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Abstract

We present a general approach to rounding semidefinite qmoging relaxations obtained by the
Sum-of-Squares method (Lasserre hierarchy). Our appriedzdsed on using the connection between
these relaxations and the Sum-of-Squares proof systerariefarm acombining algorithm—an algo-
rithm that maps a distribution over solutions into a (padssieaker) solution—into eounding algorithm
that maps a solution of the relaxation to a solution of thginél problem.

Using this approach, we obtain algorithms that yield imgavesults for natural variants of three
well-known problems:

1. We give a quasipolynomial-time algorithm that approxiesamayy,-1 P(x) within an additive
factor of £]|P||spectral @dditive approximation, where > 0 is a constantP is a degreal = O(1),
n-variate polynomial with nonnegative déieients, and|P||spectraliS the spectral norm of a matrix
corresponding td’s codficients. Beyond being of interest in its own right, obtainswgh an
approximation for general polynomials (with possibly nigacodficients) is a long-standing
open question in quantum information theory, and our teples have already led to improved
results in this area (Brandao and Harrow, STOC '13).

2. We give a polynomial-time algorithm that, given a subgpac R" of dimensiond that (almost)
contains the characteristic function of a set of siZk, finds a vector € V that satisfiedE; Ui4 >
Q(d~3k(Ei v?)?). This is a natural analytical relaxation of the problem ofifng the sparsest
element in a subspace, and is also motivated by a conneotibe Small Set Expansion problem
shown by Barak et al. (STOC 2012). In particular our resu#han improvement of the previous
best known algorithms for small set expansion in a certaigeaf parameters.

3. We use this notion df,4 vs. L, sparsity to obtain a polynomial-time algorithm with sulpgially
improved guarantees for recovering a planted sparse veirt@ randond-dimensional subspace
of R". If v hasun nonzero coordinates, we can recover it with high probabiliheneve <
O(min(1, n/d?). In particular, wherd < +/n, this recovers a planted vector with up €{n)
nonzero coordinates. Wheh< n?23, our algorithm improves upon existing methods based on
comparing the ; andL., norms, which intrinsically require < O(1/ Vd).
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1 Introduction

Convex programming is the algorithmic workhorse behind yragplications in computer science and other
fields. But its power is far from understood, especially i tlase ohierarchiesof linear programming (LP)
and semidefinite programming (SDP) relaxations. Theseyaternatic approaches to make a convex relax-
ation tighter by adding to it more constraints. Various shrarchies have been proposed independently
by researchers from several communiti€n$87 SA90, LS91, Nes0Q Par0Q Las0]. In general, these
hierarchies are parameterized by a numbealled theirlevel For problems om variables, the hierarchy
of the ¢ level can be optimized in®® time, where for the typical domains used in CS (suchCas}"

or then-dimensional unit spherej rounds correspond to the exact (or near exact) solution i horce
exponential-time enumeration.

There are several strongwer boundgalso known asntegrality gap$ for these hierarchies, in partic-
ular showing thatu(1) levels (and often even®® or Q(n) levels) of many such hierarchies can’t improve
by much on the known polynomial-time approximation guagastfor many NP hard problems, including
SAT, Independent-Set, Max-Cut and more {5ri01b, Gri0lg ABLTO06, dIVKMO7, Sch0§ Tul09, CMMO09,
BGMT12, BCV*12). Unfortunately, there are many fewpositiveresults, and several of them only show
that these hierarchies can match the performance of pgyi@oown (and often morefiécient) algorithms,
rather than using hierarchies to get genuinely new alguiithresultst For example, Karlin, Mathieu and
Nguyen KMN11] showed that levels of the Sum of Squares hierarchy can approximatettapsack
problem up to a factor of & 1/¢, thus approaching the performance of the standard dynarogram.
Guruswami and SinopdS17 and (independently) Barak, Raghavendra, and Ste@ieB[L] showed that
some SDP hierarchies can match the performance ofAB&]( algorithm for Small Set Expansion
and Unique Games, and their techniques also gave improved results for sotmer groblems (see also
[RT12, AG11, AGS1]). Chlamtac and SinghdS0§ (building on [Chl07]) used hierarchies to obtain
some new approximation guarantees for the independentaaem in 3-uniform hypergraphs. Bhaskara,
Charikar, Chlamtac, Feige, and VijayaraghavBiCC"10] gave an LP-hierarchy based approximation al-
gorithm for thek-densest subgraph problem, although they also showed & maombinatorial algorithm
with the same performance. The famous algorithm of Aroray &al Vazirani ARV04] for Sparsest Cut
can be viewed (in retrospect) as using a constant numbeuafisoof an SDP hierarchy to improve upon
the performance of the basic LP for this problem. Perhapsiibs impressive use of super-constant levels
of a hierarchy to solve a new problem was the work of Bran@&wjstandl and YardgCY11] who used
an SDP hierarchy (first proposed by S04) to give a quasipolynomial time algorithm for a variant of
the quantum separability problemf testing whether a given density matrix corresponds tarsble (i.e.,
non-entangled) quantum state oeifar from all such states (see Sectib2).

One of the reasons for this paucity of positive results is Wehave relatively few tools tmund such
convex hierarchies. Aounding algorithmmaps a solution to the relaxation to a solution to the origina
program? In the case of a hierarchy, the relaxation solution satisfiese constraints, but we do not always
know how to take advantage of this when rounding. For exanfpleé\VV04] used a very sophisticated anal-
ysis to get better rounding when the solution tSarsest Cut relaxation satisfies a constraint known as
triangle inequalities, but we have no general tools to useatlditional constraints that come from higher
levels of the hierarchies, nor do we know if these can helpimding or not. This lack of rounding tech-
niques is particularly true for thBum of Squareg€SOS, also known asasserrg hierarchy Par0Q Las01.2

1 The book chapterT1( is a good source for several of the known upper and lower ésuthough it does not contain some
of the more recent ones.

2 While the name derives from the prototypical case of relguin integer program to a linear program by allowing the e
to take non-integer values, we use “rounding algorithm’diey mapping from relaxation solutions to actual soluti@ven in cases
where the actual solutions are themselves non-integer.

3 While it is common in the TCS community to usasserreto describe the primal version of this SDP, &uim of Squares (SOS)



This is the strongest variant of the canonical semidefimbgm@mmming hierarchies, and has recently shown
promise to achieve tasks beyond the reach of weaker higearfidBH*12]. But there are essentially no
general rounding tools that take full advantage of its pdwer

In this work we propose a general approach to rounding SO&rbldes, and instantiate this approach
in two cases, giving new algorithms making progress on altariants of two longstanding problems. Our
approach is based on the intimate connection between thehi@chy and the “PositivstellensatBum
of Squares” proof system. This connection was used in pueweork for either negative result&fi01b,
Gri0la Sch0g, or positive results for specific instancesgH"12, 0Z13 KOTZ14)], translating proofs of
a bound on the actual value of these instances into proofeurfids on the relaxation value. In contrast,
we use this connection to give explicit rounding algorithfmsgeneral instances of certain computational
problems.

1.1 The Sum of Squares hierarchy

Our work uses th&um of Squares (SOSgmidefinite programming hierarchy and in particular itatren-
ship with the Sum of Squares (or Positivstellensatz) prgstesn. We now briefly review both the hierarchy
and proof system. See the introduction 6f413 and the monograph_pu09 for a more in depth discus-
sion of these concepts and their history. Underlying bothSBP and proof system is the natural approach
to prove that a real polynomid is nonnegative via showing that it equalsuam of squaresP = Z!‘Zl Qi2
for some polynomial®), ..., Qk. The question of when a nonnegative polynomial has such réificate
of non-negativity” was studied by Hilbert who realized thisesn’'t always hold and asked (as highL7
problem) whether a nonnegative polynomial is always a sursgqofres ofational functions. This was
proven to be the case by Artin, and also follows from the memegalPositivstellensatgor “Positive Locus
Theorem”) Kri64, Ste74.

The Positivstellensgt30S proof system of Grigoriev and Vorobjo#V01] is based on the Positivstel-
lensatz as a way to refute the assertion that a certain setyofgmial equations

Pi(X1,.... %) = ... = Px(X1,..., %) =0 1.1

can be satisfied by showing that there exists some polyneqial . ., Qx and a sum of squares polynomial
S such that

ZPiQi:l"'S- (1-2)

(IGV01] considered inequalities as well, although in our conted can always restrict to equalities without
loss of generality.) One natural measure for the compleityuch proof is thalegreeof the polynomials
P1Q1, ..., PkQx andS.

The sum of squares semidefinite program was proposed indepiiy by several author§ho87 Par0Q
Nes0Q Las0] One way to describe itis as follows. If the set of equalitied) is satisfiable then in particular
there exists some random variadeverRR" such that

EP1(Xq,..., %)% =... = EP(X1,..., %)% = 0. (1.3)

That is, X is some distribution over the non-empty set of solutionslta)(
For every degred, we can consider the linear operatfr= £, that maps a polynomidP of degree
at most¢ into the numbefE P(X4, ..., X,). Note that by choosing the monomial basis, this operatar ca

to describe the dual, in this paper we use the more des@i§tdS name for both programs. We note that in all the apicative
consider, strong duality holds, and so these programs aireadent.

4 The closest general tool we are aware of is the repeated taridg methods of BRS11, GS11, though these can be
implemented in weaker hierarchies too and so do not seemetthasfull power of the SOS hierarchy. However, this techaiqu
does play a role in this work as well.



be described by a vector of length, or equivalently, by am‘/? x nf/2 matrix. This operator satisfies the
following conditions:

Normalization If P is the constant polynomial 1 thefiP = 1
Linearity L(P+ Q) = LP + L£Q for everyP, Q of degree< ¢.
Positivity £P? > 0 for everyP of degree< ¢/2.

Following [BBH"12], we call a linear operator satisfying the above conditiarlevel/ pseudoexpectation
function or ¢-p.e.f., and use the suggestive notati®R(X) to denote£P. Correspondingly we will some-
times talk about devel ¢ pseudodistributior(or £-p.d.) X, by which we mean that there is an associated
level £ pseudoexpectation operator. Given the representatiofias ann’ dimension vector it is possible
to eficiently check that it satisfies the above conditioficiently, and in particular the positivity condition
corresponds to the fact that, when viewed as a matfiis, positive semidefinite. Thus it is also possible to
optimize over the set of operators satisfying these camttin timen®®, and this optimization procedure
is known as the SOS SDP hierarchy. Clearlyf gsows, the conditions become stricter. In Apperdliwe
collect some useful properties of these pseudoexpectatiorparticular one can show (see Corolléng)
that if E P2(X) = 0 thenE P(X)Q(X) = 0 for every polynomial (as long a€), P have degrees at mo&t2).
Thus, if there is a refutation td.(2) of the form (L.2) where all polynomials involved have degree at most
¢ then there would not exist a levelf pseudoexpectation operator satisfyiig3|. This connection goes
both ways, establishing an equivalence between the defjasdivstellensatz proofs and the level of the
corresponding SOS relaxation.

Until recently, this relation was mostly used foegativeresults, translating proof complexity lower
bounds into integrality gap results for the SOS hierarddgH*12, 0Z13 KOTZ14]. However, in 2012
Barak, Brandao, Harrow, Kelner, Steurer and ZhdBIH*12] used this relation fopositiveresults, showing
that the SOS hierarchy can in fact solve some interestin@gnioss of thdJnigue Games maximization
problem that fool weaker hierarchies. Their idea was to heeanalysis of the previous works that proved
these integrality gaps for weaker hierarchies. Such praoik by showing that (a) the weaker hierarchy
outputs a large value on this particular instance but (b}riie value is actually smallBBH*12]'s insight
was that oftentimes the proof of (b) only uses argumentsciate captured by the S@sitivstellensatz
proof system, and hence inadvertently shows that the SOS/8IDP is actually small as well. Some follow
up works [0Z13 KOTZ14] extended this to other instances, but all these resuld fozl very specific
instances which have been proven before to have small olge&lue.

In this work we use this relation to get some guarantees opdHermance of the SOS SDP ganeral
instances. We give a more detailed overview of our approacBeiction2, but the high level idea is as
follows. For particular optimization problems, we desigfranding algorithm” that on input the moment
matrix of a distribution oractual solutionsachieving a certain value outputs a solution with some valwe ~
which is a function ob. We call such an algorithm@mbining algorithmsince it “combines” a distribution
over solutions into a single one. (Note that the solutiorpouby the combining algorithm need not be in
the support of the distribution, and generally, wheg v, it won't be.) We then “lift” the analysis of this
combining algorithm into the SOS framework, by showing taldthe arguments can be captured in this
proof system. This in turns implies that the algorithm wostil achieve the valuer @ven if it is only
given apseudoexpectatioaf the distribution of sfficiently high level¢, and hence in fact this combining
algorithm is a rounding algorithm for the leve5OS hierarchy. We apply this idea to obtain new results for
two applications— optimizing polynomials with nonnegatigodficients over the unit sphere, and finding
“analytically sparse” vectors inside a subspace.

Remark 1.1 (Relation to the Uniqgue Games Conjecturéafhile the SOS hierarchy is relevant to many
algorithmic applications, some recent work focused onaétation to Khot's Unique Games Conjecture
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(UGC) [Kho0Z). On a high level, the UGC implies that the basic semidefimitegram is an optimalf&cient
algorithm for many problems, and hence in particular usidjteonal constant or polylogarithmic levels of
the SOS hierarchy will not help. More concretely, as disedss Sectionl.3 below, the UGC is closely
related to the question of how hard it is to find sparse (or Kditally sparse”) vectors in a given subspace.
Our work shows how the SOS hierarchy can be useful in genanal,in particular gives strong average-
case results and nontrivial worst-case results for findpayse vectors in subspaces. Therefore, it can be
considered as giving some (far from conclusive) evidenaettie UGC might be false.

1.2 Optimizing polynomials with nonnegative cofficients bounded spectral norm

Our first result yields amdditive approximation to this optimization problem for polynonsiakith non-
negative cofficients, when the value is scaled by the spectral norm of ascedsd matrix. IfP is an
n-variate degre¢-homogeneous polynomial with nonnegative fEoe&nt, then it can be represented by a
tensorM € R" such thatP(x) = M - x® for everyx € R". It is convenient to state our result in terms of this
tensor representation:

Theorem 1.2. There is an algorithm A, based on(i@ogn/s?) levels of the SOS hierarchy, such that for
every event and nonnegative M R",

maxM - X*' < AIM) < maxM - X** + &M |lspectrals

lIXI=1 lIXI=1
where- denotes the standard dot product, aid||spectraidenotes the spectral norm of M, when considered
as an Y2 x n/2 matrix.

Note that the algorithm of Theoreth?2 only uses a logarithmic number of levels, and thus it shows
that this fairly natural polynomial optimization problerarcbe solved in quasipolynomial time, as opposed
to the exponential time needed for optimizing over geneadymomials of degree- 2. Indeed, previous
work on the convergence of the Lasserre hierarchy for geépehanomials PW12] can be described in our
language here as trying to isolate a solution in the supgdheodistribution, and this generally requires a
linear number of levels. Obtaining the logarithmic boundeheelies crucially on constructing a “combined”
solution that is not necessarily in the support. The alboriis also relatively simple, and so serves as a
good demonstration of our general approach.

Relation to quantum information theorin equivalent way to state this result is that we getadditive
approximation in the case thi¥l||spectral < 1, in Which case the value mgy.1 M -x®is in the interval [01].
This phrasing is particularly natural in the context of quam information theory. A general (potentially
mixed) quantum state ortjubits is represented by a afix n? density matrix for n = 2; p is a positive
semidefinite matrix and has trace 1.plfs separable which means that there is no entanglement between
the first¢ qubits and the secontiqubits, therp = E xx* ® yy* for some distribution ovex, y € C", where

v* denotes the complex adjoint operation. If we further resthie amplitudes of the states to be real, and
enforce symmetry on the two halves, then this would mearpthalE x84, (All our results should generalize
to states without those restrictions to symmetry and reallimdes, which we make just to simplify the
statement of the problem and the algorithm.) A quantoeasurement operatawver this space is amf x n?
matrix M of spectral norm 1. The probability that the measurement accepts a gtatdr(Mp). Finding

an algorithm that, given a measurem@ftfinds the separable stateghat maximizes this probability is an
important question in quantum information theory which ams to finding a classical upper bound for the
complexity clasQMA (2) of Quantum Merlin Arthur proofs with two independent peos [HM13]. Note
that if we consider symmetric real states then this is theesamfinding argmagy,_, M - x®4, and hence

5 The algorithm easily generalizes to polynomials of odd degand to non-homogenous polynomials, see Rerask
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dropping the non-negativity constraint in our result worddolve this longstanding open problem. There is
a closely related dual form of this question, known asthantum separability problemvhere one is given
a quantum state and wants to find the tesl that maximizes

Tr(Mp) - max Tr(Mp') (1.4)

p’ separable

or to simply distinguish between the case that this quardityt leaste and the case that is separable.
The best result known in this area is the pap&€ ¥ 11] mentioned above, which solved the distinguishing
variant of quantum separability problem in the case thatsmesments are restricted to so-calleacal
Operations and one-way classical communicatfone-way LOCC) operators. However, they did not have
an rounding algorithm, and in particular did not solve thebpem of actually finding a separable state that
maximizes the probability of acceptance of a given one-waCIC measurement. The techniques of this
work were used by Brandao and HarroHZ13] to solve the latter problem, and also greatly simplify the
proof of [BCY11]'s result, which originally involved relations betweernveeal measures of entanglement
proved in several papefs.

