We begin with fully determined ICA. Unlike most of the literature on ICA, which employs moments, we do
not require that our underlying random variables si differ from a Gaussian at the fourth moment. In fact,
our algorithm can deal with differences from being Gaussian at any moment, though the computational and
sample complexities are higher when the differences are at higher moments. We will use cumulants as a notion
of difference from being a Gaussian. The cumulant of random variable x at order r, denoted by cumr(x), is
the rth moment with some additional subtractions of polynomials of lower moments. The following is a short
statement of our result for fully-determined ICA (i.e. the mixing matrix A is invertible); the full statement
appears later as Theorem 4.2. The algorithm takes as input the samples generated according to the ICA
model and parameters ǫ,∆,M, k and an estimate of σn(A).

Theorem 1.1. Let x ∈ Rn be given by an ICA model x = As where A ∈ Rn×n columns of A have unit
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norm and let σn(A) > 0. Suppose that for each si, there exists a ki ≤ k such that |cumki(si)| ≥ ∆ > 0 and

E

(

|si|k
)

≤ M . Then, one can recover the columns of A up to signs to ǫ accuracy in polynomial time using

poly(nk
2

,Mk, 1/∆k, 1/σn(A)
k, 1/ǫ)

samples with high probability.

In the simplest setting, roughly speaking, our algorithm computes the covariance matrix of the data

reweighted according to a random Fourier coefficient eiu
T x where u ∈ Rn is picked according to a Gaussian

distribution. Our ideas are inspired by the work of Yeredor [69], who presented such an algorithm for fully
determined ICA (without finite sample guarantees).

The reweighted covariance matrix can also be viewed as the Hessian of the logarithm of the Fourier
transform of the distribution. Using this perspective, we extend the method to underdetermined instances—
problems where the apparent number of degrees of freedom seems higher than the measurement system can
uniquely fix, by studying higher derivative tensors of the Fourier transform. The use of Fourier weights
has the added advantage that the resulting quantities always exist (this is the same phenomenon that for a
probability distribution the characteristic function always exists, but the moment generating function may
not) and thus works for all random variables and not just in the case of having all finite moments.

We then extend this to the setting where the source signal s has more components than the number of
measurements (Section 6); recall that in this case, the transformation A is a map to a lower-dimensional
space. Finding provably efficient algorithms for underdetermined ICA has been an open problem. Tensor
decomposition techniques, such as power iteration, which are known to work in the fully determined case
cannot possibly generalize to the underdetermined case [4], as they require linear independence of the columns
of A, which means that they can handle at most n source variables.

Our approach is based on tensor decomposition, usually defined as follows: given a tensor T ∈ Rn×···×n

which has the following rank-1 expansion:

T =

m∑

i=1

µiAi ⊗ · · · ⊗Ai,

compute the vectors Ai ∈ Rn. Here ⊗ denotes the usual outer product so that entry-wise [v⊗· · ·⊗v]i1,...,ir =
vi1 · · · vir ). Our main idea here is that we do not attempt to decompose a single tensor into its rank-1
components. This is an NP-hard problem in general, and to make it tractable, previous work uses additional
informaton and structural assumptions, which do not hold in the underdetermined setting or place strong
restrictions on how large m can be as a function of n. Instead, we consider two tensors which share the
same rank-1 components and compose the tensors in a specific way, thereby extracting the desired rank-1

components. In the following vec
(

A
⊗d/2
i

)

denotes the tensor A
⊗d/2
i flattened into a vector. The algorithm’s

input consists of: tensors Tµ, Tλ, and parameters n,m, d,∆, ǫ as explained in the following theorem.

Theorem 1.2 (Tensor decomposition). Let A be an n×m matrix with m > n and columns with unit norm,
and let Tµ, Tλ ∈ Rn×···×n be order d tensors such that d ∈ 2N and

Tµ =

m∑

i=1

µiA
⊗d
i Tλ =

m∑

i=1

λiA
⊗d
i ,

where vec
(

A
⊗d/2
i

)

are linearly independent, µi, λi 6= 0 and
∣
∣
∣
µi

λi
− µj

λj

∣
∣
∣ > ∆ for all i, j and ∆ > 0. Then,

algorithm TensorDecomposition(Tµ, Tλ) outputs vectors A′
1, . . . , A

′
m with the following property. There is a

permutation π : [m] → [m] and signs α : [m] → {−1, 1} such that for i ∈ [m] we have

∥
∥
∥αiA

′
π(i) −Ai

∥
∥
∥
2
≤ ǫ.

The running time is poly
(

nd, 1ǫ ,
1
∆ ,

1
σmin(A⊙d/2)

)

.
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The polynomial in the running time above can be made explicit. It basically comes from the time
complexity of SVD and eigenvector decomposition of diagonalizable matrices. We note that in contrast to
previous work on tensor decompositions [37, 33, 23, 59], our method has provable finite sample guarantees.
We give a robust version of the above, stated as Theorem 5.4.

To apply this to underdetermined ICA, we form tensors associated with the ICA distribution as inputs to
our pairwise tensor decomposition algorithm. The particular tensors that we use are the derivative tensors
of the second characteristic function evaluated at random points.

Our algorithm can handle unknown Gaussian noise. The ICA model with Gaussian noise is given by

x = As+ η,

where η ∼ N(0,Σ) is independent Gaussian noise with unknown general covariance matrix Σ ∈ Rn×n. Also,
our result does not need full independence of the si, it is sufficient to have d-wise independence. The following
is a short statement of our result for underdetermined ICA; the full statement appears later as Theorem 6.8
(but without noise). Its extension to handling Gaussian noise is in Sec. 4.8. The input to the algorithms,
apart from the samples generated according to the unknown noisy underdetermined ICA model, consists of
several parameters whose meaning will be clear in the theorem statement below: A tensor order parameter
d, number of signals m, accuracy parameter ǫ, confidence parameter δ, bounds on moments and cumulants
M and ∆, an estimate of the conditioning parameter σm, and moment order k. The notation A⊙d used
below is explained in the preliminaries section; briefly, it’s a nd ×m matrix with each column obtained by
flattening A⊗d

i into a vector.

Theorem 1.3. Let x ∈ Rn be given by an underdetermined ICA model with unknown Gaussian noise
x = As + η where A ∈ Rn×m with unit norm columns and the covariance matrix Σ ∈ Rn×n are unknown.
Let d ∈ 2N be such that σm(A⊙d/2) > 0. Let Mk,Md,M2d and k > d be such that for each si, there is

a ki satisfying d < ki < k and |cumki(si)| ≥ ∆, and E

(

|si|ki
)

,E
(
σ1(Σ)

k
)
≤ Mk, E

(

|si|d
)

≤ Md, and

E

(

|si|2d
)

≤M2d. Then one can recover the columns of A up to ǫ accuracy in 2-norm and up to the sign using

poly
(
mk,Mk

d ,M2d, 1/∆, 1/σm(A
⊙d/2)k, 1/ǫ, 1/σk

)
samples and with similar polynomial time complexity with

probability at least 3/4, where 0 < σ < ∆
Mk

poly(σm(mk, A⊙d/2)k, 1/kk).

The probability of success of the algorithm can be boosted from 3/4 to 1 − δ for any δ > 0 by taking
O(log(1/δ)) independent runs of the algorithm and using an adaptation of the “median” trick (see e.g.,
Thm 2.8 in[49]). To our knowledge, this is the first polynomial-time algorithm for underdetermined ICA
with provable finite sample guarantees. It works under mild assumptions on the input distribution and
nondegeneracy assumptions on the mixing matrix A. The assumption says that the columns of the matrix
when tensored up individually are linearly independent. For example, with d = 4, suppose that every si
differs from a Gaussian in the fifth or higher moment by ∆, then we can recover all the components as long
as vec

(
AiA

T
i

)
are linearly independent. Thus, the number of components that can be recovered can be as

high as m = n(n+ 1)/2. Clearly, this is a weakening of the standard assumption that the columns of A are
linearly independent. This assumption can be regarded as a certain incoherence type assumption. Moreover,
in a sense it’s a necessary and sufficient condition: the ICA problem is solvable for matrix A if and only if
any two columns are linear independent [26], and this turns out to be equivalent to the existence of a finite
d such that A⊙d has full column rank. A well-known condition in the literature on tensor decomposition is
Kruskal’s condition [45]. Unlike that condition it is easy to check if a matrix satisfies our assumption (for

a fixed d). Our assumption is true generically: For a randomly chosen matrix A ∈ R
n×(nd) (e.g. each entry

being i.i.d. standard Gaussian), we have σmin(A
⊙d) > 0 with probability 1. In a similar vein, for a randomly

chosen matrix A ∈ R
n×(nd) its condition number is close to 1 with high probability; see Theorem 9.2 for

a precise statement and proof. Moreover, our assumption is robust also in the smoothed sense [7]: If we

start with an arbitrary matrix M ∈ R
n×(n2) and perturb it with a noise matrix N ∈ R

n×(n2) with each entry
independently chosen from N(0, σ2), then we have σmin((M + N)⊙2) = σ2/nO(1) with probability at least
1− 1/nΩ(1), and a similar generalization holds for higher powers. This follows from a simple application of
the anti-concentration properties of polynomials in independent random variables; see [7] for a proof. See
also [15].
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As in the fully-determined ICA setting, we require that our random variables have some cumulant different
from a Gaussian. One aspect of our result is that using the dth derivative, one loses the ability to detect
non-Gaussian cumulants at order d and lower; on the other hand, a theorem of Marcinkiewicz [50] implies
that this does not cause a problem.

Theorem 1.4 (Marcinkiewicz). Suppose that random variable x ∈ R has only a finite number of non-
zero cumulants, then x is distributed according to a Gaussian, and every cumulant of order greater than 2
vanishes.

Thus, even if we miss the difference in cumulants at order i ≤ d, there is some higher order cumulant
which is nonzero, and hence non-Gaussian. Note also that for many specific instances of the ICA problem
studied in the literature, all cumulants differ from those of a Gaussian [35, 54, 9].

We remark that apart from direct practical interest of ICA in signal recovery, recently some new applica-
tions of ICA as an algorithmic primitive have been discovered. Anderson et al. [8] reduce some special cases
of the problem of learning a convex body (coming from a class of convex bodies such as simplices), given
uniformly distributed samples from the body, to fully-determined ICA. Anderson et al. [7] solve the prob-
lem of learning Gaussian mixture models in regimes for which there were previously no efficient algorithms
known. This is done by reduction to underdetermined ICA using the results of our paper.

Our final result applies the same method to learning mixtures of spherical Gaussians (see the full version).
Using Fourier PCA, we recover the result of Hsu and Kakade [39], and extend it to the setting of noisy
mixtures, where the noise itself is an unknown arbitrary Gaussian. Our result can be viewed as saying that
reweighted PCA gives an alternative algorithm for learning such mixtures.

Theorem 1.5. Fourier PCA for Mixtures applied to a mixture of k < n spherical Gaussians N(µi, σ
2
i In)

recovers the parameters of the mixture to desired accuracy ǫ using time and samples polynomial in k, n, 1/ǫ
with high probability, assuming that the means µi are linearly independent.

Thus, overall, our contributions can be viewed as two-fold. The first part is a robust, efficient tensor
decomposition technique. The second is the analysis of the spectra of matrices/tensors arising from Fourier
derivatives. In particular, showing that the eigenvalue gaps are significant based on anticoncentration of
polynomials in Gaussian space; and that these matrices, even when obtained from samples, remain diago-
nalizable.

2 Preliminaries

For positive integer n, the set {1, . . . , n} is denoted by [n]. The set of positive even numbers is denoted by
2N.

We assume for simplicity and without real loss of generality that E (sj) = 0 for all j. We can ensure
this by working with samples xi − x̄ instead of the original samples xi (here x̄ is the empirical average of
the samples). There is a slight loss of generality because using x̄ (as opposed to using E (() x)) introduces
small errors. These errors can be analysed along with the rest of the errors and do not introduce any new
difficulties.

Probability. For a random variable x ∈ Rn and u ∈ Rn, its characteristic function φ : R → C is defined

by φx(u) = Ex

(

eiu
T x
)

. Unlike the moment generating function, the characteristic function is well-defined

even for random variables without all moments finite. The second characteristic function of x is defined by
ψx(u) := logφx(u), where we take that branch of the complex logarithm that makes ψ(0) = 0. In addition
to random variable x above we will also consider random variable s ∈ Rm related to x via x = As for

A ∈ Rn×m and the functions associated with it: the characteristic function φs(t) = Es

(

eit
T s
)

and the

second characteristic function ψs(t) = logφs(t).
Let µj := E

(
xj
)
. Cumulants of x are polynomials in the moments of x which we now define. For

j ≥ 1, the jth cumulant is denoted cumj(x). Some examples: cum1(x) = µ1, cum2(x) = µ2 − µ2
1, cum3(x) =

µ3−3µ2µ1+2µ3
1. As can be seen from these examples the first two cumulants are the same as the expectation
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and the variance, resp. Cumulants have the property that for two independent r.v.s x, y we have cumj(x+y) =
cumj(x) + cumj(y) (assuming that the first j moments exist for both x and y). The first two cumulants of
the standard Gaussian distribution have value 0 and 1, and all subsequent cumulants have value 0. Since
ICA is not possible if all the independent component distributions are Gaussians, we need some measure
of distance from the Gaussians of the component distributions. A convenient measure turns out to be the
distance from 0 (i.e. the absolute value) of the third or higher cumulants. If all the moments of x exist, then
the second characteristic function admits a Taylor expansion in terms of cumulants

ψx(u) =
∑

j≥1

cumj(x)
(iu)j

j!
.

This can also be used to define cumulants of all orders.

Matrices. For a vector µ = (µ1, . . . , µn), let diag (µ) and diag (µj), where j is an index variable, denote
the n×n diagonal matrix with the diagonal entries given by the components of µ. The singular values of an
m× n matrix will always be ordered in the decreasing order: σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n). Our matrices will
often have rank m, and thus the non-zero singular values will often, but not always, be σ1, . . . , σm. The span
of the columns vectors of a matrix A will be denoted colspan (A). The columns of a matrix A are denoted
A1, A2, . . .. The potentially ambiguous but convenient notation ATi means (Ai)

T . The condition number of
a matrix A is κ(A) := σmax(A)/σmin(A), where σmax(A) := σ1(A) and σmin(A) := σmin(m,n)(A).

Tensors and tensor decomposition. Here we introduce various tensor notions that we need; these are
discussed in detail in the review paper [44]. An order d tensor T is an array indexed by d indices each with n
values (e.g., when d = 2, then T is simply a matrix of size n×n). Thus, it has nd entries. Tensors considered
in this paper are symmetric, i.e. Ti1,...,id is invariant under permutations of i1, . . . , id. In the sequel we will
generally not explicitly mention that our tensors are symmetric. We also note that symmetry of tensors is
not essential for our results but for our application to ICA it suffices to look at only symmetric tensors and
the results generalize easily to the general case, but at the cost of additional notaton.

We can also view a tensor as a degree-d homogeneous form over vectors u ∈ Rn defined by T (u, . . . , u) =
∑

i1,...,id
Ti1,...,idui1 . · · ·uid . This is in analogy with matrices, where every matrix A defines a quadratic form,

uTAu = A(u, u) =
∑

i,j Ai,juiuj . We use the outer product notation

v⊗d = v ⊗ · · · ⊗ v
︸ ︷︷ ︸

d copies

,

where entrywise we have [v ⊗ · · · ⊗ v]j1,...,jd = vj1 · · · vjd . A (symmetric) rank-1 decomposition of a tensor
Tµ is defined by

Tµ =

m∑

i=1

µiA
⊗d
i , (1)

where the µi ∈ R are nonzero and the Ai ∈ Rn are vectors which are not multiples of each other. Such a
decomposition always exists for all symmetric tensors with m < nd (better bounds are known but we won’t
need them). For example, for a symmetric matrix, by the spectral theorem we have

M =

n∑

i=1

λivi ⊗ vi.

We will use the notion of flattening of tensors. Instead of giving a formal definition it’s more illuminating
to give examples. E.g. for d = 4, construct a bijection τ : [n2] → [n] × [n] as τ(k) = (⌊k/n⌋, k − ⌊k/n⌋)
and τ−1(i, j) = ni + j. We then define a packing of a matrix B ∈ R

n×n to a vector p ∈ R
n2

by Bτ(k) = pk.

For convenience we will say that B = τ(p) and p = τ−1(B). We also define a packing of T ∈ Rn×n×n×n

6



to a matrix M ∈ Rn
2×n2

by Ma,b = Tτ(a),τ(b), for a, b ∈ [n2]. Note that M is symmetric because T is
symmetric with respect to all permutations of indices: Ma,b = Tτ(a),τ(b) = Tτ(b),τ(a) = Mb,a. The definition
of τ depends on the dimensions and order of the tensor and what it’s being flattened into; this will be clear
from the context and will not be further elaborated upon. Finally, to simplify the notation, we will employ
the Khatri-Rao power of a matrix: A⊙d :=

[
vec
(
A⊗d

1

)
|vec

(
A⊗d

2

)
| . . . |vec

(
A⊗d
m

)]
, where recall that vec (T )

for a tensor T is a flattening of T , i.e. we arrange the entries of T in a single column vector.

Derivatives. For g : Rn → R we will use abbreviation ∂uig(u1, . . . , un) for
∂g(u1,...,un)

∂ui
; when the variables

are clear from the context, we will further shorten this to ∂ig. Similarly, ∂i1,...,ikg denotes ∂i1(. . . (∂ikg) . . .),
and for multiset S = {i1, . . . , ik}, this will also be denoted by ∂Sg, which makes sense because ∂i1,...,ikg is
invariant under reorderings of i1, . . . , ik. We will not use any special notation for multisets; what is meant
will be clear from the context.

Dug(u) denotes the gradient vector (∂u1g(u), . . . , ∂ung(u)), and D2
ug(u) denotes the Hessian matrix

[∂ui∂ujg(u)]ij . More generally, Dd
ug(u) denotes the order d derivative tensor given by [Dd

ug(u)]i1,...,id =
∂ui1

. . . ∂uid
g(u).

Derivatives and linear transforms. We are particularly interested in how the derivative tensor changes
under linear transform of the arguments. We state things over the real field, but everything carries over to
the complex field as well. Let g : Rn → R and f : Rm → R be two functions such that all the derivatives that
we consider below exist. Let A ∈ Rn×m and let variables t ∈ Rm and u ∈ Rn be related by linear relation
t = ATu, and let the function f and g be related by g(u) = f(ATu) = f(t). Then for j ∈ [n]

∂ujg(u) = ∂ujf((A1)
Tu, . . . , (Am)Tu)

=
∂(A1)

Tu

∂uj
∂t1f(t) + . . .+

∂(Am)Tu

∂uj
∂tmf(t)

= Aj1∂t1f(t) + . . .+Ajm∂tmf(t)

=
∑

k∈[m]

Ajk∂tkf(t).

Applying the previous eqution twice for i, j ∈ [n] gives

∂ui∂ujg(u) = ∂ui




∑

k∈[m]

Ajk∂tkf(t)





=
∑

k∈[m]

Ajk∂tk(∂uif(t))

=
∑

k∈[m]

Ajk
∑

ℓ∈[m]

Ail∂tk∂tℓf(t)

=
∑

ℓ,k∈[m]

AiℓAjk∂tℓ∂tkf(t),

and applying it four times for i1, i2, i3, i4 ∈ [n] gives

∂ui1
∂ui2

∂ui3
∂ui4

g(u) =
∑

k1,k2,k3,k4∈[m]

Ai1k1Ai2k2Ai3k3Ai4k4∂tk1 ∂tk2∂tk3∂tk4 f(t). (2)

This can be written more compactly as a matrix equation

D4
ug(u) = A⊗2(D4

t f(t))(A
⊗2)T ,
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where we interpret both D4
ug(u) and D

4
t f(t) as appropriately flattened into matrices.

