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ABSTRACT
A remarkable connection has been established for antiferro-
magnetic 2-spin systems, including the Ising and hard-core
models, showing that the computational complexity of ap-
proximating the partition function for graphs with maxi-
mum degree Δ undergoes a phase transition that coincides
with the statistical physics uniqueness/non-uniqueness phase
transition on the infinite Δ-regular tree. Despite this clear
picture for 2-spin systems, there is little known for multi-spin
systems. We present the first analog of the above inapprox-
imability results for multi-spin systems.

The main difficulty in previous inapproximability results
was analyzing the behavior of the model on random Δ-
regular bipartite graphs, which served as the gadget in the
reduction. To this end one needs to understand the mo-
ments of the partition function. Our key contribution is
connecting: (i) induced matrix norms, (ii) maxima of the ex-
pectation of the partition function, and (iii) attractive fixed
points of the associated tree recursions (belief propagation).
The view through matrix norms allows a simple and generic
analysis of the second moment for any spin system on ran-
dom Δ-regular bipartite graphs. This yields concentration
results for any spin system in which one can analyze the
maxima of the first moment. The connection to fixed points
of the tree recursions enables an analysis of the maxima of
the first moment for specific models of interest.

For k-colorings we prove that for even k, in the tree non-
uniqueness region (specifically for semi-translation invariant
measures which corresponds to k < Δ) it is NP-hard, un-
less NP=RP, to approximate the number of colorings for
triangle-free Δ-regular graphs. Our proof extends to the
antiferromagnetic Potts model, and, in fact, to every anti-
ferromagnetic model under a mild condition.
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1. INTRODUCTION

1.1 Background
Spin systems are a general framework from statistical physics

that captures classical physics models, including the Ising
and Potts models, and models of particular combinatorial
interest, including k-colorings and the hard-core lattice gas
model defined on independent sets. We define these combi-
natorial models more precisely before presenting the context
of our results.

The hard-core lattice gas model is an example of a 2-
spin system. For a graph G = (V,E), configurations of the
model are the set Ω of independent sets of G. The model
is parameterized by an activity λ > 0, and a configura-
tion σ ∈ Ω is assigned weight w(σ) = λ|σ|. The Gibbs
distribution is μ(σ) = w(σ)/Z where the normalizing fac-
tor is known as the partition function and is defined as
Z =

∑
τ∈Ω w(τ). In the hard-core model the spins cor-

respond to occupied/unoccupied. Multi-spin systems are
models with more than 2 spins, an example being the k-
colorings problem. In the colorings problem, for a graph
G = (V,E), configurations are the set Ω of assignments of
a set of k colors to vertices so that neighboring vertices re-
ceive different colors. The Gibbs distribution is the uniform
distribution over Ω, and in this case the partition function
Z = |Ω| is the number of k-colorings in G.

The hard-core model and colorings are examples of an-
tiferromagnetic systems – neighboring vertices “prefer” to
have different spins. In contrast, in ferromagnetic systems
neighboring spins tend to align. We defer the formal def-
initions of ferromagnetic and antiferromagnetic systems to
Section 6 where we discuss how our results extend to general
spin systems.

The focus of this paper is the computational complex-
ity of computing the partition function. Exact computation
of the partition function is typically #P-complete, even for
very restricted classes of graphs [Gre00]. Hence our focus is
on the existence of a fully-polynomial approximation scheme
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– either a deterministic FPTAS or randomized FPRAS – for
estimating the partition function. For any spin system, (ap-
proximate) sampling from the Gibbs distribution implies an
FPRAS for estimating the partition function, and hence our
hardness results also apply to the associated sampling prob-
lem.

The computational complexity of approximating the par-
tition function on Δ-regular graphs is now well-understood
for 2-spin systems, such as the Ising and hard-core mod-
els. For ferromagnetic 2-spin systems, there is an FPRAS
for estimating the partition function [GJP03, JS93] for all
parameters (for graphs of maximum degree Δ, the picture is
more complicated, see [LLZ14]). The picture is more intri-
cate (and fascinating) for antiferromagnetic 2-spin systems.
We will detail the picture after introducing the statistical
physics notion of a phase transition.

Let TΔ,� denote the complete Δ-regular tree of depth �
with root r. The question of interest is whether or not we
can fix a configuration on the leaves of TΔ,� so that the
root is influenced by this boundary configuration in the limit
� → ∞. For the example of colorings, fix a coloring σ� of
the leaves (such that there is at least one coloring of the rest
of the tree that is consistent with σ�). Look at a random
coloring of the tree TΔ,� conditioned on the leaves having
coloring σ�. For all sequences (σ�) of fixed leaf colorings, if
in the limit �→∞, the marginal at the root is uniform over
the k colors, then we say uniqueness holds, and otherwise
we say non-uniqueness holds. (The terminology comes from
statistical physics where the focus is on the set of infinite-
volume Gibbs measures.)

For the hard-core model the critical activity is λc(Δ) =
(Δ − 1)Δ−1/(Δ − 2)Δ [Kel91]. Weitz [Wei06] presented
an FPTAS for estimating the partition function in the tree
uniqueness region (i.e., when λ < λc(Δ)). On the other
side, Sly [Sly10] proved that, unless NP=RP, it is NP-hard
to obtain an FPRAS for Δ-regular graphs in the tree non-
uniqueness region (i.e., when λ > λc(Δ)). These results
were extended to all 2-spin antiferromagnetic models, for the
positive side see [SST12, LLY13] and for the negative side
see [SS12, GSV12]. For 2-spin antiferromagnetic models,
this establishes a beautiful picture connecting the computa-
tional complexity of approximating the partition function to
statistical physics phase transitions in the infinite tree.

1.2 Main Results
The picture for multi-spin systems (systems with q > 2

possible spins for vertices) is much less clear; the above
approaches for 2-spin systems do not extend to multi-spin
models in a straightforward manner. We aim to establish
the analog of the above inapproximability results for the
colorings problem, namely, NP-hardness in the tree non-
uniqueness region. Our techniques and results generalize to
a broad class of antiferromagnetic spin systems.