For completeness, in Appendixwe give a short proof of this result, specialized to the cdseal vec-
tors and polynomials of degree four (corresponding to guargtates of two systems, or two prover QMA
proofs). We also show in AppendB that in the case the measurement satisfies the strongettioonai
having its¢» (i.e., Frobenius) norm be at most 1, there is a simpler ane mbcient algorithm for estimat-
ing the maximum probability the measurement accepts aaklgastate, giving an additive approximation
in poly(n) exp(poly(Y¢)) time. In contrast, BCY11]'s algorithm took quasipolynomial time even in this
case.

Relation to small set expansioNonnegative tensors also arise naturally in some appiiestiand in partic-
ular in the setting of small set expansion for Cayley graptes the cube, which was our original motivation
to study them. In particular, one corollary of our result is:

Corollary 1.3 (Informally stated) There is an algorithm A, based @oly(K(G)) logn levels of the SOS
hierarchy, that solves th&mall Set Expansion problem on Cayley graphs G ovmg (where¢ = logn)
where KG) is a parameter bounding the spectral norm of an operatorteglao G's top eigenspace.

We discuss the derivation and the meaning of this corollar$ection6 but note that the condition
of having small valuK(G) seems reasonable. HavikdG) = O(1) implies that the graph is a small set
expander, and in particular the known natural examples gfeg@ajraphs that are small set expanders, such
as the noisy Boolean hypercube and the “short code” grapB®f{" 12] haveK(G) = O(1). Thus a priori
one might have thought that a graph that is hard to distifigiusm small set expanders would have a small
value ofK(G).

1.3 Optimizing hypercontractive norms and finding analytically sparse vectors

Finding a sparse nonzero vector insidd dimensional linear subspad C R" is a natural task arising

in many applications in machine learning and optimizatierg( seeDH13] and the references therein).
Related problems are known under many names including terse null space”, “dictionary learning”,
“blind source separation”, “min unsatisfy”, and “certifig restricted isometry property” problems. (These
problems all have the same general flavor bffiedion various details such as worst-case vs. average case,
affine vs. linear subspaces, finding a single vector vs. a basismare.) Problems of this type are often
NP-hard, with some hardness of approximation results knewd conjectured average-case hardness (e.qg.,

see ABSS97 KZ12, GN1( and the references therein).

5The paper BH13] was based on a previous version of this woBKE 17 that contained only the results for nonnegative
tensors.



We consider a natural relaxation of this problem, which wletba analytically sparse vectoproblem
(ASVP), which assumes the input subspace (almost) contains aallgcsparse 01 vector, but allows the
algorithm to find a vector € V that is only “analytically sparse” in the sense thak/||v||2 is large. More
formally, for g > pandu > 0, we say that a vectaris u Lq/Lp-sparseif (E; v})Y9/(Eiv/)YP > pHa-2/p,
That is, a vector i Lg/Lp-sparse if it has the sangenorm vsp-norm ratio as a (L vector of measure at
mostu.

This is a natural relaxation, and similar conditions haverbeonsidered in the past. For example,
Spielman, Wang, and WrighEWW17 used in their work on dictionary learning a subroutine find&ctor
v in a subspace that maximizes the rdtif)../||v|l1 (which can be doneficiently vian linear programs).
However, because any subspace of dimendionntains arO(1/ Vd) L.,/Li-sparse vector, this relaxation
can only detect the existence of vectors that are supportéess tharO(n/ Vd) coordinates. Some works
have observed that the /L ratio is a much better proxy for sparsity 01, DH13], but computing it is a
non-convex optimization problem for which néfieient algorithm is known. Similarly, thes/L, ratio is a
good proxy for sparsity for subspaces of small dimension ¢sa O( 4/n)) but it is non-convex, and it is not
known how to diciently optimize it/

Nevertheless, becauﬁalj is a degree 4 polynomial, the problem of maximizing it foe V of unit
norm amounts to a polynomial maximization problem over thieese, that has a natural SOS program.
Indeed, BBH*12] showed that this program does in fact yield a good approtonaf this ratio for random
subspaces. As we show in Sectirwe can use this to improve upon the resultsiufifL3] and find planted
sparse vectors in random subspaces that are of not too laigeeasion:

Theorem 1.4. There is a constant ¢ 0 and an algorithm A, based on(D-rounds of the SOS program,
such that for every vectag € R" supported on at most enin(1, n/d?) coordinates, b, . . ., vq are chosen
independently at random from the Gaussian distributiofR8nthen given any basis for ¥ sparu, . . ., vg}
as input, A outputs aae-approximation obg in poly(n, log(1/g)) time.

In particular, we note that this recovers a planted vectdh wp to Q(n) nonzero coordinates when
d < vn, and it can recover vectors with more than @@/ Vd) nonzero coordinates that are necessary for
existing techniques whenever« n?/3.

Perhaps more significantly, we prove the following nonélivworst-casebound for this problem:

Theorem 1.5. There is a polynomial-time algorithm A, based oflfevels of the SOS hierarchy, that on
input a d-dimensional subspace & R" such that there is ®&/1-vectorv € V with at mostun nonzero
coordinates, &) outputs an Qud*/3) L4/L,-sparse vector in V.

Moreover, this holds evenifis not completely inside V but only satisfjg, |5 > (1- &)|lvll3, for some
absolute constard > 0, wherelly is the projector to V.

The condition that the vector is/D can be significantly relaxed, see Remdtk2 Theorem4.lis
also motivated by th&mall Set Expansion problem. The current best known algorithms &mall Set
Expansion andUnique Games [ABS1( reduce these problems into the task of finding a sparse wecto
subspace, and then find this vector using brute force entimerd his enumeration is the main bottleneck

7 It seems that what makes our relaxatiofietient from the original problem is not so much the qualitatssue of considering
analytically sparse vectors as opposed to actually spastens, but the particular choice of the/L, ratio, which on one hand
seems easier (even if not truly easy) to optimize over tharl L, ratio, but provides better guarantees thanlthegL, ratio.
However, this choice does force us to restrict our attentiosubspaces of low dimension, while in some applicatiorth a5
certifying the restricted isometry property, the subspiacgquestion is often the kernel of a “short and fat” matrixdamence
is almost full dimensional. Nonetheless, we believe it $thde possible to extend our results to handle subspaceggbéti
dimension, perhaps at the some mild cost in the number ofiun



in improving the algorithms’ performanée[BBH*12] showed that, at least for tt@mall Set Expansion
guestion, finding ar,4/L, analytically sparsevector would be good enough. Using their work we obtain
the following corollary of Theorem.5.

Corollary 1.6 (Informally stated) There is an algorithm that given an n-vertex graph G that ao# a set
S of size /d¥3) with expansion at most, outputs a set Sof measured = o(1) with expansion bounded
away froml, i.e.,®(S) < 1 - Q(1), where d is the dimension of the eigenspace of G’s random nvatkix
corresponding to eigenvalues larger thar O(e).

The derivation and meaning of this result is discussed ini@e6. We note that this is the first result
that gives an approximation of this type to the small set esjoa in terms of the dimension of the top
eigenspace, as opposed to an approximation that is polahémthe number of vertices.

1.4 Related work

Our paper follows the work oHBH*12], that used the language of pseudoexpectation to arguthth&0OS
hierarchy can solve specific interesting instanceasrofjue Games, and perhaps more importantly, how it is
often possible to almost mechanically “lift” arguments abactual distributions to the more general setting
of pseudodistribution. In this work we show how the same gaErgpproach be used to obtain positive
results for general instances.

The fact that LIFSDP solutions can be viewed as expectations of distribsii®well known, and several
rounding algorithms can be considered as trying to “reverggneer” a relaxation solution to get a good
distribution over actual solutions.

Techniques such as randomized rounding, the hyperplamalir of [G\W95], and the rounding for
TSP [GSS1] AKS12] can all be viewed in this way. One way to summarize the conemliference be-
tween our techniques and those approaches is that theseyzrelgorithms often considered the relaxation
solution as giving moments of actual distribution on“fake” solutions. For example, ifdW95's M ax
Cur algorithm, where actual solutions are modeled as vectofs ', the SDP solution is treated as the
moment matrix of a Gaussian distribution over real vectas are not necessarilyl-valued. Similarly in
the TSP setting one often considers the LP solution to yield momehsdistribution over spanning trees
that are not necessarilySP tours. In contrast, in our setting we view the solution asjgling moments of
a“fake” distribution onactual solutions.

Treating solutions explicitly as “fake distributions” isgwalent in the literature onegative resultgi.e.,
integrality gaps) for LESDP hierarchies. For hierarchies weaker than SOS, themotitake” is different,
and means that there is a collection of local distributiam for every small subset of the variables, that are
consistent with one another but do not necessarily correspmany global distribution. Fake distributions
are also used in some positive results for hierarchies, asIfFRS11, GS11, but we make this more explicit,
and, crucially, make much heavier use of the todfsrded by the Sum of Squares relaxation.

The notion of a “combining algorithm” is related to the natiof polymorphismgBJKO09 in the study
of constraint satisfaction problems. A polymorphism is a/w@combine a number of satisfying assign-
ments of a CSP into a fierent satisfying assignments, and some relations betwalgmerphism, their
generalization to approximation problems, rounding SRiRsknown (e.g., see the talRfig1(). The main
difference is polymorphisms operate on each bit of the assignmdgpendently, while we consider here
combining algorithms that can be very global.

8 This is the only step that takes super-polynomial timefB$10's algorithm for Small Set Expansion. Their algorithm for
Unigque Games has an additional divide and conquer step that takes subergial time, but, in our opinion, seems less inherently
necessary. Thus we conjecture that if the sparse-vectangirelep could be sped up then it would be possible to speetiaip t
algorithm for both problems.



In a follow up (yet unpublished) work, we used the technigpefdhis paper to obtain improved results for
the sparse dictionary learningroblem, recovering a set of vectas ..., X € R" from random samples
of u-sparse linear combinations of them for any= o(1), improving upon previous results that required
U< 1/4n[SWW12 AGM13, AAI"13].

1.5 Organization of this paper

In Section2 we give a high level overview of our general approach, as a&lbroof sketches for (special
cases of) our main results. Secti®nontains the proof of Theorefin2— a quasipolynomial time algorithm
to optimize polynomials with nonnegative dbeients over the sphere. Sectidrrontains the proof of The-
orem1.5— a polynomial time algorithm for a®(d'/3)-approximation of the “analytical sparsest vector in a
subspace” problem. In Secti@we show how to use the notion of analytical sparsity to sdieedquestion

of finding a “planted” sparse vector in a random subspacetid®eg contains the proofs of Corollarigs3
and1.6 of our results to the small set expansion problem. AppeAdoontains certain technical lemmas
showing that pseudoexpectation operators obey certaguaiigies that are true for actual expectations. Ap-
pendixC contains a short proof (written in classical notation, apelcsalized to the real symmetric setting)
of [BCY11, BH13]’s result that the SOS hierarchy yields a good approxinmatithe acceptance proba-
bility of QMA(2) verifiers / measurement operators that have bounded one-way LOCC A@pendixB
shows a simpler algorithm for the case that the verifier fiasighe stronger condition of a bounded
(Frobenius) norm. For the sake of completeness, Appedieproduces the proof fronBBH"12] of the
relation between hypercontractive norms and small setresxpa. Our papers raises many more questions
than it answers, and some discussion of those appears iorséct

1.6 Notation

Norms and inner products. We will use linear subspaces of the fon= RY¥ where/ is a finite set with an
associated measyte U — [0, oo]. The p-norm of a vector € V is defined afju||, = (Zweﬂp(a})lv‘ulp)”p. Similarly,
the inner product of, w € V is defined agu,v) = > ey t(w)uyo,. We will only use two measures in this work: the
counting measurenvhereu(w) = 1 for everyw € U, and theuniform measurewhereu(w) = 1/|U| for all v € U.
(The norms corresponding to this measure are often knowmeaxpectatiomorms.)

We will use vector notation (i.e., letters suchuas, and indexing of the forna;) for elements of subspaces with
the counting measure, and function notation (i.e., leech asf, g and indexing of the fornf(x)) for elements of
subspaces with the uniform measure. The dot product natatiowill be used exclusively for the inner product with
the counting measure.

Pseudoexpectations. We use the notion opseudoexpectatiorfsom [BBH12]. A level ¢ pseudoexpectation
function(¢-p.e.f.)Ex is an operator mapping a polynomRabf degree at mostinto a number denoted Hiy,_x P(X)
and satisfying the linearity, normalization, and posiyidonditions as stated in Secti@rnl We sometimes refer &
as alevel¢ pseudodistributiorf-p.d.) by which we mean that there exists an associated psgpédctation operatdr.
If P,Q are polynomials of degree at mag2, andEy is an¢-p.e.f., we say thaEy is consistenwith the constraint
P(x) = 0 if it satisfiesEy.x P(x)2 = 0. We say that it is consistent with the constra@{k) > 0, if it consistent with
the constrain@Q(x) — S(x) = 0 for some polynomia$b of degree< ¢/2 which is asum of squares

(In the context of optimization, to enforce the inequalitynstraintQ(x) > 0, it is always possible to add an
auxiliary variabley and then enforce the equality constra@ix) — > = 0.) AppendixA contains several useful facts
about pseudoexpectations.

% In the paper BBH*12] we used the namkevel ¢ fictitious random variabldor X, but we think the name pseudodistribution
is better as it is more analogous to the name pseudoexmectdtie name “pseudo random variable” would of course be razh
confusing.



2 Overview of our techniques

Traditionally to design a mathematical-programming baggaroximation algorithm for some optimization
problemO, one first decides what the relaxation is— i.e., whether & ismiear program, semidefinite pro-
gram, or some other convex program, and what constraintsttimpThen, to demonstrate that the value of
the program is not too far from the actual value, one desigesirading algorithmthat maps a solution of
the convex program into a solution of the original problemnapproximately the same value. Our approach
is conceptually dferent— we design the rounding algorithm first, analyze it anly then come up with
the relaxation.

Initially, this does not seem to make much sense— how can geigd an algorithm to round solutions
of a relaxation when you don’t know what the relaxation is? dehis by considering an idealized version
of a rounding algorithm which we call @mbining algorithm Below we discuss this in more detail but
roughly speaking, a combining algorithm maps a distributtweractual solutionsof O into a single solu-
tion (that may or may not be part of the support of this distiin). This is a potentially much easier task
than rounding relaxation solutions, and every roundingritigm yields a combining algorithm. In the other
direction, every combining algorithm yields a roundingaalthm for someconvex programming relaxation,
but in general that relaxation could be of exponential di#evertheless, we show that in several interesting
cases, it is possible to transform a combining algorithra antounding algorithm for a not too large relax-
ation that we canféiciently optimize over, thus obtaining a feasible approxioraalgorithm. The main tool
we use for that is th&um of Squaregroof system, which allows to lift certain arguments frora tealm of
combining algorithms to the realm of rounding algorithms.

We now explain more precisely the general approach, anddghvenan overview of how we use this
approach for our two applications— finding “analyticallyaspe” vectors in subspaces, and optimizing poly-
nomials with nonnegative céiecients over the sphere.