A useful special case of this occurs when f has the property that ∂ti∂tjf(t) = 0 whenever i 6= j. In this
case (2) can be rewritten as

∂ui1
∂ui2

∂ui3
∂ui4

g(u) =
∑

k∈[m]

Ai1kAi2kAi3kAi4k∂
4
tk
f(t),

and in matrix notation

D4
ug(u) = A⊙2diag

(
∂4t1f(t), . . . , ∂

4
tmf(t)

)
(A⊙2)T ,

where again we interpret D4
ug(u) as flattened into a matrix.

The previous equations readily generalize to higher derivatives. For d ≥ 1, interpreting the tensors
D2d
u g(u) and D

2d
t f(t) as flattened into matrices, we have

D2d
u g(u) = A⊗d(D2d

t f(t))(A
⊗d)T , (3)

and if f has the property that ∂ti∂tjf(t) = 0 whenever i 6= j then

D2d
u g(u) = A⊙ddiag

(
∂2dt1 f(t), . . . , ∂

2d
tmf(t)

)
(A⊙d)T . (4)

In our applications we will need to use the above equations for the case when g(u) = ψx(u) and f(t) =
ψs(t) where these notions were defined at the beginning of this section. The above equations then become

D2d
u ψx(u) = A⊗d(D2d

t ψs(t))(A
⊗d)T . (5)

In the special case when the components of s are indpendent we have f(t) = logE
(
eit1s1

)
+ . . . +

logE
(
eitmsm

)
and so we have the property ∂ti∂tjψs(t) = 0 whenever i 6= j and this gives

D2d
u ψx(u) = A⊙ddiag

(
∂2dt1 ψs(t), . . . , ∂

2d
t1 ψs(t)

)
(A⊙d)T . (6)

3 Algorithms

In this section, we present our main new algorithms and outline their analysis. For the reader’s conve-
nience, we will restate these algorithms in the sections where their analysis appears. As mentioned in the
introduction, our ICA algorithm is based on a certain tensor decocmposition algorithm.

3.1 Tensor decomposition

A fundamental result of linear algebra is that every symmetric matrix has a spectral decomposition, which
allows us to write it as the sum of outer products of vectors: A =

∑n
i=1 λiviv

T
i , and such representations

are efficiently computable. Our goal, in analogy with spectral decomposition for matrices, is to recover
(symmetric) rank-1 decompositions of tensors. Unfortunately, there are no known algorithms with provable
guarantees when m > n, and in fact this problem is NP-hard in general [18, 38]. It is an open research
question to characterize, or even give interesting sufficient conditions, for when a rank-1 decomposition of a
tensor T as in (1) is unique and computationally tractable. For the case d = 2, a necessary and sufficient
condition for uniqueness is that the eigenvalues of T are distinct. Indeed, when eigenvalues repeat, rotations
of the Ai in the degenerate eigensubspaces with repeated eigenvalues lead to the same matrix M .

For d > 2, if the Ai are orthogonal, then the expansion in (1) is unique and can be computed efficiently.
The algorithm is power iteration that recovers one Ai at a time (see e.g. [5]). The requirement that the Ai
are orthogonal is necessary for this algorithm, but if one also has access to the order-2 tensor (i.e., matrix) in
addition, M =

∑m
i=1 Ai⊗Ai, and the Ai are linearly indepenent, then one can arrange for the orthogonality

of the Ai by a suitable linear transformation. However, the fundamental limitation remains that we must
take m ≤ n simply because we can not have more than n orthogonal vectors in Rn.
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Here we consider a modified setting where we are allowed some additional information: suppose we
have access to two tensors, both of order d, which share the same rank-1 components, but have different
coefficients:

Tµ =

m∑

i=1

µiA
⊗d
i , Tλ =

m∑

i=1

λiA
⊗d
i .

Given such a pair of tensors Tµ and Tλ, can we recover the rank-1 components Ai?
We answer this question in the affirmative for even orders d ∈ 2N, and give a provably good algorithm

for this problem assuming that the ratios µi/λi are distinct. Additionally, we assume that the Ai are not
scalar multiples of each other, a necessary assumption. We make this quantitative via the mth singular value

of the matrix with columns given by A
⊙d/2
i .

Our algorithm works by flattening tensors Tµ and Tλ into matrices Mµ and Mλ which have the following
form:

Mµ = (A⊙d/2)diag (µi) (A
⊙d/2)T , Mλ = (A⊙d/2)diag (λi) (A

⊙d/2)T .

Taking the product MµM
−1
λ yields a matrix whose eigenvectors are the columns of A⊙d/2 and whose eigen-

values are µi/λi:

MµM
−1
λ = (A⊙d/2)diag (µi) (A

⊙d/2)T ((A⊙d/2)T )−1diag (λi)
−1

(A⊙d/2)−1

= (A⊙d/2)diag (µi/λi) (A
⊙d/2)−1.

Actually, for the last equation to make sense one needs that A⊙d/2 be invertible which will generally not
be the case as A⊙d/2 is not even a square matrix in general. We handle this by restricting Mµ and Mλ to
linear transform from their pre-image to the image. This is the reason for introducing matrixW in algorithm
Diagonalize(Mµ,Mλ) below.

The main algorithm below is Tensor Decomposition(Tµ, Tλ) which flattens the tensors and calls sub-

routine Diagonalize(Mµ,Mλ) to get estimates of the A
⊙d/2
i , and from this information recovers the Ai

themselves. In our application it will be the case that µ, λ ∈ Cm and Ai ∈ Rn. The discussion below is
tailored to this situation; the other interesting cases where everything is real or everything is complex can
also be dealt with with minor modifications.

Diagonalize(Mµ,Mλ)

1. Compute the SVD of Mµ = VΣUT , and let W be the left singular vectors (columns
of V ) corresponding to the m largest singular values. Compute the matrix M =
(WTMµW )(WTMλW )−1.

2. Compute the eigenvector decomposition M = PDP−1.

3. Output columns of WP .

The columns Ci = WPi are eigenvectors computed in subroutine Diagonalize. Ideally, we would like

these to equal A
⊙d/2
i . We are going to have errors introduced because of sampling, but in addition, since we

are working in the complex field we do not have control over the phase of Ci (the output of Diagonalize

obtained in Step 3 of Tensor Decomposition), and for ρ ∈ C with |ρ| = 1, ρCi is also a valid output of
Diagonalize. In Step 3 of Tensor Decomposition, we recover the correct phase of Ci ∈ Cn which will
give us a vector in C′

i ∈ Rn. We do this by choosing the phase maximizing the norm of the real part.
In Step 4, we have v⊗d + E, where E is an error tensor, and we want to recover v. We can do this

approximately when ‖E‖F is sufficiently small just by reading off a one-dimensional slice (e.g. a column in
the case of matrices) of v⊗d + E (say the one with the maximum norm).
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Tensor Decomposition(Tµ, Tλ)

1. Flatten the tensors to square matrices to obtain Mµ = τ−1(Tµ) and Mλ = τ−1(Tλ).

2. WP = Diagonalize(Mµ,Mλ).

3. For each column Ci of WP , let C′
i := Re

(
eiθ

∗

Ci
)
/
∥
∥Re

(
eiθ

∗

Ci
)∥
∥ where θ∗ =

argmaxθ∈[0,2π]

(∥
∥Re

(
eiθCi

)∥
∥
)
.

4. For each column C′
i, let vi ∈ Rn be such that v

⊗d/2
i is the best rank-1 approximation to τ(C′

i).

For the computation of eigenvectors of diagonalizable (but not normal) matrices over the complex num-
bers, we can employ any of the several algorithms in the literature (see for example [36, 56] for a number of
algorithms used in practice). In general, these algorithms employ the same atomic elements as the normal
case (Jacobi iterations, Householder transformations etc.), but in more sophisticated ways. The perturbation
analysis of these algorithms is substantially more involved than for normal matrices; in particular, it is not
necessarily the case that a (small) perturbation to a diagonalizable matrix results in another diagonalizable
matrix. We contend with all these issues in Section 5.3. In particular we note that while exact analysis is
relatively straightforward (Theorem 5.3), a robust version that recovers the common decomposition of the
given tensors takes considerable additional care (Theorem 5.4).

3.2 Underdetermined ICA

For underdetermined ICA we compute the higher derivative tensors of the second characteristic function
ψx(u) = log(φx(u)) at two random points and run the tensor decomposition algorithm from the previous
section.

Underdetermined ICA(σ)

1. (Compute derivative tensor) Pick independent random vectors α, β ∼
N(0, σ2In). For even d estimate the dth derivative tensors of ψx(u) at α
and β as Tα = Dd

uψx(α) and Tβ = Dd
uψx(β).

2. (Tensor decomposition) Run Tensor Decomposition(Tα, Tβ).

To estimate the 2dth derivative tensor of ψx(u) empirically, one simply writes down the expression for the
derivative tensor, and then estimates each entry from samples using the naive estimator.

The analysis roughly proceeds as follows: By (6) for tensors flattened into matrices we have D2d
u ψx(α) =

A⊙ddiag
(
∂2dt1 ψs(A

Tα), . . . , ∂2dt1 ψs(A
Tα)

)
(A⊙d)T andD2d

u ψx(β) = A⊙ddiag
(
∂2dt1 ψs(A

Tβ), . . . , ∂2dt1 ψs(A
Tβ)

)
(A⊙d)T .

Thus we have two tensors with shared rank-1 factors as in the tensor decomposition algorithm above. For
our tensor decomposition to work, we require that all the ratios (∂2dtj ψs(A

Tα))/(∂2dtj ψs(A
Tβ)) for j ∈ [m] be

different from each other as otherwise the eigenspaces in the flattened forms will mix and we will not be able
to uniquely recover the columns Ai. To this end, we will express ∂2dtj ψs(A

Tα) as a low degree polynomial

plus error term (which we will control by bounding the derivatives of ψs). The low degree polynomials will
with high probability take on sufficiently different values for ATu and AT v, which in turn guarantees that
their ratios, even with the error terms, are quite different.

Our analysis for both parts might be of interest for other problems. On the way to doing this in full
generality for underdetermined ICA, we first consider the special case of d = 2, which will already involve
several of these concepts and the algorithm itself is just PCA reweighted with Fourier weights.
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4 Fully determined independent component analysis

We begin with the case of standard or fully determined ICA where the transformation matrix A ∈ Rn×n is
full rank. With a slight loss of generality, we assume that A is unitary. If A is not unitary, we can simply
make it approximately so by placing the entire sample in isotropic position. Rigorously arguing about this
will require an additional error analysis; we will omit such details for the sake of clarity. In any case,
our algorithm for underdetermined ICA does not (and cannot) make any such assumption. Our algorithm
computes the eigenvectors of a covariance matrix reweighted according to random Fourier coefficients.

Fourier PCA(σ)

1. (Isotropy) Get a sample S from the input distribution and use them to find
an isotropic transformation B−1 with

B2 =
1

|S|
∑

x∈S
(x− x̄)(x− x̄)T .

2. (Fourier weights) Pick a random vector u from N(0, σ2In). For every x in a
new sample S, compute y = B−1x, and its Fourier weight

w(y) =
eiu

T y

∑

y∈S e
iuT y

.

3. (Reweighted Covariance) Compute the covariance matrix of the points y
reweighted by w(y)

µu =
1

|S|
∑

y∈S
w(y)y and Σu =

1

|S|
∑

y∈S
w(y)(y − µu)(y − µu)

T .

4. Compute the eigenmatrix V of Σu and output BV .

Formally, this algorithm is subsumed by our work on underdetermined ICA in Section 6, but both the
algorithm and its analysis are substantially simpler than the general case, but we retain the essential elements
of our technique – fourier transforms, polynomial anti-concentration and derivative truncation. On the other
hand, it does not require the machinery of our tensor decomposition in Section 5.

We make the following comments regarding the efficient realisation of this algorithm. The matrix Σu in
the algorithm is complex and symmetric, and thus is not Hermitian; its eigenvalue decomposition is more
complicated than the usual Hermitian/real-symmetric case. It can be computed in one of two ways. One is
to compute the SVD of Σu (i.e., compute the eigenvalue decomposition of ΣuΣ

∗
u which is a real symmetric

matrix). Alternatively, we can exploit the fact that the real and complex parts have the same eigenvectors,
and hence by carefully examining the real and imaginary components, we can recover the eigenvectors. We
separate Σu = Re (Σu) + i Im (Σu) into its real part and imaginary part, and use an SVD on Re (Σu) to
partition its eigenspace into subspaces with close eigenvalues, and then an SVD of Im (Σu) in each of these
subspaces. Both methods need some care to ensure that eigenvalue gaps in the original matrix are preserved,
an important aspect of our applications. We complete the algorithm description for ICA by giving a precise
method for determining the eigenmatrix V of the reweighted sample covariance matrix Σu. This subroutine
below translates a gap in the complex eigenvalues of Σu into observable gaps in the real part.

1. Write Σu = Re (Σu) + i Im (Σu). Note that both the component matrices are real and symmetric.

2. Compute the eigendecomposition of Re (Σu) = Udiag (ri)U
T .
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3. Partition r1, . . . , rn into blocks R1, . . . , Rl so that each block contains a subsequence of eigenvalues
and the gap between consecutive blocks is at least ǫ0, i.e., minr∈Rj ,s∈Rj+1 r − s ≥ ǫ0. Let Uj be the
eigenvectors corresponding to block Rj .

4. For each 1 ≤ j ≤ l, compute the eigenvectors of UTj Im (Σu)Uj and output V as the full set of
eigenvectors (their union).

Lemma 4.1. Suppose Σu has eigenvalues λ1, . . . , λn and ǫ = mini6=j min{Re (λi) − Re (λj) , Im (λi) −
Im (λj)}. Then, with ǫ0 = ǫ/n, the above algorithm will recover the eigenvectors of Σu.

Proof. The decomposition of the matrix Re (Σu), will accurately recover the eigensubspaces for each block
(since their eigenvalues are separated). Moreover, for each block Ujdiag (ri)U

T
j , the real eigenvalues ri are

within a range less than ǫ (since each consecutive pair is within ri − ri+1 < ǫ/n). Thus, for each pair i, i+1
in this block, we must have a separation of at least ǫ in the imaginary parts of λi, λi+1, by the definition
of ǫ. Therefore the eigenvalues of Qj = UTj Im (Σu)Uj are separated by at least ǫ and we will recover the
original eigenvectors accurately.

To perform ICA, we simply apply Fourier PCA to samples from the input distribution. We will show
that for a suitable choice of σ and sample size, this will recover the independent components to any desired
accuracy. The main challenge in the analysis is showing that the reweighted covariance matrix will have all
its eigenvalues spaced apart sufficiently (in the complex plane). This eigenvalue spacing depends on how
far the component distributions are from being Gaussian, as measured by cumulants. Any non-Gaussian
distribution will have a nonzero cumulant, and in that sense this is a complete method. We will quantify
the gaps in terms of the cumulants to get an effective bound on the eigenvalue spacings. The number of
samples is chosen to ensure that the gaps remain almost the same, and we can apply eigenvector perturbation
theorems Davis-Kahan or Wedin to recover the eigenvectors to the desired accuracy.

4.1 Overview of analysis

Our main theorem in the analysis of this algorithm is as follows:

Theorem 4.2. Let x ∈ Rn be given by an ICA model x = As where A ∈ Rn×n is unitary and the si are
independent, E

(
s4i
)
≤M4 for some constant, and for each si there exists a ki ≤ k such that |cumki(si)| ≥ ∆

(one of the first k cumulants is large) and E

(

|si|k
)

≤Mk. For any ǫ > 0, with the following setting of σ,

σ =
∆

2k!

( √
2π

4(k − 1)n2

)k

· 1

(2e)k+1Mk log(4n)k+1
,

Fourier PCA will recover vectors {b1, . . . , bn} such that there exists signs ai = ±1 satisfying

‖Ai − bi‖ ≤ ǫ

with high probability, using (ckn)2k
2+2(Mk/∆)2k+2M2

4 /ǫ
2 samples.

Our analysis proceeds via the analysis of the Fourier transform: for a random vector x ∈ R
n distributed

according to f , the characteristic function is given by the Fourier transform

φ(u) = E

(

eiu
T x
)

=

∫

f(x)eiu
T xdx.

We favour the Fourier transform or characteristic function over the Laplace transform (or moment gener-
ating function) for the simple reason that the Fourier transform always exists, even for very heavy tailed
distributions. In particular, the trivial bound

∣
∣eitx

∣
∣ = 1 means that once we have a moment bound, we can

control the Fourier transform uniformly.
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We will actually employ the second characteristic function or cumulant generating function given by
ψ(u) = log(φ(u)). Note that both these definitions are with respect to observed random vector x: when
x arises from an ICA model x = As, we will also define the component-wise characteristic functions with
respect to the underlying si variables φi(ui) = E

(
eiuisi

)
and ψi(ui) = log(φi(ui)). Note that both these

functions are with respect to the underlying random variables si and not the observed random variables xi.
For convenience, we shall also write gi = ψ′′

i .
Note that the reweighted covariance matrix in our algorithm is precisely the Hessian second derivative

matrix D2ψ:

Σu = D2ψ =
E

(

(x − µu)(x − µu)
T eiu

T x
)

E
(
eiuT x

) ,

where µu = E

(

xeiu
T x
)

/E
(

eiu
T x
)

. This matrix D2ψ has a very special form; suppose that A = In:

ψ(u) = log
(

E

(

eiu
T s
))

= log

(

E

(
n∏

i=1

eiuisi

))

=

n∑

i=1

log(E
(
eiuisi

)
) =

n∑

i=1

ψi(ui).

Taking a derivative will leave only a single term

∂ψ

∂ui
= ψ′

i(ui). (7)

And taking a second derivative will leave only the diagonal terms

D2ψ = diag (ψ′′
i (ui)) = diag (gi(ui)) .

Thus, diagonalizing this matrix will give us the columns of A = In, provided that the eigenvalues of
D2ψ are non-degenerate. In the general case when A 6= In, we can first place x in isotropic position
whence A will be unitary. We perform the change of basis carefully in Section 4.2, obtaining that D2ψ =
Adiag

(
ψ′′
i ((A

Tu)i)
)
AT . Now D2ψ is symmetric, but not Hermitian, and its eigenvalues are complex, but

nonetheless a diagonalization suffices to give the columns of A.
To obtain a robust algorithm, we rely on the eigenvalues ofD2ψ being adequately spaced (so that the error

arising from sampling does not mix the eigenspaces, hence columns of A). Thus, we inject some randomness
by picking a random Fourier coefficient, and hope that the gi(ui) are sufficiently anti-concentrated. To this
end, we will truncate the Taylor series of gi to k

th order, where the kth cumulant is one that differs from
a gaussian substantially. The resulting degree k polynomial will give us the spacings of the eigenvalues via
polynomial anti-concentration estimates in Section 4.3, and we will control the remaining terms from order
k+1 and higher by derivative estimates in Section 4.4. Notably, the further that si is from being a gaussian
(in cumulant terms), the stronger anti-concentration. We will pick the random Fourier coefficient u according
to a Gaussian N(0, σ2In) and we will show that with high probability for all pairs i, j we have

∣
∣gi((A

T u)i)− gj((A
T u)j)

∣
∣ ≥ δ.

Critical to our analysis is the fact that (ATu)i and (ATu)j are both independent Gaussians since the columns
of A are independent by our assumption of isotropic position (Section 4.5). We then go onto compute the
sample complexity required to maintain these gaps in Section 4.6 and conclude with the proof of correctness
for our algorithm in Section 4.7.

In case more than one of the variables are (standard) Gaussians, then a quick calculation will verify
that ψ′′

i (ui) = 1. Thus, in the presence of such variables the eigenvectors corresponding to the eigenvalue
1 are degenerate and we can not resolve between any linear combination of such vectors. Thus, the model
is indeterminate when some of the underlying random variables are too gaussian. To deal with this, one
typically hypothesizes that the underlying variables si are different from Gaussians. One commonly used
way is to postulate that for each si the fourth moment or cumulant differs from that of a Gaussian. We
weaken this assumption, and only require that some moment is different from a Gaussian.

