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ABSTRACT
We show new lower bounds on the sample complexity of
(ε, δ)-differentially private algorithms that accurately an-
swer large sets of counting queries. A counting query on
a database D ∈ ({0, 1}d)n has the form “What fraction of
the individual records in the database satisfy the property
q?” We show that in order to answer an arbitrary set Q of
� nd counting queries on D to within error ±α it is neces-
sary that

n ≥ Ω̃

(√
d log |Q|
α2ε

)
.

This bound is optimal up to poly-logarithmic factors, as
demonstrated by the Private Multiplicative Weights algo-
rithm (Hardt and Rothblum, FOCS’10). It is also the first to
show that the sample complexity required for (ε, δ)-differential
privacy is asymptotically larger than what is required merely
for accuracy, which is O(log |Q|/α2). In addition, we show
that our lower bound holds for the specific case of k-way
marginal queries (where |Q| = 2k

(
d
k

)
) when α is a constant.

Our results rely on the existence of short fingerprinting
codes (Boneh and Shaw, CRYPTO’95; Tardos, STOC’03),
which we show are closely connected to the sample complex-
ity of differentially private data release. We also give a new
method for combining certain types of sample complexity
lower bounds into stronger lower bounds.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

∗A full version of this paper is available at
http://arxiv.org/abs/1311.3158
†Supported by an NDSEG Fellowship and NSF grant CNS-
1237235.
‡Supported by NSF grant CNS-1237235.
§Supported by NSF grant CNS-1237235, a gift from Google,
and a Simons Investigator Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
STOC ’14, May 31 - June 03 2014, New York, NY, USA
Copyright 2014 ACM 978-1-4503-2710-7/14/05 ...$15.00.
http://dx.doi.org/10.1145/2591796.2591877

General Terms
Security, Theory

Keywords
differential privacy, fingerprinting codes

1. INTRODUCTION
Consider a database D ∈ Xn, in which each of the n rows

corresponds to an individual’s record, and each record con-
sists of an element of some data universe X (e.g. X = {0, 1}d,
corresponding to d binary attributes per record). The goal
of privacy-preserving data analysis is to enable rich statisti-
cal analyses on such a database while protecting the privacy
of the individuals. It is especially desirable to achieve (ε, δ)-
differential privacy [14, 13], which (for suitable choices of ε
and δ) guarantees that no individual’s data has a significant
influence on the information released about the database. A
natural way to measure the tradeoff between these two goals
is via sample complexity—the minimum number of records n
that is sufficient in order to achieve both differential privacy
and statistical accuracy.

Some of the most basic statistics are counting queries,
which are queries of the form “What fraction of individ-
ual records in D satisfy some property q?” In particular,
we would like to design an algorithm that takes as input
a database D and, for some family of counting queries Q,
outputs an approximate answer to each of the queries in Q
that is accurate to within, say, ±.01. Suppose we are given a
bound on the number of queries |Q| and the dimensionality
of the database records d, but otherwise allow the family Q
to be arbitrary. What is the sample complexity required to
achieve (ε, δ)-differential privacy and statistical accuracy for
Q?

Of course, if we drop the requirement of privacy, then we
could achieve perfect accuracy when D contains any num-
ber of records. However, in many interesting settings the
database D consists of random samples from some larger
population, and an analyst is actually interested in answer-
ing the queries on the population. Thus, even without a
privacy constraint, D would need to contain enough records
to ensure that for every query q ∈ Q, the answer to q on
D is close to the answer to q on the whole population, say
within ±.01. To achieve this form of statistical accuracy, it
is well-known that it is necessary and sufficient for D to con-
tain Θ(log |Q|) samples.1 In this work we consider whether

1For a specific family of queries Q, the necessary and suffi-



there is an additional “price of differential privacy” if we re-
quire both statistical accuracy and (ε, δ)-differential privacy
(for, say, ε = O(1), δ = o(1/n)). This benchmark has of-
ten been used to evaluate the utility of differentially private
algorithms, beginning with the seminal work of Dinur and
Nissim [12].

Some of the earliest work in differential privacy [12, 18, 5,
14] gave an algorithm—the so-called Laplace mechanism—

whose sample complexity is Θ̃(|Q|1/2), and thus incurs a
large price of differential privacy. Fortunately, a remarkable
result of Blum, Ligett, and Roth [6] showed that the depen-
dence on |Q| can be improved exponentially to O(d log |Q|)
where d is the dimensionality of the data. Their work was
improved on in several important aspects [16, 19, 30, 25, 22,
24]. The current best upper bound on the sample complex-

ity is O(
√
d log |Q|), which is obtained via the private mul-

tiplicative weights mechanism of Hardt and Rothblum [25].
These results show that the price of privacy is small for

datasets with few attributes, but may be large for high-
dimensional datasets. For example, if we simply want to es-
timate the mean of each of the d attributes without a privacy
guarantee, then Θ(log d) samples are necessary and sufficient
to get statistical accuracy. However, the best known (ε, δ)-

differentially private algorithm requires Ω(
√
d) samples—an

exponential gap. In the special case of pure (ε, 0)-differential
privacy, a lower bound of Ω(d log |Q|) is known ([23], using
the techniques of [26]). However, for the general case of
approximate (ε, δ)-differential privacy the best known lower
bound is Ω(log |Q|) [12]. More generally, there are no known
lower bounds that separate the sample complexity of (ε, δ)-
differential privacy from the sample complexity required for
statistical accuracy alone.

In this work we close this gap almost completely, and show
that there is indeed a “price of approximate differential pri-
vacy” for high-dimensional datasets.

Theorem 1.1 (Informal). Any algorithm that takes
as input a database D ∈ ({0, 1}d)n, satisfies approximate
differential privacy, and estimates the mean of each of the d
attributes to within error ±1/3 requires n ≥ Ω̃(

√
d) samples.

We establish this lower bound using a combinatorial ob-
ject called a fingerprinting code, introduced by Boneh and
Shaw [9] for the problem of watermarking copyrighted con-
tent. The use of “secure content distribution schemes” to
prove lower bounds for differential privacy originates with
the work of Dwork et al. [16], who used cryptographic“traitor-
tracing schemes”to prove computational hardness results for
differential privacy. Extending this connection, Ullman [33]
used fingerprinting codes to construct a novel traitor-tracing
scheme and obtain a strong computational hardness result
for differential privacy.2 Here we show that a direct use of
fingerprinting codes yields information-theoretic lower bounds
(namely on sample complexity).

We then give a composition theorem that allows us to com-
bine our new lower bound of Ω̃(

√
d) with (variants of) known

lower bounds to obtain nearly-optimal sample complexity
lower bounds for certain families of queries.

cient number of samples is proportional to the VC-dimension
of Q, which can be as large as log |Q|.
2In fact, one way to prove Theorem 1.1 is to replace the
one-way functions in [33] with a random oracle, and thereby
obtain an information-theoretically secure traitor-tracing
scheme.