Consider a general optimization problem of minimizing sombgective function in some s&, such
as then dimensional Boolean hypercube or the unit sphereoAvex relaxatiorior this problem consists
of an embedding that maps elementsSinnto elements in some convex domain, and a suitable way to
generalize the objective function to a convex function as ttomain. For example, in linear programming
relaxations we typically embef, 1}" into the set [01]", while in semidefinite programming relaxations
we might embed0, 1}" into the set ofn x n positive semidefinite matrices using the map-> X where
Xi,j = Xix. Given this embedding, we can use convex programming to fiacetement in the convex
domain that maximizes the objective, and then ussuading algorithmto map this element back into the
domainsS in a way that approximately preserves the objective value.

A combining algorithm Qakes as input distribution X over solutions inS and maps it into a single
elementC(X) of S, such that the objective value G{X) is approximately close to the expected objective
value of a random element ii. Every rounding algorithnR yields a combining algorithn®. The reason
is that if there is some embeddirfgmapping elements i% into some convex domaifm, then for every
distribution X over S, we can defing/x to beEyx f(X). By convexity,yx will be in T and its objective
value will be at most the average objective value of an elemek. Thus if we define€C(X) to outputR(y.x)
thenC will be a combining algorithm with approximation guararges least as good &3s.

In the other direction, because the set of distributiong &/& convex and can be optimized over by
an O(|S|)-sized linear program, every combining algorithm can lesveid as a rounding algorithm for this
program. HoweverS| is typically exponential in the bit description of the inpanhd hence this is not a
very useful program. In general, we cannot improve upon thesause there is always a trivially lossless
combining algorithm that “combines” a distributidhinto a single solution of the same expected value by
simply samplingx from X at random. Thus for problems where getting an exact valuepisreentially hard,
this combining algorithm cannot be turned into a roundirgpathm for a subexponential-sizedhieiently-



optimizable convex program. However it turns out that astiéa some casesontrivial combining algo-
rithms can be turned into a rounding algorithm for efficient convex program. A nontrivial combining
algorithmC has the formC(X) = C’'(M(X)) whereC’ is an dficient (say polynomial or quasipolynomial
time) algorithm andM(X) is a short (say polynomial or quasipolynomial sidegestof the distributionX. In

all the cases we considavl(X) will consist of all the moments up to some levadf the random variabl&,

or some simple functions of it. That is, typicaly(X) is a vector inR™ such that for everyy, ...,ip € [m],
Mi,..i; = Ex-x X, - -+ X,. We do not have a general theorem showing that any nontcaiabining algo-
rithm can be transformed into a rounding algorithm for fiteent relaxation. However, we do have a fairly
general “recipe” to use thanalysisof nontrivial combining algorithms to transform them intwunding al-
gorithms. The key insight is that many of the tools used irhsaumalyses, such as the Cauchy—Schwarz and
Holder inequalities, and other properties of distriboipfall under the “Sum of Squares” proof framework,
and hence can be shown to hold even when the algorithm isegpptit to actual moments but to so-called
“pseudoexpectations” that arise from the SOS semidefindgramming hierarchy.

We now turn to giving a high level overview of our results. Boe sake of presentations, we focus on
certain special cases of these two applications, and evehdee cases omit many of the proof details and
only provide rough sketches of the proofs. The full detadls be found in Sectiorts, 4 and3.

2.1 Finding a planted sparse vector in a random low-dimensigal subspace

We consider the following natural problem, which was alsalgd by Demanet and Han®H13]. Let

fo € RY be a sparse function over some univefgeof sizen. That is, fo is supported on at mogin
coordinates for some = o(1). LetV be the subspace spannedfgyndd random (say Gaussian) functions
f1,..., fs € RY. Can we recovefy from any basis fov/?

Demanet and Hand showed thajifs very small, specifically: < 1/ Vd, then fo would be the most
L./Li-sparse function in/, and hence (as mentioned above) can be recovefmiently by runningn
linear programs. The SOS framework yields a natural and &adgscribe algorithm for recoverinfy as
long asyu is a suficiently small constant and the dimensidns at mostO(+/n). The algorithm uses the
SOS program for finding the mokt;/L,-sparse function ifv/, which, as mentioned above, is simply the
polynomial optimization problem of maximizir1tj||j‘1 over f in the intersection of and the unit Euclidean
sphere.

Since fy itself is in particularu Ls/Lo-sparse , the optimum for the program is at leastThus a
combining algorithm would get as input a distributi@nover functionsf € V satisfying||f]l, = 1 and||f||j"1 >
1/u, and need to output a vector closely correlated viith® (We use here thexpectatiomorms, namely
| f||B = E, |f(w)|P.) For simplicity, assume that thfgs are orthogonal tdy (they are nearly orthogonal, and
so everything we say below will still hold up to afBaiently good approximation, see Sectibn In this
case, we can write everlyin the support ofD asf = (fy, f)fg + f’ wheref’ € V' = sparjfy,..., fg}. Itis
not hard to show using standard concentration of measuwésd¢see e.g. HBH*12, Theorem 7.1]) that if
d = O(+/n) then everyf’ € V’ satisfies

1'1la < ClIf’]l2, (2.1)

for some constan. Therefore using triangle inequality, and using the faat ffti’||> < ||f]l> = 1, it must
hold that
< flla < (FL fou ™4+ C (2.2)

or
(ffoy > 1-Cut*=1-0(1) (2.3)

for u = o(1).

10 Such a closely correlated vector can be corrected to odgmxactly, see Sectioh
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In particular this implies that if we apply a singular valuecdmposition (SVD) to the second moment
matrix D of D (i.e.,D = Efep f®?) then the top eigenvector will have-b(1) correlation withfy, and hence
we can simply output it as our solution.

To make this combining algorithm into a rounding algorithma use the result oE|[BH*12] that showed
that 2.1) can actually be proven via a sum of squares argument. Nam&jyshowed that there is a degree
4 sum of squares polynomi&l such that

I 117 + S(f) = CHIfll3. (2.4)

(2.4) implies that even ifD is merely gpseudodistributiorthen it must satisfy4.1). (When the latter is
raised to the fourth power to make it a polynomial inequalitye can then essentially follow the argument,
proving a version ofZ.2) raised to the # power by appealing to the fact that pseudodistributionisfyat
Holder's inequality, (CorollaryA.11) and hence deriving thad will satisfy (2.3), with possibly slightly
worse constants, even when it is only a pseudodistribution.

In Section5, we make this precise and extend the argument to obtainiviah{but weaker) guarantees
whend > +/n. We then show how to use an additional correction step tovezdbe original functionfo up
to arbitrary accuracy, thus boosting our approximatioripohto an essentially exact one.

2.2 Finding “analytically sparse” vectors in general subspces

We now outline the ideas behind the proof of Theorth— finding analytically sparse vectors general

(as opposed to random) subspaces. This is a much more ghafiesetting than random subspaces, and
indeed our algorithm and its analysis is more complicatedugh still only uses a constant number of SOS
levels), and at the moment, the approximation guaranteeaw@iove is quantitatively weaker. This is the
most technically involved result in this paper, and so tlaelez may want to skip ahead to SectibBwhere

we give an overview of the simpler result of optimizing ovelymomials with nonnegative céieients.

We consider the special case of Theorérhwhere we try to distinguish between a YES case where
there is a 01 valuedo(d~%/3)-sparse function that is completely contained in the irguiispace, and a NO
case where every function in the subspace has its four noumdsal by a constant times its two norm. That
is, we suppose that we are given some subspaceR” of dimensiond and a distributiorD over functions
f 1 U — {0,1} in V such thatP, [ f(w) = 1] = u for every f in the support ofD, andu = o(d~/3). The
goal of our combining algorithm to output some functipa V such thatlgll} = E, g(w)* > (B, g(w)?)? =
||g||‘2". (Once again, we use tlexpectatiorinner product and norms, with uniform measure ci&)

Since thef’s correspond to sets of measuyrewe would expect the inner product, f’) of a typical
pair f, f (which equals the measure of the intersection of the covredipg sets) to be roughjy?. Indeed,
one can show that if the average inner productf’) is w(u?) then it's easy to find such a desired function
g. Intuitively, this is because in this case the distributiorof sets does not have an equal chance to contain
all the elements ir{, but rather there is some debf o(|U|) coordinates which is favored [#. Roughly
speaking, that would mean that a random linear combinatiohthese functions would have most of its
mass concentrated inside this smalllseind hence satisfiylla > |lgll>. But it turns out that letting be a
random gaussian function matching the first two moment® & equivalent to taking such a random linear
combination, and so our combining algorithm can obtain ghising moment information alone.

Our combining algorithm will also try alh coordinate projectioriunctions. That is, lef,, be the func-
tion such thav,,(w’) equalsn = |U| if w = " and equals 0 otherwise, (and hence under our expectation
inner productf (w) = (f, §,)). The algorithms will try all functions of the foriis, wherell is the projector
to the subspac¥. Fairly straightforward calculations show that 2-norm &gl of such a function is ex-
pected to bed/n)||6w||§ = d, and it turns out in our setting we can assume that the norneliscancentrated
around this expectation (or else we’d be able to find a goadisalin some other way). Thus, if coordinate
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projection fails then it must hold that

O(d) = O(EIIS,IIp) > EI6,|l; = E (116, 60)". (2.5)

It turns out that 2.5) implies some nontrivial constraints on the distribution Specifically we know that
= E|fli= E (f6,)*.
p=ElflG=E <6,

But sincef = I1f andIl is symmetric, the RHS is equal to

4 _ ®4 ®4 < ®4 ®4
(160 = CE 1% E (116,)7) < Il E 1%l E (116,)™l2,

where the last inequality uses Cauchy—Schwarz. If we sgharénequality we get that
2 < ®4 ®4 ®4 @4y _ na , 4
WS (E B B P E (16,)% B (116,)% (f’fug@u,f ) )(wlgxnaw,nm ) .

But since is a projector satisfyirig = I12, we can used.5) and obtain that

2,42 na
Q) < E (1)

Sinced = o(u~3) this means that
na 8
f,f]E@”’f Y>> u®. (2.6)

Equation .6), contrasted with the fact thilis t.p(f, f’y = O(u?), means that the inner product of two
random functions i is somewhat “surprisingly unconcentrated”, which seembke@ nontrivial piece
of information aboutD.!! Indeed, because thigs are nonnegative functions, if we pick a randonand
consider the distributiorD, where the probability of every function is reweighed prdajorally to f(u),
then intuitively that should increase the probability ofrpavith large inner products. Indeed, as we show
in LemmaA.4, one can use Holder's inequality to prove that there exist .., w4 such that under the
distribution D’ where every elemertt is reweighed proportionally th(w1) - - - f(w4), it holds that

1/4
’ "4
”ggﬁj>>(“§atf>) . @2.7)

(2.7) and @.6) together imply thaEs ;g (f, f’) > u?, which, as mentioned above, means that we can find
a functiong satisfyingl|glls > |lgll2 by taking a gaussian function matching the first two momeht®'o

Once again, this combining algorithm can be turned into garadhm that use©(1) levels of the SOS
hierarchy. The main technical obstacle (which is still netyhard) is to prove another appropriate general-
ization of Holder’s inequality for pseudoexpectationsgd.emmai.4). Generalizing to the setting that in
the YES case the function is only approximately in the vespace is a bit more cumbersome. We need to
consider apart fronf the functionf that is obtained by first projectinfjto the subspace and then “truncat-
ing” it by rounding each coordinate whefeis too small to zero. Because this truncation operation is no
a low degree polynomial, we include the variables corredjmanto f as part of the relaxation, and so our
pseudoexpectation operator also contains the momentesé fanctions as well.

1 Interestingly, this part of the argument does not requite beo(d=/%), and some analogous “non-concentration” property of
D can be shown to hold for a hard to roufidfor anyu = o(1). However, we currently know how to take advantage ofphigperty
to obtain a combining algorithm only in the case thak d=/3.
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2.3 Optimizing polynomials with nonnegative cofficients

We now consider the task of maximizing a polynomial with negattive cofficients over the sphere, namely
proving TheorenB.1 We consider the special case of Theorg@rhwhere the polynomial is of degree 4.
That is, we are given a parameter 0 and am? x n? nonnegative matriM with spectral norm at most 1
and want to find a® additive approximation to the maximum of

Z Mi kI X X XX (2.8)
ikl

over all x € R" with ||X|| = 1, where in this section we I¢k|| be the standard (counting) Euclidean norm

X = /i .

One can get some intuition for this problem by considerirgy ¢hse wherd/ is 0/1 valued andx is
0/k~Y2 valued for somé. In this case one can think ® is a 4-uniform hypergraph omvertices andk as
a subse8 c [n] that maximizes the number of edges ins@ldivided by|S|?, and so this problem is related
to some type of a densest subgraph problem on a hypergtaph.

Let's assume that we are given a distributi@nover unit vectors that achieve some value (2.8).
This is a non convex problem, and so generally the averageesétvectors would not be a good solution.

However, it turns out that the vectaf defined such thati* = JEx.x xl? can sometimes be a good solution
for this problem. Specifically, we will show that if it fail® fgive a solution of value at least- ¢, then we
can find a new distributiotX” obtained by reweighing elementhat is in some sense “simpler” thaa
More precisely, we will define some nonnegative potentiatfion¥ such that¥(X) < logn for all X and
P(X’) < P(X) — Q(?) under the above conditions. This will show that we will néedise this reweighing
step at most logarithmically many times.
Indeed, suppose that
DU MikiX 6 = (X TMX < v — . (2.9)
i, K|
We claim that in contrast
y My>v, (2.10)

wherey is then?-dimensional vector defined by = |/Ex-x xl?xJ?. Indeed, 2.10) follows from the non-
negativity ofM and the Cauchy—Schwarz inequality since

y = Z Mi. ikl X]EXXinXk)Q < Z Mi, ikl \/X]PX X|'2Xj2 \/X]E\’ XEXIZ — yT My

ikl i,jkl

Note that sinceX is a distribution over unit vectors, bot#ti andy are unit vectors, and henc2.9) and
(2.10 together with the fact tha¥l has bounded spectral norm imply that

e< yT My _ (X*®2)TMX*®2 — (y _ X*®2)T M(y + X*®2)

*®2 *®2 *®2
<y = X% - lly + X% < 2lly — x4 (2.11)

However, it turns out thaty — x*®2)| equals V2 times theHellinger distanceof the two distributions
D, D* over [n] x [n] defined as followsP[D = (i, j)] = ]Exl?xJ? while P[D* = (i, j)] = (Ex?)(E xJ?) (see

12 The condition of maximizingE(S)|/|S|? is related to thdog densitycondition used byBCC*10] in their work on the densest
subgraph problem, since, assuming that thenetffall vertices is not the best solution, the Setatisfies that log |E(S)| > log, |E|.
However, we do not know how to use their algorithm to solve piibblem. Beyond the fact that we consider the hypergraginge
their algorithm manages to find a set of nontrivial densitdgeamthe assumption that there is a “log dense” subset, batribi
guaranteed to find the “log dense” subset itself.
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Section3). At this point we can use standard information theoretexjimalities to derive from2(11) that
there isQ(¢?) mutual informatiorbetween the two parts @. Another way to say this is that the entropy of
the second part ab drops on average 9(s?) if we condition on the value of the first part. To say the same
thing mathematically, if we definB(X) to be the distributiony. x xf, ..., Ex-x X2) over [n] and D(Xi) to

be the distributionm(]Exwx X2x2, ..., Ex.x X2x2) then

iwlg(x) H(X]i) < H(X) — Q).

But one can verify thaD(X|i) = D(X;) whereKX; is the distribution ovex’s such thatP[X; = X] = xl? P[X =
X/ Ex xl?, which means that if we defing(X) = H(D(X)) then we get that

B W(X) < ¥(X) - Q(c?)
i~D(X)
and hencé? is exactly the potential function we were looking for.

To summarize our combining algorithm will do the followingrt = O(logn/&?) steps: given the first
moments of the distributiolX, define the vectox® as above and test if it yields an objective value of at
leasty — &. Otherwise, pick with probability Ex.x xi2 and move to the distributio®;. Note that giverd
level moments foiX, we can compute thé— 1 level moments oXj, and hence the whole algorithm can be
carried out with only access to lev®{logn/s%) moments ofX. We then see that the only properties of the
moments used in this proof are linearity, the fact tﬁaqz can always be replaced with 1 in any expression,
and the Cauchy—Schwarz inequality used for obtainihddj. It turns out that all these properties hold
even if we are not given access to the moments of a true disbibX but are only given access to a level
d pseudoexpectatioaperatorE for d equalling some constant times lng:2. Such pseudoexpectations
operators can be optimized overdrevels of the SOS hierarchy, and hence this combining algaris in
fact a rounding algorithm.