The Gaussian function plays an important role in harmonic analysis as the eigenfunction of the Fourier
transform operator, and we exploit this property to deal with additive Gaussian noise in our model in Section
4.8.
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4.2 Eigenvalues

As noted previously, when A = In, we have D2ψ = diag (ψ′′
i (ui)). When A 6= In we have

Lemma 4.3. Let x ∈ Rn be given by an ICA model x = As where A ∈ Rn×n is a unitary matrix and s ∈ Rn

is an independent random vector. Then

D2ψ = Adiag
(
ψ′′
i ((A

Tu)i)
)
AT .

This lemma is standard chain rule for multivariate functions. A more general version applying to higher
derivative tensors is proved later in Section 6.

4.3 Anti-concentration for polynomials

The main result of this section is an anti-concentration inequality for univariate polynomials under a Gaussian
measure. While this inequality appears very similar to the inequality of Carbery–Wright [20] (cf. [52],
Corollary 3.23), we are not able to derive our inequlity from it. The hypothesis of our inequality is weaker
in that it only requires the polynomial to be monic instead of requiring the polynomial to have unit variance
as required by Carbery–Wright; on the other hand it applies only to univariate polynomials.

Theorem 4.4 (Anti-concentration of a polynomial in Gaussian space). Let p(x) be a degree d monic poly-
nomial over R. Let x ∼ N(0, σ2), then for any t ∈ R we have

Pr (|p(x) − t| ≤ ǫ) ≤ 4dǫ1/d

σ
√
2π
.

For most of the proof we will work with the Lebesgue measure; the proof for the Gaussian measure will
follow immediately. Our starting point is the following lemma which can be derived from the properties of
Chebyshev polynomials ([17], Sec 2.1, Exercise 7); we include a proof for completeness. For interval [a, b],
define the supremum norm on real-valued functions f defined on [a, b] by

‖f(x)‖[a,b] :=
∥
∥f(x)χ[a,b]

∥
∥
∞ = sup

x∈[a,b]

|f(x)| .

Then we have

Lemma 4.5. The unique degree d monic polynomial minimising ‖p(x)‖[a,b] is given by

p(x) = 2

(
b− a

4

)d

Td

(
2x− a− b

b− a

)

, (8)

where Td is the dth Chebyshev polynomial.

Proof. We already know (see [17]) that for the interval [−1, 1] the unique monic polynomial of degree d which
minimizes ‖p(x)‖[−1,1] is given by 21−dTd(x). Map the interval [a, b] to [−1, 1] using the affine map f(x) =

(2x−a−b)/(b−a) which satisfies f(a) = −1 and f(b) = 1. Then ((b−a)/2)d21−dTd(x) = 2((b−a)/4)dTd(x)
is the unique monic polynomial minimizing ‖·‖[a,b]. For if it were not, we could use such a polynomial to

construct another monic polynomial (by reversing the above transformation) which contradicts the fact that
Chebyshev polynomials are the unique monic minimizers of ‖·‖[−1,1].

From this we have the following lemma.

Lemma 4.6. Let p(x) be a degree d monic polynomial over R. Fix ǫ > 0, then for every x, there exists an
x′ where |x− x′| ≤ ǫ and |p(x)− p(x′)| ≥ 2(ǫ/2)d.
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Proof. We will translate the polynomial p to obtain the polynomial q(y) as follows:

q(y) = p(y + x)− p(x).

Observe that q(y) is a monic polynomial and q(0) = 0. Now suppose that for all points x′ ∈ [x − ǫ, x + ǫ],
we have |p(x)− p(x′)| < (ǫ/2)d, then for all y ∈ [−ǫ, ǫ], we must have |q(y)| < 2(ǫ/2)d.

But, from the previous lemma, we know that for the interval [−ǫ, ǫ], the minimum L∞-norm on the
interval for any monic polynomial is attained by r(y) = 2(ǫ/2)dTd(y/ǫ). The value of this minimum is
2(ǫ/2)d.

We can use the above lemma to given an upper bound on the measure of the set where a polynomial
stays within a constant sized band:

Lemma 4.7. Let p(x) be a degree d monic polynomial. Then for any interval [a, b] where b− a = ǫ we have

µ(x ∈ R : p(x) ∈ [a, b]) ≤ 4d
( ǫ

2

)1/d

,

where µ denotes the usual Lebesgue measure over R.

Proof. Since p is a continuous function so, p−1([a, b]) = ∪iIi where Ii are disjoint closed intervals. There are
at most d such intervals: every time p(x) exits and re-enters the interval [a, b] there must be a change of sign
in the derivative p′(x) at some point in between. Since p′(x) is a degree d− 1 polynomial, there can only be
d− 1 changes of sign.

Next, suppose that |Ii| > 4(ǫ/2)1/d, then there exists an interval [x − 2(ǫ′/2)1/d, x + 2(ǫ′/2)1/d] ⊆ Ii,
where ǫ′ > ǫ. Then, by applying Lemma 4.6, there exists a point x′ such that |x− x′| ≤ 2(ǫ′/2)1/d but

|p(x)− p(x′)| ≥ 2

[

1

2
· 2
(
ǫ′

2

)1/d
]d

≥ ǫ′ > ǫ.

This implies that x′ /∈ [a, b], which is a contradiction. Hence we must have |Ii| ≤ 4(ǫ/2)1/d and

∑

i

|Ii| ≤ dmax
i

|Ii| ≤ 4d(ǫ/2)1/d,

as required.

We can now give the proof for Theorem 4.4:

Proof of Theorem 4.4. We know that the Lebesgue measure of the set for which p(x) ∈ [t− ǫ, t+ ǫ] is given
by Lemma 4.7. Then multiplying by the maximum density of a Gaussian 1/σ

√
2π gives us the desired

bound.

4.4 Truncation Error

Let us expand out the function gi = ψ′′
i as a Taylor series with error estimate:

Theorem 4.8 (Taylor’s theorem with remainder). Let f : R → R be a Cn continuous function over some
interval I. Let a, b ∈ I, then

f(b) =

n−1∑

k=1

f (k)(a)

k!
(b− a)k +

f (n)(ξ)

n!
(b − a)n,

for some ξ ∈ [a, b].
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To this end, we write

gi(ui) = pi(ui) +
g(k)(ξ)

k!
uki , (9)

where ξ ∈ [0, ui] and pi is a polynomial of degree (k − 1).
To bound the error term in (9), we observe that it suffices to bound [log(φi)]

(k)(ui) using the following
lemma.

Lemma 4.9. Let x ∈ R be a random variable with finite k absolute moments, and let φ(u) be the associated
characteristic function. Then

∣
∣
∣[log(φ)]

(k)
(u)
∣
∣
∣ ≤

2k−1(k − 1)! E
(

|x|k
)

|φ(u)|k
.

Proof. We will compute the derivatives of ψ(u) = logφ(u) as follows: we proceed recursively with ψ′(u) =
φ′(u)/φ(u) as our base case. Let ψ(d) be given by the ratio of two functions, a numerator function N(u; d)
and a denominator function D(u; d), with no common factors and N(u; d) is the sum of terms of the form
∏d
j=1 φ

(ij)(u) where the coefficient of each term is ±1. Some useful properties of functions N(u; d), D(u; d)
are summarized in the following claim.

Claim 4.10. For d ≥ 1, functions N(u; d) and D(u; d) satisfy

1. D(u; d) = φ(u)d.

2. For each term of N(u; d),
∑d

j=1 ij ≤ d.

3. For each term of N(u; d), the total number of factors of φ and its derivatives is at most d.

4. For d ≥ 1, there are at most 2d−1(d− 1)! terms in N(u; d).

Proof. We will prove all these via induction over d. Clearly these are all true for the base case d = 1. Assume
that all four facts are true for some d, we will now examine the case for d+ 1.

Writing ψ(d+1)(u) as the derivative of ψ(d)(u) = N(u; d)/D(u; d) and canceling common factors gives

ψ(d+1)(u) =
N ′(u; d)D(u; d)−N(u; d)D′(u; d)

D(u; d)2

=
N ′(u; d)φ(u)d −N(u; d)dφ(u)d−1φ′(u)

φ(u)2d

=
N ′(u; d)φ(u)− dφ′(u)N(u; d)

φ(u)d+1
. (10)

Observing that there is always a term in N(u; d) = φ′(u)d, we can not cancel any further factors of φ(u).
Hence D(u; d) = φ(u)d, proving the first part of the claim.

The second and third parts of the claim follow immediately from the final expression for ψ(d+1)(u) above
and our inductive hypothesis.

To prove the fourth part, let T (d) denote the total number of terms in N(u; d), then by part 3 and
the expansion in (10), we have T (d + 1) ≤ dT (d) + dT (d) ≤ 2dT (d). From this T (d + 1) ≤ 2dd! follows
immediately.

Returning to the proof of Lemma 4.9, for d ≤ k we observe that

∣
∣
∣φ(d)(u)

∣
∣
∣ =

∣
∣
∣E

(

(ix)deiu
T x
)∣
∣
∣ ≤ E

(∣
∣
∣(ix)deiu

T x
∣
∣
∣

)

≤ E

(

|x|d
)

.
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Thus, for each term of N(u; d):

∣
∣
∣
∣
∣
∣

d∏

j=1

φ(ij)(u)

∣
∣
∣
∣
∣
∣

≤
d∏

j=1

∣
∣
∣φ(ij)(u)

∣
∣
∣ ≤

d∏

j=1

E

(

|x|ij
) Fact10.6

≤ E

(

|x|
∑d

j=1 ij
)

≤ E

(

|x|d
)

.

Combining Claim 4.10 with the previous equation, and noticing that we never need to consider abso-
lute moments of order higher than k (which are guaranteed to exist by our hypothesis), gives the desired
conclusion.

To conclude this section, we observe that if the distribution of x ∈ R is isotropic then for u ∈ (−1, 1) we
have

φx(u) = φx(0) + φ′x(0)u+
φ′′x(ξ)

2
u2,

where ξ ∈ [0, u]. We have φx(0) = 1, φ′x(0) = E (x) = 0 and |φ′′x(ξ)| ≤ E

(

|x|2
)

= 1 by the isotropic position

assumption. Thus, for u ∈ [−1/4, 1/4], Lemma 4.9 gives us

∣
∣
∣[log(φx)]

(k)(u)
∣
∣
∣ ≤ E

(

|x|k
)

kk. (11)

4.5 Eigenvalue spacings

We will apply Theorem 4.4 to the truncated Taylor polynomials pi of the functions ψ′′
i , and bound the

truncation error to be at most a constant fraction of the desired anti-concentration.

Theorem 4.11. Let s ∈ Rn be a random vector with indpendent components. For t ∈ Rn, let ψ(t) =

logE
(

eit
T s
)

be the second characteristic function of s. Suppose we are given the following data and condi-

tions:

1. Integer k > 2 such that E
(

|si|k
)

exists for all i ∈ [n].

2. ∆ > 0 such that for each i ∈ [n], there exists 2 < ki < k such that |cumki(si)| ≥ ∆.

3. M2 > 0 such that E
(
s2i
)
≤M2 for i ∈ [n].

4. Mk > 0 such that E
(

|si|k
)

≤Mk for i ∈ [n].

5. gi(ti) :=
∂2ψ(t)
∂t2i

.

6. τ ∼ N(0, σ2In) where σ = min(1, 1

2
√

2M2 log 1/q
, σ′) and

σ′ =

(
3

8

)k+1

· k − 1

k!
·
(√

2π

4k

)k−2

· qk−2

(
√

2 log(1/q))k−1
· ∆

Mk
, (12)

and 0 < q ≤ 1/3.

Then with probability at least 1− n2q, for all distinct i, j we have

|gi(τi)− gj(τj)| ≥
∆

2(k − 2)!

(√
2πσq

4k

)k−2

.
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Proof. We will argue about the spacing |g1(τ1)− g2(τ2)|, and then use the union bound to get that none of
the spacings is small with high probability. Since s1 has first k moments, we can apply Taylor’s theorem
with remainder (Actually one needs more care as that theorem was stated for functions of type R → R,
whereas our function here is of type R → C. To this end, we can consider the real and imaginary parts of
the function separately and apply Theorem 4.8 to each part; we omit the details.) Applying Theorem 4.8
gives

g1(t1) = −
k1∑

l=2

cuml(s1)
(it1)

l−2

(l − 2)!
+R1(t1)

(it1)
k1−1

(k1 − 1)!
.

Truncating g1 after the degree (k1 − 2) term yields a polynomial p1(t1). Denote the truncation error by
ρ1(t1). Then, fixing t2 arbitrarily and setting z = g2(t2) for brevity, we have

|g1(t1)− g2(t2)| = |p1(t1) + ρ1(t1)− z|
≥ |p1(t1)− z| − |ρ1(t1)| .

We will show that |p1(t1)− z| is likely to be large and |ρ1(t1)| is likely to be small. Noting that
(k1−2)!

ik1−2cumk1
(s1)

p1(t1) is monic of degree k1− 2 (but with coefficients from C), we apply our anti-concentration

result in Theorem 4.4. Again, although that theorem was proven for polynomials with real coefficients, its
application to the present situation is easily seen to go through without altering the bound by considering
the real and imaginary parts separately. In the following, the probability is for t1 ∼ N(0, σ2).

Pr (|p1(t1)− z| ≤ ǫ1) ≤
4(k1 − 2)

σ
√
2π

(
ǫ1(k1 − 2)!

|cumk1(s1)|

)1/(k1−2)

≤ 4k1

σ
√
2π

(
ǫ1(k1 − 2)!

∆

)1/(k1−2)

.

Setting

ǫ1 :=
∆

(k1 − 2)!

(√
2πσq

4k1

)(k1−2)

≤ ∆

(k − 2)!

(√
2πσq

4k

)(k−2)

(13)

we have

Pr (|p1(t1)− z| ≤ ǫ) ≤ q.

Next we bound the truncation error and show that |ρ1(t1)| ≤ ǫ/2 with probability at least 1 − q√
π log 1/q

.

Applying Lemma 4.9, the error introduced is

|ρ1(t1)| ≤
k1! 2

k1E

(

|s1|k1+1
)

|φ1(t1)|k1+1
· tk1−1

1

(k1 − 1)!
.

We now lower bound the probability that |t1| is small when t1 ∼ N(0, σ2):

Pr

(

|t1| ≤ σ
√

2 log 1/q
)

≥ 1− q
√

π log 1/q
.

The computation above used Claim 10.3.
Thus with probability at least 1− q√

π log 1/q
we have

|ρ1(t1)| ≤
k1! 2

k1Mk

(3/4)k1+1(k1 − 1)!
· (σ
√

2 log 1/q)k1−1, (14)

here we used that by our choice of σ we have σ
√

2 log 1/q ≤ 1
2
√
M2

, hence Lemma 10.1 gives that |φ(t1)| ≥ 3/4.
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Now for |t1| ≤ σ
√

2 log 1/q we want

|ρ1(t1)| ≤ ǫ1/2.

This is seen to be true by plugging in the value of ǫ1 from (13) and the bound on ρ1(t1) from (14) and
our choice of σ.

Thus we have proven that |g1(t1)− g2(t2)| ≥ ǫ/2 with probability at least 1 − (q + q√
π log 1/q

) ≥ 1 − 2q

(using q ∈ (0, 1/3]). Now applying the union bound over all pairs we get the required bound.

4.6 Sample complexity

In this section, we bound the sample complexity of the algorithm. First we will show how many samples are

necessary to estimate accurately the desired Fourier transforms E
(

eiu
T x
)

, E
(

xeiu
T x
)

and E

(

xxT eiu
T x
)

.

Lemma 4.12. Let x ∈ Rn be a random vector. Fix ǫ > 0 and a vector t ∈ Rn. Let x(j) be i.i.d. samples
drawn according to x then

∣
∣
∣
∣
∣
∣

1

m

m∑

j=1

eiu
T x(j) − E

(

eiu
T x
)

∣
∣
∣
∣
∣
∣

≤ ǫ,

with probability at least 1− 4e−mǫ
2/2.

Proof. Note that the random variables eiu
T x are bounded in magnitude by 1. We separate out the real and

imaginary components of eiu
T x and separately apply the Chernoff inequality.

In the most general setting, all we can do is bound the variance of our sample covariance matrix, and
this will give a polynomial bound on the sample complexity.

Lemma 4.13. Suppose that the random vector x ∈ Rn is drawn from an isotropic distribution F . Then

Var(xje
iuT x) ≤ 1 for 1 ≤ j ≤ n,

Var(x2je
iuT x) ≤ E

(
x4j
)
,

Var(xixje
iuT x) ≤ 1 for i 6= j.

Proof.

Var(xje
iuT x) = E

(
x2j
)
−
∣
∣
∣E

(

xje
iuT x

)∣
∣
∣

2

≤ 1.

The other parts are similar, with the last inequality using isotropy.

We can combine these concentration results for the Fourier derivatives to obtain the final sample com-
plexity bound. Recall from (11) that we have in the interval u ∈ [−1/4, 1/4]

|g(u)| ≤ E

(

|x|2
)

kk ≤ 16

We can now give the sample complexity of the algorithm.

Corollary 4.14. Let x = As be an ICA model where A ∈ Rn×n is a unitary matrix. Suppose that the
random vector s ∈ Rn is drawn from an isotropic distribution, and that for each si, we have E

(
s4i
)
≤ M .

Fix ǫ > 0 and a vector u ∈ Rn where ‖u‖ ≤ 1/4. Let Σ̂u be the matrix estimated from m independent samples
of xi = Asi, then

∥
∥
∥Σ̂u − Σu

∥
∥
∥
F
≤ ǫ

with probability at least 1− 1/n for m ≥ poly(n,M)/ǫ2.
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Proof. Apply Chebyshev’s inequality along with the variance bounds. Since the Frobenius norm is unitarily
invariant, we can consider the error in the basis corresponding to s. In this basis:

∥
∥
∥E

(

eiu
T s(s− µ̃)(s− µ̃)T − Σ̃u

)∥
∥
∥

≤
∥
∥
∥
∥
∥
E

(

ssT eiu
T s
)

−
m∑

i=1

(si)(si)T eiu
T si

∥
∥
∥
∥
∥
+ 2

∥
∥
∥
∥
∥
E

(

sµ̃T eiu
T s
)

−
m∑

i=1

x ˆ̃µT eiu
T s

∥
∥
∥
∥
∥

+
∥
∥
∥E
(
µ̃µ̃T

)
− ˆ̃µ ˆ̃µT

∥
∥
∥

∣
∣
∣E

(

eiu
T s
)∣
∣
∣

≤ ǫ

where the last bound is derived by apportioning ǫ/5 error to each term. Finally, we conclude by noting

that by our choice of t, we have
∣
∣
∣E

(

eiu
T x
)∣
∣
∣ ≥ 29/32, and the multiplicative error due to the scaling by

1/E
(

eiu
T x
)

is lower order in comparison to ǫ.

For more structured distributions, e.g., logconcave distributions, or more generally distributions with
subexpoential tails, much sharper bounds are known on the sample complexity of covariance estimation, see
e.g., [57, 67, 60, 1].

4.7 Proof of Theorem 4.2

In this section we give the proof of correctness for our algorithm for ICA.

Proof of Theorem 4.2. In the exact case, the diagonal entries are given by gi((A
Tu)i). Since A is orthonor-

mal, for any pair (ATu)i = ATi u and (ATu)j = ATj u have orthogonal Ai and Aj , hence the arguments of gi
and gj are independent Gaussians and Theorem 4.11 gives us the eigenvalue spacings of Σu to be used in
Lemma 8.1.

In particular, the spacings are at least ξ = ∆
2k!

( √
2πσ

4(k−1)n2

)k

. Thus, with desired accuracy ǫ in Lemma

8.1, then we require the sampling error (in operator norm, which we upper bound using Frobenius norm)
to be ‖E‖F ≤ ǫξ/(ξ + ǫ). We can then substitute this directly into Corollary 4.14 which gives the sample
complexity.

4.8 Gaussian noise

The Gaussian function has several nice properties with respect to the Fourier transform, and we can exploit
these to cancel out independent Gaussian noise in the problems that we study. To deal with Gaussian noise,
when the observed signal x = As+ η where η is from an unknown Gaussian N(µη, Rη) which is independent
of s, we can use the following modified algorithm.