For the colorings problem, even understanding the unique-
ness threshold is challenging. Jonasson [Jon02] established
uniqueness when k ≥ Δ + 1, and it is easy to show non-
uniqueness when k ≤ Δ since a fixed coloring on the leaves
can“freeze”the internal coloring. For 2-spin systems unique-
ness can be characterized by the existence of multiple solu-
tions of a certain system of equations (8), called tree recur-
sions, see Section 6 for additional explanation. In statistical
physics terminology the solutions to these equations corre-
spond to semi-translation invariant measures on the infinite

tree TΔ. For colorings the uniqueness threshold and the
semi-translation invariant uniqueness threshold no longer
coincide. In particular, Brightwell and Winkler [BW02] es-
tablished, for semi-translation invariant measures, unique-
ness when k ≥ Δ and non-uniqueness when k < Δ.

We prove, for even k, that it is NP-hard to approximate
the number of colorings (in other words, NP-hard to approx-
imate the partition function) when there is non-uniqueness
of semi-translation invariant Gibbs measures on TΔ, i.e.,
when k < Δ. Moreover, our result proves hardness for the
class of triangle-free Δ-regular graphs. Hence, our result is
particularly interesting in the region k = Ω(Δ/ log Δ) since
a seminal result of Johansson [Joh96, MR02] shows that all
triangle-free graphs are colorable with O(Δ/ log Δ) colors.
His proof, which uses the nibble method and the Lovász Lo-
cal Lemma, can be made algorithmic using the constructive
proof of [MT10]. For general graphs with maximum degree

Δ, the interesting region is k = Δ − O(
√

Δ), since Molloy
and Reed [MR01] showed, for sufficiently large constant Δ,
a polynomial-time algorithm to determine if a graph with
maximum degree Δ is k-colorable when k ≥ Δ − √Δ + 3.
We note that most parts of the proof extend to the odd k
case as well, modulo a technical condition described in the
end of Section 4.

Here is the formal statement of our inapproximability re-
sult for colorings.

Theorem 1. For all even k ≥ 3, all Δ ≥ 3, for the k-
colorings problem, when k < Δ, unless NP=RP, there is no
FPRAS that approximates the partition function for triangle-
free Δ-regular graphs. Moreover, there exists ε = ε(k,Δ)
such that, unless NP=RP, one cannot approximate the par-
tition function within a factor 2εn for triangle-free Δ-regular
graphs (where n is the number of vertices).

Our result also extends to the anti-ferromagnetic Potts
model. In the q-state Potts model there is a parameter
B > 0 which corresponds to the “temperature” and con-
trols the strength of the interactions along an edge. For a
graph G = (V,E), the set Ω of configurations are assign-
ments σ where σ : V → [q]. Each configuration has a weight

w(σ) = Bm(σ) where m(σ) is the number of monochromatic
edges in σ. The Gibbs distribution is μ(σ) = w(σ)/Z where
Z =

∑
τ∈Ω w(τ) is the partition function. The case B > 1 is

the ferromagnetic Potts model, and B < 1 is the antiferro-
magnetic Potts model. Colorings corresponds to the B = 0
case, and the Ising model is the q = 2 case.

The uniqueness/non-uniqueness threshold for the infinite
tree TΔ is not known for the antiferromagnetic Potts model.
We prove that the uniqueness/non-uniqueness threshold for
semi-translation invariant Gibbs measures on TΔ occurs at
Bc(Δ) = Δ−q

Δ
. We believe this threshold coincides with

the uniqueness/non-uniqueness threshold, unlike in the case
of colorings. We prove, for even q, that approximating the
partition function is NP-hard in the non-uniqueness region
for semi-translation invariant measures.

Theorem 2. For all even q ≥ 3, all Δ ≥ 3, for the anti-
ferromagnetic q-state Potts model, for all B < Δ−q

Δ
, unless

NP=RP, there is no FPRAS that approximates the parti-
tion function for triangle-free Δ-regular graphs. Moreover,
there exists ε = ε(q,Δ) such that, unless NP=RP, one can-
not approximate the partition function within a factor 2εn

for triangle-free Δ-regular graphs (where n is the number of
vertices).
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In fact, we obtain inapproximability of the partition func-
tion for any antiferromagnetic model when there is non-
uniqueness of semi-translation invariant measures on TΔ and
mild additional conditions. Our results for general models
are stated in Section 6.

1.3 Proof Approach
The key gadget in the inapproximability results for 2-

spin models is a random Δ-regular bipartite graph. The
rough idea for the hard-core model is that in the tree non-
uniqueness region, on a random Δ-regular bipartite graph,
an independent set from the Gibbs distribution is “unbal-
anced” with high probability (the fraction of occupied ver-
tices in the two parts of the bipartition differ by a constant).
To analyze random regular bipartite graphs, the original in-
approximability result of Sly [Sly10] relied on a second mo-
ment analysis of Mossel et al. [MWW09], which Sly called
a technical tour-de-force. The optimization at the heart of
that analysis was difficult enough that his result only held
for λ close to the uniqueness threshold.

We present a new approach for the associated optimiza-
tion problem which is at the heart of the second moment
analysis. Our approach yields a simple, short analysis that
holds for any model on random Δ-regular bipartite graphs.
The key idea is to define a new function Φ, which is repre-
sented as an induced matrix norm, and has the same critical
points as the first moment. We can then use the fact that
induced matrix norms are multiplicative over tensor product
to analyze the second moment.

We present the main components of our general method
to analyze the second moment in the next section. We then
present the main ideas in the reduction in Section 5 and our
results for general antiferromagnetic models in Section 6.