In addition to its dependence on d and |Q|, we can con-
sider how the sample complexity changes if we want to an-
swer counting queries accurately to within ±α. As above,
if we assume the database contains samples from a popu-
lation, and require only that the answers to queries on the
sampled database and the population are close, to within
±α, then Θ(log |Q|/α2) samples are necessary and suffi-
cient for just statistical accuracy. When |Q| is large (rel-
ative to d and 1/α), the best sample complexity is again
achieved by the private multiplicative weights algorithm,
and is O(

√
d log |Q|/α2). On the other hand, the best known

lower bound is Ω(max{log |Q|/α, 1/α2}), which follows from
the techniques of [12]. Using our composition theorem, as
well as our new lower bound, we are able to obtain a nearly-
optimal sample complexity lower bound in terms of all these
parameters. The result shows that the private multiplicative
weights algorithm achieves nearly-optimal sample-complexity
as a function of |Q|, d, and α.

Theorem 1.2 (Informal). For every sufficiently small
α and s ≥ d/α2, there exists a family of queries Q of size
s such that any algorithm that takes as input a database
D ∈ ({0, 1}d)n, satisfies approximate differential privacy,
and outputs an approximate answer to each query in Q to
within ±α requires n ≥ Ω̃(

√
d log |Q|/α2).

The previous theorem holds for a worst-case set of queries,
but the sample complexity can be smaller for certain inter-
esting families of queries. One family of queries that has re-
ceived considerable attention is k-way marginals (see e.g. [1,
27, 21, 32, 10, 17]). A k-way marginal query on a database
D ∈ ({0, 1}d)n is specified by a set S ⊆ [d], |S| ≤ k, and

a pattern t ∈ {0, 1}|S| and asks “What fraction of records
in D has each attribute j in S set to tj?” The number of
k-way marginal queries on {0, 1}d is about 2k

(
d
k

)
. For the

special case of k = 1, the queries simply ask for the mean of
each attribute, which was discussed above. We prove that
our lower bound holds for the special case of k-way conjunc-
tion queries when α is a constant. The best previous sample
complexity lower bound for constant α is Ω(log |Q|), which
again follows from the techniques of [12].

Theorem 1.3 (Informal). Any algorithm that takes a
database D ∈ ({0, 1}d)n, satisfies approximate differential
privacy, and outputs an approximate answer to each of the k-
way marginal queries to within ±α0, for a universal constant
α0, requires n ≥ Ω̃(k

√
d).

1.1 Our Techniques
We now describe the main technical ingredients used to

prove these results. For concreteness, we will describe the
main ideas for the case of k-way conjunction queries.

Fingerprinting Codes.
Fingerprinting codes, introduced by Boneh and Shaw [9],

were originally designed to address the problem of water-
marking copyrighted content. Roughly speaking, a (fully-
collusion-resilient) fingerprinting code is a way of generat-
ing codewords for n users in such a way that any codeword
can be uniquely traced back to a user. Each legitimate copy
of a piece of digital content has such a codeword hidden in
it, and thus any illegal copy can be traced back to the user
who copied it. Moreover, even if an arbitrary subset of the
users collude to produce a copy of the content, then under



a certain marking assumption, the codeword appearing in
the copy can still be traced back to one of the users who
contributed to it. The standard marking assumption is that
if every colluder has the same bit b in the j-th bit of their
codeword, then the j-th bit of the “combined” codeword in
the copy they produce must be also b. We refer the reader
to the original paper of Boneh and Shaw [9] for the motiva-
tion behind the marking assumption and an explanation of
how fingerprinting codes can be used to watermark digital
content.

We show that the existence of short fingerprinting codes
implies sample complexity lower bounds for 1-way marginal
queries. Recall that a 1-way marginal query qj is specified by
an integer j ∈ [d] and asks simply “What fraction of records
in D have a 1 in the j-th bit?” Suppose a coalition of users
takes their codewords and builds a database D ∈ ({0, 1}d)n
where each record contains one of their codewords, and d is
the length of the codewords. Consider the 1-way conjunc-
tion query qj(D). If every user in S has a bit b in the j-th
bit of their codeword, then qj(D) = b. Thus, if an algorithm
answers 1-way conjunction queries on D with non-trivial ac-
curacy, its output can be used to obtain a combined code-
word that satisfies the marking assumption. By the tracing
property of fingerprinting codes, we can use the combined
codeword to identify one of the users in the database. How-
ever, if we can identify one of the users from the answers,
then the algorithm cannot be differentially private.

This argument can be formalized to show that if there is
a fingerprinting code for n users with codewords of length
d, then the sample complexity of answering 1-way conjunc-
tions must be at least n. The nearly-optimal construction of
fingerprinting codes due to Tardos [31], gives fingerprinting

codes with codewords of length d = Õ(n2), which implies

a lower bound of n ≥ Ω̃(
√
d) on the sample complexity re-

quired to answer 1-way conjunction queries.

Composition of Sample Complexity Lower Bounds.
Given our lower bound of Ω̃(

√
d) for 1-way conjunctions,

and the known lower bound of Ω(k) for answering k-way
conjunctions implicit in [12, 29], a natural approach is to
somehow compose the two lower bounds to obtain a nearly-
optimal lower bound of Ω̃(k

√
d). Our composition technique

uses the idea of the Ω(k) lower bound from [12, 29] to show
that if we can answer k-way conjunction queries on a large
database D with n rows, then we can obtain the answers to
the 1-way conjunction queries on a subdatabase of roughly
n/k rows. Our lower bound for 1-way marginals tell us that

n/k = Ω̃(
√
d), so we deduce n = Ω̃(k

√
d).

Actually, this reduction only gives accurate answers to
most of the 1-way marginals on the subdatabase, so we
need an extension of our lower bound for 1-way marginals to
differentially private algorithms that are allowed to answer
a small fraction of the queries with arbitrarily large error.
Proving a sample complexity lower bound for this problem
requires a “robust” fingerprinting code whose tracing algo-
rithm can trace codewords that have errors introduced into
a small fraction of the bits. We show how to construct such
a robust fingerprinting code of length d = Õ(n2), and thus
obtain the desired lower bound. Fingerprinting codes sat-
isfying a weaker notion of robustness were introduced by
Boneh and Naor [8, 7].3

3In the fingerprinting codes of [8, 7] the adversary is allowed

1.2 Related Work
We have mostly focused on the sample complexity as a

function of the number of queries, the number of attributes
d, and the accuracy parameter α. There have been several
works focused on the sample complexity as a function of
the specific family Q of queries. For (ε, 0)-differential pri-
vacy, Hardt and Talwar [26] showed how to approximately
characterize the sample complexity of a family Q when the
accuracy parameter α is sufficiently small. Nikolov, Talwar,
and Zhang [28] extended their results to give an approxi-
mate characterization for (ε, δ)-differential privacy and for
the full range of accuracy parameters. Specifically, [28] give
an (ε, δ)-differentially private algorithm that answers any
family of queries Q on {0, 1}d with error α using a number
of samples that is optimal up to a factor of poly(d, log |Q|)
that is independent of α. Thus, their algorithm has sam-
ple complexity that depends optimally on α. However, their
characterization may be loose by a factor of poly(d, log |Q|).
In fact, when α is a constant, the lower bound on the sample
complexity given by their characterization is always O(1),
whereas their algorithm requires poly(d, log |Q|) samples to
give non-trivially accurate answers. In contrast, our lower
bounds are tight to within poly(log d, log log |Q|, log(1/α))
factors, and thus give meaningful lower bounds even when
α is constant, but apply only to certain families of queries.