1. Pick two different random Gaussian vectors u, v.

2. Compute Σ = Σ0,Σu and Σv as in the previous algorithm.

3. Output the eigenvectors of (Σu − Σ)(Σv − Σ)−1.

Theorem 4.15. Let x ∈ Rn be given be a noisy independent components model x = As+η, where A ∈ Rn×n

is a full rank matrix, and the noise vector η has a Gaussian distribution. With sufficiently many samples,
the modified algorithm outputs A.
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Proof. When x = As+ η, the function ψ(u) = log
(

E

(

eiu
T x
))

can be written as

ψ(u) = log
(

E

(

eiu
T x
))

+ log
(

E

(

eiu
T η
))

Therefore,

D2ψu = Adiag
(
ψ′′
i (A

T
i u)

)
AT +

E

(

eiu
T η(η − µη)(η − µη)

T
)

E
(
eiuT η

)

= Adiag
(
ψ′′
i (A

T
i u)

)
AT + E

(
(η − µη)(η − µη)

T
)

= Adiag
(
ψ′′
i (A

T
i u)

)
AT +Rη

where η ∼ N(µη, Rη). Therefore,

Σu − Σ = A(Du −D)AT

with D being the covariance matrix of s and

(Σu − Σ)(Σv − Σ)−1 = A(Du −D)(Dv −D)−1A−1.

The eigenvectors of the above matrix are the columns of A.

For a complete robustness analysis, one needs to control the spectral perturbations of the matrix A(Du−
D)(Dv − D)−1A−1 under sampling error. We omit this proof, but note that it follows easily using the
techniques we develop for underdetermined ICA.

5 Efficient tensor decompositions

In this section we analyze the tensor decomposition algorithm, which will be our main tool for the underde-
termined ICA problem.

5.1 Algorithm

Recall that our algorithm works by flattening tensors Tµ and Tλ into matricesMµ andMλ and then observing

that the eigenvectors of MµM
−1
λ are vectors corresponding to flattened (vectorized) A

⊗d/2
i .

Diagonalize(Mµ,Mλ)

1. Compute the SVD of Mµ = V ΣU∗, and let the W be the left singular vectors (columns
of V ) corresponding to the m largest singular values. Compute the matrix M =
(W ∗MµW )(W ∗MλW )−1.

2. Compute the eigenvector decomposition M = PDP−1.

3. Output columns of WP .

In Step 3 of Tensor Decomposition, we get an approximation of v
⊙d/2
i up to a phase factor. We first

correct the phase by maximizing the projection onto R
n. To this end we prove

Lemma 5.1. Let v ∈ Cn and u ∈ Rn be unit vectors such that for some ϕ ∈ [0, 2π] we have
∥
∥eiϕv − u

∥
∥ ≤ ǫ

for 0 ≤ ǫ ≤ 1/2. Let θ∗ = argmaxθ∈[0,2π](
∥
∥Re

(
eiθv

)∥
∥) and u′ = Re

(
eiθ

∗

v
)
/
∥
∥Re

(
eiθ

∗

v
)∥
∥. Then there is a

sign α ∈ −1, 1 such that

‖αu− u′‖ ≤ 11
√
ǫ.
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Tensor Decomposition(Tµ, Tλ)

1. Flatten the tensors to obtain Mµ = τ−1(Tµ) and Mλ = τ−1(Tλ).

2. WP = Diagonalize(Mµ,Mλ).

3. For each column Ci of WP , let C′
i := Re

(
eiθ

∗

Ci
)
/
∥
∥Re

(
eiθ

∗

Ci
)∥
∥ where θ∗ =

argmaxθ∈[0,2π]

(∥
∥Re

(
eiθCi

)∥
∥
)
.

4. For each column C′
i, let vi ∈ Rn be such that v

⊗d/2
i is the best rank-1 approximation to τ(C′

i).

Proof. Without loss of generality, we will assume that ϕ = 0, hence ‖v − u‖ ≤ ǫ. By the optimality of θ∗

∥
∥
∥Re

(

eiθ
∗

v
)∥
∥
∥ ≥ ‖Re (v)‖ ≥ 1− ǫ.

Let us denote v′ = eiθ
∗

v, then we have ‖Re (v′)‖2+‖Im (v′)‖2 = 1 which implies that ‖Im (v′)‖2 ≤ 2ǫ−ǫ2 < 2ǫ.
Now using ǫ ≤ 1/2 we have

‖v′ − u′‖ ≤ ‖Re (v′)− u′‖+ ‖Im (v′)‖

=

∥
∥
∥
∥
Re (v′)− Re (v′)

‖Re (v′)‖

∥
∥
∥
∥
+ ‖Im (v′)‖

≤ ‖Re (v′)‖
(

1

1− ǫ
− 1

)

+ ‖Im (v′)‖

≤ 2ǫ+
√
2ǫ ≤ 4

√
ǫ,

and
∥
∥
∥u′ − eiθ

∗

u
∥
∥
∥ ≤

∥
∥
∥u′ − eiθ

∗

v
∥
∥
∥+

∥
∥
∥eiθ

∗

v − eiθ
∗

u
∥
∥
∥ = ‖u′ − v′‖+ ‖u− v‖ < 5

√
ǫ.

This implies
∣
∣Re

(
eiθ

∗)∣
∣ ≥ 1 − 5

√
ǫ. Hence there is a sign α ∈ −1, 1 such that

∣
∣eiθ

∗ − α
∣
∣ ≤ 10

√
ǫ (we omit

some routine computations). Finally,

‖u′ − αu‖ ≤
∥
∥
∥u′ − eiθ

∗

u
∥
∥
∥+

∥
∥
∥eiθ

∗

u− αu
∥
∥
∥ ≤ 5

√
ǫ+ 10

√
ǫ = 15

√
ǫ.

Lemma 5.2. For unit vector v ∈ Rn and a positive integer d, given v⊙d + E, where E is an error vector,
we can recover v′′ such that for some α ∈ {−1, 1} we have

‖v − αv′′‖2 ≤ 2 ‖E‖2
β − ‖E‖2

,

where β = 1
nd/2−1/2 .

Proof. Let’s for a moment work with v⊙d (so there is no error), and then we will take the error into account.
In this case we can essentially read v off from v⊙d. Each one-dimensional slice of v⊗d (Note that as vectors,
v⊙d and v⊗d are the same; they differ only in how their entries are arranged: In the former, they are in a
linear array and in the latter they are in an n × n × . . . × n array. We will use them interchangeably, and
we will also talk about v⊗d + E which has the obvious meaning.) is a scaled copy of v. Let us choose the
copy with the maximum norm. Since ‖v‖ = 1, there is a coordinate v(i) such that |v(i)| ≥ 1/

√
n. Thus
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there is a one-dimensional slice of v⊗d with norm at least 1
nd/2−1/2 = β. Scaling this slice to norm 1 would

result in αv for some α ∈ {−1, 1}. Now, when we do have error and get v⊗d + E, then we must have a
one-dimensional slice v′ of v⊗d + E with norm at least β − ‖E‖2. Then after normalizing v′ to v′′, one can

check that ‖αv′′ − v‖ ≤ 2‖E‖2

β−‖E‖2
for some α ∈ {−1, 1}.

5.2 Exact analysis

We begin with the proof of the tensor decomposition theorem with access to exact tensors as stated in
Theorem 1.2. This is essentially a structural results that says we can recover the rank-1 components when
the ratios µi/λi are unique.

We first note that for a tensor Tµ with a rank-1 decomposition as in (1), that the flattened matrix
versionMµ = τ−1(Tµ) can be written as

Mµ = (A⊙d/2)diag (µi) (A
⊙d/2)T .

We will argue that the diagonalisation step works correctly (we will write B = A⊙d/2 in what follows). The
recovery of Ai from the columns of B follows by Lemma 5.1 above.

Our theorem is as follows (note that the first condition below is simply a normalisation of the eigenvectors):

Theorem 5.3. Let Mµ,Mλ ∈ Cp×p such that:

Mµ = Bdiag (µi)B
T , and Mλ = Bdiag (λi)B

T ,

where B ∈ R
p×m and µ, λ ∈ C

m for some m ≤ p. Suppose that the following hold:

1. For each column Bi ∈ Rm of B, ‖Bi‖2 = 1,

2. σm(B) > 0, and

3. µi, λi 6= 0 for all i, and
∣
∣
∣
µi

λi
− µj

λj

∣
∣
∣ > 0 for all i 6= j.

Then Diagonalize(Mµ,Mλ) outputs the columns of B up to sign and permutation.

Proof. By our assumptions, the image ofMλ has dimensionm and the matrixW computed inDiagonalize(Mµ,Mλ)
satisfies colspan (W ) = colspan (B). Moreover, we could choose W to have all entries real because B is a
real matrix; this will give that the ambiguities in the recovery of B are in signs and not in phase. Since the
columns of W are orthonormal, the columns of P := WTB all have unit norm and it is a full rank m ×m
matrix. So we can write

WTMµW = Pdiag (µi)P
T ,

(WTMλW )−1 = (PT )−1diag
(
λ−1
i

)
P−1.

Which gives

(WTMµW )(WTMλW )−1 = Pdiag (µi/λi)P
−1.

Thus the colums of P are the eigenvectors of (WTMµW )(WTMλW )−1, and thus our algorithm is able
to recover the columns of P up to sign and permutation. Let’s call the matrix so recovered P ′. Denote
by P1, . . . , Pm the columns of P , and similarly for P ′ and B. Then P ′ is given by P ′

π(j) = αjPj where

π : [m] → [m] is a permutation and αj ∈ {−1,+1}.
We now claim that WP = WWTB = B. To see this, let Ŵ = [W,W ′] be an orthonormal basis that

completes W . Then ŴT Ŵ = ŴŴT = I. Also, ŴŴT = WWT + W ′W ′T . For any vector v in the
span of the columns of W , we have v = ŴŴT v = (WWT +W ′W ′T )v = WWT v. In other words, W
acts as orthonormal matrix restricted to its image, and thus WWT acts as the identity. In particular,
WP =WWTB = B.

Our algorithm has access to P ′ as defined above rather than to P . The algorithm will form the product
WP ′. But now it’s clear from WP = B that WP ′

π(j) = αjBj . Thus the algorithm will recover B up to sign

and permutation.
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5.3 Diagonalizability and robust analysis

In applications of our tensor decomposition algorithm, we do not have access to the true underlying tensors
Tµ and Tλ but rather slightly perturbed versions. We prove now that under suitably small perturbations
Rµ and Rλ, we are able to recover the correct rank 1 components with good accuracy. The statement of
the robust version of this theorem closely follows that of the exact version: we merely need to add some
assumptions on the magnitude of the perturbations relative to the quotients µi/λi in conditions 4 and 5.

Theorem 5.4. Let Mµ,Mλ ∈ Cp×p such that

Mµ = Bdiag (µi)B
T , Mλ = Bdiag (λi)B

T ,

where B ∈ Rp×m , and µ, λ ∈ Cm for some m ≤ p. For error matrices Rµ, Rλ ∈ Cp×p, let Mµ + Rµ and
Mλ + Rλ be perturbed versions of Mµ and Mλ. Let 0 < ǫ < 1. Suppose that the following conditions and
data are given:

1. For each column Bi ∈ Rm of B, ‖Bi‖2 = 1.

2. σm(B) > 0.

3. µi, λi 6= 0 for all i,
∣
∣
∣
µi

λi
− µj

λj

∣
∣
∣ ≥ Ω > 0 for all i 6= j.

4. 0 < KL ≤ |µi| , |λi| ≤ KU .

5. ‖Rµ‖F , ‖Rλ‖F ≤ K1 ≤ ǫK2
Lσm(B)3

211κ(B)3KUm2 min(Ω, 1).

Then Diagonalize applied to Mµ + Rµ and Mλ + Rλ outputs B̃ such that there exists a permutation
π : [m] → [m] and phases αj (a phase α is a scalar in C with |α| = 1) such that

∥
∥
∥Bj − αjB̃π(j)

∥
∥
∥ ≤ ǫ.

The running time of the algorithm is poly(p, 1
Ω ,

1
KL

, 1
σmin(B) ,

1
ǫ ).

Proof. We begin with an informal outline of the proof. We basically implement the proof for the exact case,
however because of the perturbations, various equalities now are true only approximately and this leads to
somewhat lengthy and technical details, but the intuitive outline remains the same as for the exact case.

The algorithm constructs an orthonormal basis of the left singular space of M̄µ := Mµ + Rµ; denote by
Y the matrix with this basis as its columns. The fact that M̄µ is close to Mµ gives by Wedin’s theorem
(Theorem 8.2) that the left singular spaces of M̄µ and Mµ are close. More specifically, this means that there
are two matrices, W with columns forming an orthonormal basis for the left singular space of Mµ, and X
with columns forming an orthonormal basis for the left singular space of M̄µ such that W and X are close
in the entrywise sense. This implies that WTB and XTB are close. This can be used to show that under
appropriate conditions XTB is nonsingular. Now using the fact that the columns of Y and of X span the
same space, it follows that P̄ := Y TB is nonsingular. In the next step, we show by virtue of ‖Rµ‖ being
small that the matrix Y T M̄µY constructed by the algorithm is close to P̄diag (µi) P̄

T where the µi are the
eigenvalues of Mµ; and similarly for Y T M̄λY . We then show that (Y T M̄µY )(Y T M̄λY )−1 is diagonalizable

and the diagonalization provides a matrix P̃ close to P̄ , and so B̃ = Y P̃ gives the columns of B up to phase
factors and permutation and small error.

A note on the running time. Algorithm Diagonalize uses SVD and eigenvector decomposition of diago-
nalizable (but not normal) matrices as subroutines. There are well-known algorithms for these as discussed
earlier. The outputs of these algorithms are not exact and have a quantifiable error: The computation of
SVD of M ∈ Cn×n within error ǫ (for any reasonable notion of error, say

∥
∥M − V ΣUT

∥
∥
F

where V ΣUT

is the SVD output by the algorithm on input M) can be done in time poly
(

n, 1ǫ ,
1

σmin(M)

)

. Similarly, for

the eigenvector decomposition of a diagonalizable matrix M ∈ Cn×n with eigenvalues |λi − λj | ≥ Ω > 0 for
i 6= j, we can compute the decomposition within error ǫ in time poly(n, 1

Ω ,
1
ǫ ,

1
mini|λi| ).
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In the analysis below, we ignore the errors from these computations as they can be controlled and will be
of smaller order than the error from the main analysis. This can be made rigorous but we omit the details
in the interest of brevity. Combining the running time of the two subroutines one can check easily that the
overall running time is what is claimed in the statement of the theorem.

We now proceed with the formal proof. The proof is broken into 7 steps.

Step 1. WTB ≈ XTB.

Let M̄µ :=Mµ+Rµ and M̄λ :=Mλ+Rλ. Now the fact that ‖Rµ‖F is small implies by Wedin’s theorem
(Theorem 8.2) that the left singular spaces of Mµ and M̄µ are close: Specifically, by Theorem IV.1.8 in [16]
about canonical angles between subspaces, we have: There exists an orthonormal basis of the left singular
space of Mµ (given by the columns w1, . . . wm of W ∈ Cp×m) and an orthonormal basis of the left singular
space of M̄µ (given by the columns x1, . . . , xm of X ∈ Cp×m) such that

xj = cjwj + sjzj , for all j,

where 0 ≤ c1 ≤ . . . ≤ cm ≤ 1, and 1 ≥ s1 ≥ . . . ≥ sm ≥ 0, and c2j + s2j = 1 for all j; vectors
w1, . . . , wm; z1, . . . , zm form an orthonormal basis. (For the last condition to hold we need p ≥ 2m. A similar
representation can be derived when this condition does not hold and the following computation will still be
valid. We omit full discussion of this other case for brevity; in any case, we could arrange so that p ≥ 2m
without any great penalty in the parameters achieved.) We now apply Wedin’s theorem 8.2 to Mµ and M̄µ

to upper bound sj . To this end, first note that by Claim 10.4 we have σm(Mµ) ≥ KLσm(B)2; and second,
by Weyl’s inequality for singular values (Lemma 8.3) we have

∣
∣σj(M̄µ)− σj(Mµ)

∣
∣ ≤ σ1(Rµ) ≤ K1 for all j.

Thus in Theorem 8.2, with Σ1 corresponding to non-zero singular values ofMµ, we have maxσ(Σ2) = 0. And
we can choose a corresponding conformal SVD of M̄µ so that minσ(Σ̄1) ≥ KLσm(B)2 −K1. Which gives,
‖sinΦ‖2 ≤ K1/(KLσm(B)2 − K1) =: K2, where Φ is the matrix of canonical angles between colspan (W )
and colspan (X). Thus we have

sj ≤ K2, (15)

for all j.
Now we can show that XTB is close toWTB: The (i, j)’th entry ofWTB−XTB is (1−ci)wTi bj−sizTi bj .

Using (15) and ‖wi‖ , ‖bj‖ , ‖zi‖ ≤ 1, we have

(1− ci)w
T
i bj − siz

T
i bj ≤ s2i + si ≤ 2K2.

And so
∥
∥WTB −XTB

∥
∥
F

≤ 2m2K2. Hence by Lemma 8.3 we have
∣
∣σj(W

TB)− σj(X
TB)

∣
∣ ≤ 2m2K2

for all j.

Step 2. P̄ := Y TB is full rank.
The singular values of WTB are the same as those of B. Briefly, this is because WT acts as an isometry
on colspan (B). Also observe that the singular values of Y TB are the same as those of XTB. Briefly, this
is because Y T and XT act as isometries on colspan (X) = colspan (Y ). These two facts together with the
closeness of the singular values of WTB and XTB as just shown imply that

∣
∣σj(B)− σj(Y

TB)
∣
∣ ≤ 2m2K2 (16)

for all j. Now using that 2m2K2 < σm(B)/2 (This follows by our condition 5 in the theorem giving an upper

bound on K1: K1 ≤ ǫKL

KU

KLσm(B)3

211κ(B)3m2 which gives K1 ≤ KLσm(B)3

8m2 . This in turn implies 2m2K2 < σm(B)/2

using σm(B) ≤ 1; we omit easy verification.) we get that σm(Y TB) > 0 and hence Y TB is full rank. We
note some consequences of (16) for use in later steps:

κ(P̄ ) ≤ 4κ(B). (17)
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This follows from κ(P̄ ) ≤ σ1(B)+2m2K2

σm(B)−2m2K2
≤ 4κ(B), because 2m2K2 < σm(B)/2.

σm(P̄ ) ≤ σm(B) + 2m2K2 < 2σm(B). (18)

σm(P̄ ) ≥ σm(B)− 2m2K2 < σm(B)/2. (19)

Step 3. Y T M̄µY ≈ P̄diag (µi) P̄
T and Y T M̄λY ≈ P̄diag (λi) P̄

T .
More precisely, let Eµ := Y T M̄µY − P̄diag (µi) P̄

T , then ‖Eµ‖F ≤ m2 ‖Rµ‖F ; and similarly for M̄λ, Eλ :=

Y T M̄λY − P̄diag (λi) P̄
T . The proof is short: We have Y T M̄µY = Y T (Mµ+Rµ)Y = Y TMµY + Y TRµY =

P̄diag (µi) P̄
T + Y TRµY. Hence ‖Eµ‖F =

∥
∥Y TRµY

∥
∥
F
≤ ‖Rµ‖F .

Step 4. (Y T M̄µY )(Y T M̄λY )−1 is diagonalizable.

This is because Theorem 5.5 is applicable to Ñ := (Y T M̄µY )(Y T M̄λY )−1 = (P̄diag (µi) P̄
T+Eµ)(P̄diag (λi) P̄

T+
Eλ)

−1: using ‖Eµ‖F ≤ ‖Rµ‖F , the two condition to verify are

• 6κ(P̄ )3mKU

K2
Lσm(P̄ )2

K1 ≤ Ω.

This follows from our condition 5 using (17), (19) and σm(B) ≤ 1.

• K1 ≤ σm(P̄ )2KL/2.
This also follows from condition 5, using (18) and ǫ ≤ 1.

Hence Ñ is diagonalizable: Ñ = P̃diag (γ̃i) P̃
−1.