2. SECOND MOMENT ANALYSIS
A general q-spin system is specified by a symmetric q × q

interaction matrix B = (Bij)i,j∈[q] with non-negative en-
tries, which specify the strength of the interaction between
the spins. For example, the interaction matrix for the Potts
model has off-diagonal entries equal to 1 and its diagonal en-
tries equal to B. For a finite undirected graph G = (V,E), a
q-spin system is a probability distribution μG over the space
ΩG of all configurations, i.e., spin assignments σ : V → [q].
The weight of a configuration σ ∈ ΩG is the product of
neighboring spin interactions, that is,

wG(σ) =
∏

(u,v)∈E
Bσ(u)σ(v).

The Gibbs distribution μG is defined as μG(σ) = wG(σ)/ZG

where the partition function ZG is ZG =
∑

τ∈ΩG
wG(σ). We

drop the subscript G when the graph under consideration is
clear.

2.1 Basic Definitions: Matrix Norms
We will reformulate the maxima of the first and second

moments in terms of matrix norms. We first recall the basic
definitions regarding matrix norms. The usual vector norms
are denoted as:

‖x‖p = (

n∑
i=1

xp
i )1/p.

We will use the subordinate matrix norm (also known as the
induced matrix norm) which will be denoted as ‖ · ‖p→q and

is defined as:

‖A‖p→q = max
‖x‖p=1

‖Ax‖q.

Note that if A has non-negative entries then one can restrict
the maximization to x with non-negative entries. A well-
known example of an induced norm is the spectral norm ‖ ·
‖2→2.

2.2 First and Second Moments
For antiferromagnetic models on a random Δ-regular bi-

partite graph G = (V,E) with bipartition V = V1 ∪ V2, the
goal is to understand the Gibbs distribution μG by look-
ing at the distribution of spin values in V1 and V2. Let
n = |V1| = |V2|. For a configuration σ : V → [q], we shall
denote the set of vertices assigned spin i by σ−1(i). Denote
by �q the simplex

�q = {(x1, x2, . . . , xq) ∈ R
q |∑q

i=1 xi = 1 and

xi ≥ 0 for i = 1, . . . , q}.
For α,β ∈ �q, let

Σα,β = {σ : V → {1, . . . , q} ∣∣ |σ−1(i) ∩ V1| = αin,

|σ−1(i) ∩ V2| = βin for i = 1, . . . , q},
that is, configurations in Σα,β assign αin and βin vertices in
V1 and V2 the spin value i, respectively. We will be interested
in the total weight Zα,β

G of configurations in Σα,β, namely

Zα,β
G =

∑
σ∈Σα,β w(σ).

We study Zα,β
G by looking at the moments EG [Zα,β

G ] and

EG [(Zα,β
G )2], where the expectation is over the distribution

of the random Δ-regular bipartite graph, from hereon de-
noted by G.

For α,β ∈ �q, denote the leading term of the first and
second moments as:

Ψ1(α,β) = ΨB
1 (α,β) := lim

n→∞
1

n
logEG

[
Zα,β

G

]
.

Ψ2(α,β) = ΨB
2 (α,β) := lim

n→∞
1

n
logEG

[(
Zα,β

G

)2
]
.

We will refer to the pairs α,β that maximize the first
moment as dominant phases. In the uniqueness region there
is a unique dominant phase and it has α = β. In con-
trast, for 2-spin antiferromagnetic models and for colorings
in the semi-translation non-uniqueness region, the dominant
phases have α 
= β, and one expects this would hold for all
antiferromagnetic models.

Our main technical result relates the second moment to
the first moment, for any model on random bipartite regular
graphs.

Theorem 3. For any spin system, for all Δ ≥ 3,

max
α,β

Ψ2(α,β) = 2 max
α,β

Ψ1(α,β).

Crucially, Theorem 3 implies that Ψ2(α,β) = 2Ψ1(α,β)
for dominant phases, which is key for our arguments, since it
will eventually allow us to prove strong concentration prop-
erties for the random variables Zα,β

G . We do this in two
stages, first establishing the second moment (see [GSV13,
Section J]), and then using the small graph conditioning
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method (see [GSV13, Section G.1]). These concentration
properties are described thoroughly in Section 5, where we
also describe how they are used in the reduction.

2.3 Reformulating the First Moment in Terms
of Matrix Norms

A key component in the analysis of the second moment
is the following function Φ. Let p = Δ/(Δ − 1). For non-
negative r = (R1, . . . , Rq), c = (C1, . . . , Cq), define Φ(r, c)
by:

exp
(
Φ(r, c)/Δ

)
=

rᵀBc

‖r‖p‖c‖p .

We will show that the critical points of Φ and Ψ1 match in
the sense that there is a one-to-one correspondence between
them and their values are equal at the corresponding critical
points. The full statement is contained in [GSV13, Theorem
18], but the important element for the current discussion is
captured in the following lemma:

Lemma 4.

max
α,β∈�q

Ψ1(α,β) = max
r,c

Φ(r, c).

Therefore, to determine the dominant phases of Ψ1 it suffices
to study Φ. The maximum of Φ can be compactly expressed
in terms of matrix norms as follows:

max
r,c

exp
(
Φ(r, c)/Δ

)
= max

c
max

r

rᵀBc

‖r‖p‖c‖p
= max

c

‖Bc‖Δ
‖c‖p

= ‖B‖p→Δ, (1)

where the second equality follows from matrix norm duality.
Hence, the dominant phases of Ψ1 can be expressed in

terms of matrix norms:

max
α,β∈�q

exp
(
Ψ1(α,β)/Δ

)
= ‖B‖ Δ

Δ−1
→Δ. (2)

2.4 Analyzing the Second Moment: Proof of
Theorem 3

To analyze the second moment function Ψ2 we will reduce
it to the first moment optimization in the following manner.
The key observation is that the associated optimization for
the second moment is equivalent to a first moment optimiza-
tion of a “paired-spin” model which is specified by the tensor
product of the original interaction matrix with itself. This
property enables us to relate the maximum for the second
moment calculations with the maximum of the first moment
calculations.