For the particular family of k-way conjunction queries,
there have been attempts to prove optimal sample complex-
ity lower bounds. In particular, when k is a constant, Ka-
siviswanathan et al. [27] give a lower bound of min{|Q|1/2/α,
1/α2} on the sample complexity. Their result was improved
by De [11], who proved that the same sample complexity
lower bound applies even for algorithms that can introduce
arbitrarily large error on a constant fraction of the queries.
In the regime we consider where α is constant, these lower
bounds are O(1).

There have also been attempts to explicitly and precisely
determine the sample complexity of even simpler query fam-
ilies than k-way conjunctions, such as point functions and in-
terval functions [2, 3, 4]. These works show that these fami-

lies can have sample complexity lower than Õ(
√
d log |Q|/α2).

2. PRELIMINARIES

2.1 Differential Privacy
We define a database D ∈ Xn to be an ordered tuple of

n rows (x1, . . . , xn) ∈ X chosen from a data universe X .
We say that two databases D,D′ ∈ Xn are adjacent if they
differ only by a single row, and we denote this by D ∼ D′.
In particular, we can replace the ith row of a database D
with some fixed element of X to obtain another database
D−i ∼ D.

Definition 2.1 (Differential Privacy [14]). Let A :
Xn → R be a randomized algorithm (where n is a varying
parameter). A is (ε, δ)-differentially private if for every two
adjacent databases D ∼ D′ and every subset S ⊆ R,

Pr [A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

2.2 Counting Queries and Accuracy

to erase a large fraction of the coordinates of the combined
codeword, and must reveal which coordinates are erased.



In this paper we study algorithms that answer counting
queries. A counting query on X is defined by a predicate
q : X → {0, 1}. Abusing notation, we define the evaluation
of the query q on a database D = (x1, . . . , xn) ∈ Xn to be
its average value over the rows,

q(D) =
1

n

n∑
i=1

q(xi).

Definition 2.2 (Accuracy for Counting Queries).
Let Q be a set of counting queries on X and α, β ∈ [0, 1]
be parameters. For a database D ∈ Xn, a sequence of
answers a = (aq)q∈Q ∈ R|Q| is (α, β)-accurate for Q if
|q(D)− aq| ≤ α for at least a 1−β fraction of queries q ∈ Q.

Let A : Xn → R|Q| be a randomized algorithm. A is
(α, β)-accurate for Q if for every D ∈ Xn,

Pr [A(D) is (α, β)-accurate for Q] ≥ 2/3.

When β = 0 we may simply write that a or A is α-accurate
for Q.

In the definition of accuracy, we have assumed that A
outputs a sequence of |Q| real-valued answers, with aq rep-
resenting the answer to q. Since we are not concerned with
the running time of the algorithm, this assumption is with-
out loss of generality.

An important example of a collection of counting queries
is the set of k-way marginals. For all of our results it will
be sufficient to consider only the set of monotone k-way
marginals.

Definition 2.3 (Monotone k-way Marginals). A
(monotone) k-way marginal qS over {0, 1}d is specified by a
subset S ⊆ [d] of size |S| ≤ k. It takes the value qS(x) = 1
if and only if xi = 1 for every index i ∈ S. The collection
of all (monotone) k-way marginals is denoted by Mk,d.

2.3 Sample Complexity
In this work we prove lower bounds on the sample com-

plexity required to simultaneously achieve differential pri-
vacy and accuracy.

Definition 2.4 (Sample Complexity). Let Q be a set
of counting queries on X and let α, β > 0 be parameters,
and let ε, δ be functions of n. We say that (Q,X ) has sam-
ple complexity n∗ for (α, β)-accuracy and (ε, δ)-differential
privacy if n∗ is the least n ∈ N such that there exists an
(ε, δ)-differentially private algorithm A : Xn → R|Q| that is
(α, β)-accurate for Q.

We will focus on the case where ε = O(1) and δ = o(1/n).
This setting of the parameters is essentially the most-permissive
for which (ε, δ)-differential privacy is still a meaningful pri-
vacy definition. However, pinning down the exact depen-
dence on ε and δ is still of interest. Regarding ε, this can
be done via the following standard lemma, which allows us
to take ε = 1 without loss of generality.

Lemma 2.5. For every set of counting queries Q, uni-
verse X , α, β ∈ [0, 1], ε ≤ 1. (Q,X ) has sample complex-
ity n∗ for (α, β)-accuracy and (1, o(1/n))-differential privacy
if and only if it has sample complexity Θ(n∗/ε) for (α, β)-
accuracy and (ε, o(1/n))-differential privacy.

2.4 Re-identifiable Distributions
All of our eventual lower bounds will take the form a

“re-identification” attack, in which we possess data from a
large number of individuals, and identify one such individ-
ual who was included in the database. In this attack, we
choose a distribution on databases and give an adversary
1) a database D drawn from that distribution and 2) either
A(D) or A(D−i) for some row i, where A is an alleged san-
itizer. The adversary’s goal is to identify a row of D that
was given to the sanitizer. We say that the distribution
is re-identifiable if there is an adversary who can identify
such a row with sufficiently high confidence whenever A out-
puts accurate answers. If the adversary can do so, it means
that there must be a pair of adjacent databases D ∼ D−i
such that the adversary can distinguish A(D) from A(D−i),
which means A cannot be differentially private.

Definition 2.6 (Re-identifiable Distribution). For
a data universe X and n ∈ N, let D be a distribution on
n-row databases D ∈ Xn. Let Q be a family of counting
queries on X and let γ, ξ, α, β ∈ [0, 1] be parameters. The
distribution D is (γ, ξ)-re-identifiable from (α, β)-accurate
answers to Q if there exists a (possibly randomized) adver-

sary B : Xn×R|Q| → [n]∪{⊥} such that for every random-

ized algorithm A : Xn → R|Q|, the following both hold:

1. PrD←RD

[
(B(D,A(D))=⊥)

∧(A(D) is (α, β)-accurate for Q)

]
≤ γ.

2. For every i ∈ [n], PrD←RD [B(D,A(D−i)) = i] ≤ ξ.

Here the probability is taken over the choice of D and i as
well as the coins of A and B. We allow D and B to share a
common state.