Step 5. The eigenvalues of Ñ are close to the eigenvalues of P̄diag (µi/λi) P̄
T . This follows from our

application of Theorem 5.5 in the previous step (specifically from (24)) and gives a permutation π : [m] → [m]
such that

∣
∣
∣
∣

µi
λi

− γ̃π(i)

∣
∣
∣
∣
< Ω/2,

where the γ̃i are the eigenvalues of Ñ .
In the next step we show that there exist phases αi such that P̃ π,α := [α1P̃π(1), α2P̃π(2), . . . , αmP̃π(m)] is

close to P̄ .

Step 6. P̄ is close to P̃ up to sign and permutation of columns.
We upper bound the angle θ between the corresponding eigenpairs (

µj

λj
, P̄j) and (γ̃π(j), P̃π(j)) of N :=

P̄diag (µi/λi) P̄
−1 and Ñ . Theorem 8.7 (a generalized version of the sin(θ) eigenspace perturbation theorem

for diagonalizable matrices) applied to N and Ñ gives (with the notation derived from Theorem 8.7)

sin θ ≤ κ(Z2)

∥
∥
∥(N − γ̃π(j)I)P̃π(j)

∥
∥
∥
2

mini
∣
∣(N2)ii − γ̃π(j)

∣
∣
.

To bound the RHS above, we will estimate each of the three terms. The first term:

κ(Z2) ≤ κ(P̄−1) = κ(P̄ ) ≤ 4κ(B),

where for the first inequality we used that the condition number of a submatrix can only be smaller [63]; the
second inequality is (17).
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Setting Err := N − Ñ , we bound the second term:
∥
∥
∥(N − γ̃π(j)I)P̃π(j)

∥
∥
∥
2
=
∥
∥
∥(Ñ − γ̃π(j)I)P̃π(j) + Err P̃π(j)

∥
∥
∥
2

=
∥
∥
∥Err P̃π(j)

∥
∥
∥
2

≤ ‖Err‖2
≤ κ(P̄ )2 · KU

KL
· 2m · K1

σm(P̄ )2KL
(by (23) in Theorem 5.5)

≤ 26κ(B)2m
KU

KL

K1

σm(B)2KL
(using (17), (18)). (20)

And lastly, the third term:

min
i

∣
∣(N2)ii − γ̃π(j)

∣
∣ ≥ min

i:i6=j

∣
∣
∣
∣

µi
λi

− µj
λj

∣
∣
∣
∣
−
∣
∣
∣
∣

µj
λj

− γ̃π(j)

∣
∣
∣
∣

≥ Ω− κ(P̄ ) ‖Err‖2 (using Lemma 8.5)

≥ Ω− 29κ(B)3m
KU

KL

K1

σm(B)2KL
(using (20) and (17)).

To abbreviate things a bit, let’s set ǫ′ := 29κ(B)3KU

KL
m K1

σm(B)2KL
. Then, putting things together we get

sin(θ) ≤ ǫ′

Ω− ǫ′
.

Now using the fact that the columns of P̃ and P̄ are unit length implies that there exist phases αi such
that

∥
∥
∥αjP̃π(j) − P̄j

∥
∥
∥
2
≤ ǫ′

Ω− ǫ′
. (21)

Step 7. Y P̃ gives B approximately and up to phase factors and permutation of columns.
This follows from two facts: (1) P̃ π,α ≈ P̄ , so Y P̃ π,α ≈ Y P̄ (we will prove this shortly); and (2) Y P̄ = Y Y TB
(follows by the definition of P̄ ). Now note that the operator Y Y T is projection to colspan (Y ); since the
angle between colspan (Y ) and colspan (B) is small as we showed in Step 1, we get that Y Y TB ≈ B.

Formally, we have
∥
∥
∥Y αjP̃π(j) − Y P̄j

∥
∥
∥
2
≤ ‖Y ‖2

∥
∥
∥αj P̃π(j) − P̄j

∥
∥
∥
2
≤ ǫ′

Ω− ǫ′
,

using (21). And
∥
∥bj − Y Y T bj

∥
∥
2
≤ K2,

where the last inequality used that the sine of the angle between colspan (Y ) and colspan (W ) = colspan (B)
is at most K2 as proved in Step 1.

Putting these together we get

∥
∥
∥Y αjP̃π(j) − bj

∥
∥
∥
2
≤
∥
∥bj − Y Y T bj

∥
∥
2
+
∥
∥
∥Y αjP̃π(j) − Y P̄j

∥
∥
∥
2
≤ ǫ′

Ω− ǫ′
+K2.

Letting B̃ = Y P̃ gives
∥
∥
∥αjB̃π(j) − bj

∥
∥
∥
2
≤ ǫ′

Ω− ǫ′
+K2 ≤ ǫ.

The last inequality follows from our condition 5, which implies that ǫ′

Ω−ǫ′ ≤ ǫ/2 and K2 ≤ ǫ/2.
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Theorem 5.5 (Diagonalizability of perturbed matrices). Let Nµ, Nλ ∈ Cm×m be full rank complex matrices
such that Nµ = Qdiag (µi)Q

T , Nλ = Qdiag (λi)Q
T for some Q ∈ Rm×m and µ, λ ∈ Cm. Suppose we also

have the following conditions and data:

1. 0 < KL ≤ |µi| , |λi| ≤ KU .

2. |µi/λi − µj/λj | > Ω > 0 for all pairs i 6= j.

3. 0 < K < 1 and Eµ, Eλ ∈ Cm×m such that ‖Eµ‖F , ‖Eλ‖F ≤ K.

4. 6κ(Q)3 · KU

KL
·m · K

σm(Q)2KL
≤ Ω.

5. K ≤ σm(Q)2KL/2.

Then (Nµ + Eµ)(Nλ + Eλ)
−1 is diagonalizable and hence has n eigenvectors.

Proof. Defining Fµ := (Qdiag (µi)Q
T )−1Eµ, and similarly Fλ, we have

(Nµ + Eµ)(Nλ + Eλ)
−1 = (Qdiag (µi)Q

T + Eµ)(Qdiag (λi)Q
T + Eλ)

−1

= Qdiag (µi)Q
T (I + Fµ)(I + Fλ)

−1(Qdiag (λi)Q
T )−1

= Qdiag (µi)Q
T (I + Fµ)(I +Gλ)(Qdiag (λi)Q

T )−1 (22)

= Qdiag (µi/λi)Q
−1 + Err.

In (22) above Gλ = (I +Fλ)
−1 − I; hence by Claim 10.5 (which is applicable because ‖Fλ‖F ≤ K

σm(Q)2KL
≤

1/2, by our assumption) we have ‖Gλ‖F ≤ (m+ 1) ‖Fλ‖F . The norm of Err then satisfies

‖Err‖F ≤ σ1(Q)2

σm(Q)2
· KU

KL

(
‖Fµ‖F + (m+ 1) ‖Fλ‖F + (m+ 1) ‖Fµ‖F · ‖Fλ‖F

)

≤ κ(Q)2 · KU

KL
· 2m · K

σm(Q)2KL
. (23)

Now note that 3κ(Q) ‖Err‖2 ≤ 6κ(Q)3 · KU

KL
·m · K

σm(Q)2KL
≤ Ω by our assumption and so Lemma 8.5 is

applicable with matrices Qdiag (µi/λi)Q
−1, Q, and Err playing the roles of A, X , and E, resp. Lemma 8.5

gives us a permutation π : [m] → [m] such that
∣
∣νπ(i)(Qdiag (µi/λi)Q

−1 + Err)− νi(Qdiag (µi/λi)Q
−1)
∣
∣ ≤ κ(Q) ‖Err‖2 < Ω/2, (24)

where νi(M) denotes an eigenvalue of M .
Hence all the eigenvalues of (Nµ + Eµ)(Nλ + Eλ)

−1 are distinct. By Lemma 8.6, it has n linearly
independent eigenvectors {v1, . . . , vn}.

6 Underdetermined ICA

In this section we give our algorithm for the underdetermined ICA problem and analyze it. In the underde-
termined case, there are more independent source variables than there are measurements, thus A has fewer
rows than columns. We have to be more careful about fixing the normalization and scaling of the model
than in the fully determined case where isotropic position provides a convenient normalization for x,A and
s.

Problem 1 (Underdetermined ICA). Fix n,m ∈ N such that n ≤ m. We say that x ∈ Rn is generated by
an underdetermined ICA model if x = As for some fixed matrix A ∈ Rn×m where A has full row rank and
s ∈ Rm is a fully independent random vector. In addition, we fix the normalization so that each column
Ai has unit norm. The problem is to recover the columns of A from independent samples x modulo phase
factors.
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Additional assumptions are needed for the essentially unique identifiability of this model. For example,
suppose that columns Ai and Aj are parallel i.e., Ai = cAj , then one could replace the variables si and sj
with si + csj and 0 and the model would still be consistent. We introduce the following sufficient condition
for identifiability: we require that the m column vectors of A⊙k be linearly independent for some k > 0
(smaller k would be better for the efficiency of the algorithm). We make this quantitative by requiring that
the m’th singular value satisfy σm(A⊙k) > 0.

Our approach to the underdetermined ICA problem is to apply our tensor decomposition to a pair of
carefully-chosen tensors that arise from the distribution. The tensors we use are the derivative tensors of

the second charateristic function ψx(u) = log
(

E

(

eiu
T x
))

.

This method generalises the fourth moment methods for ICA where one computes the local optima of
the following quartic form:

f(u) = E
(
(xT u)4

)
− 3E

(
(xTu)2

)2
.

An equivalent formulation of this is to consider the tensor T ∈ Rn×n×n×n which represents this quartic form
(just as in the matrix case where symmetric matrices represent quadratic forms, symmetric tensors of order 4
represent quartic forms). Let us denote our overall tensor representing f(u) by T where f(u) = T (u, u, u, u).
By a relatively straightforward calculation, one can verify that T (u, u, u, u) is the fourth derivative of the
second characteristic function of x evalauted at 0:

T = D4
uψx(0).

On the other hand, one can also verify that T has the following decomposition (see for example [4]):

T =

m∑

j=1

(

E
(
s4i
)
− 3E

(
s2i
)2
)

Ai ⊗Ai ⊗Ai ⊗Ai

So in fact, one can view the fourth moment tensor methods as performing the tensor decomposition of only
one tensor – the fourth derivative of ψ evaluated at 0!

Our method also generalises the algorithm we gave for the fully determined case in Section 4. We can
view that case as simply being the second derivative version of the more general algorithm. The techniques
used in this section are generalisations and refinements of those used in the fully determined case, though
replacing the easy matrix decomposition arguments with the corresponding (harder) tensor arguments.

A property of the second characteristic function that is central for our algorithm is that the second
characteristic function of a random vector with independent components factorizes into the sum of the
second characteristic functions of each component:

log
(

E

(

eiu
T s
))

=

m∑

j=1

log
(
E
(
eiujsj

))
,

and now every mixed partial derivative (with respect to uj and uj′) is 0, as each term in the sum depends only
on one component of u. Taking the derivative tensor will result in a diagonal tensor where the offdiagonal
terms are all 0. In the case when we’re interested in x = As, we simply need to perform the change of basis
via A very carefully for the derivative tensors via the chain rule. One could also try to perform this analysis

with the moment generating function E

(

eu
T x
)

without the complex phase. The difficulty here is that the

moment generating functions exists only if all moments of x exist, and thus a moment generating function
approach would not be able to deal with heavy tailed distributions. Moreover, using a real exponential leads
us to estimate exponentially large quantities from samples, and it is difficult to get good bounds on the
sample complexity. Using the complex exponential avoids these problems as all quantities have modulus 1.

We will then apply our tensor decomposition framework: as before we show that the eigenvalues of
the flattened derivative tensors are well spaced in Section 6.3. We then study the sample complexity in
Section 6.4 and assembling these components in Section 6.5.
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6.1 Algorithm

For underdetermined ICA we compute the higher derivative tensors of the second characteristic function
ψx(u) = log(φx(u)) at two random points and run the tensor decomposition algorithm from the previous
section.

Underdetermined ICA(σ)

1. (Compute derivative tensor) Pick independent random vectors α, β ∼
N(0, σ2In). For even d, estimate the dth derivative tensors of ψx(u) at α
and β as Tα = Dd

uψx(α) and Tβ = Dd
uψx(β).

2. (Tensor decomposition) Run Tensor Decomposition(Tα, Tβ).

To estimate the 2dth derivative tensor of ψx(u) empirically, one simply writes down the expression for the
derivative tensor, and then estimates each entry from samples using the naive estimator.

More precisely, we can use

∂φ(u)

∂ui
= E

(

(ixi)e
iuT x

)

.

This states that differentiation in the Fourier space is equivalent to multiplication in the original space, thus
it suffices to estimate monomials of x reweighted by complex exponentials. To estimate the dth derivative
tensor of log(φ(u)) empirically, one simply writes down the expression for the derivative tensor, and then
estimates each entry from samples using the naive estimator. Note that the derivatives can be somewhat
complicated, for example, at fourth order we have

[D4ψu]i1,i2,i3,i4

=
1

φ(u)4
[
E
(
(ixi1 )(ixi2 )(ixi3)(ixi4 ) exp(iu

Tx)
)
φ(u)3

− E
(
(ixi2 )(ixi3)(ixi4 ) exp(iu

Tx)
)
E
(
(ixi1 ) exp(iu

Tx)
)
φ(u)2

− E
(
(ixi2 )(ixi3) exp(iu

Tx)
)
E
(
(ixi1)(ixi4 ) exp(iu

Tx)
)
φ(u)2

− E
(
(ixi2 )(ixi4) exp(iu

Tx)
)
E
(
(ixi1)(ixi3 ) exp(iu

Tx)
)
φ(u)2

− E
(
(ixi2 ) exp(iu

Tx)
)
E
(
(ixi1)(ixi3 )(ixi4 ) exp(iu

Tx)
)
φ(u)2

− E
(
(ixi3 )(ixi4) exp(iu

Tx)
)
E
(
(ixi1)(ixi2 ) exp(iu

Tx)
)
φ(u)2

− E
(
(ixi3 ) exp(iu

Tx)
)
E
(
(ixi1)(ixi2 )(ixi4 ) exp(iu

Tx)
)
φ(u)2

− E
(
(ixi4 ) exp(iu

Tx)
)
E
(
(ixi1)(ixi2 )(ixi3 ) exp(iu

Tx)
)
φ(u)2

+ 2E
(
(ixi3)(ixi4 ) exp(iu

Tx)
)
E
(
(ixi2 ) exp(iu

Tx)
)
E
(
(ixi1 ) exp(iu

Tx)
)
φ(u)

+ 2E
(
(ixi3) exp(iu

Tx)
)
E
(
(ixi2)(ixi4 ) exp(iu

Tx)
)
E
(
(ixi1 ) exp(iu

Tx)
)
φ(u)

+ 2E
(
(ixi4) exp(iu

Tx)
)
E
(
(ixi2)(ixi3 ) exp(iu

Tx)
)
E
(
(ixi1 ) exp(iu

Tx)
)
φ(u)

+ 2E
(
(ixi3) exp(iu

Tx)
)
E
(
(ixi2) exp(iu

Tx)
)
E
(
(ixi1 )(ixi4 ) exp(iu

Tx)
)
φ(u)

+ 2E
(
(ixi4) exp(iu

Tx)
)
E
(
(ixi2) exp(iu

Tx)
)
E
(
(ixi1 )(ixi3 ) exp(iu

Tx)
)
φ(u)

+ 2E
(
(ixi4) exp(iu

Tx)
)
E
(
(ixi3) exp(iu

Tx)
)
E
(
(ixi1 )(ixi2 ) exp(iu

Tx)
)
φ(u)

−6E
(
(ixi1) exp(iu

Tx)
)
E
(
(ixi2 ) exp(iu

Tx)
)
E
(
(ixi3 ) exp(iu

Tx)
)
E
(
(ixi4 ) exp(iu

Tx)
)]
.

The salient points are described in Lemma 4.9 and Claim 4.10: there are at most 2d−1(d−1)! terms (counting
multiplicities), and no term has combined exponents of xi in all it factors higher than d. We will give a
rigorous analysis of the sampling error incurred in Section 6.4.
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6.2 Truncation error

Lemma 6.1. Let s = (s1, . . . , sm) ∈ Rm be a random vector with indpendent components each with finite k

absolute moments, and for t ∈ Rm let φ(t) = E

(

eit
T s
)

be the associated characteristic function. Then for

k ≥ 1 and i1, . . . ik ∈ [m] we have

|∂i1,...,ik logφ(t)| ≤
2k−1(k − 1)!maxj∈[m] E

(

|sj |k
)

|φ(t)|k
.

Proof. To compute the derivatives of log φ(t) we proceed inductively with ∂i1 log φ(t) = (∂i1φ(t))/φ(t) as our
base case. For d < k, write ∂i1,...,id(logφ) as Nd(t)/φ(t)

d. Then we have

∂i1,...,id+1
logφ(t) = ∂id+1

(
Nd(t)

φ(t)d

)

=
(∂id+1

Nd(t))φ(t)
d −Nd(t)dφ(t)

d−1∂id+1
φ(t)

φ(t)2d

=
(∂id+1

Nd(t))φ(t) − dNd(t)∂id+1
φ(t)

φ(t)d+1
.

(25)

We make the following claim about Nd(t):

Claim 6.2. The functions Nd(t) is the sum of terms of the form CS1,...,Sd
∂S1 . . . ∂Sd

φ(t) where multisets
S1, . . . , Sd ⊆ {i1, . . . , id} (this is a multiset) satisfy S1 ∪ . . . ∪ Sd = {i1, . . . , id}, and CS1,...,Sd

are integer
coefficients with

∑ |CS1,...,Sd
| ≤ 2d−1(d− 1)!.

Proof. The first part follows via induction on d and (25). For the second part, let T (d) denote
∑ |CS1,...,Sd

|.
Note that T (1) = 1. Then by (25), we have T (d+1) ≤ dT (d) + dT (d), which gives T (d) ≤ 2d−1(d− 1)!.

Returning to the proof of Lemma 6.1, we observe that for any multiset S with elements from [m] and
size at most k, we have

|∂Sφ(t)| =
∣
∣
∣E

(

i|S|sSe
itT s
)∣
∣
∣ ≤ E (|sS |) .

For ℓ ∈ [m], let pℓ be the number of times ℓ occurs in the multiset {i1, . . . , id}. For each term of Nd(t) we
have

∣
∣
∣
∣
∣
∣

d∏

j=1

∂Sjφ

∣
∣
∣
∣
∣
∣

=

d∏

j=1

∣
∣∂Sjφ

∣
∣

≤
d∏

j=1

E
(∣
∣sSj

∣
∣
)

=

m∏

ℓ=1

E (|sℓ|pℓ)

≤
m∏

ℓ=1

(

E

(

|sℓ|d
))pℓ/d

≤ max
ℓ∈[m]

E

(

|sℓ|d
)

.

(26)

The second equality above uses the independence of the sℓ, and the second inequality uses the first part of
Fact 10.6.

Thus |Nd(t)| ≤ 2(d−1)(d− 1)!maxℓ∈[m] E

(

|sℓ|d
)

, which when divided by φ(t)d gives the required bound.
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6.3 Eigenvalue spacings

In this subsection we examine the anti-concentration of the diagonal entries ψ
(d)
i ((ATu)i). The analysis has

similarities to the fully-determined case but there are also some major differences: in the fully-determined
case, ATi u and ATj u are independent Gaussians because the columns of A are orthogonal by isotropic position

(recall that we defined ATi to mean (Ai)
T ). We can not make A an orthonormal matrix in the underdeter-

mined case, so we have to exploit the more limited randomness. An additional complication is that we are
working with anti-concentration of the quotients of such diagonal entries rather than the entries themselves.

Theorem 6.3. Let s ∈ Rm be a random vector with independent components. For t ∈ Rm and d ∈ 2N let

ψa(t) := logE
(
eitasa

)
, and ga(ta) := ddψa(ta)

dtda
for all a ∈ [m]. Let 0 < δ. Suppose that the following data

and conditions are given:

1. E (sa) = 0, E
(
s2a
)
≤M2 and E

(
sda
)
≤Md for a ∈ [m] and M2 < Md.