3 Approximation for nonnegative tensor maximization

In this section we prove Theorein2, giving an approximation algorithm for the maximum over fphere
of a polynomial with nonnegative cfiients. We will work in the spacB" endowed with thecounting
measure for norms and inner products. We will define ghectral normof a degree-2homogeneous
polynomial M in X = X(Xq,..., Xn), denoted by|M||spectral 10 be the minimum of the spectral norm Qf
taken over all quadratic forn@ over (R")®! such thaQ(x®') = M(x) for everyx. Note that we can compute
the spectral norm of an homogeneous polynomial in polynbiinie using semidefinite programming. Thus
we can restate our main theorem of this section as:

Theorem 3.1(Theoreml.2, restated) Let M be a degre@t homogeneous polynomial in= (X, ..., X))
with nonnegative cggcients. Then, there is an algorithm, based oft?@gn/s?) levels of the SOS hierar-
chy, that finds a unit vectorx R" such that

M(X*) > xeﬂgp,ﬁ;?ﬁ:l M(X) — &lIMllspectral
To prove Theoren3.1we first come up with @ombining algorithmnamely an algorithm that takes (the
moment matrix of) a distributioX over unit vectors € R" such thatM(x) > v and find a unit vectox* such
that M(x*) > v — . We then show that the algorithm will succeed eveX i merely a leve(t logn/&?)
pseudo distributionthat is, the moment matrix is a pseudoexpectation operatue combining algorithm
is very simple:
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Combining algorithm for polynomials with nonnegative goents:
Input: distributionX over unitx € R" such thatM(x) = v.

Operation: Do the following fort? logn/? steps:

Direct rounding: Fori € [n], let X = [Ey-x xl?. If M(X*) = v — 4e then outputx* and quit.

Conditioning: Try to findiy, ..., it—1 € [n] such that the distributio;, satisfiest(Xi,. i, ;) < P(X) -

----- it-1

.....

— Xi,..i, is defined by lettindP[Xi,. i, = X] be proportional tdP[X = X] - Htj;ll xﬁ for every
xe€ R".

— W(X) is defined to beH(A(X)) whereH(-) is the Shannon entropy function a®dX) is the
distribution over fi] obtained by lettingP[A(X) = i] = Ex-x xl? for everyi € [n].

Clearly ¥(X) is always in [Qlog n], and hence if we can show that we always succeed in at leastfon
the steps, then eventually the algorithm will output a ggadWe now show that if the direct rounding step
fails, then the conditioning step must succeed. We do thefpnader the assumption thatis an actual
distribution. Almost of all of this analysis holds verbatinhenX is a pseudodistribution of level at least
2t?logn/&?, and we note the one step where the extension requires usmgrvial (though easy to prove)
property of pseudoexpectations, namely that they satieyCauchy—Schwarz inequality.

Some information theory facts. We recall some standard relations between various entrughyligtance
measures. LeX andY be two jointly distributed random variables. We denote thistjdistribution ofX and
Y by {XY}, and their marginal distributions 4} and{Y}. We let{X}{Y} denote the product of the distribu-
tions {X} and{Y} (corresponding to sampling andY independently from their marginal distribution). Re-

call that theShannon entropgf X, denoted byH(X), is defined to bg: ycsypportx) P[X = X]log(=P[X = X]).

Themutual informatiorof X andY is defined as(X, Y) def H(X) - H(X | Y), whereH(X | Y) is conditional

entropyof X with respect toy, defined asE, vy H(X | Y = y). TheHellinger distancebetween two dis-

tributions p andq is defined bydy(p, ) &' (1-3 \/piqi)l/z. (In particular,dy(p, g) equals 1 V2 times

the Euclidean distance of the unit vectoy® and +/4.) The following inequality (whose proof follows
by combining standard relations between the Hellingeladist, Kullback—Leibler divergence, and mutual
information) would be useful for us

Lemma 3.2. For any two jointly-distributed random variables X and Y,
2
2du (X1 (X)) <1XY)

3.1 Direct Rounding

Given X, we define the following correlated random variabkes. .., A; over |n]: the probability that
(Ag,...,A) = (i1,...,I) is equal toEx.x ><i21 e xﬁ. Note that for every, the random variable is dis-

tributed according t&\(X). (Note that even iX is only a pseudodistributiorf, ..., A; are actual random
variables.) The following lemma gives afBaient condition for our direct rounding step to succeed:

Lemma 3.3. Let M,X be as above. If d({A1---Ad,{A}---{A]) < &, then the unit vector *xwith
X' = (Exwx X2)Y/2 satisfies Mx*) > v — 4¢l|M|lspecrai Moreover, this holds even X is a level¢ > 2t
pseudodistribution.
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Proof. Let Q be a quadratic form withQ(x®*") = M(x). Lety e (R"* be the vectory,.; =
(Execx X2 - %)% Then,

EM(X) = (M, Ex®) < (M,y®y) = Qy) (3.1)

Here, the vectoM e (R™®2 contains the cdécients of M. In particular, M > O entry-wise. The
inequality in(3.1) uses Cauchy—Schwarz; namely tiak*x® < (E(x?)? - E(€)?)Y2 = y,yz. The final
equality in(3.1) uses thaly is symmetric.

Next, we bound the elierence betwee®(y) and M(x*)

Q) - M(x) = Q(y) - QX = (5 + X*, Qy — x*)) < IIQN - lly + x| - lly - x| (3.2)

(Here,(-, Q -) denotes the symmetric bilinear form correspondin@tp

Since bothx*® and y are unit vectors,|ly + x*®|| < 2. By construction, the vectog corre-
sponds to the distributiofd; - - - A} and x*®' corresponds to the distributiof\1} - - - {A}. In particular,
du({Ar--- A (AL} (AY) = %lly - x*®||. Together with the bound8.1) and(3.2),

M(x) > EM(x) - 4I1Qll - du(fA - - A {AL} - {A) . O

To verify this carries over wheK is a pseudodistribution, we just need to use the fact thati@au
Schwarz holds for pseudoexpectations (Len#).

3.2 Making Progress

The following lemma shows that if the Sicient condition above is violated, then on expectation we ca
always make progress. (Becausg. . ., A; are actual random variables, it automatically holds rdgasdof
whetherX is an actual distribution or a pseudodistribution.)

Lemma 3.4. If dy({Ar--- A, {A} -+ - {A)) = &, then HAL | Ag--- A1) < H(A) — 2212

Proof. The bound follows by combining a hybrid argument with LemBna
LetAl,.... Al be independent copies 84, .. ., A; so that

{Al“'At"'A'l"'A{}={A1"'At}{A1}"'{At}-
We consider the sequence of distributidds . . ., D; with
D; ={A1'Ai”'Ai,+1'”AT,}‘

By assumptiondy (Do, Dy) > . Therefore, there exists an indesuch thatdy (Di_1, Di) > ¢/t. Let
X=A;---A_;andY = AiAi’+1 ---Al. Then,D; = {XY}andDj_1 = {X}{Y}. By Lemma 3.2

H(Y) = H(Y | X) = 1(X,Y) = 2dg ({XY}, {(X}{Y}) > 2&°/t2.
SinceAi’+1, ..., A{ are independent d&, ..., A,
HEY) = H(Y | X) = H(A) - H(A [ A+ -~ Aima)
By symmetry and the monotonicity of entropy under conditignwe conclude

H(ACI A+ Act) < H(A) - 26%/82. O
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Lemma 3.4 implies that if our direct rounding fails then the expedaatiof H(A;) conditioned on
Ay, ..., A is at mostH(A) — 2¢2/t2, but in particular this means there exigt. . ., i1 So thatH(A(A; =
i1,..., A1 = 1) < H(A) — 28?/t?. The probability ofi under this distributionA; = i1, ..., A1 = i1
is proportional tdEy.x X2 - Htj;ll xlzJ which means that it exactly equals the distribut®@X;, _j,_,). Thus
we see tha®'(Xi, . i._,) < P(X) — 2¢2/t2. This concludes the proof of Theore3rL O

Remark 3.5 (Handling odd degrees and non homogenous polynomitlghe polynomial is not homoge-
nous but only has monomials of even degree, we can homogébizenultiplying every monomial with an
appropriate power ofY xiz) which is identically equal to 1 on the sphere. To handle oelgrele monomials
we can introduce a new varialig and set a constraint that it must be identically equal/th This way we
can represent all odd degree monomials by even degree malsonith a blowup of 2 in the cdgcients.
Note that if the pseudoexpectation operator is consistéht this constraint then our rounding algorithm
will in fact output a vector that satisfies it.

4 Finding an “analytically sparse” vector in a subspace

In this section we prove Theorein5. We let? be a universe of size andL»(U/) be the vector space of
real-valued functiond : ¢/ — R. The measure on the séf is the uniform probability distribution and
hence we will use the inner produdt, g) = E,, f(w)g(w) and norm|f|l, = (E,, f(w)P)YPfor f,g: U - R
andp > 1.

Theorem 4.1(Theoreml.5, restated) There is a constard > 0 and a polynomial-time algorithm A, based
on (1) levels of the SOS hierarchy, that on input a projector opmr&t such that there exists @&sparse
Boolean function f satisfyinuﬂfllg = (1-e)l fllg, outputs a functiow € ImagdIl) such that

4 llgll3
o1 > © (s ) -

We will prove Theorend.1 by first showing a combining algorithm and then transformiinonto a
rounding algorithm. Note that the description of the conmgnalgorithm is independent of the actual
relaxation used, since it assumes a true distribution osdhgions, and so we first describe the algorithm
before specifying the relaxation. In our actual relaxati@will use some auxiliary variables that will make
the analysis of the algorithm simpler.

Combining algorithm for finding an analytically sparse wact

Input: Distribution O over Boolean (i.e., A valued) functiond € L,(U) that satisfy:
— u(f) =P[f(w) = 1] = 1/4.
— |IITFI3 > (1 - &)IIfI13.

Goal: Outputg such that
liglls = liglis wherey = Q(1/u(rankIT)*/3) (4.1)

Operation: Do the following:

Coordinate projection roundingfForw € U, leté,: U — R be the function that satisfi€g, 6,,) = f(w)
forall f € Lo(U). Go over all vectors of the formp, = I16,, for w € U and if there is one that satisfies
(4.7) then output it. Note that the output of this procedure igjpehdent of the distributiof.

Random function roundingChoose a random gaussian vedtar L»(U) and outputy = It if it satisfies
(4.2). (Note that this is also independent of the distributior)
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Conditioning: Go over all choices fows,...,ws € U and modify the distributionD to the distribution

----------

Gaussian rounding:For every one of these choices, iéb be a random Gaussian that matches the first two
moments of the distributio®, and outpuly = ITt if it satisfies @.1).

Because we will make use of this fact later, we will note wherntain properties hold not just for
expectations of actual probability distributions but feeudoexpectatiores well. The extension to pseudo-
expectations is typically not deep, but can be cumbersomesa the reader might want to initially restrict
attention to the case of a combining algorithm, where we del with actual expectations. We show the
consequences for each of the steps failing, and then corttiene together to get a contradiction.

4.1 Random function rounding

We start by analyzing the random function rounding step. eiet. ., e, be an orthonormal basis for the
space of functions (). Lett be a standard Gaussian functionlg(¥), i.e.,t = &1€1 + ... + &ney foOr
independent standard normal variable. . ., &, (each with mean 0 and variance 1). The following lemmas
combined show what are the consequencgHii4 is not much bigger thajfllt||,.

Lemma4.2. Forany f,g: U — R,
E(f.)(g.t) = (f.9).

Proof. In the {ey,...,e,} basis,f = };a6 andg = X;bje;. Then,(f,g) = ¥;ab; and(f,t)g,t) =
2ij abjéi€j, which has expectatioly; ajbj. Hence, the left-hand side is the same as the right-hand sie

Lemma 4.3. The4® moment ofiI1t||; satisfies
EItl; > EINs,; .

Proof. By the previous lemma, the Gaussian varidhtav) = (I15,,, t) has variancéal‘[éwllg. Therefore,

EIMtS = EEt(w)} = EE(S,, Ity*

t t w w t

4
- 3]E(]E<H6a,,t)2) = 3E(IS, |13,
w \t w

since 3= Ex-n(0.1) X*. O
Lemma 4.4. The4® moment of{[1t||, satisfies

EIINt3 < 10- (rankiT)?.

Proof. The random variabléllt||, has ay?-distribution withk = rankII degrees of freedom. The mean of
this distribution isk and the variance isk?2 It follows that]Et||Ht||‘2‘ < 10(rankIT)*. O

4.2 Coordinate projection rounding

We now turn to showing the implications of the failure of maion rounding. We start by noting the
following technical lemma, that holds for both the expgotatind counting inner products:
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Lemma 4.5. Let x andy be two independent, vector-valued random variables. Then,
L, 12 L o\1/2
E )t < (EOGXO)) ™ (Bl )
Moreover, this holds even if x come from a levef > 10 pseudodistribution.

Proof. By Cauchy—Schwarz,

Byt = B0 By ™
<IEOCH2 - 1By 1™l = (B (6 X)) (B 0)

We now consider the case of pseudodistributions. In thie tizes pseudoexpectation over two indepen-
dentx and X is obtained using LemmaA.5. Let X andY be then*-dimensional vector& x** and E y®*
respectively.

We can use the standard Cauchy—Schwarz to arguexthat < ||X| - ||Y]l2, and so what is left is to
argue thau|X||§ = ]EX,X/<X, X'y, and similarly forY. This holds by linearity for the same reason this is
true for actual expectations, but for the sake of completgnee do this calculation. We use the counting
inner product for convenience. Because the lemma’s staikeimacale free, this will imply it also for the
expectation norm.

T N4 _ D v v. I\ ! — = v v. VNN
Exx) —g,i%:Imejkaxxek& i%:‘l(lgmxjxm)(lgxxjxm),

where the last equality holds by independence. But thisviplsi equal to

> Exxx00)” = 11XIi
i)kl

The following lemma shows a nontrivial consequencellfmwllj being small:

Lemma 4.6(Coordinate projection roundingJor any distribution® over Ly(U),

4 ,oa\1/2 1/2
E NG < (Brp(fITE)) )

- (B lIs, |13
Moreover, this holds even  is a level¢ > 104 pseudodistribution. (Note thab is simply the uniform
distribution overd{, and hence the last term of the right hand side always derastestual expectation.)

Proof. By the previous lemma,

= 4 _ 4 _ (% 42 a\1/2
E I = E G, T < (Er it E T (Buw (60, 160)°%)
1/2 )1/2

= (Brp-p(f. )4 (Eu T8, 115

4.3 Gaussian Rounding

In this subsection we analyze the gaussian rounding stept ke a random function with the Gaussian
distribution that matches the first two moments of a distrdsu?D over Lo(U).
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Lemma 4.7. The4™ moment ofi[1t||4 satisfies

4 _ 2 n2
Bl =3 E (@11 ()%

Moreover, this holds even ¥ is a level¢ > 100 pseudodistribution. (Note that even in this case tis still a
actual distribution.)

Proof.

2
E|I; = EETt(w)* = 3E (E Mt(w)?)
t t w w

- 3]§(Ef~DHf(w)2)2 =3 B_(WH2@r?). o

Fact 4.8. If {A, B, C, D} have Gaussian distribution, then
EABCD=EAB-ECD + EAC-EBD + EBC-EAD.

Lemma 4.9. The fourth moment difiTt||, satisfies
2
4 2
lltEIIHtllz < 3(fl§DIIHfII2) .

Moreover, this holds even is a levelf > 4 pseudodistribution.

Proof. By the previous fact,
E|t|3 = E Et(w)? - Mt(w)?
t ww t

2 2
= ]E,]I;EHf(w)z-]l;EHf(w’)z+2(]l;3Hf(w)Hf(w’)) :3(]I;E||Hf||§) . O

4.4 Conditioning

We now show the sense in which conditioning can make progte=s) be a distribution ovek (/). For
w € U, let D, be the distributiorD reweighed byf (w)? for f ~ D. That is,Pp_{f} « f(w)? - Pp{f}, orin
other words, for every functioR(-), E.p, P(f) = (Etsimp f(w)?P(f))/(Et-p f(w)?). Similarly, we write

.....

Lemma 4.10(Conditioning) For every even e IN, there are pointsvs, ..., wr € U such that the reweighed

(12.6°) > (B10-n (P07 )

Moreover, this holds even D is a level? > r + 4 pseudodistribution.

f.g~D’

Proof. We have that

. ez 2 B (002 f(0r)? - glwn)? - glwn)? (12, 62)
max = E <f g >= max | — -
S b B oo (B 2 1(@0?) (E, glwr? - gwr)?)
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.....