If A is an (α, β)-accurate algorithm, then its output A(D)
will be (α, β)-accurate with probability at least 2/3. There-
fore, if γ < 2/3, we can conclude that Pr [B(D,A(D)) ∈ [n]] ≥
1− γ − 1/3 = Ω(1). In particular, there exists some i∗ ∈ [n]
for which Pr [B(D,A(D)) = i∗] ≥ Ω(1/n). However, if ξ =
o(1/n), then Pr [B(D,A(D−i∗)) = i∗] ≤ ξ = o(1/n). Thus,
for this choice of γ and ξ we will obtain a contradiction to
(ε, δ)-differential privacy for any ε = O(1) and δ = o(1/n).
We remark that this conclusion holds even if D and B share
a common state.

3. LOWER BOUNDS VIA
FINGERPRINTING CODES

In this section we prove that there exists a simple family
of d queries that requires n ≥ Ω̃(

√
d) samples for both accu-

racy and privacy. Specifically, we prove that for the family
of 1-way marginals on d bits, sample complexity Ω̃(

√
d) is

required to produce differentially private answers that are
accurate even just to within ±1/3. In contrast, without
a privacy guarantee, Θ(log d) samples from the population
are necessary and sufficient to ensure that the answers to
these queries on the database and the population are ap-
proximately the same. The best previous lower bound for
(ε, δ)-differential privacy is also O(log d), which follows from
the techniques of [12, 29].

In Section 3.1 we give the relevant background on finger-
printing codes and in Section 3.2 we prove our lower bounds
for 1-way marginals.



3.1 Fingerprinting Codes
Fingerprinting codes were introduced by Boneh and Shaw

[9] to address the problem of watermarking digital content.
A fingerprinting code is a pair of randomized algorithms
(Gen,Trace). The code generator Gen outputs a codebook
C ∈ {0, 1}n×d. Each row ci of C is the codeword of user i.

For a subset of users S ⊆ [n], we use CS ∈ {0, 1}|S|×d to
denote the set of codewords of users in S.

The security property of fingerprinting codes asserts that
any codeword can be “traced” to a user i ∈ [n]. Moreover,
we require that the fingerprinting code is “fully-collusion-
resilient”—even if any “coalition” of users S ⊆ [n] gets to-
gether and “combines” their codewords in any way that re-
spects certain constraints known as a marking assumption,
then the combined codeword can be traced to a user i ∈ S.
That is, there is a tracing algorithm Trace that takes the
codebook and combined codeword and outputs either a user
i ∈ [n] or ⊥, and we require that if c′ satisfies the constraints,
then Trace(C, c′) ∈ S with high probability. Moreover,
Trace should accuse an innocent user, i.e. Trace(C, c′) ∈
[n] \ S, with very low probability. Analogous to the defini-
tion of re-identifiable distributions (Definition 2.6), we allow
Gen and Trace to share a common state. When designing
fingerprinting codes, one tries to make the marking assump-
tion on the combined codeword as weak as possible.

The basic marking assumption is that each bit of the com-
bined word c′ must match the corresponding bit for some
user in S. In order to prove sample-complexity lower bounds
for (α, β)-accuracy with β > 0, we will need fingerprinting
codes that are secure under an even weaker marking as-
sumption. Specifically, that most bits of the combined word
c′ must match the corresponding bit for some user in S.
Formally, for any β ∈ [0, 1], we define

Fβ(CS) =

{
c′ ∈ {0, 1}d | Pr

j←R[d]

[
∃i ∈ S, c′j = cij

]
≥ 1− β

}
Definition 3.1 (Robust Fingerprinting Codes).

For any n, d ∈ N, ξ, β ∈ [0, 1], a pair of algorithms (Gen,
Trace) is an (n, d)-fingerprinting code with security ξ ro-
bust to a β fraction of errors if Gen outputs a codebook
C ∈ {0, 1}n×d and for every (possibly randomized) adversary
AFP , and every coalition S ⊆ [n], if we set c′ ←R AFP (CS),
then

1. Pr [c′ ∈ Fβ(CS) ∧ Trace(C, c′) = ⊥] ≤ ξ,

2. Pr [Trace(C, c′) ∈ [n] \ S] ≤ ξ,

where the probability is taken over the coins of Gen,Trace,
and AFP . The algorithms Gen and Trace may share a com-
mon state.

Tardos [31] gave a construction of standard, non-robust
fingerprinting codes for a nearly optimal number of users
Ω̃(
√
d/ log(1/ξ)). In the full version of this work, we show

how to extend Tardos’ construction and analysis to yield
error-robust fingerprinting codes with a nearly-optimal num-
ber of users that are tolerant to a constant fraction of errors.

Theorem 3.2. For every d ∈ N, and ξ ∈ (0, 1], there
exists an (n, d)-fingerprinting code with security ξ robust to

a 1/75 fraction of errors for n = n(d, ξ) = Ω̃(
√
d/ log(1/ξ)).

Boneh and Naor [8] introduced a different notion of fin-
gerprinting codes robust to adversarial “erasures”. In their

definition, the adversary is allowed to output a string in
{0, 1, ?}d, and in order to trace they require that the frac-
tion of ? symbols is bounded away from 1 and that any non-?
symbols respect the basic feasibility constraint. For this def-
inition, constructions with nearly-optimal length d = Õ(n2),
robust to a 1−o(1) fraction of erasures are known [7]. In con-
trast, our codes are robust to adversarial “errors.” Robust-
ness to a β fraction of errors can be seen to imply robustness
to nearly a 2β fraction of erasures but the converse is false.
Thus for corresponding levels of robustness our definition is
strictly more stringent. Unfortunately we don’t currently
know how to design a code tolerant to a 1/2− o(1) fraction
of errors, so our Theorem 3.2 does not subsume prior results
on robust fingerprinting codes.

3.2 Lower Bounds for 1-Way Marginals
We are now ready to state and prove the main result of

this section, namely that there is a distribution on databases
D ∈ ({0, 1}d)n, for n = Ω̃(

√
d), that is re-identifiable from

accurate answers to 1-way marginals.

Theorem 3.3. For every n, d ∈ N, and ξ ∈ [0, 1] if there
exists an (n, d)-fingerprinting code with security ξ, robust to
a β fraction of errors, then there exists a distribution on
n-row databases D ∈ ({0, 1}d)n that is (ξ, ξ)-re-identifiable
from (1/3, β)-accurate answers to M1,d.

In particular, if ξ = o(1/n), then there is no algorithm

A : ({0, 1}d)n → R|M1,d| that is (O(1), o(1/n))-differentially
private and (1/3, β)-accurate for M1,d.

By combining Theorem 3.3 with Theorem 3.2 we obtain
a sample complexity lower bound for 1-way marginals, and
thereby establish Theorem 1.1 in the introduction.

Corollary 3.4. For every d ∈ N, the family of 1-way
marginals on {0, 1}d has sample complexity at least Ω̃(

√
d)

for (1/3, 1/75)-accuracy and (O(1), o(1/n))-differential pri-
vacy.