2. k ≥ 2 and for all a ∈ [m], ka ∈ N where d < ka < k, such that |cumka(sa)| ≥ ∆.

3. E

(

|sa|ka+1
)

≤Mk for a ∈ [m] and M2 < Mk.

4. A ∈ Rn×m be a full row rank matrix whose columns all have unit norm and 1− 〈Aa, Ab〉2 ≥ L2 for all
pairs of columns.

5. u, v ∼ N(0, σ2In) sampled independently where

σ ≤ min

(

1,
1

2
√

2M2 log 1/q
, σ′
)

,

and

σ′ = ∆
k − d+ 1

k!

(
3

8

)k
1

Mk

(

Lq
√
2π

4(k − d)

)k−d(
1

√

2 log 1/q

)k−d

and 0 < q < 1/3. Then with probability at least 1− 3
(
m
2

)
q we have

∣
∣
∣
∣

gb(A
T
b u)

gb(ATb v)
− ga(A

T
a u)

ga(ATa v)

∣
∣
∣
∣
≥ ∆

1

(k − d)!(d− 1)!

(
3

8

)d
1

Md

(

σLq
√
2π

4(k − d)

)(k−d)

, (27)

for all distinct a, b ∈ [m]. (We count the small probability case where gb(A
T
b v) = 0 or ga(A

T
a v) = 0 as

violating the event in (27).)

Proof. Fix a 6= b ∈ [m] and show that the spacing in (27) is lower bounded for this pair with high probability.
We will then take a union bound over all

(
m
2

)
pairs, which will give the desired result.

For random choice of v, the events

ga(A
T
a v) 6= 0 and gb(A

T
b v) 6= 0 (28)

have probability 1. Thus in the following we will assume that these events are true.
We will need concentration of (ATa u) and of (ATa v).

Pru∼N(0,σ2)

(∣
∣ATa u

∣
∣ > τ

)
≤
√

2

π
σ2 ‖r‖2 1

τ
e
− τ2

2σ2‖r‖2 ≤
√

2

π
σ2 1

τ
e−

τ2

2σ2 ,
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here the first inequality used Claim 10.3 and the second used the fact that ‖r‖ ≤ 1. Substituting τ =

σ
√

2 log 1/q we get

Pr
(∣
∣ATa u

∣
∣ ≤ σ

√

2 log 1/q
)

≥ 1− σq
√

π log 1/q
≥ 1− q

√

π log 1/q
.

By the union bound we have

Pr
(∣
∣ATa u

∣
∣ ,
∣
∣ATa v

∣
∣ ≤ σ

√

2 log 1/q
)

≥ 1− 2q
√

π log 1/q
. (29)

In the sequel we will assume that the event in the previous expression happens.
Under the assumption that

∣
∣ATa v

∣
∣ ≤ σ

√

2 log 1/q we have

∣
∣ga(A

T
a v)
∣
∣ =

∣
∣
∣ψ(d)(ATa v)

∣
∣
∣ ≤ 2d−1(d− 1)!Md

(3/4)d
, (30)

where to upper bound
∣
∣ψ(d)(ATa u)

∣
∣ we used Lemma 4.9, Lemma 10.1, and the condition σ

√

2 log 1/q ≤ 1
2
√
M2

which follows from our assumption on σ.
To compute the probability that the spacing is at least ǫa, where ǫa > 0 will be chosen later, we condition

on fixing of ATb u = z and any fixing of v:

Pr

(∣
∣
∣
∣

ga(A
T
a u)

ga(ATa v)
− gb(A

T
b u)

gb(ATb v)

∣
∣
∣
∣
≤ ǫa

)

=

∫

Pr

(∣
∣
∣
∣

ga(A
T
a u)

ga(ATa v)
− gb(z)

gb(ATb v)

∣
∣
∣
∣
≤ ǫa

∣
∣
∣
∣
ATb u = z

)

Pr
(
ATb u = z

)
dz.

We will bound the conditional probability term. As in the proof of Theorem 6.3, applying Taylor’s theorem
with remainder (Theorem 4.8) gives

ga(A
T
a u) = id

ka∑

l=d

cuml(sa)
(i(ATa u))

l−d

(l − d)!
+Rka+1(A

T
a u)

(ATa u)
ka−d+1

(ka − d+ 1)!
.

Truncating ga after the degree (ka − d) term yields polynomial pa(A
T
a u). Denote the truncation error by

ρa(A
T
a u).

Then setting h =
gb(A

T
b u)ga(A

T
a v)

gb(AT
b v)

which is a constant under our conditioning, we have

∣
∣
∣
∣

ga(A
T
a u)

ga(ATa v)
− gb(A

T
b u)

gb(ATb v)

∣
∣
∣
∣
=

1

|ga(ATa v)|

∣
∣
∣
∣
ga(A

T
a u)−

gb(A
T
b u)ga(A

T
a v)

gb(ATb v)

∣
∣
∣
∣

=
1

|ga(ATa v)|
∣
∣ga(A

T
a u)− h

∣
∣

=
1

|ga(ATa v)|
∣
∣pa(A

T
a u) + ρa(A

T
a u)− h

∣
∣

≥ 1

|ga(ATa v)|
∣
∣pa(A

T
a u)− h

∣
∣− 1

|ga(ATa v)|
∣
∣ρa(A

T
a u)

∣
∣ .

Now we are going to show that the first term above is likely to be large and the second one is likely to
be small.

We have ATa u = 〈Aa, Ab〉ATb u + rTu where r is a vector orthogonal to Ab. Our hypothesis, namely

1 − 〈Aa, Ab〉2 ≥ L2, gives ‖r‖2 ≥ L2. The orthogonality of r and Ab implies that the univariate Gaussian
rTu is independent of ATb u.
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Now we apply our anti-concentration inequality from Theorem 4.4 to obtain (for u ∼ N(0, σ2In) and
fixed v satisfying (28))

Pr
(∣
∣pa(A

T
a u)− h

∣
∣ ≤ ǫa

∣
∣ ATb u = z

)
≤ 4(ka − d)

σ ‖r‖
√
2π

(
ǫa(ka − d)!

|cumka(sa)|

)1/(ka−d)

≤ 4(ka − d)

σL
√
2π

(
ǫa(ka − d)!

∆

)1/(ka−d)
. (31)

We choose

ǫa :=
∆

(ka − d)!

(

σLq
√
2π

4(ka − d)

)ka−d

≥ ∆

(k − d)!

(

σLq
√
2π

4(k − d)

)k−d

=: ǫ,

making RHS of (31) equal to q. Recall that this was for fixed v satisfying (28).

For the truncation error, assuming that the event
∣
∣ATa u

∣
∣ ≤ σ

√

2 log 1/q happens, we have

∣
∣ρa(A

T
a u)

∣
∣ ≤

∣
∣
∣ψ(ka+1)(ATa u)

∣
∣
∣ · (A

T
a u)

ka−d+1

(ka − d+ 1)!

≤ 2kaMka+1

(3/4)ka+1
· ka!

(ka − d+ 1)!
·
(

σ
√

2 log 1/q
)ka−d+1

≤ ǫa/2,

where to upper bound
∣
∣ψ(ka+1)(ATa u)

∣
∣ we used Lemma 4.9, Lemma 10.1, and the condition σ

√

2 log(1/q) ≤
1

2
√
M2

, which holds given our upper bound on σ. And the final inequality follows from our condition σ ≤ σ′.

Thus with probability at least 1 − 2q√
π log 1/q

− q we have
∣
∣pa(A

T
a u)− h

∣
∣ −

∣
∣ρa(A

T
a u)

∣
∣ ≥ ǫa/2 under the

condtion that ATb u = z and v fixed. Now since this holds for any z and any fixing of v, it also holds without
the conditioning on the event ATb u = z and fixing of v.

Hence using (30), with probability at least 1− 2q√
π log 1/q

− q ≥ 1− 3q we have

1

|ga(ATa v)|
(∣
∣pa(A

T
a u)− h

∣
∣−
∣
∣ρa(A

T
a u)

∣
∣
)
≥ ǫa · (3/8)d

1

(d− 1)!Md
≥ ǫ · (3/8)d 1

(d− 1)!Md
.

To summarize, with probability at least 1 − 3q the spacing is at least ǫ. By the union bound, with
probability at least 1− 3

(
m
2

)
q all the spacings are at least ǫ.

The following is a straightforward corollary of the proof of the previous theorem.

Corollary 6.4. In the setting of Theorem 6.3 we have with probability at least 1− 6mq that

∣
∣ga(A

Tu)
∣
∣ ,
∣
∣ga(A

T v)
∣
∣ ≥ ∆0

2(k − d)!

(

σq
√
2π

4(k − d)

)k−d

for all a ∈ [m].

An important part of the proof is to give a lower bound on the quantity 1 − 〈Ai, Aj〉2 ≥ L2 so that the
ICA model remains identifiable. At order d, we will give our bounds in terms of σm

(
A⊙j) for j = 1, . . . , d/2.

Lemma 6.5. Fix m,n ∈ N such that n ≤ m. Let A ∈ C
n×m be a full row rank matrix whose columns Ai

have unit norm. Then

1− 〈Ai, Aj〉2 ≥ 2

k
σm
(
A⊙k)2 ,

for all k ∈ N where k ≥ 2.

34



Proof. Consider the matrix B = A⊙2, observe that 〈Ai, Aj〉2 = 〈Bi, Bj〉. Define the matrix C = A⊙k.

Observe that ‖Ci‖ = ‖Ai‖k = 1 and that

1− 〈Bi, Bj〉 = 1− |〈Ci, Cj〉|2/k (32)

for k ≥ 2. Recall that

σm(C) = min
‖x‖=1

‖Cx‖ .

In particular, if we consider the vector x = 1√
2
(ei ± ej) we have

‖Cx‖2 =
1

2

(

‖Ci‖2 + ‖Cj‖2 ± 2 〈Ci, Cj〉
)

= 1± 〈Ci, Cj〉 ≥ σm(C)2.

Hence we must have 1− |〈Ci, Cj〉| ≥ σ2
m(C). Combining this with (32), we obtain

1− 〈Bi, Bj〉 = 1− |〈Ci, Cj〉|2/k

≥ 1− (1− σm(C)2)2/k

≥ 2

k
σm(C)2,

where the last step follows from noting that all derivatives of the function f(x) = (1 − x)t for t ∈ (0, 1) are
negative in the interval x ∈ [0, 1]

6.4 Sample complexity

To understand the complexity of our algorithm, we must bound how many samples are needed to estimate
the matrices Mu and Mv accurately. Throughout this section, we estimate E (f(x)) for some function f(x),
using independent samples xi via

Ē(f(x)) :=
1

N

N∑

i=1

f(xi) → E (f(x)) .

More generally, we will estimate derivative tensors as follows. As before, φ(t) = E

(

eit
T s
)

and define the

empirical version of the characteristic function in the natural way φ̄(t) := 1
N

∑N
i=1 e

itT si . As we will see, for

a multiset S ⊆ [m] the derivative of φ̄(t) behaves nicely and will serve as an approximation of φ(t). Note
that

∂Sφ̄(t) = Ē

(

sSe
itT s
)

,

where Ē (·) denotes empirical expectation over N i.i.d. samples of s. Similarly, we estimate ∂S logφ(t) by

∂S log φ̄(t) = N̄d(t)/φ̄(t)
d, (33)

where by Claim 6.2 N̄d(t) is a sum of the form
∑

S1,...,Sd
CS1,...,Sd

(∂S1 φ̄(t)) . . . (∂Sd
φ̄(t)), as described in

Claim 6.2. Thus to show that ∂Sφ̄(t) is a good approximation of ∂Sφ(t) we show that
∣
∣
∣
Nd(t)
φ(t)d

− N̄d(t)

φ̄(t)d

∣
∣
∣ =

|φ̄(t)dNd(t)−φ(t)N̄d(t)|
φ(t)dφ̄(t)d

is small.

The notion of empirical estimate of a derivative tensor now follows immediately from (33) which gives
how to estimate individual entries of the tensor.
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Lemma 6.6. Let s ∈ Rm be a random vector with independent components. For t ∈ Rm let ψs(t) = φs(t) =

logE
(

eit
ts
)

be the second characteristic function of s. Consider the dth derivative tensor of ψs(t) (it contains

md entries). Let M2,M2d > 0 be such that E
(
s2i
)
≤ M2 and E

(

|si|2d
)

≤ M2d. Fix 0 < ǫ, δ < 1/4, and let

‖t‖ ≤ 1√
2M2

. Suppose we take N samples then with probability at least

1−
(
m+ d− 1

d

)
2dM2d

ǫ2δ

[
2dd(Md + 2)d−1(d− 1)!

(3/4)d(1/2)d

]2

,

every entry of the empirical tensor will be within ǫ of the corresponding entry of the derivative tensor.

Proof. In light of (33) we will prove that each term in the expression for N̄d(t) (it’s a product of several
∂Sφ̄(t)) is a good approximation of the corresponding term in the expression for Nd(t) by showing that the
corresponding factors in the product are close. Finally, we show that the whole sum is a good approximation.
For complex-valued r.v. X with mean µ, note that Var (X) = E ((X − µ)(X − µ)∗) = E (XX∗) − µµ∗ ≤
E

(

|X |2
)

.

We use the second moment method to prove that ∂Sφ̄(t) is a good approximation of ∂Sφ(t) with high
probability.

For multiset S ⊆ {i1, . . . , id}, with pj being the frequency of j in S, by the same arguments as in (26)
we have

Var
(

sSe
itT s
)

≤ E
(
s2S
)
≤

m∏

j=1

E

(

s
2pj
j

)

≤
m∏

j=1

(
E
(
s2dj
))pj/d ≤

(

max
j

E
(
s2dj
)
)|S|/d

≤M
|S|/d
2d .

Thus

Var
(
∂S φ̄(t)

)
≤ M

|S|/d
2d

N
≤ M2d

N
.

Chebyshev’s inequality (which remains unchanged for complex-valued r.v.s) for ǫ′ > 0 yields

Pr
(∣
∣∂Sφ̄(t)− ∂Sφ(t)

∣
∣ ≥ ǫ′

)
≤ M2d

ǫ′2N
. (34)

We will choose a value of ǫ′ shortly.
Now we bound the difference between the corresponding summands in the decompositions of Nd(t) and

N̄d(t) as sums. Specifically, with probability at most (d+1)M2d

ǫ′N (this comes from the union bound: we want
the event in (34) to hold for all Sj for j ∈ [d] as well as for S = ∅, corresponding to φ(t)) we have

∣
∣
∣
∣
∣
∣



φ̄(t)d
d∏

j=1

∂Sjφ(t)



 −



φ(t)d
d∏

j=1

∂Sj φ̄(t)





∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

d∏

j=1

∂Sjφ(t)

∣
∣
∣
∣
∣
∣

∣
∣φ̄(t)d − φ(t)d

∣
∣+
∣
∣φ(t)d

∣
∣

∣
∣
∣
∣
∣
∣

d∏

j=1

∂Sjφ(t)−
d∏

j=1

∂Sj φ̄(t)

∣
∣
∣
∣
∣
∣

≤Md

∣
∣φ̄(t)d − φ(t)d

∣
∣+ (Md + ǫ′)d −Md

d

≤ ǫ′dMd + ǫ′d(Md + ǫ′)d−1

≤ 2ǫ′d(Md + 1 + ǫ′)d−1,

where the second inequality used (26), Lemma 10.2 and |φ(t)| ≤ 1 and
∣
∣φ̄(t)

∣
∣ ≤ 1.

Now using the expression for Nd(t) as a sum given in Claim 6.2, with probability at most 2dM2d

ǫ′2N (the

factor 2d again comes from the union bound: we want the event in (34) to hold for all (multi-) subsets of
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{i1, . . . , id}) we have

∣
∣∂Sφ̄(t)− ∂Sφ(t)

∣
∣ =

∣
∣φ̄(t)dNd(t)− φ(t)N̄d(t)

∣
∣

∣
∣φ(t)dφ̄(t)d

∣
∣

(35)

≤ 2dǫ′d(Md + 1 + ǫ′)d−1(d− 1)!
∣
∣φ(t)dφ̄(t)d

∣
∣

≤ 2dǫ′d(Md + 1 + ǫ′)d−1(d− 1)!

(3/4)d(3/4− ǫ′)d
, (36)

≤ ǫ,

where the last inequality used Lemma 10.1 and

ǫ′ =

[
2dd(Md + 1 + ǫ′)d−1(d− 1)!

(3/4)d(3/4− ǫ′)d

]−1

ǫ.

Now if we want (36) to hold for all multisets S of size d, then the union bound needs to extended to all

such multisets (of which there are
(
m+d−1

d

)
) giving that error probability at most

(
m+ d− 1

d

)
2dM2d

ǫ′2N
=

(
m+ d− 1

d

)
2dM2d

ǫ2N

[
2dd(Md + 1 + ǫ′)d−1(d− 1)!

(3/4)d(3/4− ǫ′)d

]2

,

as desired.

Lemma 6.7 (Sample Complexity). Let x = As be an ICA model with A ∈ Rn×m, x ∈ Rn, s ∈ Rm and d an

even positive integer. Let M2,M2d > 0 be such that E
(
s2i
)
≤ M2 and E

(

|si|2d
)

≤ M2d. Let v ∈ Rn satisfy

‖v‖2 ≤ 1
2‖A‖2

√
2M2

. Let Tv = Dd
uψx(v) be the d’th derivative tensor of ψx(u) = logE

(

eiu
T x
)

at v. And let

T̄v = Dd
uψ̄x(v) be its naive estimate using N independent samples of x where

N ≥
(
m+ d− 1

d

)
1

md/2σ1(A)d
2dM2d

ǫ2δ

[
2dd(Md + 2)d−1(d− 1)!

(3/4)d(1/2)d

]2

.

Then with probability at least 1− δ we have
∥
∥Tv − T̄v

∥
∥
F
≤ ǫ.

Proof. In the following all tensors are flattened into matrices. Let xj = Asj , j ∈ [N ] be i.i.d. samples. Letting
t = AT v we have Tv = Dd

uψx(u) = A⊗d/2Dd
tψs(t)(A

⊗d/2)T , and T̄v = Dd
uψ̄x(u) = A⊗d/2Dd

t ψ̄s(t)(A
⊗d/2)T .

(Note that we could also have written Dd
uψx(u) = A⊙d/2diag

(

∂dtjψs(t)
)

(A⊙d/2)T because the components of

s are indpendent, however the corresponding empirical equation Dd
uψ̄x(u) = A⊙d/2diag

(

∂dtj ψ̄s(t)
)

(A⊙d/2)T

need not be true.)
Hence

∥
∥T̄v − Tv

∥
∥
F
=
∥
∥
∥A⊗d/2Dd

t ψ̄s(t)(A
⊗d/2)T −A⊗d/2Dd

tψs(t)(A
⊗d/2)T

∥
∥
∥
F

=
∥
∥
∥A⊗d/2(Dd

t ψ̄s(t)−Dd
tψs(t))(A

⊗d/2)T
∥
∥
∥
F

≤ σ1(A
⊗d/2)2

∥
∥Dd

t ψ̄s(t)−Dd
tψs(t)

∥
∥
F

= σ1(A)
d
∥
∥Dd

t ψ̄s(t)−Dd
tψs(t)

∥
∥
F

≤ ǫ,

where the last inequality holds with probability at least 1− δ by Lemma 6.6 which is applicable because∥
∥AT v

∥
∥
2
≤ ‖A‖2 ‖v‖2 ≤ 1

2
√
2M2

.
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6.5 Main theorem and proof

We are now ready to formally state and prove the main theorem. To get a success probability of 3/4, we
choose q so that 20m2q < 1/4.

Theorem 6.8 (Underdetermined ICA). Let x ∈ Rn be generated by an underdetermined ICA model x = As
with A ∈ R

n×m where n ≤ m. Suppose that the following data and conditions are given:

1. d ∈ 2N such that σm
(
A⊙d/2) > 0.

2. k such that for each i there exists ki, where d < ki < k such that |cumki(si)| ≥ ∆0.