Proof of Theorem 3. The second moment considers a
pair of configurations, say σ and σ′, which are constrained to
have a given phase α for V1 and β for V2, where V = V1∪V2.
We capture this constraint using a pair of vectors γ, δ cor-
responding to the overlap between σ and σ′, in particular,
γij (and δij) is the number of vertices in V1 (and V2, respec-
tively) with spin i in σ and spin j in σ′.

Recall, ΨB
1 indicates the dependence of the function Ψ1

on the interaction matrix B; to simplify the notation we will
drop the exponent if it is B. We have (see [GSV13, Remark
3, Section I] for more details on this connection)

Ψ2(α,β) = max
γ,δ

ΨB⊗B
1 (γ, δ), (3)

where the optimization in (3) is constrained to γ and δ such
that

∑
i γik = αk,

∑
k γik = αi,

∑
j δj� = β� and

∑
� δj� = βj .

(4)

Ignoring the four constraints in (4) can only increase the
value of (3) and hence

max
α,β

exp(Ψ2(α,β)/Δ) ≤ max
γ,δ

exp
(

ΨB⊗B
1 (γ, δ)/Δ

)

= ‖B⊗B‖ Δ
Δ−1

→Δ. (5)

The key fact we now use is that for induced norms ‖ · ‖p→q

with p ≤ q it holds (c.f., [Ben77, Proposition 10.1]) that:

‖B⊗B‖p→q = ‖B‖p→q ‖B‖p→q. (6)

Therefore,

max
α,β

Ψ2(α,β) ≤ 2Δ log ‖B‖ Δ
Δ−1

→Δ = 2 max
α,β

Ψ1(α,β).

(7)
To complete the proof of Theorem 3 it just remains to

prove the reverse inequality, which follows from the fact that
E[X2] ≥ E[X]2.

3. TREE RECURSIONS AND CRITICAL
POINTS OF THE FIRST MOMENT

The second moment results of the previous section will be
used to establish that the Gibbs distribution is concentrated
at the global maxima of Ψ1(α,β). To simplify the analysis
of the local maxima of Ψ1 we connect them to attractive
fixpoints of the associated tree recursions.

The fixpoints of the following tree recursions correspond
to semi-translation invariant Gibbs measures:

R̂i ∝
( q∑

j=1

BijCj

)Δ−1

and Ĉj ∝
( q∑

i=1

BijRj

)Δ−1

. (8)

The fixpoints are those Ri’s and Cj ’s such that R̂i ∝ Ri and

Ĉj ∝ Cj , for all i, j ∈ [q]. The fixpoints of the tree recursions
correspond to critical points of Ψ1, as was first observed in
[MWW09], see [GSV13, Section D.2] for a derivation in our
setting.

We call a fixpoint x of a function f a Jacobian attractive
fixpoint if the Jacobian of f at x has spectral radius less
than 1. We say that a critical point α,β is a Hessian local
maximum if the Hessian of Ψ1 at α,β is negative definite.
(Note this is a sufficient condition for α,β to be a local
maximum.)

We prove the following theorem in [GSV13, Section E],
see [GSV13, Theorem 18] for a more detailed version of the
below connection.

Theorem 5. Jacobian attractive fixpoints of tree recur-
sions (8) (viewed as a function (R1, . . . , Rq, C1, . . . , Cq) �→
(R̂1, . . . , R̂q, Ĉ1, . . . , Ĉq)) correspond to Hessian local max-
ima of Ψ1.

Theorem 5 is important for analyzing the global maxima
of Ψ1 for colorings and antiferromagnetic Potts model (see
Section 4). Moreover, it yields a simple formulation of the
Hessian matrix of Ψ1 at dominant phases, which is crucial to
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compute the moments’ asymptotics and apply the small sub-
graph conditioning method for general models (see [GSV13,
Sections G & K]).

It is interesting to expand a bit more on the connection
of Theorem 5 and the small subgraph conditioning method.
Recall, the scope of the latter is to obtain almost sure re-
sults (over the choice of the random graph) using a variance
analysis of the partition function. The variance analysis at-
tributes fluctuations from the expected value of the partition
function to the presence of the short cycles in the random
graph. Effectively, the random graphs are locally tree-like
and the small subgraph conditioning method is, in a certain
sense, a way to capture the deviation from the tree struc-
ture. In this context, Theorem 5 can be used to quantify
the following: fluctuations due to cycles are controlled by
the eigenvalues of the stability matrix of the tree recursions.
Precisely, Theorem 5 supplies us with bounds on the related
eigenvalues which, together with the small subgraph condi-
tioning method, yield that the fluctuation of Zα,β

G by the
presence of a cycle of length 2� is captured by the disagree-
ment percolation probability along a path of length 2� in the
Gibbs measure specified by the dominant phase (α,β).

4. DOMINANT PHASES FOR ANTIFERRO-
MAGNETIC POTTS AND COLORINGS
MODELS

To obtain Theorems 1 and 2, we need to figure out the
dominant phases in a random bipartite regular graph for
the antiferromagnetic Potts and colorings models. Recall,
the interaction matrix B for the Potts model is completely
determined by a parameter B, which is equal to exp(−β)
where β is the inverse temperature in the standard notation
for the Potts model. The antiferromagnetic regime corre-
sponds to 0 < B < 1. The coloring model is the zero tem-
perature limit of the Potts model and corresponds to the
particular case B = 0 in what follows. We should note that
in Statistical Physics terms, the arguments of this section
are closely related to the phase diagrams of the models.

Recall from Section 2.2 that a dominant phase is a global
maximum of Ψ1. As we noted in Section 3, the critical points
of Ψ1 are given by fixpoints of the tree recursions, which
for the Potts model are positive solutions to the following
system of equations:

Ri ∝
(
BCi +

∑
j 	=i Cj

)Δ−1

, Cj ∝
(
BRj +

∑
i 	=j Ri

)Δ−1

,

(9)
Given a fixpoint of the tree recursions (9), we will classify
whether it is a Hessian local maximum of Ψ1 using Theo-
rem 5.