Proof of Theorem 3.3. Let (Gen,Trace) be the prom-
ised fingerprinting code. We define the re-identifiable dis-
tribution D to simply be the output distribution of the
code generator, Gen. And we define the privacy adver-
sary B to take the answers a = A(D) ∈ [0, 1]|M1,d|, obtain

a ∈ {0, 1}|M1,d| by rounding each entry of a to {0, 1}, run
the tracing algorithm Trace on the rounded answers a, and
return its output. The shared state of D and B will be the
shared state of Gen and Trace.

Now we will verify that D is (ξ, ξ)-re-identifiable. First,
suppose that A(D) outputs answers a = (aqj )j∈[d] that are
(1/3, β)-accurate for 1-way marginals. That is, there is a
set G ⊆ [d] such that |G| ≥ (1 − β)d and for every j ∈ G,
the answer aqj estimates the fraction of rows having a 1
in column j to within 1/3. Let aqj be aqj rounded to the
nearest value in {0, 1}. Let j be a column in G. If column j
has all 1’s, then aqj ≥ 2/3, and aqj = 1. Similarly, if column
j has all 0’s, then aqj ≤ 1/3, and aqj = 0. Therefore, we
have

a is (1/3, β)-accurate =⇒ a ∈ Fβ(D). (1)

By security of the fingerprinting code (Definition 3.1),

Pr [a ∈ Fβ(D) ∧ Trace(D, a) = ⊥] ≤ ξ. (2)

Combining (1) and (2) implies that

Pr [A(D) is (1/3, β)-accurate ∧ Trace(D, a) = ⊥] ≤ ξ.



But the event Trace(D, a) = ⊥ is exactly the same as B(D,
A(D)) = ⊥, and thus we have established the first condition
necessary for D to be (ξ, ξ)-re-identifiable.

The second condition for re-identifiability follows directly
from the soundness of the fingerprinting code, which asserts
that for every adversary AFP , in particular for A, it holds
that Pr [Trace(D,AFP (D−i)) = i] ≤ ξ.

Although our lower bound is stated for constant accu-
racy α = 1/3, a simple argument, which appears in the
full version of this work, shows that a lower bound of n∗

for (1/3, β)-accuracy implies a lower bound of Ω(n∗/α) for
(α, β)-accuracy. Thereby we obtain the following corollary,
which is nearly optimal in both d and α.

Corollary 3.5. For every d ∈ N and 0 < α ≤ 1/3, the
family of 1-way marginals on {0, 1}d has sample complexity

at least Ω̃(
√
d/α) for (α, 1/75)-accuracy and (O(1), o(1/n))-

differential privacy.

Remark 3.6. As pointed out to us by Adam Smith, our
connection can also be combined with standard algorithmic
results in differential privacy (namely, the Gaussian mecha-
nism) to give a simpler proof of Tardos’ tight lower bound on
the length of fingerprinting codes [31]. See the full version
of our paper for details.

4. A COMPOSITION THEOREM FOR
SAMPLE COMPLEXITY

In this section we state and prove a composition theo-
rem for sample complexity lower bounds. At a high-level
the composition theorem starts with two pairs, (Q,X ) and
(Q′,X ′), for which we know sample-complexity lower bounds
of n and n′ respectively, and attempts to prove a sample-
complexity lower bound of n·n′ for a related family of queries
on a related data universe.

Specifically, our sample-complexity lower bound will apply
to the “product” of Q and Q′, defined on X ×X ′. We define
the product Q∧Q′ to be

Q∧Q′ = {q ∧ q′ : (x, x′) 7→ q(x) ∧ q′(x′) | q ∈ Q, q ∈ Q′}.

Since q, q′ are boolean-valued, their conjunction can also be
written q(x)q′(x′).

We now begin to describe how we can prove a sample
complexity lower bound for Q ∧ Q′. First, we describe a
certain product operation on databases. Let D ∈ Xn, D =

(x1, . . . , xn), be a database. Let D′1, . . . , D
′
n ∈ (X ′)n

′
where

D′i = (x′i1, . . . , x
′
in′) be n databases. We define the product

database D∗ = D× (D′1, . . . , D
′
n) ∈ (X ×X ′)n·n

′
as follows:

For every i = 1, . . . , n, j = 1, . . . , n′, let the (i, j)-th row of
D∗ be x∗(i,j) = (xi, x

′
ij). Note that we index the rows of

D∗ by (i, j). We will sometimes refer to D′1, . . . , D
′
n as the

“subdatabases” of D∗.
The key property of these databases is that we can use

a query q ∧ q′ ∈ Q ∧ Q′ to compute a “subset-sum” of the
vector sq′ = (q′(D′1), . . . , q′(D′n)) consisting of the answers
to q′ on each of the n subdatabases. That is, for every q ∈ Q
and q′ ∈ Q′,

(q∧q′)(D∗) =
1

nn′

n∑
i=1

n′∑
j=1

(q∧q′)(x∗(i,j)) =
1

n

n∑
i=1

q(xi)q
′(D′i).

(3)

Thus, every approximate answer aq∧q′ to a query q ∧ q′
places a subset-sum constraint on the vector sq′ . (Namely,
aq∧q′ ≈ 1

n

∑n
i=1 q(xi)q

′(D′i)) If the database D and family
Q are chosen appropriately, and the answers are sufficiently
accurate, then we will be able to reconstruct a good approx-
imation to sq′ . Indeed, this sort of “reconstruction attack” is
the core of many lower bounds for differential privacy, start-
ing with the work of Dinur and Nissim [12]. The setting
they consider is essentially the special case of what we have
just described where D′1, . . . , D

′
n are each just a single bit

(X ′ = {0, 1}, and Q′ contains only the identity query). In
Section 5 we will discuss choices of D and Q that allow for
this reconstruction.

We now state the formal notion of reconstruction attack
that we want D and Q to satisfy.

Definition 4.1 (Reconstruction Attacks). Let Q
be a family of counting queries over a data universe X .
Let n ∈ N and α′, α, β ∈ [0, 1] be parameters. Let D =
(x1, . . . , xn) ∈ Xn be a database. Suppose there is an adver-

sary BD : R|Q| → [0, 1]n with the following property: For ev-

ery vector s ∈ [0, 1]n and every sequence a = (aq)q∈Q ∈ R|Q|
such that ∣∣∣∣∣aq − 1

n

n∑
i=1

q(xi)si

∣∣∣∣∣ < α

for at least a 1−β fraction of queries q ∈ Q, BD(a) outputs
a vector t ∈ [0, 1]n such that

1

n

n∑
i=1

|ti − si| ≤ α′.

Then we say that D ∈ Xn admits an α′-reconstruction at-
tack from (α, β)-accurate answers to Q.