Now, if D was an actual expectation, then we could use Holder’s mléytio lower bound the numerator

1 1
of the RHS by(E14-p (f2 ¢ U which would lower bound the RHS h&Ef,g@(fz,ng) " For
pseudoexpectations this follows by appealing to Lendrha m|

4.5 Truncating functions

The following observation would be useful for us for anahggthe case that the distribution is over functions
that are not completely inside the subspace. Note that ifuthetion f is inside the subspace, we can just
takef = f in Lemmad4.11, and so the reader may want to skip this section in a first ngeatid just pretend
thatf = f below.

Lemma 4.11. Lete < 1/400Q II be a projector onRY and suppose that :f{ — {0, 1} satisfies that
Plf(w)=1]=pu andllell% > (1 - &)u. Then there exists a function: RY — R such that:

1. IITFIS > Q).
2. For everyw € U, TTf(w)? > Q(f(w))).

Proof. Fix 7 > 0 to be some diiciently small constant (e.gr, = 1/2 will do). Let f* = ITf. We define
f =1Lty (e, fw) = F'(w) if |f'(w)l > 7 and f(w) = O otherwise) and definé = f* - 11/,. Clearly
f/(w)? > 7/f(w)| for everyw € U.

Since f(x) # 0 if and only if f'(x) € (0,7), clearly [f(X)| < [f(x) - f/(X)| and hence}lill% < eu.
Using f’ = f + f, we see thallf = f + (f’ — f) — f + (IIf — ). Now sincef’ is in the subspace,
IITf - fll. < If" = fll2 = |Ifll and hence foy = (f' — f) - f + (IIf — ), llgl. < 3y&u. Therefore
the probability thaty(w) > 10vz is at mostu/2. This means that with probability at least2 it holds
that f(w) = 1 andg(w) < 10+/g, in which casef(w) > 1 - 10+e > 1/2. In particular, we get that
E f(w)* > Q). i

Remark 4.12(Non-Boolean functions)The proof of Lemmal.11establishes much more than its statement.
In particular note that we did not make use of the fact thiatnonnegative, and a functidninto {0, +1} with
P[f(w) # 0] = u would work just the same. We also did not need the nonzeraesdl have magnitude
exactly one, since the proof would easily extend to the cdserevthey are in [/, ¢] for some constant

c. One can also allow some nonzero values of the function toubgd® that range, as long as their total
contribution to the 2-norm squared is much smaller than

4.6 Putting things together

We now show how the above analysis yields a combining alyoriind we then discuss the changes needed
to extend this argument to pseudodistributions, and hebtaroa rounding algorithm.

Let O be a distribution over Boolean functiorfs U — {0, 1} with ||f|5 = 1 and|[ITf|5 > 0.99f|}3.
The goal is to compute a functidn ¢ — R with ||ITt]l4 > |[t||2, given the low-degree moments 6%

Suppose that random-function rounding and coordinatggiion rounding fail to produce a function
t with IIIt)I3 > yitll3. Then,E, 15,13 < O(y) - (rankIl)? (from failure of random-function rounding and
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Lemmas4.3and4.4). By the failure of coordinate-projection rounding (anéhgsLemma4.6applied to the
distribution overf) we get that

2
<4 ) 7\ 4
(f]PD”Hf”4) < O(y) f’f]‘,END<f, f > ]Elln%llz-

Combining the two bounds, we get

2
= 7\4 2 4
f’f]‘,END<f,f )" > Q(1/(y rankIT) )(f];@nnﬂu)

Since (by Lemmaﬂf.l_l),_/(l'lf)(cu)2 > Q(/f(w)|) for everyw € U and f in the support ofD, we have
((TT)2, (ITf")2) > Q((f, T)) for all f, f” in the support. Thus,

2
B (@02 @)’ > )/ rankiny) (gpgm?ni)

.....

satisfies

1/4 1/2
B (@R @) > (B (@t arR)’) s o rankmy (g )

The failure of Gaussian rounding (applied®s) implies

2
E ()2, (1)2) < o) (fg),||nf||§) :

Combining these two bounds, we get
4
T4 3 ) 2
f]lED||HfII4 < O(y® rankIl) (fE)/llellz)

By the properties of and Lemmat. 11, the left-hand side i€(x) and the right-hand side G(y? rankIIu?).
Therefore, we get

1
y>Q ((rankl'[)l/3y)

Extending to pseudodistributions. We now consider the case thaél is a pseudodistribution of level
¢ > 10. Most of the statements above just go through as is, ghantiie analysis of all individual steps
does extend (as noted) for pseudoexpectations. One isthet ige truncation operation used to obtéin
is not a low degree polynomial. While it may be possible toraginate it with such a polynomial, we
sidestep the issue by simply addifigas additional auxiliary variables to our program, and esifay the
conclusions of Lemmad.11as constraints that the pseudoexpectation operator mestisestent with. This
is another example of how we design our relaxation to fit thendingcombining algorithm, rather than
the other way around. With this step, we can replace statesnseich as “(*) holds for all functions in the
support ofD” (where (¥) is some equality or inequality constraint in treriablesf, f) with the statement
“P is consistent with (*)” and thus complete the proof. m|
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5 Finding planted sparse vectors

As an application of our work, we show how we can find sparseafalytically sparse) vectors in-
side a sftficiently generic subspace. In particular, this improvesnuporecent result of Demanet and
Hand [DH13] who used thel.,/L; optimization procedure of Spielman et aE\WW14 to show one
can recover a-sparse vector planted in a randairdimension subspac¥’ ¢ R" whenu < 1/ Vd.
Our result, combined with the bound on the SDP value of the 24 norm of a random subspace from

[BBH*12], implies that ifd = O(+/n) then we can in fact recover such a vector as long:as 1.
Problem: PrantepRecovery(u, d, |U|, &)

Input: An arbitrary basis for a linear subspa¢e= span(V’ U {fg}), where:

— V' ¢ R%is arandom d-dimensional subspacgechosen as the span @fectors drawn indepen-
dently from the standard Gaussian distributionR#, and

— fo is an arbitranyu-sparse vectori.e.,S = supp(o) has|S| < u|U|.
Goal: Find a vectorf € V with (f, fo)2 > (1 - &) [l | foll,.

The goal here should be thought of as recovetfigtp arbitrarily high precision (“exactly”), and thus
the running time of an algorithm should be logarithmic jiz.1We note thaffy is not required to be random,
and it may be chosen adversarially based on the choit.diVe will prove the following theorem, which
is this section’s main result:

Theorem 5.1. (Theoreml.4, restated) For some absolute constant-k0, there is an algorithm that solves
PLantEDRECOVERY (11, d, |U|, €) with high probability in timepoly (|, log(1/¢)) for anyu < Kug(d), where

1 if

< VU, and
I‘l/d2 ifd >

Vau.

Our algorithm will work in two stages. It will first solve a cstant-degree sum-of-squares relaxation to
find a somewhat noisy approximate solution. It will then sadwn auxiliary linear program that converts any
suficiently good approximate solution into an exact one.

The first stage is based on the following theorem (proven ikti@e5.1), which shows that we can
approximately recover a vector when it is planted in a suismansisting of vectors with substantially
smallerL,4/L> ratio, provided that we can certify this property of the adi® using a low-degree sum-of-
squares proof. To avoid unnecessary notation, we will usegeeg 4 certificate in the statement and proof
of the theorem; the proof goes through in greater generdlitythis sdfices for our application.

d
po(d) = { q

Theorem 5.2. Let V = span(V’ U { fo}), where § € RY is a vector with|folla/lIfoll > C, and V c R¥ is a
linear subspace with
max ”% <C (5.1)
0% feVv’ 2

Furthermore, assume th&b.1) has a degree 4 sum-of-squares proof, i.e., that

Iy flI3 = c*ITTy 115 - S, (5.2)

wherelly- is the orthogonal projection onto’Yand S is a degree 4 sum of squares.
There is a polynomial-time algorithm based on a constagreaie sum-of-squares relaxation that returns
avector fe V with(f, fo)? > (1 - (c/C)2®) I foll, II ll-
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If V” is a random subspace of dimensi[BBH"12, Theorem 7.1] showed thab.(l) has a degree 4
sum-of-squares proof with high probability for= O(1) whend < V[, and forc = O (d"/2/|24|*/#) when
d > VU1 We can concisely write these two cases together in our presgation as = O(ﬂo(d)_l/4).

Since fy is u-sparse, we know thaitfoll, > /4| foll,, SO we can tak€ = 4. We can thus solve a
constant-degree sum-of-squares program to obtain a veettdh (f, fo) = (1 — O(1)) |l foll» || fll, whenever
c < O(u~Y4, i.e., when

1

U< o(@) = O (uo(d)). (5.3)

For the second stage, we will consider the following lineagpam, which can be thought of as search-
ing for a sparse vector X with a large inner product with:

arg min|lylly such thaty, f) = 1. (5.4)
yeV

In Section5.2, we will prove the following theorem, which provides comalits under which the linear
program will exactly recovefy from any f that is reasonably correlated to it:

Theorem 5.3. Let V = span(V’ U {fp}), and suppose that the following conditions hold:
= supp(fo) = S,IS| = un [fo is au-sparse vector]

— |IV'll2:1 < @ where||V’||2.1 = maX|f’|]2/||f’]ls for all 0 # ' € V') [V’ doesn’t contain any /2
Lo/L1-sparse vectors]

= (fo, ) = (1 - &) Ifollx 11l [f is correlated withfo]

— (", 5 <nlfl Ifll, forall f" e V’ [f is not very correlated with anything M'].

n 1
< —_
l-e au

then §/(fp, f) is the unique optimal solution t.4).

Remark 5.4. Because we believe the result might be useful elsewheretatethe theorem in much more
generality than needed for our application. In particutaour application we only need the trivial bound
n < 1. Also, a bound oifjV’||.1 can also be derived using the relations between the 4 norrthar2inorm
on vectors inv’.

To prove Theorens.1, we takef to be the vector with(f’, f) > (1- (c/C)Q(l)) Il follo Il £1l, given by
Theoremb.2and solve the linear program from Equati&j. The theorem is vacuous fdr> VKn, so we

may assume thatis less than any fixed constant timedn this case, the following classic result on almost-
spherical sections of th& ball ([Kas77 FLM77], as stated in[DPH13]) guarantees thafv’||>:1 < O(1):

Lemma 5.5. Fix § € (0,1), let d < 6n, and let W< R be a random d-dimensional subspace given by the
span of d independent standard Gaussians. There existsstarits > 0 and absolute constanig, y» > 0
such that ) ) )

Coll Il < 1115 < 177113

for all f” € W with probabilityl — y,e772".

BTheir proof actually directly shows that the polynomiin the RHS of 6.2) has||Pllspectrai< ¢*, Which corresponds to a degree
4 SOS proof via Lemma.12.
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By Cauchy-Schwarz, we havd’, f) < [[f’|l,|Ifll,, so Theorenb.3implies that we recovefy exactly

as long a¥*
1 Cs
TG0 \/;— 2 (5.5)

Cs is a constant for any fixedl, so, by takingK suficiently small in the statement of the theorem, we
may assume that < Cs/16, and thus that the right-hand side(6f5) is at least 2. In this case, we can
recoverfp as long ax < O(C). Combining this with Equatiorf5.3) and choosingK appropriately thus
completes the proof of Theorehl m]

It thus sufices to prove Theorents2 and5.3, which we will do in section$.1 and5.2, respectively.
We note that Theorents.2 and5.3 hold for anyV’ that meets certain norm requirements, and they do not
requireV’ to be a uniformly random subspace. As such, the results ®&#ttion hold in a broader context.
(For example, they immediately generalize to other distidms of subspaces that meet the norm bounds.)
We hope that the technical results of this section will finteotuses, so we have stated them in a somewhat
general way to facilitate their application in other segtin

5.1 Recoveringfy approximately (Proof of Theorem5.2)

In this section, we prov&heorem 5.2which allows us to recover a vector that is reasonably waltelated
with fp. The basic idea is that has a much largdr,/L, ratio than anything ivV’, so maximizing the the
L4/L> ratio should give a vector neds.

The key ingredient of the theorem is the following lemma ak@seudo-)distributions supported on
L4/Lo-sparse functions i’. Note that this lemma does not need the space to be randoranlyuthat it
can be certified to have rlg,/L, sparse vectors by the SOS SDP.

Lemma 5.6. Let V' ¢ R¥ be a linear subspace such that

4 <
[Max i, < © (5.6)

Let f, be a unit function in Y& with ||folls = C > 100Qc, and letX be a distribution oveiRY over unit
functions fe Sparv’ U {fy} satisfying||f|ls > C. Then

E(x, fo)?> > 1 - O(c/C).

Moreover this holds even X is a pseudodistribution of levél> 8, as long as%.6) has a degree 4 sum-of-
squares proof.

We can obtain a pseudodistributidh meeting the requirements in Lemrbab by solving a degree 8
sum-of-squares program that maximiméﬁj over f € V with ||f||§ = 1. If we sample a random Gaussian
consistent with the first two moments &f then we will obtain a vectay whose expected 2-norm squared is
1 and whose expected inner product wighs (1-0(1))|| foll, soLemma 5.&herefore implie§heorem 5.2

Proof ofLemma 5.6 Write every vectorf in the support ofX in the formf = afy + f” wheref’ € V’ and
a = (f, fp). We know that

C =lIflla < allfolla + If'lla < aC + ¢l f'lo < aC +c, (5.7)

14 We note that the last two bounds were somewhat weak: LeBBbolds for subspaces of linear dimension, but we only
applied it to a subspace with< +/[]; and the application of Cauchy-Schwarz could have beenetigitl using a better analysis.
However, these were fiicient to prove Theorer.1
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SO
a>1-c¢c/C.

This concludes the proof for actual expectations. To ardneiiapseudoexpectations, we need to use only
constraints involving polynomials, and therefore we use

C* = 11l = EE(afo(w) + f'(w))*

which equals N N N N N
11f3014||f0||j‘1 +AEa3(f3, 'y + 6E®(fE, f'2) + 4E a(fo, 3y + Ellf'|I3 .

The existence of a degree 4 sum-of-squares proo%.aj) (mplies thatX must be consistent with the con-
straint||f||j11 < ¢* We can thus use Cauchy—Schwarz and Holder's inequaligyn¢aA.10 and Corol-
lary A.11), to bound all of the terms except the first one by a constargdje|>C3c, and so we get

C* < Eo*C*+ 150/°Cic.
Using the fact that the expectation is consistent with thestraint|e| < 1, we obtain
Eo*>1-15/C.

Since we satisfye| < 1, we know thaiE o® < 1, so we can apply Cauchy-Schwarz to show that

Eo* < VEa?2VEab < \/]Ecxz,

which allows us to conclude that
Eo? > 1-30c/C. O

5.2 Recoveringfy exactly (Proof of Theorem5.3)

In this section, we prov&heorem 5.3which allows us to use a vector nefgrto recoverfp exactly (up to
the precision used when solving the linear program). Intli, this is relies on the same tendency towards
sparsity of vectors with minimal 1-norm that underlies tlaglier works that are based dn,/L;-sparsity.
Minimizing the L, /L1-sparsity amounts to solving the linear program5md) with y equal to each of the
unit basis vectors, and then taking the best of|#gsolutions. Whenfy is sparse enough, it will have at
least one fairly large cdicient, andfy will then be sificiently correlated with the corresponding unit basis
vector for the linear program to find it. This breaks down whea Q(1/ Vd), at which point any one basis
vector is expected to be more correlated with some vectdr than it is with fy. Here, instead of using the
unit basis vectors, we use a veciahat shares many coordinates with which then lets us handle a much
broader range qf.