We begin our considerations by examining the fixpoints
(9) which are translation invariant, i.e., satisfy Ri ∝ Ci for
every i ∈ [q]. The following simple lemma implies that there
is a unique translation invariant fixpoint.

Lemma 6. Let 0 ≤ B < 1 and Δ ≥ 3. Then a solution of
(9) satisfies Ri ∝ Ci for every i ∈ [q] iff R1 = . . . = Rq and
C1 = . . . = Cq.

Proof. By the symmetries of the model, we may assume
an arbitrary ordering of the Ri’s. Since 0 ≤ B < 1, equa-
tions (9) imply the reverse ordering of the Ci’s. Thus, if
Ri ∝ Ci for every i ∈ [q], it must be the case that the or-
dering is trivial, i.e, R1 = . . . = Rq and C1 = . . . = Cq.

We next identify the regime (in terms of B) where the
translation invariant fixpoint corresponds to a Hessian local
maximum of Ψ1. In this regime, Theorem 5 asserts that the
translation invariant fixpoint is also Jacobian stable, hinting
that uniqueness of the Gibbs measure might hold. While
this rule of thumb is false in general (a counterexample is
given by the ferromagnetic Potts model), for the colorings
model it does capture the uniqueness regime, while for the
antiferromagnetic Potts model, it captures the conjectured
uniqueness regime. More precisely, we have the following.

Lemma 7. For q < Δ, in the regime 0 ≤ B < Δ−q
Δ

,
the translation invariant fixpoint is Jacobian unstable. If
q ≥ Δ+1 or B > Δ−q

Δ
> 0, the translation invariant fixpoint

is Jacobian stable.

Proof. Let A be the matrix with off-diagonal entries
equal to 1/(B+ q−1) and diagonal entries equal to B/(B+
q − 1). The traslation invariant fixpoint is Jacobian sta-
ble iff the eigenvalues of A other than its largest eigenvalue
(which is equal to 1) have magnitude less than 1/(Δ − 1),
see [GSV13, Lemma 45] for more details. This translates
into whether (1−B)/(B + q − 1) < 1/(Δ− 1), yielding the
second part of the lemma. Similarly, for the first part, one
needs to check that (1−B)/(B + q − 1) > 1/(Δ− 1).

A much more technical argument, an extension of an argu-
ment in [BW02] for colorings, gives the following refinement
of Lemma 7. In the regime where the translation invariant
fixpoint is Jacobian stable, it is also the unique fixpoint of
(9) (for colorings this also holds when the number of col-
ors is equal to Δ), see [GSV13, Section H.5.1]. Thus, the
second part of Lemma 7 a posteriori captures the range of
temperatures where the global maximum of Ψ1 is achieved
by the translation invariant phase. In contrast, for the range
of temperatures in the first part of Lemma 7, multiple semi-
translation invariant fixpoints exist.

Let us now focus on q < Δ and 0 ≤ B < Δ−q
Δ

. In this
regime, analyzing the dominant phases is more intricate.
The reason is that the number of fixpoints of (9) is a func-
tion of q. Moreover, the number of Jacobian stable fixpoints
varies as a function of q,Δ, B. To explain the situation more
concretely, we first need the following structural statement
for the solutions of equations (9), namely that solutions of
(9) are supported on at most 3 values for the Ri’s and simi-
larly for the Ci’s. The lemma and its proof can be found as
[GSV13, Lemma 47].

Lemma 8. Let (R1, . . . , Rq, C1, . . . , Cq) be a positive so-
lution of the system (9). Let tR be the number of values on
which the Ri’s are supported and define similarly tC . Then
tR = tC and tR, tC ≤ 3.

We denote by (q1, q2, q3) the multiplicities of the values
that a fixpoint is supported. For example (q, 0, 0) corre-
sponds to the translation invariant fixpoint. Less trivially,
for q even, the values of the Ri’s for a fixpoint of type
(q/2, q/2, 0) are supported on two distinct values each ap-
pearing with multiplicity q/2, and similarly for the Cj ’s. To
obtain the dominant phases, we have to compare the val-
ues of Ψ1 at the different fixpoints, which is a difficult and
unpleasant task.

To circumvent this difficulty, we instead turn to the func-
tion Φ, which by Lemma 4, can be used to study the dom-
inant phases of Ψ1. Finding the maxima of Φ is itself a
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difficult problem, since it involves computing ‖B‖ Δ
Δ−1

→Δ.

However, the extra structure allows for a natural relaxation
scheme (allowing the multiplicities q1, q2, q3 to be reals with
sum equal to q), which can be penetrated analytically for
all values of B, q,Δ. For q even, we can tie this relaxation
back to the norm and hence to the global maxima of Ψ1.

We thus obtain the following lemma, which identifies the
dominant phases for even q.

Lemma 9. For 0 ≤ B < Δ−q
Δ

and even q ≥ 3, the max-
imum of Ψ1 is attained at fixpoints of type (q/2, q/2, 0).
Moreover, there is a unique fixpoint of type (q/2, q/2, 0) (up
to permutations of the colors).

For odd q, we are unable to establish whether the global
maxima of Ψ1 are fixpoints of type (�q/2�, �q/2�, 1) or of
type (�q/2�, �q/2�, 0).

5. REDUCTION
In this section, we prove our inapproximability results.

We start by reviewing the main components of the reduc-
tion for 2-spin systems (as carried out in [Sly10, SS12]) and
in particular the hard-core model. This will allow us to iso-
late the parts of the argument which do not extend to the
multi-spin case and motivate our reduction scheme. To sim-
plify the presentation, we shall focus on the colorings model
(k even), but the same ideas can be generalized to the Potts
model and (with more technical effort) to arbitrary antifer-
romagnetic multi-spin models.