3. Constants M2,Md,Mk such that for each si the following bounds hold

E (si) = 0, E
(
s2i
)
≤M2, E

(
sdi
)
≤Md, E

(

|si|ki+1
)

≤Mk, ∆0 ≤Md, E

(

|si|2d
)

≤M2d.

4. 0 < σ ≤ min(1, σ0,
1

4m

√
1

6M2 ln(2/q) ) where

σ0 = ∆0
k − d+ 1

k!

(
3

8

)k
1

Mk

(

2σm(A⊙d/2)q
√
2π

4(k − d)
√
d

)k−d(
1

√

2 log 1/q

)k−d

.

Then, with probability at least 1 − 20m2q, algorithm Underdetermined ICA(σ) will return a matrix B̃
such that there exist signs αj ∈ {−1, 1} and permutation π : [m] → [m] such that

∥
∥
∥Bj − αjB̃π(j)

∥
∥
∥ ≤ ǫ,

using N samples where

N ≥
(
km(Md + 2)

σqσm(A⊙d/2)

)ck
κ(A⊙d/2)6M2d

∆6
0ǫ

2
,

for some absolute constant c. The running time of the algorithm is poly(N).

Proof. The proof involves putting together of various results we have proven. We takeN independent samples
of x and form the flattened dth derivative tensors M̄u, M̄v of ψ(u) evaluated at u and v which are sampled
from N(0, σ2

0). Recall that these are the matrices constructed by Underdetermined ICA(σ0)) which then
invokes Diagonalize(·) which computes eigendecomposition of M̄uM̄

−1
v . We will denote by Mu,Mv the

corresponding matrices without any sampling errors. We will first use the result about eigenvalue spacing
Theorem 6.3 to get a bound on the spacings of the eigenvalues of the matrixMuM

−1
v , where u, v ∼ N(0, σ2

0In)
are random vectors. Next, we determine upper and lower bounds KU and KL on the eigenvalues of Mu and
Mv. We can then apply Theorem 5.4 to show that if we have sufficiently good approximation of Mu and Mv

then we will get a good reconstruction of matrix A. Finally, we use Lemma 6.7 to determine the number of
samples needed to get the required approximation.

Step 1. First, we apply Theorem 6.3. Note that our choice of σ0 satisfies the constraints on σ in Theo-
rem 6.3; thus except with probability q, we have

∣
∣
∣
∣

gb(A
T
b u)

gb(ATb v)
− ga(A

T
a u)

ga(ATa v)

∣
∣
∣
∣
≥ Ω0 :=

∆0

Md

(
3

8

)d
1

(d− 1)!(k − d)!

(

σ0qL
√
2π

4(k − d)

)k−d

, (37)

for all pairs a, b ∈ [m]. Here L as defined in Theorem 6.3 is given by 2σm(A⊙d/2)/
√
d by Lemma 6.5.

38



Step 2. Next, we will show that u and v concentrate in norm. To do so, we will apply the following
concentration inequality for sub-exponential random variables (this is standard in the proof of the Johnson-
Lindenstrauss Lemma, see [10, 29] or alternatively [66] for a more general formulation).

Lemma 6.9 ([10, 29]). Let zi ∼ N(0, 1) be i.i.d., then

Pr

(
n∑

i=1

z2i ≥ βn

)

≤ e
n
2 (1−β+log(β)).

For β ≥ 6, the bound only improves as n increases. Thus, we have the simplified bound

Pr

(
n∑

i=1

z2i ≥ βn

)

≤ e−
nβ
12 .

In particular, union bounding over both u, v ∈ Rn, we have

Pr

(

‖u‖ , ‖v‖ ≥ 1

2 ‖A‖F
√
2M2

)

= Pr

(

‖u‖2 , ‖v‖2 ≥
(

1

2 ‖A‖F
√
2M2

)2
)

≤ 2 exp

(

− 1

12σ2
0

(
1

2 ‖A‖F
√
2M2

)2
)

,

where in the second line, we took βn = 1
12σ2

0

(
1

2‖A‖F

√
2M2

)2

. Using ‖A‖F ≤ m, and our choice of σ0 which

gives σ0 ≤ 1
4m

√
1

6M2 ln(2/q) we obtain

Pr

(

‖u‖ , ‖v‖ ≥ 1

2 ‖A‖F
√
2M2

)

≤ q.

Thus except with probability q, norms ‖u‖ , ‖v‖ satisfy the hypotheses of Lemma 6.7.

Step 3. Now we determine the values of parameters KU and KL used in Theorem 5.4. A bound for KU

can be obtained from Lemma 4.9 and Lemma 10.1 to ψs(t) = ψs(A
Tu). The latter lemma being applicable

because
∥
∥ATu

∥
∥ ≤ ‖A‖F ‖u‖ ≤ 1

2
√
2M2

and
∥
∥AT v

∥
∥ ≤ ‖A‖F ‖v‖ ≤ 1

2
√
2M2

from Step 2:

KU =
(d− 1)!2d−1Md

(3/4)d
.

For KL, by Cor. 6.4 we can set

KL =
∆0

2(k − d)!

(

σ0q
√
2π

4(k − d)

)k−d

,

which holds with probability at least 1− 6mq.

Step 4. We now fixK1 which is the upper bound on
∥
∥Mu − M̄u

∥
∥
F
and

∥
∥Mv − M̄v

∥
∥
F
needed in Theorem 5.4

(the role of these two quantities is played by ‖Rµ‖F and ‖Rλ‖F in that theorem). Our assumption ∆0 ≤Md

gives that Ω0 ≤ 1 by (37). And hence the bound required in Theorem 5.4 becomes

K1 =
ǫK2

Lσm(B)3

211κ(B)3KUm2
Ω0, (38)
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where B = A⊙d/2.
For this K1 by Theorem 5.4 the algorithm recovers B̃ with the property that there are signs αj ∈ {−1, 1}

and permutation [m] → [m] such that

∥
∥
∥Bj − αjB̃π(j)

∥
∥
∥ ≤ ǫ.

Step 5. It remains to determine the number of samples needed to achieve
∥
∥Mu − M̄u

∥
∥
F

≤ K1 and
∥
∥Mv − M̄v

∥
∥
F
≤ K1.

By Step 2 above, we satisfy the hypotheses of Lemma 6.7. Hence by that lemma, for N at least the
quantity below

(
m+ d− 1

d

)
1

md/2σ1(A)d
2dM2d

K2
1q

(
16dd(Md + 2)d−1(d− 1)!

3d

)2

≤ 112dmd/2d2(d+1)M2d(Md + 2)2(d−1) 1

K2
1q

we have

∥
∥Mu − M̄u

∥
∥
F
≤ K1,

except with probability q, and similarly for
∥
∥Mu − M̄u

∥
∥
F
. Subtistuting the value of K1 from (38) and in

turn of KU , KL and Ω0 above and simplifying (we omit the straightforward but tedious details) gives that
it suffices to take

N ≥ 24k+6d+26

32d
d6d+2(k − d)2(k−d)md/2+4M

2
dM2d(Md + 2)2d

∆6
0

κ(B)6

σm(B)k−d+6

1

σ5(k−d)q5(k−d)+1

1

ǫ2
.

Accounting for the probability of all possible bad events enumerated in the proof via the union bound we
see that with probability at least 1− q− 3

(
m
2

)
q− 6mq− q > 1− 20m2q no bad events happen. The running

time computation involves empirical estimates of derivate tensors and SVD and eigenvalue computations;
we skip the routine check that the running time is poly(N).

6.6 Underdetermined ICA with unknown Gaussian noise

Theorem 6.8 just proved is the detailed version of Theorem 1.3 without Gaussian noise. In this section
we indicate how to extend this proof when there is Gaussian noise thus proving Theorem 1.3 in full. Our
algorithm for the noiseless case applies essentially unaltered to the case when the input has unknown Gaussian
noise if d > 2. We comment on the case d = 2 at the end of this section. More precisely, the ICA model now
is

x′ = x+ η = As+ η,

where η ∼ N(0,Σ) where σ ∈ Rn×n is unknown covariance matrix and η is independent of s. Using the
independence of η and s and the standard expression for the second characteristic of the Gaussian we have

ψx′(u) = E

(

eiu
T x′
)

= E

(

eiu
T x+iuT η

)

= ψx(u) + ψη(u) = ψx(u)−
1

2
uTΣu. (39)

Our algorithm works with (estimate of) the dth derivative tensor of ψx′(u). For d > 2, we have
Dd
uψx′(u) = Dd

uψx(u) as in (39) the component of the second characteristic function corresponding to the
Guassian noise is quadratic and vanishes for third and higher derivatives. Therefore, but for the estimation
errors, the Gaussian noise makes no difference and the algorithm would still recover A as before. Since the
algorithm works only with estimates of these derivatives, we have to account for how much our estimate
of Dd

uψx(u) changes due to the extra additive term involving the derivative of the estimate of the second
characteristic of the Guassian.
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If Σ is such that the moments of the Gaussian noise also satisfy the conditions we imposed on the moments
of the si in the Theorem 6.8, then we can complete the proof with little extra work. The only thing that
changes in the proof of the main theorem is that instead of getting the bound

∥
∥Mu − M̄u

∥
∥ ≤ ǫ′ we get the

bound
∥
∥Mu − M̄u

∥
∥ ≤ 2ǫ′. If we increase the number of samples by a factor of 4 then this bound becomes

∥
∥Mu − M̄u

∥
∥ ≤ ǫ′, and so the proof can be completed without any other change.

The d = 2 case. When d = 2, the second derivative of the component of the second characteristic function
corresponding to the noise in (39) is a constant matrix independent of u. Thus if we take derivatives at two
different points and subtract them, then this constant matrix disappears. This is analogous to the algorithm
we gave for fully-determined ICA with noise in Sec. 4.8. The error analysis can still proceed along the above
lines; we omit the details.

7 Mixtures of spherical Gaussians

Here we apply Fourier PCA to the classical problem of learning a mixture of Gaussians, assuming each
Gaussian is spherical. More precisely, we get samples x+ η, where x is from a distribution that is a mixture
of k unknown Gaussians, with i’th component having mixing weight wi and distribution Fi = N(µi, σ

2
i I);

the noise η is drawn from N(µη,Ση) and is not necessarily spherical. The problem is to estimate the
unknown parameters wi, µi, σi. Our method parallels the Fourier PCA approach to ICA, but here, because
the structure of the problem is additive (rather than multiplicative as in ICA), we can directly use the matrix
D2φ rather than D2ψ = D2 log(φ). It is easy to show that D2φ = Σu in the description of our algorithm.

For any integrable function f : Cn → C, we observe that for a mixture F =
∑k

i=1 wiFi:

EF ((f(x+ η))) =

k∑

i=1

wiEFi (f(x+ η)) .

We assume, without loss of generality, that the full mixture is centered at zero, so that:

k∑

i=1

wiµi = 0
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Fourier PCA for Mixtures

1. Pick u independently from N(0, In).

2. Compute M = E
(
xxT

)
, let V be the span of its top k − 1 eigenvectors and

σ̄2 be its k’th eigenvalue and v be its k’th eigenvector. Let z be a vector
orthogonal to V and to u.

3. Compute

Σu = E

(

xxT eiu
T x
)

, σ̄2
u = E

(

(zTx)2eiu
T x
)

,

γu =
1

(uT v)2

(

−E

(

(vTx)2eiu
T x
)

+ σ̄2
u

)

, ũ = E

(

x(zTx)2eiu
T x
)

.

4. Compute the matrices

M = E
(
xxT

)
− σ2I and Mu = Σu − σ̃2

uI − iũuT − iuũT − γuuu
T .

5. Run Tensor Decomposition(Mu,M) to obtain eigenvectors µ̃j and eigen-
values λj of MuM

−1 (in their original coordinate representation).

6. Estimate mixing weights by finding w ≥ 0 that minimizes ‖∑k
j=1

√
wj µ̃j‖ s.t.

∑k
j=1 wj = 1. Then estimate means and variances as

µj =
1

√
wj
µ̃j , e−

1
2σ

2
j ‖u‖2+iuT µj = λj .

Lemma 7.1. For any f : Cn → C, and x ∼ N(µ,Σ) where Σ is positive definite:

E

(

f(x)eiu
T x
)

= eiu
Tµ− 1

2u
TΣu

E (f(x+ iΣu)) .

Proof. The proof is via a standard completing the square argument; consider the exponent:

− 1

2

[
(x− µ)TΣ−1(x− µ)

]
+ iuTx

= −1

2

[
xTΣ−1x+ µTΣ−1µ− xTΣ−1µ− µTΣ−1x

]
+ iuTx

= −1

2

[
xTΣ−1x− xTΣ−1(µ+ iΣu)− (µ+ iΣu)TΣ−1x+ (µ+ iΣu)TΣ−1(µ+ iΣu)

]

+ iuTµ+
1

2
(Σu)TΣ−1(Σu)

= −1

2
(x− (µ+ iΣu))TΣ−1(x− (µ+ iΣu)) + iuTµ− 1

2
uTΣu

Thus:

E

(

f(x)eiu
T x
)

=
1

det (Σ)
1/2

(2π)n/2

∫

f(x)eiu
T xe−

1
2 (x−µ)

TΣ−1(x−µ)dx

=
1

det (Σ)
1/2

(2π)n/2

∫

f(x)e−
1
2 (x−(µ+iΣu))TΣ−1(x−(µ+iΣu))eiu

Tµ− 1
2u

TΣudx
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Now with a change of variables y = x− iΣu, we obtain:

E

(

f(x)eiu
T x
)

=
1

det (Σ)
1/2

(2π)n/2
eiu

Tµ− 1
2u

TΣu

∫

f(y + iΣu))e−
1
2 (y−µ)

TΣ−1(y−µ)dy

= eiu
T µ− 1

2u
TΣu

E (f(y + iΣu)))

Note: technically we require that E (|f(x)|) < ∞ with respect to a Gaussian measure so as to apply the
dominated convergence theorem, and an analytic extension of the Gaussian integral to complex numbers,
but these arguments are standard and we omit them (see for example [46]).

Lemma 7.2. Let x ∈ Rn be drawn from a mixture of k spherical Gaussians in Rn, u, z ∈ Rn as in the

algorithm. Let ŵj = wje
iuTµj− 1

2σ
2
j ‖u‖2

. Then,

E
(
xxT

)
=

k∑

j=1

wjσ
2
i I +

k∑

j=1

wjµjµ
T
j . (40)

E

(

xxT eiu
T x
)

=

k∑

j=1

ŵjσ
2
j I +

k∑

j=1

ŵj(µj + iσ2
ju)(µj + iσ2

ju)
T . (41)

E

(

x(zTx)2eiu
T x
)

=

k∑

j=1

ŵjσ
2
j (µi + iσ2

ju) . (42)

Proof. These are obtained by direct calculation and expanding out xi ∼ N(µi, σ
2In). For (40):

E
(
xxT

)
=

k∑

j=1

wjEFj

(
xxT

)

=

k∑

j=1

wjE
(
(x− µj + µj)(x− µj + µj)

T
)

=

k∑

j=1

wj
[
σ2
j In + µjµ

T
j

]

(41) follows by applying Lemma 7.1 and the previous result:

E

(

xxT eiu
T x
)

=

k∑

i=1

wie
iuTµi− 1

2σ
2
i ‖u‖2

EFi

(
(xi + iσ2

i u)(xi + iσ2
i u)

T
)

=

k∑

i=1

ŵi
[
σ2
i In + (µi + iσ2

i u)(µi + iσ2
i u)

T
]
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To see (42), we write (noting that z is orthogonal to u and to each µj),

E

(

x(zTx)2eiu
T x
)

=

k∑

j=1

ŵjE
(
(x + iσ2

ju)(z
T (x+ iσ2

ju))
2
)

=

k∑

j=1

ŵjE
(
(x − µj + µj + iσ2

ju)(z
T (x− µj))

2
)

=

k∑

j=1

ŵj
(
E
(
(x − µj)(z

T (x− µj))
2
)
+ E

(
(µj + iσ2

ju)(z
T (x− µj))

2
))

=
k∑

j=1

ŵjσ
2
j (µj + iσ2

ju).

Instead of polynomial anti-concentration under a Gaussian measure, we require only a simpler lemma
concerning the anti-concentration of complex exponentials:

Lemma 7.3 (Complex exponential anti-concentration). Let µi, µj ∈ Rn satisfy ‖µi − µj‖ > 0, then for

u ∼ N(0, σ2In) where ‖µi − µj‖2 σ2 ≤ 2π2. Then:

Pr
(∣
∣
∣eiµ

T
i u − eiµ

T
j u
∣
∣
∣ ≤ ǫ

)

≤ 16ǫ

‖µi − µj‖ σ
√
2π
.

Proof. First, note that it suffices to show anti-concentration of the complex exponential around 1:

∣
∣
∣eiµ

T
i u − eiµ

T
j u
∣
∣
∣ =

∣
∣
∣eiµ

T
i u
∣
∣
∣

∣
∣
∣1− ei(µi−µj)

Tu
∣
∣
∣ =

∣
∣
∣1− ei(µi−µj)

Tu
∣
∣
∣

The exponent (µi−µj)Tu is of course a random variable z ∈ R distributed according to N(0, σ2 ‖µi − µj‖2).
From plane geometry, we know that:

∣
∣eiz − 1

∣
∣ > ǫ in case

z /∈ ∪k∈Z[2πk − 2ǫ, 2πk + 2ǫ]

We can bound this probability as follows:

Pr (z /∈ ∪k∈Z[2πk − 2ǫ, 2πk + 2ǫ]) ≤ 2
∞∑

k=0

4ǫ

‖µi − µj‖σ
√
2π
e
− (2πk)2

2‖µi−µj‖2σ2

≤ 8ǫ

‖µi − µj‖σ
√
2π

∞∑

k=0

e
− 2π2k

‖µi−µj‖2σ2

=
8ǫ

‖µi − µj‖σ
√
2π

1

1− e
− 2π2

‖µi−µj‖2σ2

≤ 16ǫ

‖µi − µj‖σ
√
2π

where the last line follows from the assumption ‖µi − µj‖2 σ2 ≤ 2π2.

We can now prove that the algorithm is correct with sufficiently many samples. Using PCA we can find
the span of the means {µ1, . . . , µk}, as the span of the top k − 1 right singular vectors of the matrix whose
rows are sample points [64]. Projecting to this space, the mixture remains a mixture of spherical Gaussians.
We assume that the µi are linearly independent (as in recent work [39] with higher moments).
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Proof of Theorem 1.5. From Lemma 7.2, we observe that for any unit vector v,

E
(
(vTx)2

)
= vTE

(
xxT

)
v =

k∑

i=1

wiσ
2
i +

k∑

i=1

wi(µ
T
i v)

2.

Without loss of generality, we may assume that the overall mean is 0, hence 0 =
∑

iwiµi is 0 and therefore
the µi are linearly dependent, and there exist a v orthogonal to all the µi. For such a v, the variance is

σ2 =
∑k

i=1 wiσ
2
i while for v in the span, the variance is strictly higher. Therefore the value σ2 is simply the

k’th eigenvalue of E
(
xxT

)
(assuming x is centered at 0).

Thus, in the algorithm we have estimated the matrices

M =

k∑

i=1

wiµiµ
T
i = AAT and Mu =

k∑

i=1

wie
− 1

2‖u‖
2σ2

i +iu
Tµiµiµ

T
i = ADuA

T .

with (Du)ii = e−
1
2‖u‖

2σ2
i +iu

T µi . Thus,

MuM
−1 = ADuA

−1

and its eigenvectors are the columns of A, assuming the entries of Du are distinct. We note that the columns
of A are precisely µ̃j =

√
wjµj . The eigenvalue corresponding to the eigenvector µ̃j is the j’th diagonal entry

of Du.
To prove the algorithm’s correctness, we will once again apply Theorem 5.4 for robust tensor decompo-

sition by verifying its five conditions. Condition 1 holds by our assumption on the means of the Gaussian
mixtures. Conditions 3 holds by taking sufficiently many samples (the overall sample and time complexity
will be linear in n and polynomial in k), Conditions 2 and 4 hold by applying 7.3.