Proof of Theorem 5.3 To analyze the optimum ob(4), we decomposg € V asy = tfy + f/ fort € R and
f” € V’. We will show that
folls _ Il _ _ litfo + flly
(fo. £y ~ . B «fo, H)+(f". )
for all y € V, with equality only if f* = 0, which immediately implies Theorem3.
Let f5 and fé be the vectors obtained froiff by zeroing out the coordinates outsifeandS, respec-
tively, so thatf’ = f§ + fé. Sincefy is zero outside 08, we have

(5.8)

ltfo + 1], = [[tfo - T4, + |5 (5.9)

L > tifoll - I%¢ll, + H% 1
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Equation 6.9) and the inequality
A+ B

C+D

A
B’

olO

> min{

}

litfo + Il >t”f°||1_||fé”1+||%||1> | lifolly ”%Hl_”fénl
t(fo, fY+(f, Y =~ t(fo, Y +(f/, f) ~ (fo, fY (f’, ) ’

give

(5.10)

where the second inequality iB.00 is strict unless the two terms inside the min are equal. doethe
inequality asserted irb(8), and thus Theorerh.3, it therefore stfices to show that

v %l -l
T b S<lf',f>Sl

(5.11)

forall0+ f" e V.
We can bound the left-hand side dd.{1) using the assumptions théfy, f) > 1 — ¢ and thatfg is

u-sparse:
Il foll1 < Il foll1 < vEIfoll _ Ve
(fo. ) ~ @=a)lfoll IIfll, ~ (X—&)llfoll2 Il ~ (L —2&)lIfll,’

To bound the numerator of the right-hand side®mfL(), we need to show thdt cannot have too large a
fraction of its 1-norm concentrated in the coordinateS.iiWe first note that, if this occurred, it would lead
to a large contribution to the 2-norm:

. . 1 .
Ifelly = 1 ENIF O < p JE £()? <u\/; E /()2 = ul Fll2

Combining this with our assumption tht’||»>.1 < a, gives

il = el = 111, - 201 7ell, = @~ 1171, = 2vE (7], = (@7 = 2vE) ||
and thus
g, el (o -2yt (o'~ 2vR)
(.6 7l lIflL nlifll;
If 7& < (@ ym)~* - 2, this implies that
foll, Il (e-2vA) Vi Ifol

(f’, ) (1_8)((%/,7)—1_2)||f||2 T @-9)llfl, ~ (fo, £’

from which our desired result follows. O

6 Results for Small Set Expansion

As stated in Corollaried.3 and 1.6, our results imply two consequences for tBmall Set Expansion
problem of RS1(Q. This is the problem of deciding, given an input graptand parameter§ ¢, whether
there is ameasur@subse of G’s vertices where all but anfraction of S’s edges stay inside it, or th&is
asmall set expanddn the sense that everyfiigiently small set has almost all its edges leaving it. Beyond
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being a natural problem in its own rigl8mall Set Expansion is also closely related to tHgnique Games
problem whose conjectured hardness is known as Khot's ‘ini@ames ConjectureKho0Z. [RS1q
gave a reduction frorBmall Set Expansion to Unique Games. While a reduction in the other direction is
not known, all currently known algorithmic and integralggp results apply to both problems equally well
(e.g., ABS10 RST1Q BGH*12, BBH"12)]), and thus they are likely to be computationally equivalen

We give an algorithm to solvEmall Set Expansion in quasipolynomial time on an interesting family
of Cayley graphs, and a new polynomial-time approximatigo@hm for this problem on general graphs,
with the approximation guarantee depending on the dimargfithe input graph’s top eigenspace.

6.1 Small-set expansion of Cayley graphs

We consider the problem of solving the small set expansioblpm on Cayley graphs ovElg. One reason

to consider such graphs is that, until recently, the hardeting instances for this problem were graphs
of this type (i.e., the noisy hypercubk\05] and the “short code” grapB[GH"12]). [BBH"12] showed
that these instances can in fact be solved via constant safrttie SOS hierarchy, but we still do not have
any other good candidate hard instances, and so it is natuaak whether Cayley graphs can provide such
candidates. Also, since the SOS algorithm does not makefubke algebraic structure of Cayley graphs,
it is plausible that if this algorithm carfieciently solve theSmall-Set Expansion on Cayley graphs, then it
can in fact solve it on all graphs.

Let G be a Cayley graph ofi, with n = 2 vertices. LetVs, be the linear subspace spanned by
the eigenfunctions o6 with eigenvalue at least. (We identify G here with its random-walk matrix.)
Let P, be the degree-4 polynomid,(f) = |[IIs,f||, wherells, is the projector intoVs;. We define
K/I(G) = ||P/l||spectral

In this section, we describe approximation algorithms withning times that depend d€,(G). The
algorithms run in quasipolynomial time K,(G) is polylogarithmic. We will show interesting families of
graphs withK ;(G) = O(1). (SeeTheorem 6.3

The following theorem shows that low-degree sum-of-scgiegkaxations can detekt/L,-sparse func-
tions in the subspaces., (in the case whekK,(G) is not too large). This result follows froffiheorem 3.1
and the fact that the polynomi&; has nonnegative céiicients in an appropriate basis.

Theorem 6.1. Sum-of-squares relaxations of degres®VK,(G)°®logn provide an additivee-
approximation to the maximum [bf||4/|| f||> over all non-zero functions € V..

Proof. The problem of maximizingj f||4/||f|l> over the subspacé., is equivalent to maximizing the poly-
nomial P, over functions with norm 1. (Also notice thigk|4 > || f||» for every functionf.) In order to apply
Theorem 3.1we need to verify thaP, has nonnegative céiecients in an appropriate basis. Sin@éds a
Cayley graph oveF!, we can take the characte{pgsl}ad:g as an eigenbasis. (Here,(X) = (-1)%i 4% ) |f

we represenft = 3, ﬂ)(a in this eigenbasis and I&.; = {a | 4, > 4} be the indices of the eigenfunctions
with eigenvalue at least, then

~ 4 A A A A A A A A
PAR) = fIG =E( Y faxa) = >, falsfufy Bxaxprows = >, fufsfufs.
a€Ss, a,B,a’ [B'€Ss, a,B,0 B'€Ss,
a+B=a’+p’

It follows that P; has nonnegative céiecients in the monomial basis corresponding to the eigeifums

of G. By Theorem 3.1 sum-of-squares relaxations of degm@(l)llPﬂfé?ctrallogn provides an additive
approximation to the maximum &, over functions with|f||2 = 3, f2 = 1. o

Using the characterization of small-set expansion in teohd 4/L,-sparse functionsgBH*12],
Theorem 6.Implies the following approximation algorithm for smaitsexpansion on Cayley graphs. This
theorem implieCorollary 1.3
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Theorem 6.2. For some absolute constant1 and allu, € > 0 small enough, sum-of-squares relaxations
of degree K(G)°(® logn can distinguish between the following two cases with1 — Ce.

Yes: The Cayley graph G contains a vertex set of measure at gmastl expansion at most
No: All vertex sets of measure at most{ in G have expansion at least- 1/C.

Proof. We will show that the maximum dfff||4/|| f||> over f € V., distinguishes the two cases (by a constant
margin). ThereforeTheorem 6.limplies that we can distinguish between the cases usingatsguares
relaxations.

Yescase: Letf be the indicator function of a set with measure at mostnd expansion at most
. Then,|Is,f|> > 0.99f|%. It follows that|Il;,f|; > 0.9|f|;. (SeeLemma4.11) Therefore,
I 113/ F113 > QOIFIZ/IIZ = Q1) - 1/

No-case: Lew’ = C/+u. By [BBH"12, Theorem 2.4], graphs with this kind of small-set expansion
satisfy||f|l3/IIfll3 < O(1)/(u')? < 1/u for all functions f € V5,(G). O

The following theorem shows that there are interesting €agtaphs that satisfig,(G) = O(1) for A =
Q(1). We consider constructions based on the long code arghtitecode BGH*12]. These constructions
are parameterized by the size of the graph and its eigengape In the context of the Unique Games
Conjecture and the Small-Set Expansion Hypothesis, thé ralevant case is that the eigenvalue gap is a
constant. (The eigenvalue gap corresponds to the gap tecpedmpleteness.)

Theorem 6.3. Long-code and short-code based graphs with constant eaiemgap satisfy K(G) = O(1)
forall 2 = Q(1).

Proof. By [BBH"12, Lemma 5.1], there exists a const&hsuch thatP,(f) = C||f||‘2" — S(f) whereS(') is
a sum of squares (the same const@nworks for both graph constructions). Therefore, by Lemnb2,
||P/1||spectra|< C. O

6.2 Approximating small-set expansion usingASVP

The approximation algorithm for the analytical sparse aegroblem Theorem 4.} implies the follow-
ing approximation algorithm for small-set expansion. Agagithm for the same problem with the factor
(dimVs,)/3 replaced by a constant would refute the Small-Set Exparsjmothesis RS1Q RST17.1°

Theorem 6.4. For some absolute constant£1 and allyu, £ > 0 small enough, sum-of-squares relaxations
with constant degree can solve the promise problem on reguégphs G:

Yes: The graph contains a vertex with measure at mggtimV- ;)2 and expansion at most, where
A1=1-C-e¢.

No: All vertex sets of measure at mostfz have expansion at leat- 1/C.

Proof. Supposes satisfies theres property. Letf be the indicator functions of a set with measure at most
#' = p/(dimVs,)Y3 and expansion at most Then |1, |5 > (1 - 1/C)||f|j3, where we can maké’ as
large as we like by makin@ larger. ByTheorem 4.1constant-degree sum-of-squares relaxations allow us
to find anL4/L»-sparse functio € Vs,, SO tha11|g||j"1 > Q(l/,u)||g||‘2‘. By [BBH*12, Theorem 2.4] (see also
AppendixD), such a function certifies that we are not in e case. m|

15 It's plausible that, under standard complexity assumgtisnch asNP ¢ SUBEXP, even a smaller improvement to a
(dim V)@ factor instead of (dinv.,,;)Y/® would refute this hypothesis, though we have no proof of sarchmplication.
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7 Discussion and open questions

A general open question is to find other applications of oyrr@gch for rounding sum-of-squares relax-
ations. Natural candidates would be problems where it sélemb$hey do not display a “dichotomy” behav-
ior, where beating some simple algorithm is likely to be engnttially hard, but rather suggest more of a
smooth tradefd between time and performance. As far as we are aware, allrkfimbust™® lower-bound
results for the sum-of-squares method aoa-constructivei.e., they show that hard instances for the sos
method exist but do not give arfieient way of constructing them. More concretely, the rasulie the
probabilistic methodand show that with high probability, random instances arel fiar sum-of-squares
relaxations (5ri01b, Sch0§. Therefore, SOS seems promising for problems where randstances do not
seem to be the mostfticult, e.g., problems related to the Uniqgue Games ConjecAuoencrete problem of
that type to look at iSparsest Cut. In particular, can we obtain even a small improverhetu [ARV04]'s
algorithm using more SOS levels? In fact, we believe thah éwaling a natural reinterpretation ofRV04]
result in our framework would be interesting. That said, rsult for finding a planted sparse vector shows
that SOS can be useful for average-case problems as welingratticular we believe SOS might be a
strong tool for solving unsupervised learning problempgeeglly for nonlinear models.

A relaxation-based approximation algorithm can be thowjlgs having three components: the relax-
ation, the rounding algorithm, and its analysis. In our apph there is almost no creativity in choosing the
relaxation, which is simply taken to be afBaiently high level of the SOS hierarchy. (Though there may be
some flexibility in how we represent solutions.) Can we samiyl show a “universal” rounding algorithm,
thus pushing all the creative choices into Haalysi® A related question is whether one can formulate a
theorem giving a translation from combining algorithm®irmunding algorithms under ficiently general
conditions, so that results like ours would follow as spec#ses, and as mentioned in Sectiod, have
already made some progress in this direction.

The notion of “analytically sparse” vectors seems potdigtiaseful for more applications. It would
be interesting to explore theftitrent choices foltq/L sparsity, and what tradéfs they yield in terms of
computation time versus usefulness as a proxy for actuaispdn particular, for the planted sparse vector
question, it is natural to conjecture that there is an aitalytelaxation that we can optimize over i)
time, and can detect sparse vectors in random subspacesedfsionn—/¢,

In the context of the Small-Set-Expansion Hypothgsisique Games Conjecture, the most important
guestion is whether our results of Sectiboan be further improved. We do not know of any candidate hard
instances for this problem (in the relevant range of pararagtaind so conjecture that our algorithm (or at
least our analysis of it) is not optimal and can be improvethér.

Related to the question of finding hard instances, our wagkesis a dierent type of negative results for
convex relaxations. While integrality gaps are instanbas @re hard for a particular relaxation, regardless
of the rounding algorithm, one can consider the notion offibining gaps”. These will be instances where
there is a distribution of good solutions, but a particulambining algorithmC fails to find one. Hence,
viewing C as a rounding algorithm, such a result shows atill fail regardless of the relaxation used.
(Karloft’s work [Kar99 on hard instances for th&\W95 hyperplane cut rounding algorithms can be viewed
as such an example.) Studying such gaps can shed more lightr@pproach and computationafttiulty
in general. In particular, it might be interesting to comsithis question for random satisfiable instances of
SAT or other constraint satisfaction problems.

18For knapsack-like problems, there exist explicit lower boundsr[014, but here low-degree sum-of-squares proofs provide
very good approximation (in this sense, the lower bound isainust).

7An approach to obtain constant-factor approximationssfarsest cur in subexponential time is outlined in the disserta-
tion [Ste10a Chapter 9]. However, this approach also works with wealkerahchies. An approach tailored to sum-of-squares
would be interesting.
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A Pseudoexpectation toolkit

We recall here the definition of pseudoexpectation fr@BH *12] and prove some of its useful properties.
Some of these were already proveniB[H" 12] but others are new.

Definition A.1. Let[E be a functional that maps polynomlabverIRn of degree at mostinto a real number
which we denote byE, P(x) or [E P for short. We say thaE is alevel-r pseudo-expectation function@t
p.e.f. for short) if it satisfies:

Linearity For every polynomial®, Q of degree at mostande, 8 € R, E(eP +8Q) = « EP + BE Q.
Positivity For every polynomiaP of degree at most/2, E P2 > 0.
Normalization E1 = 1 where on the RHS, 1 denotes the degree-0 polynomial thas isanstant 1.

The functionalE can be represented by a table of si?€) containing the pseudo-expectations of every
monomial of degree at most(or some other linear basis for polynomials of degree at mostor a linear
functional E, the mapP — EP? is a quadratic form. HencéE satisfies the positivity condition if and
only if the corresponding quadratic form is positive serfifde. It follows that the convex set of level-
pseudo-expectation functionals owRf admits am®(")-time separation oracle, and hence th®und SoS
relaxation can be solved up to accurady time (mn- log(1/£))°®.

For every random variablX over R", the functionalE P := E P(X) is a levelr pseudo-expectation
functional for everyr. Asr — oo, this hierarchy of pseudo-expectations will converge dRpectations
of a true random variablé_hs01], in general the convergence is not guaranteed to happefiriteanumber
of steps PKL11], although for most problems of interest in TO®levels would séice for either exact
convergence or sficiently close approximation.

We now record various useful ways in which pseudoexpectatiiehave close to actual expectations.

For two polynomials® andQ, we writeP < Qif Q = P+ X Rz for some ponnomlaIsRl, ..., Rm.

If P andQ have degree at most thenP < Q implies that]E P < EQ everyr-p.e.f.E. This follows
using linearity and positivity, as well as the (not too harai¢rify) observation that iQ — P = ) Rz then it
must hold that dedf) < maxdegP), deg@Q)}/2 for everyi.

One of the most useful properties of pseudo-expectatidmaisit satisfies the Cauchy—Schwarz inequal-

ity:
Lemma A.2 (Pseudo Cauchy—SchwaiziH"12]). Let P and Q be two polynomials of degree at most r.
ThenEPQ< VEP?2- E Q2 for any degree2r pseudo-expectation functionil.

Proof. We first consider the cadeP? EQ? > 0. Then, by linearity ofE, we may assume thdt P? =
E Q? = 1. Since PQ < P2+Q2 (by expanding the squar@(—Q)z) it follows thatE PQ < 3 EP?+J EQ? =

1 as desired. It remains to consider the cB$e? = 0. In this case, @PQ < P? + a/2Q2 |mplles that
EPQ<a-3EQ?*foralla > 0. ThusEPQ= 0, as desired. O

In particular this implies the following corollary

Corollary A.3 (IBBH*12]). If P is a polynomial of degree r, and Ey is a 2r-p.e.f. such thal P(x)? =
thenE P(X)Q(X) = O for every Q of degree& r.

Proof. By LemmaA.2,

EPQ< VEP2EQ2=0
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In this paper we also need the following variant of Holdansquality:

Lemma A.4 (Pseudoexpectation Holderet d ¢,k € N, D be a levelf > 10dck pseudodistribution over
R", and P a sum of squares n-variate polynomial of degree d, then

- , - r'/r
r > r
Nee R PO > (X]FZ) P )

wherer=ck and r = (c + 1)k.