The basic gadget in the reduction is a bipartite random
graph, which we denote by G. The sides of the bipartition
have an equal number of vertices, and the sides are labelled
with + and −. Most vertices in G have degree Δ but there
is also a small number of degree Δ− 1 vertices (to allow to
make connections between gadgets without creating degree
Δ+1 vertices). For s = {+,−}, let the vertices in the s-side
be Us ∪W s where the vertices in U = U+ ∪U− have degree
Δ and the vertices in W = W+∪W− have degree Δ−1. The
phase of an independent set I is + (resp. −) if I has more
vertices in U+ (resp. U−). Note that the phase depends
only on the spins of the “large” portion of the graph, i.e.,
the spins of vertices in U .

In non-uniqueness regimes, the gadget G has two impor-
tant properties, both of which can be obtained by building
on the second moment argument we outlined earlier. First,
the phase of a random independent set I is equal to + or −
with probability roughly equal to 1/2. Second, conditioned
on the phase of a random independent set I, the spins of
the vertices in W are approximately independent, i.e., the
marginal distribution on W is close to a product distribu-
tion. In this product distribution if the phase is + (resp.
−), a vertex in W+ is in I with probability p+ (resp. p−),
while a vertex in W− is in I with probability p− (resp. p+).
The values p± correspond to maxima of the function Ψ1

and, crucially (as we shall demonstrate shortly), they sat-
isfy p+ 
= p−.

Using the second moment analysis of Section 2 and in
particular Theorem 3, we can prove that an analogous phe-
nomenon takes place for the k-colorings model in the semi-
translation non-uniqueness regime. The main difference is
that, instead of two phases, the number of phases is equal to
the number of maximizers of the function Ψ1. For k even,
the phase of a coloring is determined by the dominant set

of k/2 colors on U+, i.e., the k/2 colors with largest fre-
quencies among vertices of U+. Each of the

(
k

k/2

)
phases

appears with roughly equal probability and given the phase,
the marginal distribution on W is close to a product distribu-
tion, which we now describe. We can compute explicit values
a = a(k,Δ), b = b(k,Δ) such that for a phase T ∈ (

[k]
k/2

)
the

probability mass function x of a vertex in W+ has its i-th
entry equal to a if i ∈ T and equal to b if i /∈ T . Simi-
larly, the probability mass function y of a vertex in W− has
its i-th entry equal to b if i ∈ T and equal to a if i /∈ T .
We note here that the values of a, b correspond to the val-
ues of R1, . . . , Rq, C1, . . . , Cq of the (q/2, q/2, 0) fixpoint of
Lemma 9.

Let Q be the union of the pairs (x,y) over all phases.
Hereafter, we will identify the phases with elements of Q.
Note that if (x,y) ∈ Q, then (y,x) ∈ Q as well. We also
denote by Q′ the union of unordered elements of Q. Ele-
ments of Q′ are called unordered phases (we use p to denote
unordered phases). Given a phase p = {x,y} an ordering
of the pair will be called “assigning spin to the phase”. The
two ordered phases corresponding to the unordered phase p
will be denoted by p+ and p−.

The conditional independence property is crucial. It al-
lows to quantify the effect of using vertices of W as terminals
to make connections between copies of the gadget G. For
example, consider the following type of connection, which
we refer to as parallel. Let v+ ∈ W+, v− ∈ W− and con-
sider two copies of the gadget G, say G1, G2. For i = 1, 2
denote by v+i , v−i the images of v+, v− in Gi. Now add the
edges (v+1 , v+2 ) and (v−1 , v−2 ) and denote the final graph by
G12. Thus, a parallel connection corresponds to joining the
+,+ and −,− sides of two copies of the gadget.

Clearly, random colorings of G12 can be generated by first
generating random colorings of G1, G2 and keeping the re-
sulting coloring if v±1 , v±2 have different colors. We thus have
that the partition function of G12 is equal to (ZG)2 times
the probability that v±1 , v±2 have different colors in random
colorings of G1, G2. The latter quantity can easily be com-
puted if we condition on the phases (x1,y1), (x2,y2) of the
colorings in G1, G2, and this is equal to (1−xᵀ

1x2)(1−yᵀ
1y2).

By taking logarithms, we can assume a parallel connection
between gadgets with phases (x1,y1) and (x2,y2) incurs an
(additive) weight

wp((x1,y1), (x2,y2)) = ln(1− xᵀ
1x2) + ln(1− yᵀ

1y2).

In the hard-core model, parallel connections are sufficient
to give hardness. In this case, we have that Q′ = {p} and
Q = {p+,p−} and the respective function wp(·, ·) satisfies

wp(p+,p+) = wp(p−,p−) < wp(p+,p−). (10)

Thus, in this case, wp(·, ·) takes only two values and neigh-
boring gadgets prefer to have different phases. Now assume
that H is an instance of Max-Cut and replace each ver-
tex in H by a copy of the gadget G, while for each edge of
H, connect the respective gadgets in parallel. The partition
function of the final graph is dominated from phase assign-
ments which correspond to large cuts in H. This intuition
is the basis of the reduction in [Sly10, SS12].

For the colorings model, reducing from Max-Cut poses
an extra challenge. While for every unordered phase p equa-
tion (10) continues to hold, a short calculation shows that
the optimal configuration for a triangle of gadgets connected
in parallel is to give all three gadgets different phases. To
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bypass this entanglement, we need to introduce some sort
of ferromagnetism in the reduction to enforce gadgets corre-
sponding to vertices of H to use a single (unordered) phase.
To achieve this, we use symmetric connections, which corre-
spond to having not only (+,+), (−,−) connections of the
gadgets, but also (+,−) and (−,+). Thus, a symmetric con-
nection whose endpoints have phases (x1,y1), (x2,y2) incurs
(additive) weight

ws((x1,y1), (x2,y2))

= wp((x1,y1), (x2,y2)) + wp((x1,y1), (y2,x2)).