A reconstruction attack itself implies a sample-complexity
lower bound, as in [12]. However, we show how to obtain
stronger sample complexity lower bounds from the recon-
struction attack by applying it to a product database D∗ to
obtain accurate answers to queries on its subdatabases. For
each query q′ ∈ Q′, we run the adversary promised by the
reconstruction attack on the approximate answers given to
queries of the form (q ∧ q′) ∈ Q ∧ {q′}. As discussed above,
answers to these queries will approximate subset sums of the
vector sq′ = (q′(D′1), . . . , q′(D′n)). When the reconstruction
attack is given these approximate answers, it returns a vec-
tor tq′ = (tq′,1, . . . , tq′,n) such that tq′,i ≈ sq′,i = q′(D′i) on
average over i. Running the reconstruction attack for ev-
ery query q′ gives us a collection t = (tq′,i)q′∈Q′,i∈[n] where
tq′,i ≈ q′(D′i) on average over both q′ and i. By an appli-
cation of Markov’s inequality, for most of the subdatabases
D′i, we have that tq′,i ≈ q′(D′i) on average over the choice
of q′ ∈ Q′. For each i such that this guarantee holds, an-
other application of Markov’s inequality shows that for most
queries q′ ∈ Q′ we have tq′,i ≈ q′(D′i), which is our def-
inition of (α, β)-accuracy (later enabling us to apply a re-
identification adversary for Q′).

The algorithm we have described for obtaining accurate
answers on the subdatabases is formalized in Figure 1.

We are now in a position to state the main lemma that
enables our composition technique. The lemma says that
if we are given accurate answers to Q ∧ Q′ on D∗ and the
database D ∈ Xn admits a reconstruction attack from ac-



Let a = (aq∧q′)q∈Q,q′∈Q′ be an answer vector.

Let BD : R|Q| → [0, 1]n be a reconstruction attack.
For each q′ ∈ Q′

Let (tq′,1, . . . , tq′,n) = BD((aq∧q′)q∈Q)
Output (tq′,i)q′∈Q′,i∈[n].

Figure 1: The reconstruction R∗D(a).

curate answers to Q, then we can obtain accurate answers

to Q′ on the most of the subdatabases D′1, . . . , D
′
n ∈ (X ′)n

′
.

Lemma 4.2. Let D ∈ Xn and D′1, . . . , D
′
n ∈ (X ′)n

′
be

databases and D∗ ∈ (X × X ′)n·n
′

be as above. Let a =

(aq∧q′)q∈Q,q′∈Q′ ∈ R|Q∧Q
′|. Let α′, α, β ∈ [0, 1] be parame-

ters. Suppose that for some parameter c > 1, the database
D admits an α′-reconstruction attack from (α, cβ)-accurate
answers to Q. Then if (tq′,i)q′∈Q′,i∈[n] = R∗D(a) (Figure 1),

a is (α, β)-accurate for Q∧Q′ on D∗ =⇒

Pr
i←R[n]

[
(tq′,i)q′∈Q′ is

(6cα′, 2/c)-accurate for Q′ on Di

]
≥ 5/6.

We defer the proof to the full version of this work. The
proof closely follows what we sketched above, but requires
some additional bookkeeping to handle the case where a is
only accurate for most queries. In this case the reconstruc-
tion attack may fail completely for certain queries q′ ∈ Q′
and we need to account for this additional source of error.

We now explain how the main lemma allows us to prove
a composition theorem for sample complexity lower bounds.
We start with a query family Q on a database D ∈ Xn
that admits a reconstruction attack, and a distribution D′

over databases in (X ′)n
′

that is re-identifiable from answers
to a family Q′. We show how to combine these objects to
form a re-identifiable distribution D∗ for queries Q∧Q′ over

(X × X ′)n·n
′
, yielding a sample complexity lower bound of

n · n′.
A sample from D∗ consists of D∗ = D × (D′1, . . . , D

′
n)

where each subdatabase D′i is an independent sample from
from D′. The main lemma above shows that if there is an
algorithm A that is accurate for Q ∧ Q′ on D∗, then an
adversary can reconstruct accurate answers to Q′ on most
of the subdatabases D′1, . . . , D

′
n. Since these subdatabases

are drawn from a re-identifiable distribution, the adversary
can the re-identify a member of one of the subdatabases D′i.
Since the identified member of D′i is also a member of D∗,
we will have a re-identification attack against D∗ as well.

We are now ready to formalize our composition theorem.

Theorem 4.3. Let Q be a family of counting queries on
X , and let Q′ be a family of counting queries on X ′. Let
γ, ξ, α′, α, β ∈ [0, 1] be parameters. Assume that for some
parameters c > 1, γ, ξ, α′, α, β ∈ [0, 1], the following both
hold:

1. There exists a database D ∈ Xn that admits an α′-
reconstruction attack from (α, cβ)-accurate answers to
Q.

2. There is a distribution D′ on databases D ∈ (X ′)n
′

that is (γ, ξ)-re-identifiable from (6cα′, 2/c)-accurate
answers to Q′.

Then there is a distribution on databases D∗ ∈ (X ×X ′)n·n
′

that is (γ + 1/6, ξ)-re-identifiable from (α, β)-accurate an-
swers to Q.

Let D = (x1, . . . , xn) ∈ Xn be a database that admits
reconstruction.

Let D′ on (X ′)n
′

be a re-identifiable distribution.
For i = 1, . . . , n, choose D′i ←R D′ (independently)

Output D∗ = D × (D′1, . . . , D
′
n) ∈ (X × X ′)n·n

′

Figure 2: The new distribution D∗.

Let D∗ = D × (D′1, . . . , D
′
n).

Run R∗D(A(D∗)) (Figure 1) to reconstruct a set of
approximate answers (tq′,i)q′∈Q′,i∈[n].

Choose a random i←R [n].
Output B′(D′i, (tq′,i)q′∈Q′).

Figure 3: The privacy adversary B∗(D∗,A(D∗)).

Proof Sketch. Let D = (x1, . . . , xn) ∈ Xn be the data-
base that admits a reconstruction attack (Definition 4.1).
Let D′ be the promised re-identifiable distribution on data-

bases D ∈ (X ′)n
′

and B′ : (X ′)n
′
× R|Q

′| → [n′] ∪ {⊥} be
the promised adversary (Definition 2.6).

In Figure 2, we define a distribution D∗ on databases D′ ∈
(X × X ′)n·n

′
. In Figure 3, we define an adversary B∗ :

(X × X ′)n·n
′
× R|Q∧Q

′| for a re-identification attack. The
shared state of D∗ and B∗ will be the shared state of D′
and B′. The next two claims show that D∗ satisfies the
two properties necessary to be a (γ + 1/6, ξ)-re-identifiable
distribution (Definition 2.6).

Claim 4.4.

Pr
D∗←RD∗

coins(A),coins(B∗)

[
(B∗(D∗,A(D∗)) = ⊥)

∧(A(D∗) is (α, β)-accurate for Q∧Q′)

]
≤ γ + 1/6.