Proof. We'll do the proof by induction onm. The ba~se case I1s = c in which case this is simply the
pseudoexpectation Cauchy Schwarz tRa(X)?° > (E P(X)°)?. Define?’ to be the pseudodistribution

obtained by reweighing according toP(X)"¢. UsingEgy P(X)% > (]E@/ P(X)C)2 we can write

Ep PO _ p POO™PX® (E@ P(X)f-CP(X)C)2

EpP(X)¢  EpP(X)~¢ Ep P(X)r-¢

moving things around we get that
2
T r+c 5 ' r T r—c
EPOO e > (EPOVT) /EPOX)
which using our induction hypothesis owsr — ¢, we can lower bound by

(];F3 P()()r)2 / (];F; P(x)r)(r_C)/r ) (]g P(X)r)(r+C)/r
O

We sometime would need to extend a pseudoexpectation obowem variable to a pseudoexpectation
of two independent copies of it. The following lemma woulduseful there

Lemma A.5. Suppose that X and Y are two pseudodistributions of lévelhen we can define a level
t pseudoexpec:[ation operator on X such that for every two polynomials P Q of degree at ndgat
E P(X)Q(Y) = (E P(X))(E Q(Y)).

Proof. We define the pseudoexpectation operator in the obvious Vay-every set of¢ indices
i1, sk ki s Je WE IEEPEX, -+ Xiy - Yier - Yjg = EXiy -+ %) - (B VYj.,---Yj,) and extend it lin-
early to all monomials. Clearlf£ 1 = 1 and so the only thing left to do is to prove that for every poiyial
P of degree< ¢/2 in theX, Y variablesE P(X, Y)2 > 0.

Write P(X,Y) = S Mi(X)Ni(Y) where M;,N; are monomials, then P(X,Y)>? =
2i,j Mi(X)M;(X)N;(Y)N;(Y) and so under our definition

EP(X,Y)? = Z(lﬁ Mi(X)M;(X)(E Ni(Y)N;(Y)) = (A, B)
ij
whereA andB are the matrices defined By ; = E Mij(X)M;(X) andB; ; = E Ni(Y)N;(Y). But the pseudo-
expectation conditions oX, Y implies that both these matrices are p.s.d and so their ddupt is honneg-
ative. m]

We would like to understand how polynomials behave on lisedspaces dR". A mapP: R" — R is
polynomialover a linear subspadé C R" if P restricted tov agrees with a polynomial in the ceients
for some basis o¥. Concretely, ifg1, ..., gmis an (orthonormal) basis &f, thenP is polynomialoverV if
P(f) agrees with a polynomial itf, g1),...,{f,gm). We say thaP < Q holds over a subspasgéif P — Q,
as a polynomial oveY, is a sum of squares.
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LemmaA.6([BBH*12)). Let P and Q be two polynomials ovigf" of degree atmostr, and let:BR" — RK
be a linear operator. Suppose thatjDQ holds over the kernel of B. TheB,P < IE Q holds for any r-p.e.f.
IE overR" that satisfiesE||B f||2 =

Proof. SinceP < Q over the kernel oB, we can writeQ(f) = P(f) + X, Riz(f) + Z'j‘zl(Bf)ij(f) for
ponnomialsRl, ...,RnandSsy, ..., Sy overR". By positivity, E+ Rlz(f) 0 for alli € [m]. We claim that
]Ef(Bf) Sj(f) = O for all j € [K] (which would finish the proof). This claim follows from thadt that
]Ef(Bf)2 O for all j € [k] andLemma A.2 O

Lemma A.7 ([BBH*12]). The relation B < P holds if and only iD < P < 1. Furthermore, if B < P and
0<Q<P, then3<Q.

Proof. If P > 0, thenP < 1 impliesP? < P. (Multiplying both sides with a sum of squares preserves the
order.) On the other hand, suppd®e< P. SinceP? > 0, we also hav® > 0. Since +-P = P-P2+(1-P)?,
the relationP? < P also impliesP < 1.

For the second part of the lemma, suppB3e< P and 0< Q < P. Using the first part of the lemma, we
haveP < 1. It follows that 0< Q < 1, which in turn impliesQ? < Q (using the other direction of the first
part of the lemma). m|

Fact A.8. If f is a d-f.rv. overR¥ and {P,},c¢, are polynomials of degree at most k, thgmwith g(v) =
P,(f) is a level{d/k) pseudodistribution oveRY. (For a polynomial Q of degree at mostk] the pseudo-

expectation is defined &, Q({g(v)}vewr) = Et QUP.(f)hews) )
Lemma A.9([BBH"12). For f,g € Lo(U),

(f,9) < IIFIP + 3ligll®.
Proof. The right-hand side minus the LHS equals the square polwdc%nf -g,f—9qg) m|

Here is another form of the Cauchy—Schwarz inequality.
Lemma A.10 (Function Cauchy—Schwarz inequalifgH*12]). If (f,¢) is a level2 p.d. overRY x R¥,

then
B(f,qg) < \/EnfnZ- \/Engnz.
f.g f g

Proof. Let f = £/ \[E¢[If|2 andg = g/ \JE,llgl2. Note |2 = Eilgl2 = 1. Since by Lemmah.9,
(f, gy < Y2|| |12 + Y2712, we can conclude the desired inequality,

E(f.g)= \/Enfuz \/Engn B(f.9) \/lEnfnZ \/lEngnZ (% 12 + 4 E||g||2) .
g

=1

And it implies another form of Holder's inequality
Corollary A.11 (Function Holder’s inequalityfBH* 12]). If (f, g) is a level4 p.d. overRY x R¥, then

1/4 3/4
= I P I E
1]‘],%; w]»]EE‘L( f(w)g(w)” < (]]fE” 1:”4) (]];:llg||4) .

Proof. UsingLemma A.2twice, we have

_"ﬁl

1/2 . 1/2 . 1/4 ~ 3/4
(w)g(w) <(1E E f(w)zg(w)) (gngni) <(11f3||f||2‘) (lgEngni) :
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A.1 Spectral norm and SOS proofs
Here we note the following alternative characterizatiomhef spectral norm of a polynomial:

LemmaA.12. Let P be a degred-homogenous polynomial , th¢R||spectrai< € if and only if there is a sum
of squares degreé polynomial S such that([®) = c||x||‘2‘ — S(X).

Proof. Suppose thatP|spectrai < C. Then there is an? x n? matrix M such thatM - x** = P(x) for all x
M = cl — S wherel is then? x n? identity andS is a positive semidefinite matrix. That 8,= ¥ 4;Q®? for
somey; > 0 andQ; € R™. Now, if we considelS as a degree 4 polynomi&i(x) = S - x®* then it equals
Y A(Qi - ¥¥2)2 and hence it is a sum of squares, and it satisfies

P(X) =cl - x®* - S(x) = CZ XXE = S(x) = clIXl3 - S(¥).
ij

On the other hand, suppose thR() = c||x||‘2" - Y Ri(X)? where theR/’s are quadratic polynomials. We
can letr; € R™ be such that; - x®2 = R (X), and then letM be the quadratic operator & such that
M(y) = cllyllz — X(ri - y)? for everyy € RR™. One can easily verify that the spectral normi\bfis at mostc
andM - x®* = P(X) for everyx € R". O

B Low-Rank Tensor Optimization

For a vectox € R", let||x|| denote the Euclidean norm &f For a polynomiaP € R[Xy, ..., X,], we define
its norm as||Pll £ max(iP(X)| | lIXI| = 1.
Consider am-variate degree-4 polynomi& of the formP(x) = >\i_; Q (x)? for quadratic polynomials

Q1....,Q.

Theorem B.1. There exists an algorithm that, given P andcomputeg|P|| up to multiplicative errore in
timeexp(polyt, £)).

Proof. ForA € R", consider the polynomiaD,(x) = X.{_; 4iQi(X).

First, we claim that map=1/|Qull = [IPI[*2. On the one hand|Q,l| < ||4]| - [IP|I¥/? by Cauchy—Schwarz.
On the other hand, ift = W(Ql(x),...,Qr(x)) for some vectorx* € R", then Q;(x*) = P(x*)Y/2.
Therefore, if we choosg* as a unit vector that maximizéy then||Q,|| > P(x*)Y/2 = ||P||¥/2.

Next, we claim that we can compute max1||Q,ll up to errore in time exp(poly(, €)). SinceQ; is
quadratic, we can compuf€,|| in polynomial time. (The norm o®, is equal to the largest singular value
of the codficient matrix 0ofQ,.) The idea is to computi,|| for all vectorsi € N, whereN; is ane-net of
the unit ball inR". Let A* be the vector that achieves the maximuthpe the corresponding input, and
be the vector@y(x*), ..., Qr(x*)). Thus mayy=1/IQ.* = (1%, u*)? and|ju*|| = ||P||. Therefore, for everyl

QI = 1Qa(X)II? = (4, u™)?.

Butif || — 2*|| < e then
A", Uy = A, U < (|4 = A(ll|ut]] = (14 = AP

Thus if||A1 = A’|| < e then we get a + O(¢) multiplicative approximation tgP||. O

Corollary B.2. If M is a symmetric ix n> PSD matrix with Frobenius norm at madsthen we can compute
an ¢ additive approximation to

max( M, xX®%)
IXI=1

in poly(n) exp(poly(¥¢)) time.
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Proof. Write M in its eigenbasis abl = }; /liQi®2 for n x n matrices{Q;} with Frobenius norm at most 1,
and letM’ = ¥, 4iQ®. SinceY 4% = 1 we know that the rank ok’ is at most 1e?, and therefore
we can compute a % & multiplicative approximation to the maximum ¢#M’, X%y over unit x (which
in particular implies are additive approximation since this value is bounded by 1)1 fBis implies an
g-additive approximation for this maximum ovit since these quantities carffér by at mosk. ]

C LOCC Polynomial Optimization

Let P € R[X]4 be a degree-4 homogeneous polynomial of the B(X) = A1(X)-B1(X)+- - - + Am(X) - Bm(X)
for quadratic polynomialé\y, ..., Am € R[X]> with 0 < A, < |IX||> and quadratic polynomialBs, ..., By €
R[X]> with B; = 0 andy}; B < |IX||°>. Note that this corresponds to the tensor correspondiijhaving a
one-way local operations and classical communication (CPibrm bounded by 1HCY 11]. Without loss
of generality, we may assunig B; = ||X||°. (We can choosé, = 0 and choos®,, appropriately without
changingP.) Our goal is to compute the norm Bf defined a§iP|| = max=1/P(x)|. In the quantum setting,
this corresponds to finding the maximum probability of ataepe by a separable state for the measurement
operatorP.

In this section, we will show that sum-of-squares relaxaiprovide good approximation for the norm of
polynomials of the form above. (For the case that the vaambfAq, ..., Ay are disjoint from the variables
for By, ..., By, the theorem is due to Brandao, Christandl, and YBY11]. Up to the Gaussian rounding
step, the proof here is essentially the same as the proofdryd&o and HarrongH13].)

Theorem C.1. Sum-of-squares relaxations with degree d achieve theNoilpapproximations for the norm
of degreed polynomials P of the form above:

— the value of the relaxation is at m@tP|| + « for degree d> O(1/£2) - logn.

— in the case that the variables inA. ., Ay, are disjoint from the variables in B. . ., By, the value of
the relaxation is at mosiP|| + & for degree d> O(1/£?) logn.

Direct Rounding. As direct rounding for a distributiofX}, we choose a Gaussian variable with the same
first two moments agx}. To analyze this rounding procedure, the following lemmassful.

The lemma considers an arbitrary distribution over uniteecin R" (intended to maximizé®). We
express the second momemt= IE XX" of this distribution as convex combinatign = Y; Bip; for
Bi = ExBi(X) andp; = Ex XX"Bi(X)/8i. By the assumptions on the distributi¢X}, the matrices
p andpq,...,pm are positive semidefinite and have traceder(sity matricegs The quantum entropy
H(p) = —Trplogp is concave so that(p) > > BiH(0i). The assumption of the lemma is that the in-
equality is approximately tight. Roughly speaking, thisidition means that thg; matrices are closg.
For the distribution{X}, this condition means that reweighing by the polynomilsloes not &ect second
moments of the distribution. We say that the distributioalba global correlationwith respect to the poly-
nomialsBy, ..., By (This notion is related to but distinct from the notion oblgal correlation inBRS11).
The lemma asserts that if the distributi@d} has low global correlation with respect to the polynomials
B1,..., Bm, then samplingX independently for thé-part andB-part of the polynomiaP gives roughly the
same value as sampligin a correlated way. (The next lemma explains why our direahding achieves
at least the quantity corresponding to sampbhodependently for the two parts.)

Lemma C.2. Let{X} be a distribution oveR" that satisfies the constraifiX||? = 1. Suppose’; BiH(oi) >
H(Zi Bipi) — € for pi = Ex XX Bi(X)/Bi andp; = Ex Bi(X). Then,

Z]gm(X)wgBi(X)>Zlgm(><)8i(><) .
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Moreover, the statement holdg X} is a degree4 pseudo-distribution.

Proof. Consider the block-diagonal density maipix i 8ipi ® €' , and the block-diagonal measurement
matrixA = 3}; Ai®ee' . (In this construction, we identify the quadratic polynohfawith its representation
as a symmetric square matrix.) Furthermore, consider th@apttacespa = Trgp = i Bipi andpg =
Trap = ZiﬂiaeiT. We can express the two sides of the conclusion of the lemrfalaws,

Z@MMBMPWM,
Z];A-(X) "EB;(X) = TrA(pa ® pg).

SinceA has spectral norm at most 1, we can bound tliedince biir Alo — pa ® pB)l < llo — pa ® pslls.
(Here, |||l is the trace norm—the dual of the spectral norm.) By Pinskieequality,|lo — pa ® pgll® <
H(oa) + H(ps) — H(p). By the chain ruleH(p) = H(og) + X,; BiH (0i). The assumption of the lemma allows
us to bound the trace norm ly — pa ® pgll? < H(X Bipi) — i BiH(oi) < 2. At this point, the conclusion
of the lemma follows from the boundr A(p — pa ® pB)| < llo — PA ® p8ll+ < &. o

The following lemma shows that Gaussian rounding achieveali#e at least as large as the value
achieved by samplingX} independently for thé-part andB-part of the polynomiaP.

Lemma C.3. Let {X} be a distribution ovelR" that satisfies the constraifiX||> = 1. Suppos€X’} is a
Gaussian distribution with the same first two moments@sThen,{X’} satisfiesEx||X’|I? = 1, Ex |IX||* =
3, and

ngA(X)- Bi(X) > ng(xr];aoo.
Moreover, the statement holdg X} is a degree4 pseudo-distribution.

Proof. Using the assumptioA;, B; > 0, the lemma follows from the fact that Gaussian variaBl€3 satisfy

EP2Q* > EP?E Q% O
The previous two lemmas together yield the following camll

Corollary C.4. Let{X} be a distribution ovelR" that satisfies the constraiiX||? = 1. SupposéX’} and

& > 0 are as in the previous two lemmas, that{iX/} is a Gaussian distribution with the same first two
moments agxX} and Y BiH(oi) = H(Xi Bipi) — g2 for pi = Ex XXTB;j(X)/gi andB; = Ex B;j(X). Then,

E P(X’) > EP(X) — € and E||X’||* = 3.
X’ X X!

Moreover, the statement holdg X} is a degree4 pseudo-distribution.

Making progress. The following lemma shows that there exists a low-degregnmrhial so that reweigh-
ing by the polynomial results in a distribution that has Idekgl correlation with respect to the polynomials
Bl, ceey Bm

Lemma C.5. Let {X} be a distribution oveiR" that satisfies the constraifiX||> = 1. Then, there exists
a polynomial Be R[X]zqg of the form B= Bj)- - - Bi@ with d = O(1/&2)logn such thaty}; BiH(oi) >
H(Zi Bipi) — € for pi = Ex XXTB(X)Bi(X)/8 andg; = Ex B(X)B;i(X). Moreover, the statement holdg X}
is a degree-dr 4 pseudo-distribution.
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Proof. By contraposition, suppose thgt 8iH(oi) < H(Z; Bipi) — n holds for all polynomial®B of the form

B = Bj) - Bjy withd’ < d = 10/&? - logn. Then, we can greedily construct a sequence of polynomial
Bi-(1), . - . » Bi<(q) such that in each step the entropy decreases by atjelsparticular,H(p*) < H(o) —n-d

for p* oc Ex XX Bj«(1) - - - Bi@)(X) andp = Ex XX". SinceH(p) < logn andH(p*) > 0, we haven >

1/d - logn = £2/10. As desired it follows that there exists a polynonabf the desired form such that
YiBiH(o) = H(Zi Bipi) — £, O

Putting things together. The following lemma combines the conclusion about directading and
making-progress.