Symmetric connections will allow us to enforce a single un-
ordered phase to all gadgets, while parallel connections will
allow us to recover a maximum-cut partition. To have some
modularity in our construction, rather than reducing from
Max-Cut directly, we use the following“phase labeling prob-
lem”.
Colorings Phase Labeling Problem(Q):
INPUT: undirected edge-weighted multigraph H = (V,E)
and a partition of the edges {Ep, Es}.
OUTPUT: MaxLwt(H) := maxY LwtH(Y), where the max-
imization is over all possible phase labelings Y : V → Q and

LwtH(Y) :=
∑

{u,v}∈Es

ws(Y(u),Y(v))+
∑

{u,v}∈Ep

wp(Y(u),Y(v)).

Edges in Ep (resp. Es) correspond to parallel (resp. sym-
metric) connections and we shall refer to them as parallel
(resp. symmetric) edges. The arguments in [SS12], which
we sketched earlier, can easily be adapted to show that an al-
gorithm for approximating the partition function to an arbi-
trarily small exponential factor yields a PRAS for the phase
labeling problem, see [GSV13, Lemma 11] and its proof in
[GSV13, Section C]. It then remains to prove that a PRAS
for the phase labeling problem yields a PRAS for Max-Cut
on 3-regular graphs.

Our reduction relies on the following gadget which“prefers”
the unordered phase of two distinguished vertices u and v to
agree. For a phase assignment Y with ordered phases, we de-
note by Y ′ the respective phase assignment with unordered
phases.

Lemma 10. A constant sized gadget J1 with two distin-
guished vertices u, v can be constructed with the following
property: all edges of J1 are symmetric and the following is
true,

max
Y;Y′(u)=Y′(v)

LwtJ1(Y) > ε1 + max
Y;Y′(u)	=Y′(v)

LwtJ1(Y),

(11)
where ε1 > 0 is a constant depending only on k and Δ.

We give the proof of the critical Lemma 10 after the (sim-
pler) proof of the following.

Lemma 11. A PRAS for Colorings Phase Labeling
Problem(Q) yields a PRAS for Max-Cut on 3-regular
graphs.

Proof. Let ε1 be as in Lemma 10 and

t := 2�(max
p1,p2

wp(p1,p2)− min
p1,p2

wp(p1,p2))/ε1�.

Given a 3-regular instance H = (V,E) of Max-Cut, we
first declare all edges of H to be parallel. Moreover, for
every edge (u′, v′) of H, take t copies of gadget J1 from

Lemma 10, identify (merge) their u vertices with u′, and
identify (merge) their v vertices with v′. Let H ′ be the final
graph.

To find the optimal phase labeling of H ′, we may focus
on the phase assignment restricted to vertices in H, since
each gadget J1 can be independently set to its optimal value
conditioned on the phases for its distinguished vertices u and
v. We claim that

MaxLwt(H ′) = C1MaxCut(H) + (C2 + C3t)|E|, (12)

for constants C1, C2, C3 to be specified later (depending only
on k,Δ). Using the trivial bound MaxCut(H) ≥ |E|/2 =
3|V |/4, the lemma follows easily from (12). We thus focus
on proving (12).

The key idea is that for any phase labeling Y : V → Q,
changing the unordered phases of vertices in H to the same
unordered phase p ∈ Q′, while keeping the spins, can only
increase the weight of the labeling. Indeed, for (u, v) ∈
E such that Y ′(u) = Y ′(v), no change in the weight of
the labeling occurs, using (11). For (u, v) ∈ E such that
Y ′(u) 
= Y ′(v), the potential (weight) loss from the parallel
edge (u, v) is compensated by the gain on the t copies of J1

by (11) and the choice of t.
For phase labelings which assign vertices of H the same

unordered phase p, to attain the maximum weight for a
phase labeling, we only need to choose the spins, in order
to maximize the contribution from parallel edges (the edges
of H). The same argument we discussed for the hard-core
model, (10) yields that the optimal choice of spins to the
phases induces a maximum-cut partition of H. For such
a spin assignment, the contribution from parallel edges is
C1MaxCut(H) + C2|E|, where

C1 := wp(p+,p−)− wp(p−,p−) and C2 := wp(p−,p−).

The contribution from symmetric edges is C3t|E|, where
C3 := maxY;Y′(u)=Y′(v)=p LwtJ1(Y). This proves (12).

Proof of Lemma 10. LetQ′ := {p1, . . . ,pQ′} and pi :=
{xi,yi} for i ∈ [Q′]. Denote by K the multigraph on Q′

vertices b1, b2, . . . , bQ′ with the following symmetric edges:
self-loop on bi for i ∈ [Q′] and two edges between bi and bj
for every i, j ∈ [Q′] with i 
= j. We first prove that the opti-
mal phase assignments Y of K are those which assign each
vertex bi a distinct phase from Q′ (note that the spin of the
phase does not matter since all edges of K are symmetric).
The desired gadget J1 will be constructed afterwards.

Let Y be a phase labeling of K and si be the number of
vertices assigned phase pi. Let s be the vector (s1, . . . , sQ′)

ᵀ.
Note that 1ᵀs = Q′, where 1 is the all one vector with
dimension Q′. Then

LwtK(Y) =
∑

i,j∈[Q′]
sisjws(pi,pj) = sᵀAs,

where A is the Q′ × Q′ matrix whose (i, j) entry equals
ws(pi,pj). Note that A is symmetric and 1 is an eigen-
vector of A (because of the transitive symmetry of phases).
Moreover, if we let s′ = s−1, then 1ᵀs′ = 0. It follows that

sᵀAs = 1ᵀA1 + (s′)ᵀAs′. (13)