Proof of Claim 4.4. Assume that A(D∗) is (α, β) - ac-
curate forQ∧Q′. By the construction of B∗ and by Lemma 4.2
it suffices to prove that

Pr
D∗←RD∗
i←R[n]

[
(B′(D′i, (tq′,i)q′∈Q′) = ⊥)

∧((tq′,i) is (6cα′, 2/c)-accurate for Q′)

]
≤ γ

(4)

We prove this inequality by giving a reduction to the re-
identifiability of D′. Consider the following sanitizer A′:
On input D′ ←R D′, A′ first chooses a random index i∗ ←R

[n]. Next, it samples D′1, . . . , D
′
i∗−1, D

′
i∗+1, . . . , D

′
n ←R D′

independently, and sets D′i∗ = D′. Finally, it runs A on
D∗ = D × (D′1, . . . , D

′
n) and then runs the reconstruction

attack R∗ to recover answers (tq′,i)q′∈Q′,i∈[n] and outputs
(tq′,i∗)q′∈Q′ . The following random variables are identically
distributed:

1. (tq′,i)q′∈Q′ , where (tq′,i)q′∈Q′,i∈[n] is the output of
R∗D(A(D∗)) on D∗ ←R D∗, and i←R [n].



2. A′(D′) where D′ ←R D′.

Thus the left-hand side of (4) is equal to

Pr
D′←RD′

[
(B′(D′,A′(D′)) = ⊥)

∧(A′(D′) is (6cα′, 2/c)-accurate for Q′)

]
≤ γ

which follows because D′ is a (γ, ξ)-re-identifiable from
(6cα′, 2/c)-accurate answers to Q′. Thus we have estab-
lished (4), completing the proof of the claim.

The next claim follows directly from the definition of B∗
and the fact that D′ is (γ, ξ)-re-identifiable.

Claim 4.5. For every (i, j) ∈ [n]× [n′],

Pr
D←RD∗

[
B∗(D,A(D−(i,j))) = (i, j)

]
≤ ξ.

Combining Claims 4.4 and 4.5 suffices to prove that D∗
is (γ+1/6, ξ)-re-identifiable from (α, β)-accurate answers to
Q∧Q′, completing the proof of the theorem.

5. APPLICATIONS OF THE
COMPOSITION THEOREM

In this section we show how to use our composition theo-
rem (Section 4) to combine our new lower bounds for 1-way
marginal queries from Section 3 with (variants of) known
lower bounds from the literature to obtain our main re-
sults. In Section 5.1 we prove a lower bound for k-way
marginal queries when α is a constant that establishes Theo-
rem 1.3 from the introduction. Then in Section 5.2 we show
a stronger lower bound for arbitrary counting queries when
α is a varying parameter, thereby proving Theorem 1.2 in
the introduction.

5.1 Lower Bounds for Answering k-Way
Marginals with Constant Accuracy

In this section, we carry out the composition of sample
complexity lower bounds for k-way conjunctions as described
in the introduction. Recall that we obtain our new Ω̃(k

√
d)

lower bound by combining the re-identification based Ω̃(
√
d)

lower bound for 1-way marginals (Section 3.2) with a known
Ω(k) lower bound based on a reconstruction attack. The
lower bound of Ω(k) for k-way marginals is a special case of
a lower bound of Ω(VC (Q)) due to [29] and based on [12],
where VC (Q) is the Vapnik-Chervonenkis (VC) dimension
of Q. To apply our composition theorem, we need to formu-
late this reconstruction attack in the language of Definition
4.1. In particular, we observe that the same proof general-
izes to allow us to reconstruct fractional vectors s ∈ [0, 1]n,
instead of just Boolean vectors as in [12, 29]. We emphasize
that we apply the same argument as in those works.

Definition 5.1 (VC Dimension). Let Q be a collec-
tion of counting queries over a data universe X . We say a
set {x1, . . . , xk} ⊆ X is shattered by Q if for every string
v ∈ {0, 1}k, there exists a query q ∈ Q such that (q(x1), . . . ,
q(xk)) = (v1, . . . , vk). The VC-Dimension of Q denoted
VC (Q) is the cardinality of the largest subset of X that is
shattered by Q.

The following fact is well-known.

Fact 5.2. The set of k-way conjunctions Mk,d over any
data universe {0, 1}d with d ≥ k has VC-dimension
VC (Mk,d) ≥ k.

Lemma 5.3 (Variant of [12, 29]). Let Q be a collec-
tion of counting queries over a data universe X and let
n = VC (Q). Then there is a database D ∈ Xn which ad-
mits a 4α-reconstruction attack from (α, 0)-accurate answers
to Q.

The proof is a simple variant of the arguments in [12, 29],
and appears in the full version of this work.

We can now prove our sample-complexity lower bound for
k-way marginals, thereby establishing Theorem 1.3 in the
introduction.

Theorem 5.4. There exists a universal constant α0 > 0
such that for every k, d ∈ N, k ≤ d, there is an

n = n(k, d) = Ω̃(k
√
d)

such that there exists a distribution on n-row databases D ∈
({0, 1}d)n that is (1/3, o(1/n))-re-identifiable from (α0, 0)-
accurate answers to the k-way marginals Mk,d.

Proof. The previous results will imply the existence of
two privacy attacks, and we obtain the result by applying
the composition theorem (Theorem 4.3) to them.

1. By combining Theorem 3.3 and Theorem 3.2, there

exists a distribution on databases D′ ∈ ({0, 1}d/2)n
′

that is (γ = 1/6, ξ = o(1/n′k))-re-identifiable from
(6cα′ = 1/3, 2/c = 1/75) accurate answers to the 1-

way marginals M1,d/2 for n′ = Ω̃(
√
d/ log(dk)),

2. By Lemma 5.3 and Fact 5.2, there exists a database
D ∈ ({0, 1}d/2)k−1 that admits a (α′ = 4α0) - recon-
struction attack from (α = α0, β = 0)-accurate an-
swers to the (k − 1)-way marginals Mk−1,d/2 for any
α0.

By applying Theorem 4.3 (with parameter c = 150) to
these two distributions, we obtain a new distribution on

({0, 1}d)n
′(k−1) that is (1/3, o(n′k))-re-identifiable from (α0,

0)-accurate answers to Mk−1,d/2 ∧ M1,d/2 on {0, 1}d/2 ×
{0, 1}d/2. Note that this family of queries is a subset of
Mk,d on {0, 1}d, but (α0, 0)-accuracy for Mk,d, (accuracy
for all queries in in Mk,d) implies (α0, 0)-accuracy for any
subset of Mk,d.

Moreover, just as with the 1-way marginals (cf. Corollary
3.5), we can show the sample complexity increases at least
linearly with 1/α for vanishing α.

Corollary 5.5. For every d ∈ N and 0 < α ≤ α0,
the k-way marginals Mk,d have sample complexity at least

Ω̃(k
√
d/α) for (α, 0)-accuracy and (O(1), o(1/n))-differential

privacy.