Lemma C.6. Let{X} be a distribution oveR" that satisfies the constrain||? = 1 and RX) > c. Then,
there exists a polynomial B R[X]2g of the form B= Bjq)- - - Bjg) With d = O(1/£%) logn such that the
Gaussian distribution Xthat matches the first two momentd Xf reweighted by BX) satisfies

EP(X) > c-¢and 1)§||x’||4 =3.

(Concretely, {X’} is the Gaussian distribution that satisfidy Q(X’) = Ex Q(X)B(X)/Eyx B(X) for
guadratic polynomial Q). Moreover, the statement holdsdfegree2d + 4 pseudo-distributions.

Proof. Take the polynomiaB as inLemma C.5 Reweigh the distributiofiX} by the polynomialB. Apply
Corollary C.4to the resulting distribution. O

At this time, we have all ingredients for the proofTfieorem C.1

Proof of Theorem C.1 Let {X} be a degreet+ 4 pseudo-distribution oveR" that satisfies the constraints
IX|I> = 1 andP(X) > cfor d = O(1/£%) logn. By the previous lemma, there exists a distributisf} overR"
such thatEx, P(X’)/ Ex |IX'||* > ¢/3—e¢. It follows that there exists a vectare R" with P(x)/||x||* > ¢/3—«.
(We can also find such a vectdfieiently because we can sample from the distributixfj efficiently and
the random variableB(X’) and||X’|| are well-behaved.) By homogeneity, we gBf| > c/3 — ¢.

In the case that the variablésin A4,..., Ay are disjoint from the variablez in By, ..., B, we can
modify the direct-rounding distributiofiX’} = {(Y’,Z’)} slightly and sample the variablég§ for the A
polynomials independently from the variablgsfor the B; polynomials. ByLemma C.2 we still have
Ex P(X’) > ¢ — &. We can assume th&|Y’||> = E||Z’||> = 1/2 (by adding the corresponding constraint to
the sos relaxation). ThereforE||Y’|[2||X’|]? = 1/4. It follows that there exists a vectar= (y, 2) in R" with
P(y,2)/(Ilyll? - 121%) = 4(c- €). By homogeneity, we can assume thgP = 1/2 and||Z|*> = 1/2. In this case,
IXII2 = 1 andP(x)gc — € as desired. O

D The 2-to-g norm and small-set expansion

This appendix reproduces frorBBH*12] the proof that a graph is small-set expandef and only if the
projector to the subspace of its adjacency matrix’s topreigiees has a bounded-2 q norm for even

g > 4. We also note that whileBBH"12] stated their result for the decision question, it doesdy&h
efficient algorithm to transform a vector in the top eigenspaitk large 4 norm into a small set that does
not expand.

Notation. For a regular graple = (V, E) and a subseb C V, we define theneasureof S to beu(S) =
|S|/|V| and we defin&s(S) to be the distribution obtained by picking a randem S and then outputting a
random neighboy of x. We define thexpansiorof S, to be®g(S) = P cg(s)[y ¢ S], wherey is a random
neighbor ofx. For¢ € (0, 1), we definedg(6) = minscv.,(s)<s Pc(S). We often drop the subscri@ from
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®g when it is clear from context. We identifg with its normalized adjacency (i.e., random walk) matrix.
For everyd € [-1, 1], we denote by, (G) the subspace spanned by the eigenvecto with eigenvalue
at leastl. The projector into this subspace is deno®d(G). For a distributiorD, we letcp(D) denote the
collision probability ofD (the probability that two independent samples frbrare identical).

Our main theorem of this section is the following:

Theorem D.1. For every regular graph G4 > 0 and even q,

1. (Norm bound implies expansiofpr all § > 0,& > 0, [IP>(G)llz—q < £/612/24 implies thatdg(5) >
1-1-¢&%

2. (Expansion implies norm bound)here is a constant ¢ such that for all> 0, ®g(5) > 1 — 1274
implies||P>1(G)ll2—q < 2/ V6. Moreover there is anggcient algorithm such that given a functionef
V:1(G) such that|fllq > 2||f|l2/ Vs finds a set S of measure less ti#asuch thatdg(S) < 1 - 1279,

Corollary D.2. If there is a polynomial-time computable relaxatifryielding good approximation for the
2 — @, then theSmall-Set Expansion Hypothesi§[RS1(is false.

Proof. Using [RST17, to refute the small-set expansion hypothesis it is endagiome up with anféicient
algorithm that given an input graph and suficiently smallé > 0, can distinguish between thfescase:
®g(6) < 0.1 and theNo casedg(5’) > 1—27¢1°9/9) for anys’ > ¢ and some constant In particular for all

n > 0 and constand, if ¢ is small enough then in thdo casedg(6%*) > 1 — 5. Using TheorenD.1, in the
Yescase we knowVy/2(G)llo—4 > 1/(105%4), while in theNo case, if we choosgto be smaller then(1/2)

in the Theorem, then we know thigts 2(G)|l2_4 < 2/ V602. Clearly, if we have a good approximation for
the 2— 4 norm then, for sfliciently smalls we can distinguish between these two cases. m|

The first (easier) part of TheorebBv1 is proven in SectioD.1. The second part will follow from the
following lemma:

Lemma D.3. Set e= g(4, Q) := 2°9/4, with a constant & 100. Then for everyl > 0and1> 6 > 0,ifG is
a graph that satisfies
cp(G(S)) < 1/(elS) (D.1)

for all S withu(S) < 6, then||f{lq < 2/ f|l2/ Vo for all f € V5 ,(G). Moreover, there is anfgcient algorithm
that given a function & V;,(G) such thaf|f|lq > 2| f|l>/ Vs finds a set S that violate®(1).

Proving the second part of TheoremD.1 from Lemma D.3. We use the variant of the local Cheeger
bound obtained ingte10h Theorem 2.1], stating that #g(6) > 1 — 5 then for everyf € L,(V) satisfying
1112 < slIf12, IG fl5 < cy/Allfl[5. The proof follows by noting that for every s8t if f is the characteristic
function of S then||f||; = ||f||§ = u(S), andcp(G(S)) = |IG f||§/(,u(S)|S|). Because this local Cheeger bound
is algorithmic (and transforms a function with largg/L; ratio into a set by simply using a threshold cut),
this part is algorithmic as well. m]

Proof of Lemmad.3. Fix 1 > 0. We assume that the graph satisfies the condition of the leemitin

e = 29/, for a constant that we'll set later. LeG = (V, E) be such a graph, anfdbe function inV-,(G)
with ||fll, = 1 that maximizeg/f|ly. We write f = Y, aix; whereyu, ..., ym denote the eigenfunctions
of G with valuesAy, ..., An that are at least. Assume towards a contradiction thit|q > 2/ Ve, wWelll
prove thatg = Z{':‘l(ai//li))(i satisfies|lglly > 10|fllq/A. This is a contradiction since (using € [4,1])
llgll2 < [Ifll2/A, and we assumetlis a function inV.,(G) with a maximal ratio of|f|q/|| f|l>. (To prove the
“moreover” part, where we don’t assunfids the maximal function, we repeat this process wjitlmtil we
get stuck.)
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Let U C V be the set of vertices such tH&{x)| > 1/ Vs for all x € U. Using Markov and the fact that
Exev[ f(X)?] = 1, we know thap(U) = |U|/|V| < 6, meaning that under our assumptions any sugsetU
satisfiescp(G(S)) < 1/(€S|). On the other hand, becaul$é||3 > 249/692 we know thatU contributes at
least half of the termif|l§ = Exev f(x)%. That is, if we definar to beu(U) Exeu f(X)9 thena > |Ifllg/2.
We'll prove the lemma by showing thﬂgpll?1 > 10a/A.

Let c be a sificiently large constantc(= 100 will do). We defindJ; to be the setx € U : f(X) €
[c'/ V6, c*1/ V/6)}, and letl be the maximal such thatU; is non-empty. Thus, the setk, ..., U, form a
partition of U (where some of these sets may be empty). Weléte the contribution ol; to . That is,
@i = pj Exeu; T(X)9, wherew; = u(U;). Note thate = ag + - - - + . We'll show that there are some indices
i1,...,i3such that:

() ai, +--+aj, > 0//(2C10).
(i) Forallj e [J], there is a nonnegative function : V — R such thatExey gj(X)% > ea;, /(10c%)9/2,
(iii)y ForeveryxeV, gi(X) +--- + g3(X) < lg(X)|.

Showing these will complete the proof, since it is easy tothae for two nonnegative functions and
evenq, ¢’,9", E(g'(X) + ¢’ (X)? > Eg’'(X)9 + E g”(X)9, and hencéii) and(iii) imply that

llgll} = Bg(x* > (€/(10%)¥?) > ay; . (D-2)
i
Using (i) we conclude that foe > (10c)%/ 2, the right-hand side ofX.2) will be larger than 16/A.
We find the indices,, ..., i; iteratively. We letI be initially the sef0..1} of all indices. Forj = 1,2, ...
we do the following as long a& is not empty:

1. Leti; be the largest index if.
2. Remove from/ every index such thaty < c¥a;, /27,

We let J denote the step when we stop. Note that our indiges.,i; are sorted in descending order.
For every steq, the total of they;’s for all indices we removed is less tha?*Paij and hence we satisfy).
The crux of our argument will be to shoiw) and(iii) . They will follow from the following claim:

Claim D.4. Let SC V andB > 0 be such thaiS| < § and|f(X)| > gfor all x € S. Then there is aset T of
size at least|8| such thatExct g(X)2 > 2/4.

The claim will follow from the following lemma:

Lemma D.5. Let D be a distribution wittcp(D) < 1/N andg be some function. Then there is a set T of
size N such thaEt g(X)* > (E g(D))?/4.

Proof. Identify the support oD with the set M] for someM, we letp; denote the probability thd outputs
i, and sort thgy;’s such thatp; > pz--- pm. We lets’ denoteE ¢(D); that is,8” = Zi'\il pig(i). We separate
to two cases. IY.n Pig(i) = B'/2, we define the distributio®’” as follows: we selP[D’ = i] to be p
fori > N, and we let all < N be equiprobable (that is be output with probabiliﬁ‘(i'\!1 pi)/N). Clearly,
E|g(D)| = Xi-n pig(i) = B8//2, but on the other hand, since the maximum probability of@ayent inD’
is at most IN, it can be expressed as a convex combination of flat disimisiover sets of sizd, implying
that one of these sefssatisfiesEyct |g(X)| = 8//2, and henc&,ct g(X)? > p'2/4.

The other case is thg"ﬂi'\z'l pig(i) = B'/2. In this case we use Cauchy—Schwarz and argue that

N N
p2l4< [Z p?] [Z g(i)z] : (D-3)

i=1 i=1
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But using our bound on the collision probability, the rigtend side of D.3) is upper bounded by
% Z:\il g(i)z = ]Exe[N] g(X)Z_ d

Proof of ClaimD.4 from LemmaD.5. By constructionf = Gg, and hence we know that for evexy f(x) =
E,-xg(y). This means that if we léD be the distributiorG(S) then

Elg(D)l= E E lg(y)l > E | E g(y)l = E [f(X)| >8.
XeS y~X XeS  y~X XeS

By the expansion property @, cp(D) < 1/(¢lS]) and thus by Lemm#®.5 there is a sef of size ¢S]
satisfyingEyct g(X)? > 52/4. O

We will construct the functiongs, ..., g3 by applying iteratively ClainD.4. We do the following for
ji=1...,%

1. LetT; be the set of sizelU; | that is obtained by applying Claii.4 to the functionf and the seu;;.
Note thatExer; g(X)? >,Bﬁ /4, where we leB; = ¢/ V5 (and hence for every € U;, 8i < |f(X)| < 68)).

2. Let g] be the function on inpuk that outputsy - [g(X)| if X € T; and O otherwise, wherg < 1 is a
scaling factor that ensures tHacr, g’ (X)? equals exactl)@ﬁ /4.

3. We defingy;(x) = max0, ¢(X) — Ji<j g(¥)}-

Note that the second step ensures ghet) < |g(X)|, while the third step ensures tha(x) +- - - +gj(x) <
g;(x) for all j, and in particulag(x) +- - - +g3(x) < lg(x)|. Hence the only thing left to prove is the following:

Claim D.6. Eyey gj(X)9 > eaij/(lOC)q/2
Proof. Recall that for every, «; = pi Exey, f(X)9, and hence (using(x) € [Bi, ¢Bi) for x € U;):
il < @i < B (D.4)

Now fix T = T;. SinceExey gj(x)? is at least (in fact equal)(T) Exer gj(X)9 andu(T) = eu(U;;), we
can use.4) andEyet g;(X)9 > (Exerg{(X)?)%?, to reduce proving the claim to showing the following:

E 9i(9* > (5)°/(10¢) = 5} /10. (D.5)
We know thatEyet g’j(x)2 = ﬁizj /4. We claim that D.5) will follow by showing that for everk < |,
E gi(x)? <1007 - g2 /4, (D.6)
xeT J

wherei’ = iy —ij. (Note thati” > 0 since in our construction the indicgs. .., i, are sorted in descending
order.)

Indeed, D.6) means that if we let momentarilly;|| denote \/Exer gj(X)? then

lgill > g1l = 1 Zieej gl > g1 = > ligull > llglIL = > 107") > 0.8lgil - (D.7)
k<j i'=1

The first inequality holds because we can ngFGaSg] - hj, whereh; = min{g’j, 2k<j 9k}- Then, on the one
hand,lig;ll > llgjll - Ilhjll, and on the other hantihj|| < [ X«<j g«ll sinceg] > 0. The second inequality holds

becauséigil| < llg;/l. By squaring P.7) and plugging in the value cbl@’jnz we get D.5).
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Proof of (D.6). By our construction, it must hold that
/2" < aj; (D.8)

since otherwise the indéx would have been removed from tifeat thek™ step. Sincgs;, = g;,c¢", we can

plug (O.4) in (D.8) to get

10+4i" /i’ 4
Hi C /2" <c Hi;

or _
Hi S Hi; (2/C 4 C_6 .

Since[Ti| = gUj| for all i, it follows that [Ty/[T| < (2/c)* c®. On the other hand, we know that
Exet 9x(9% = B7./4 = ¢ B} /4. Thus,
E gl(x)? < 2% 24852 14 < (2/c) B2 /4,
xeT J ]

and now we just choosesuficiently large so that?/2* > 100. m|

D.1 Norm bound implies small-set expansion

In this section, we show that an upper bound or 21 norm of the projector to the top eigenspace of a graph
implies that the graph is a small-set expander. This propéaped elsewhere implicithK[V05, O’'D07] or
explicitly [BGH"12, BBH*12] and is presented here only for completeness. Fix a g&afilentified with
its normalized adjacency matrix), ande (0, 1), lettingV-, denote the subspace spanned by eigenfunctions
with eigenvalue at least.

If p,gsatisfy ¥p+ 1/q = 1 then|X|p = maX, <1 KX y). Indeed,(X, y)| < [IXlpllylly by HOlder’s in-
equality, and by choosing = sign(x)|x|?~ and normalizing one can see this equality is tight. In palic
for everyx € L(U), [IXllq = MaXy:jy)qq-n<t [ 9| @andllyllg/g-1) = MaXx,<1 (X, y)l. As a consequence

T T
lAll—g = max||AXlq = max KAX = max KA y, x| =IA"llg/(g-1-2
T S A BT 1 S Iloy@1)<1 v@-1-

Note that ifA is a projection operatoA = AT. Thus, part 1 of Theorem.1 follows from the following
lemma:

Lemma D.7. Let G= (V, E) be regular graph and € (0, 1). Then, for every & V,
O(S) > 1= A = [IVallZ) g1y 1(S)F /0

Proof. Let f be the characteristic function &, and writef = f’ + f” wheref’ e Vyandf” = f — f’ is
the projection to the eigenvectors with value less thabet u = u(S). We know that

d(S) = 1 (F,GHY/IflI5=1-(f,Gf)/u, (D.9)

(a-1)/q _

ANd || fllg/q-1) = (]E f(x)Q/(q‘l)) p@1/8 meaning thal /]| < [IVallg/g-1)-219/9. We now write

(£,GH =(",Gf) + (f",GI") <IIFI5+ A5 < VI g1yl T3/ qer) + K
< IVIB @D+ . (D.10)

Plugging this into D.9) yields the result. m|
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