We can apply our observations regarding Gaussian noise from Section 4.8. Namely, the covariance of the
reweighted Gaussian is shifted by Ση, the covariance of the unknown noise. Thus, by considering Σu and
the standard covariance, and taking their difference, the contribution of the noise is removed and we are left
with a matrix that can be diagonalized using A.

8 Perturbation bounds

In this section, we collect all the eigenvalue decomposition bounds that we require in our proofs. The
generalized Weyl inequality we derive in Theorem 8.5 surprisingly seems to be unknown in the literature.

8.1 SVD perturbations

In this section, we present two standard perturbation bounds on singular vectors. These bounds will help
determine the accuracy needed in estimating the matrix with samples.

Lemma 8.1. Let A ∈ Cn×n and suppose that σi(A)−σi+1(A) ≥ ǫ for all i. Let E ∈ Cn×n be a matrix where
where ‖E‖2 ≤ δ. Denote by vi the right singular vectors of A and v̂i the right singular vectors of A + E,
then:

‖vi − v̂i‖ ≤
√
2δ

ǫ− δ

Proof. We first write:

‖vi − v̂i‖2 = 〈vi − v̂i, vi − v̂i〉 = 2(1− 〈vi, v̂i〉) = 2(1− cos(θ)) ≤ 2(1− cos(θ)2) = 2 sin(θ)2

Next, we apply the following form of Wedin’s Theorem from [62] where notions such as the canonical angles
etc. used in the statement below are also explained.
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Theorem 8.2. Let A,E ∈ Cm×n be complex matrices with m ≥ n. Let A have singular value decomposition

A = [U1U2U3]





Σ1 0
0 Σ2

0 0



 [V ∗
1 V

∗
2 ]

and similarly for Ã = A + E (with conformal decomposition using Ũ1, Σ̃1 etc). Suppose there are numbers
α, β > 0 such that

1. minσ(Σ̃1) ≥ α+ β,

2. maxσ(Σ2) ≤ α.

Then

‖sin(Φ)‖2 , ‖sin(Θ)‖2 ≤ ‖E‖2
β

where Φ is the(diagonal) matrix of canonical angles between the ranges of U1 and Ũ1 and Θ denotes the

matrix of canonical angles between the ranges of U2 and Ũ2.

We also require the following form of Weyl’s Inequality (see [62]):

Lemma 8.3. Let A,E ∈ Cm×n, then

|σi(A+ E)− σi(A)| ≤ σ1(E)

By Weyl’s inequality, we know that
∣
∣
∣σ(Σ1)− σ(Σ̃2)

∣
∣
∣ ≥ ǫ − δ. Similarly for the smallest singular value.

By Wedin’s theorem, we pick the partition Σ1 to be the top i singular values, with Σ2 the remaining ones.
Thus, taking α = σi+1(A) and β = ǫ− δ, we have

|sin(θ)| ≤ ‖sin(Φ)‖2 ≤ δ

ǫ − δ

as required.

8.2 Perturbations of complex diagonalizable matrices

The main technical issue in giving a robust version of our algorithms is that the stability of eigenvectors of
general matrices is more complicated than for Hermitian or normal matrices where the sin(θ) theorem of
Davis and Kahan [31] describes the whole situation. Roughly speaking, the difficulty lies in the fact that
for a general matrix, the eigenvalue decomposition is given by A = PDP−1. Upon adding a perturbation
E, it is not clear a priori that A + E has a full set of eigenvectors—that is to say, A + E may no longer
be diagonalizable. The goal of this section is to establish that for a general matrix with well-spaced eigen-
values, sufficiently small perturbations do not affect the diagonalizability. We use Bauer-Fike theorem via a
homotopy argument typically used in proving strong versions of the Gershgorin Circle Theorem [68].

Theorem 8.4 (Bauer-Fike [11]). Let A ∈ Cn×n be a diagonalizable matrix such that A = Xdiag (λi)X
−1.

Then for any eigenvalue µ of A+ E ∈ Cn×n we have

min
i

|λi(A) − µ| ≤ κ(X) ‖E‖2 .

Using this, we prove a weak version of Weyl’s theorem for diagonalizable matrices whose eigenvalues are
well-spaced. We consider this a spectral norm version of the strong Gershgorin Circle theorem (which uses
row-wise L1 norms).
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Lemma 8.5 (Generalized Weyl inequality). Let A ∈ Cn×n be a diagonalizable matrix such that A =
Xdiag (λi)X

−1. Let E ∈ Cn×n be a matrix such that |λi(A)− λj(A)| ≥ 3κ(X) ‖E‖2 for all i 6= j. Then
there exists a permutation π : [n] → [n] such that

∣
∣λi(A+ E)− λπ(i)(A)

∣
∣ ≤ κ(X) ‖E‖2 .

Proof. Consider the matrix M(t) = A+ tE for t ∈ [0, 1]. By the Bauer-Fike theorem, every eigenvalue λ̂(t)
of M(t) is contained in B(λi, tκ(X) ‖E‖2) for some i (for λ ∈ C, t ∈ R we use B(λ, t) to denote the ball in C

of radius t with center at λ). In particular, when t = 0 we know that λ̂(0) = λi ∈ B(λi, 0).

As we increase t, λ̂(t) is a continuous function of t, thus it traces a connected curve in C. Suppose that

λ̂(1) ∈ B(λj , κ(X) ‖E‖2) for some j 6= i, then for some t∗, we must have λ̂(t∗) /∈ ⋃j B(λi, κ(X) ‖E‖2) as these
balls are disjoint. This contradicts the Bauer-Fike theorem. Hence we must have λ̂(1) ∈ B(λi, κ(X) ‖E‖2)
as desired.

The following is a sufficient condition for the diagonalizability of a matrix. The result is well-known
(Exercise V.8.1 in [47] for example).

Lemma 8.6. Let A : V → V be a linear operator over a finite dimensional vector space of dimension n.
Suppose that all the eigenvalues of A are distinct, i.e., λi 6= λj for all pairs i, j. Then A has n linearly
independent eigenvectors.

We require the following generalisation of the Davis-Kahan sin(θ) theorem [31] for general diagonalizable
matrices due to Eisenstat and Ipsen [34]:

Theorem 8.7 (Generalized sin(θ) Theorem). Let A,A+E ∈ Cn×n be diagonalizable matrices. Let γ̂ be an
eigenvalue of A+ E with associated eigenvector x̂. Let

A = [X1, X2]

(
Γ1 0
0 Γ2

)

[X1, X2]
−1,

be an eigendecomposition of A. Here Γ1 consists of eigenvalues of A closest to γ̂, i.e. ‖Γ1 − γ̂I‖2 =
mini |γi − γ̂|, with associated matrix of eigenvectors X1. And Γ2 contains the remaining eigenvalues and the

associated eigenvectors are in X2. Also let [X1, X2]
−1 =:

(
Z∗
1

Z∗
2

)

.

Then the angle between x̂ and the subspace spanned by the eigenvectors associated with Γ1 is given by

sin(θ) ≤ κ(Z2)
‖(A− γ̂I)x̂‖2

mini |(Γ2)ii − γ̂| .

9 General position and average case analysis

Our necessary condition for identifiability is satisfied almost surely by randomly chosen vectors for a fairly
general class of distributions. For simplicity we restrict ourselves to the case of d = 2 and Gaussian distri-
bution in the following theorem; the proof of a more general statement would be similar.

Theorem 9.1. Let v1, . . . , vm ∈ Rn be standard Gaussian i.i.d. random vectors, with m ≤
(
n+1
2

)
. Then

v⊗2
1 , . . . , v⊗2

m are linearly independent almost surely.

Proof Sketch. Let’s take m =
(
n+1
2

)
without loss of generality. Consider vextors w1, . . . , wm, where wi is ob-

tained from v⊗2
i by removing duplicate components; e.g., for v1 ∈ R2, we have v⊕2

1 = (v1(1)
2, v1(2)

2, v1(1)v1(2), v2(1)v1(2))

and w1 = (v1(1)
2, v1(2)

2, v2(1)v1(2)). Thus vi ∈ R(
n+1
2 ). Now consider the determinant of the

(
n+1
2

)
×
(
n+1
2

)

matrix with the wi as columns. As a formal multivariate polynomial with the components of the vi as
variables, this determinant is not identically 0. This is because, for example, it can be checked that the
monomial w1(1)

2 . . . wn(n)
2wn+1(ρ(n + 1)) . . . wm(ρ(m)) occurs precisely once in the expansion of the de-

terminant as a sum of monomials (here ρ : {n+ 1, . . . ,m} →
(
[n]
2

)
is an arbitrary bijection). The proof can

now be completed along the lines of the well-known Schwartz–Zippel lemma.
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We now show that the condition number of the Khatri–Rao power of a random matrix behaves well in
certain situations. For simplicity we will deal with the case where the entries of the base matrix M are
chosen from {−1, 1} uniformly at random; the case of Gaussian entries also gives a similar though slightly
weaker result, but would require some extra work.

We define a notion of d’th power of a matrix M ∈ R
n×m which is similar to the Khatri–Rao power

except that we only keep the non-redundant multilinear part resulting in
(
n
d

)
×m matrix. Working with this

multilinear part will simplify things. Formally,M⊖d := [M⊖d
1 , . . . ,M⊖d

m ], where for a column vector C ∈ Rn,

define C⊖d ∈ R(
n
d) with entries given by CS := Ci1Ci2 . . . Cid where where 1 ≤ i1 < i2 < . . . < id ≤ n and

S = {i1, . . . , id} ∈
(
[n]
d

)
.

The following theorem is stated for the case when the base matrix M ∈ Rn×n
2

. This choice is to
keep the statement and proof of the theorem simple; generalization to more general parameterization is
straightforward. While the theorem below is proved for submatrices M⊖d of the Khatri–Rao power M⊙d,
similar results hold for M⊙d by the interlacing properties of the singular values of submatrices [63].

Theorem 9.2. Let M ∈ Rn×m be chosen by sampling each entry iid uniformly at random from {−1, 1}.
For m = n2, integer d ≥ 3, and N =

(
n
d

)
, and A =M⊖d we have

Emax
j≤n2

∣
∣
∣σj(A)−

√
N
∣
∣
∣ < N1/2−Ω(1).

Proof. We are going to use Theorem 5.62 of Vershynin [66] which we state here essentially verbatim:

Theorem 9.3 ([66]). Let A be an N × m matrix (N ≥ m) whose columns Aj are independent isotropic

random vectors in RN with ‖Aj‖2 =
√
N almost surely. Consider the incoherence parameter

µ :=
1

N
Emax
j≤m

∑

k∈[m],k 6=j
〈Aj , Ak〉2 .

Then for absolute constants C,C0 we have E
∥
∥ 1
NA

∗A− I
∥
∥ ≤ C0

√
µ logm
N . In particular,

Emax
j≤m

∣
∣
∣σj(A) −

√
N
∣
∣
∣ < C

√

µ logm.

Our matrix A =M⊖d will play the role of matrix A in Theorem 9.3. Note that for a column Aj we have

EAj ⊗Aj = I, so the Aj are isotropic. Also note that ‖Aj‖2 =
√
N always.

We now bound the incoherence parameter µ. To this end, we first prove a concentration bound for
〈Aj , Ak〉, for fixed j, k. We use a concentration inequality for polynomials of random variables. Specifi-
cally, we use Theorem 23 at (http://www.contrib.andrew.cmu.edu/∼ryanod/?p=1472). Let us restate that
theorem here.

Theorem 9.4. Let f : {−1, 1}n → R be a polynomial of degree at most k. Then for any t ≥ (2e)k/2 we have

Pr
x∼{−1,1}

[|f(x)| ≥ t ‖f‖2] ≤ exp

(

− k

2e
t2/k

)

.

Here ‖f‖2 := [Exf(x)
2]1/2. For our application to 〈Aj , Ak〉, we first fix Aj arbitrarily. Then 〈Aj , Ak〉,

which will play the role of f(x) in the above theorem, can be written as
∑

S∈([n]
d )
cSxS where the choice

of the coefficients cS = ±1 comes from the fixing of Aj and the entries of Ak are of the form xS , where

S ∈
(
[n]
d

)
. Now
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Ex 〈Aj , Ak〉2 =
∑

S,S′∈([n]
d )

cScs′ExxSxS′

=
∑

S∈([n]
d )

c2SExx
2
S +

∑

S,S′∈([n]
d ):S 6=S′

cScS′ExxSxS′

=

(
n

d

)

= N.

In other words, for our choice of f we have ‖f‖2 =
√
N .

Applying Theorem 9.4 with t ≥ (2e)d/2 and λ = t
√
N we have

Pr
x∼{−1,1}

[|〈Aj , Ak〉| ≥ λ] ≤ exp

(

− d

2e
t2/d

)

= exp

(

− d

2e

λ2/d

N1/d

)

. (43)

Note that we proved the above inequality for any fixed Aj , so clearly it also follows when Aj is also
random.

We now estimate parameter µ. Note that 〈Aj , Ak〉2 ≤ N2 always. When the union of the event in (43)
over all j 6= k, which we denote by B, does not hold, we will use the bound just mentioned. For the following
computation recall that the number of columns m in A is n2.

µ ≤ 1

N
mλ2Pr

(
B̄
)
+

1

N
mN2Pr (B)

≤ mλ2

N
+
m
(
m
2

)
N2

N
exp

(

− d

2e

λ2/d

N1/d

)

≤ n2λ2

N
+ n6Nexp

(

− d

2e

λ2/d

N1/d

)

. (44)

Now choose λ := N1/2+ǫ for a small ǫ > 0. Then the expression in (44) is bounded by

(44) ≤ n2N2ǫ + n6Nexp

(

− d

2e
N2ǫ/d

)

.

It’s now clear that for a sufficiently small choice of ǫ (say 0.05) and sufficiently large n (cepending on d
and ǫ), only the first term above is significant and using our assumption d > 2 gives

µ < 2n2N2ǫ < 2d!N2/d+ǫ << N.

Therefore by Theorem 9.3 we have

E

∥
∥
∥
∥

1

N
A∗A− I

∥
∥
∥
∥
≤ C0

√

µ logn2

N
< 1/NΩ(1),

which gives

Emax
j≤n2

∣
∣
∣σj(A)−

√
N
∣
∣
∣ < N1/2−Ω(1).

In particular, setting smin(A) := sn2(A) we have

E

∣
∣
∣σmin(A) −

√
N
∣
∣
∣ < 1/N1/2−Ω(1).

Using Markov this also gives probability bounds.
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10 Technical lemmas

In this section we collect some of the technical claims needed in the paper.

Lemma 10.1 (Nonvanishing of φ(t)). Let s be a real-valued random vector in Rm with independent compo-
nents and E (s) = 0. Also let E (|sj |) and E

(∣
∣s2j
∣
∣
)
exist and E

(∣
∣s2j
∣
∣
)
≤ M2 for all j for M2 > 0. Then for

t ∈ Rm with ‖t‖2 ≤ 1
2
√
M2

the characteristic function φ(·) of s satisfies |φ(t)| ≥ 3/4.

Proof. Using Taylor’s theorem 4.8 for cos y and sin y gives

eiy = cos y + i sin y = 1 + iy − (iy)2

2!
[cos (θ1y) + i sin (θ2y)],

for y, θ1, θ2 ∈ R with |θ1| ≤ 1, |θ2| ≤ 1. Applying this to y = tT s, taking expectation over s, and using the
assumption of zero means on the si we get

E

(

eit
T s
)

= 1− E

(
(itT s)2

2
[cos (θ1y) + i sin (θ2y)]

)

,

which using the indpendence of the components of s and the zero means assumption gives

∣
∣
∣E

(

eit
T s
)

− 1
∣
∣
∣ = |φ(t) − 1| ≤ 1

2
E
(
(tT s)2 |cos (θ1y) + i sin (θ2y)|

)

≤ E
(
(tT s)2

)

=
∑

j

t2jE
(
s2j
)

≤ R2 ‖t‖22
≤ 1/4.

Lemma 10.2. Let a1, . . . , ad, b1, . . . , bd ∈ C be such that |aj − bj | ≤ ǫ for real ǫ ≥ 0, and |aj | ≤ R for R > 0.
Then

∣
∣
∣
∣
∣
∣

d∏

j=1

aj −
d∏

j=1

bj

∣
∣
∣
∣
∣
∣

≤ (R+ ǫ)d −Rd.

Proof. For 0 < j < d, define the jth elementary symmetric function in d variables: σj(x1, . . . , xd) =
∑

1≤i1≤...≤ij≤d xi1 . . . xij . We will use the following well-known inequality (see, e.g., [61]) which holds for

xℓ ≥ 0 for all ℓ.

(

σj(x1, . . . , xd)
(
d
j

)

)1/j

≤ σ1(x1, . . . , xd)

d
. (45)

Let bj = aj + ǫj . Then
∣
∣
∣
∣
∣
∣

∏

j

(aj + ǫj)−
∏

j

aj

∣
∣
∣
∣
∣
∣

≤ ǫ σd−1(|a1| , . . . , |ad|) + ǫ2σd−2(|a1| , . . . , |ad|) + . . .+ ǫd−1σ1(|a1| , . . . , |ad|)

≤ dǫRd−1 +

(
d

2

)

ǫ2Rd−2 + . . .+ ǫd

= (R + ǫ)d −Rd,

where the second inequality follows from (45).
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Claim 10.3. Let u ∈ R be sampled according to N(0, σ2). Then for τ > 0 we have

Pr (|u| > τ) ≤
√

2

π

σ2

τ
e−

τ2

2σ2

Proof. Follows from the well-known fact: 1√
2π

∫∞
a
e−z

2/2dz ≤ 1√
2π

· 1
a · e−a2/2, for a > 0

We state the following easy claim without proof.

Claim 10.4. Let B ∈ Cp×m with p ≥ m and colspan (B) = m. Let D ∈ Cm×m be a diagonal matrix. Then

σm(BDBT ) ≥ σm(B)2σm(D).

Claim 10.5. For E ∈ Cm×m with ‖E‖F < 1/2 we have

(I − E)−1 = I + E +R,

where ‖R‖F < m ‖E‖F .
Proof. For ‖E‖F < 1/2 we have

(I − E)−1 = I + E + E2 + . . . .

Hence
∥
∥(I − E)−1 − (I + E)

∥
∥
F
≤
∥
∥E2

∥
∥
F

∥
∥(I − E)−1

∥
∥
F
< m ‖E‖F .

Fact 10.6. For a real-valued random variable x and for any 0 < p ≤ q we have

E (|x|p)1/p ≤ E (|x|q)1/q ,
E (|x|p)E (|x|q) ≤ E

(

|x|p+q
)

.

Proof. Hölder’s inequality implies that for 0 ≤ p ≤ q we have

E (|x|p)1/p ≤ E (|x|q)1/q ,
and hence

E (|x|p)E (|x|q) ≤ E

(

|x|p+q
)p/(p+q)

E

(

|x|p+q
)q/(p+q)

= E

(

|x|p+q
)

.

11 Conclusion

We conclude with some open problems. (1) Our condition for ICA to be possible required that there exist
a d such that A⊙d has full column rank. As mentioned before, the existence of such a d turns out to be
equivalent to the necessary and sufficient condition for ICA, namely, any two columns of A are linearly
independent. Thus if d is large for a matrix A then our algorithm whose running time is exponential in d
will be inefficient. This is inevitable to some extent as suggested by the ICA lower bound in [7]. However,
the lower bound there requires that one of the si be Gaussian. Can one prove the lower bound without this
requirement? (2) Give an efficient algorithm for independent subspace analysis. This is the problem where
the si are not all indendent but rather the set of indices [m] is partitioned into subsets. For any two distinct
subsets S1 and S2 in the partition sS1 is independent of sS2 , where sS1 denotes the vector of the si with
i ∈ S1 etc. Clearly this problem is a generalization of ICA.

Acknowledgements. We thank Sham Kakade for helpful discussions and Yongshun Xiao for showing us
the Gershgorin Circle theorem and the continuous deformation technique used in Lemma 8.5.

51



References

[1] R. Adamczak, A. Litvak, A. Pajor, and N. Tomczak-Jaegermann. Quantitative estimates of the conver-
gence of the empirical covariance matrix in logconcave ensembles. J. Amer. Math. Soc., 233:535–561,
2011.
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