5.2 Lower Bounds for Arbitrary Queries
Using our composition theorem, we can also prove a nearly-

optimal sample complexity lower bound as a function of the
|Q|, d, and α and establish Theorem 1.2 in the introduc-
tion. The result will follow from three lower bounds: the
Ω̃(
√
d) lower bound for 1-way marginals and the Ω(VC (Q))

bound that we have already discussed, and a lower bound
of Ω(1/α2) that is a simple variant of the seminal recon-
struction attack of Dinur and Nissim [12], and related at-
tacks such as [15, 20]. Roughly, the results of [12] can be
interpreted in our framework as showing that there is an



Ω(1/α2)-row database that admits a 1/100-reconstruction
attack from (α, 0)-accurate answers to some family of queries
Q, but only when the vector to be reconstructed is Boolean.
That is, the attack reconstructs a bit vector accurately pro-
vided that every query in Q is answered correctly. Dwork
et al. [15, 20] generalized this attack to only require (α, β)-
accuracy for some constant β > 0, and we will make use of
this extension (although we do not require computational ef-
ficiency, which was a focus of those works). Finally, we need
an extension to the case of fractional vectors s ∈ [0, 1]n,
instead of Boolean vectors s ∈ {0, 1}n.

The extension is fairly simple and the proof follows the
same outline of the original reconstruction attack from [12].
We are given accurate answers to queries in Q, which we
interpret as approximate “subset-sums” of the vector s ∈
[0, 1]n that we wish to reconstruct. The reconstruction at-
tack will output any vector t from a discretization {0, 1/m,
. . . , (m − 1)/m, 1}n of the unit interval that is “consistent”
with these subset-sums. The main lemma we need is an
“elimination lemma” that says that if ‖t− s‖1 is sufficiently
large, then for a random subset T ⊆ [n],

1

n

∣∣∣∣∣∑
i∈T

ti − si

∣∣∣∣∣ > 3α

with suitable large constant probability. For m = 1 this
lemma can be established via combinatorial arguments,
whereas for the m > 1 case we establish it via the Berry-
Esséen Theorem. The lemma is used to argue that for every
t that is sufficiently far from s, a large fraction of the subset-
sum queries will witness the fact that t is far from s, and
ensure that t is not chosen as the output.

First we state the lemma that we just described, and then
we will verify that it indeed leads to a reconstruction attack.
The proof appears in the full version of this work.

Lemma 5.6. Let κ > 0 be a constant, let α > 0 be a
parameter with α ≤ κ2/240, and let n = 1/576κ2α2. Then
for every r ∈ [−1, 1]n such that 1

n

∑n
i=1 |ri| > κ, and a

randomly chosen q ⊆ [n],

Pr
q⊆[n]

[∣∣∣∣∣ 1n∑
i∈q

ri

∣∣∣∣∣ > 3α

]
≥ 3

5
.

Theorem 5.7. Let α′ ∈ (0, 1] be a constant, let α > 0 be
a parameter with α ≤ (α′)2/960, and let n = 1/144(α′)2α2.
For any data universe X = {x1, . . . , xn} of size n, there is a
set of counting queries Q on X of size at most O(n log(1/α))
such that the database D = (x1, . . . , xn) admits a α′- recon-
struction attack from (α, 1/3)-accurate answers to Q.

Proof Sketch. First we will give a reconstruction algo-
rithm B for an arbitrary family of queries. We will then
show that for a random set of queries Q of the appropriate
size, the reconstruction attack succeeds for every s ∈ [0, 1]n

with non-zero probability, which implies that there exists a
set of queries satisfying the conclusion of the theorem. We
will use the shorthand

〈q, s〉 =
1

n

n∑
i=1

q(xi)si

for vectors s ∈ [0, 1]n.
In order to show that the reconstruction attack B from

Figure 5.2 succeeds, we must show that 1
n

∑n
i=1 |ti−si| ≤ α

′.

Input: Queries Q, and (aq)q∈Q that are (α, 1/3)-
accurate for s.
Let m = d 1

α
e

Find any t ∈ {0, 1/m, . . . , (m− 1)/m, 1}n such that

Pr
q←RQ

[|〈q, t〉 − aq| < 2α] >
5

6
.

Output: t.

Figure 4: The reconstruction adversary B.

Let s ∈ [0, 1]n, and let s′ ∈ {0, 1/m, . . . , (m − 1)/m, 1}n
be the vector obtained by rounding each entry of s to the
nearest 1/m. It is enough to show that the reconstruction
attack outputs a vector close to s′. The vector s′ itself sat-
isfies |〈q, s′〉 − aq| ≤ 2α for any subset-sum query q, so the
reconstruction attack always finds some vector t. To show
that the reconstruction is successful, fix any t ∈ {0, 1/m,
. . . , (m − 1)/m, 1}n such that 1

n

∑n
i=1 |ti − s

′
i| > α′

2
. If we

write r = s′ − t ∈ {−1, . . . ,−1/m, 0, 1/m, . . . , 1}n, then
1
n

∑n
i=1 |ri| >

α′

2
and 〈q, r〉 = 〈q, t〉 − 〈q, s′〉. In order to

show that no t that is far from s′ can be output by B, we
will show that for any r ∈ {−1, . . . ,−1/m, 0, 1/m, . . . , 1}
with 1

n

∑n
i=1 |r| >

α′

2
,

Pr
q←RQ

[|〈q, r〉| > 3α] ≥ 1

2
.

To prove this, we first observe by Lemma 5.6 (setting κ =
1
2
α′) that for a randomly chosen query q defined on X ,

Pr
q

[|〈q, r〉| > 3α] ≥ 3

5
.

The lemma applies because 〈q, r〉 = 1
n

∑n
i=1 q(xi)ri is a ran-

dom subset-sum of the entries of r. Applying a Chernoff
bound and a union bound, we find that there exists a family
of queries Q of size O(n logm) such that for every s, t such
that 1

n

∑n
i=1 |ti − si| > α′,

Pr
q←RQ

[|〈q, s〉 − 〈q, t〉| > 3α] ≥ 1

2
.

By (α, 1/3)-accuracy and a triangle inequality, we can con-
clude

Pr
q←RQ

[|aq − 〈q, t〉| > 2α] ≥ 1

2
− 1

3
≥ 1

6
,

which implies that t cannot be the output of B. This com-
pletes the proof.

5.2.1 Putting Together the Lower Bound
Now we show how to combine the various attacks to prove

Theorem 1.2 in the introduction. We obtain our lower bound
by applying two rounds of composition. In the first round,
we compose the reconstruction attack described above with
the re-identifiable distribution for 1-way marginals. We then
take the resulting re-identifiable distribution and apply a
second round of composition using the reconstruction attack
for query families of high VC-dimension, just as in the proof
of Theorem 1.3. The formal proof is deferred to the full
version of this work.

Theorem 5.8. For all d ∈ N, all sufficiently small (i.e.

bounded by an absolute constant) α > 2−d/6, and all h ≤



2d/3, there is a family of queries Q of size O(hd log(1/α)/α2)
and an

n = n(h, d, α) = Ω̃

(√
d log h

α2

)
such that there exists a distribution on n-row databases D ∈
({0, 1}d)n that is (1/2, o(1/n))-re-identifiable from (α, 0)-
accurate answers to Q.
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