If A is negative definite, equation (13) shows that the all
ones labeling is better than any other labeling. Hence the
result will follow if we prove that A is negative definite.
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Let z1, . . . , zQ := x1, . . . ,xQ′ ,y1, . . . ,yQ′ and let Â be
the Q×Q matrix whose ij-entry is ln(1− zᵀi zj). Using the
definition of the weights ws(·, ·), it is easy to check that for
any vector s it holds that

sᵀAs = (s, s)ᵀÂ(s, s),

so it suffices to prove that Â is negative definite. We will
show here that Â is negative semi-definite; the proof that Â
is regular (and hence negative definite) is trickier and is given
in the proof of the more general [GSV13, Lemma 10]. Note

that the entries of Â are obtained by applying z �→ ln(1−z)
to each entry of the Gram matrix of the vectors z1, . . . , zQ.
Since for |z| < 1 we have ln(1− z) = −z− z2/2− z3/3− . . .,
by Schur’s product theorem (see Corollary 7.5.9 in [HJ90])

we obtain that Â is negative semi-definite, as desired.
To construct the gadget J1, we overlay two copies of K

as follows. Let Ku (resp. Kv) be a copy of K, where the
image of bQ′ is renamed to u (resp. v). Overlay Ku,Kv

by identifying the images of b1, . . . , bQ′−1 in the two copies.
Thus, the resulting graph J1 has two self loops on bi for i ∈
[Q′−1], four edges between bi and bj for every i, j ∈ [Q′−1]
with i 
= j, two edges between u and bi for i ∈ [Q′ − 1], two
edges between v and bi for i ∈ [Q′ − 1] and a self loop on
u, v.

Note that for every phase labeling Y of J1, we have

LwtJ1(Y) = LwtKu(Y) + LwtKv (Y)

and hence

MaxLwt(J1) ≤ 2MaxLwt(K).

Using that the optimal phase labelings for K are those which
assign each vertex a distinct phase from Q′, we obtain that
the inequality holds at equality for those (and only those)
phase labelings which assign u, v a common phase p ∈ Q′
and vertices b1, . . . , bQ′−1 a distinct phase from Q′ − {p}.
This yields the ε1 in the statement of the lemma. Note
that ε1 depends only on Q′, which in turn is completely
determined by k,Δ.

6. GENERAL RESULTS
The inapproximability results for colorings can be extended

to general antiferromagnetic models on bounded degree graphs.

The key concept in the general theorem is again the existence
of long range correlations, in the form of semi-translational
non-uniqueness on the infinite regular tree.

We use the following definition of antiferromagnetic mod-
els, which is in terms of the signature of the interaction ma-
trix B, i.e., the signs of its eigenvalues. Recall that the inter-
action matrix B is symmetric and hence its eigenvalues are
real. Moreover, it is simple to see that the matrices B which
correspond to non-degenerate models should be irreducible.
The Perron-Frobenius theorem then implies that one of the
eigenvalues with the largest magnitude is positive. When
all the other eigenvalues are negative, we show in [GSV13,
Section A] (see [GSV13, Corollary 9]) that neighboring spins
prefer to be different and hence we call such models antifer-
romagnetic. This notion of antiferromagnetism extends nat-
urally the definition for 2-spin models (see [GJP03, LLY13,
SS12]) and also captures antiferromagnetism in the Potts
model. A more thorough discussion is given in [GSV13,
Section A].

Proceeding to the general hardness results, we have al-
ready displayed that the second moment argument for ran-
dom bipartite graphs covers arbitrary models (general in-
teraction matrix B). There are two properties of the gad-
get G in Section 5 we need to ensure. First, the symmetry
breaking between the two sides of the graph, i.e., a typical
configuration should have different color frequencies on the
two sides of the graph. Second, to be able to quantify the
interaction between neighboring gadgets, we need to ensure
that phases appear with roughly equal probability and that
given the phase, the spins of the vertices with degree Δ− 1
are approximately independent.

The first property can be guaranteed by the absence of
translation invariant phases, i.e., maximizers of the func-
tion Ψ1 of the form (x,x). Since in uniqueness regimes
the only maximizer is translation invariant, this can be the
case only in non-uniqueness regimes. The second property
is subtler and relates to the concentration properties of the
random variable Zα,β

G . The required concentration is suf-
ficiently strong when the maximizers α,β (viewed as un-
ordered pairs) of the function Ψ1 are (i) Hessian maxima,
i.e., the Hessian matrix of Ψ1 is negative definite when eval-
uated at (α,β), and (ii) permutation symmetric, i.e., ob-
tainable from one another by a suitable permutation of the
set of spins. We clarify that the permutations must be auto-
morphisms of the interaction matrix B. For example, note
that the maxima for the colorings model are permutation
symmetric.

Given these assumptions, the reduction of Section 5 (with
some extra work) can be adapted to give the following gen-
eral inapproximability result.

Theorem 12. Let q ≥ 2,Δ ≥ 3. For an antiferromag-
netic q-spin system with interaction matrix B, if the domi-
nant semi-translation invariant Gibbs measures on the tree
TΔ are permutation symmetric and all of them are Hes-
sian dominant and not translation invariant then, unless
NP=RP, there is no FPRAS for approximating the parti-
tion function for triangle free Δ-regular graphs. Moreover,
there exists ε = ε(q,Δ) such that, unless NP=RP, one can-
not approximate the partition function within a factor 2εn

for triangle-free Δ-regular graphs (where n is the number of
vertices).

We note that the inapproximability results for antiferro-
magnetic 2-spin systems [Sly10, SS12, GSV12] and Theo-
rems 1 and 2 follow as corollaries of Theorem 12. We briefly
sketch the details for 2-spin systems. Recall that for 2-spin
systems, non-uniqueness coincides with the existence of mul-
tiple semi-translation invariant Gibbs measures on the tree.
Moreover, in non-uniqueness, the maximizers of Ψ1 are ex-
actly two pairs (α,β) and (β,α) with α 
= β. Thus, they do
not correspond to translation invariant measures and satisfy
the permutation symmetric property. Finally, it can also be
verified that they are Hessian dominant and hence the hy-
potheses of Theorem 12 are satisfied.
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