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Abstract  

Processing large graphs is an important part of the big-data prob-
lem. Recently a number of scale-up systems such as X-Stream, 
Graphchi and Turbograph have been proposed for processing large 
graphs using secondary storage on a single machine. The design 
and evaluation of these systems however have focused on physical 
machines. We expect that a natural evolution of such systems is to 
the cloud where a virtual machine would run the graph processing 
algorithm and access the graph from secondary storage remotely 
connected through the network. We evaluate a state of the art graph 
processing system called X-Stream in EC2 to identify challenges in 
this space. Our primary finding is that the network bandwidth be-
tween a virtual machine and remote storage becomes the limiter for 
performance. We show that this bottleneck can be somewhat alle-
viated through the use of VM local instance storage, network pro-
visioning and compression. 

Categories and Subject Descriptors D.1.3 [Programming tech-

niques]: Concurrent Programming – Parallel Programming; D.4.2 
[Storage Management]: Secondary Storage; E.1 [Data]: Data 
Structures – Graphs and Networks 

General Terms Algorithms, Performance. 

Keywords x-stream, large graph processing, cloud computing, stor-
age, compression 

1.  Introduction 

Graph processing has become an important analytics problem in the 
big data domain. Until recently processing large graphs had re-
quired large clusters or expensive supercomputers. This has 
changed with systems such as GraphChi and X-stream that enable 
the processing of large graphs on a single machine. This paper fo-
cuses on X-Stream, a state of the art graph processing system that 
can handle a Facebook social network sized graph on a single ma-
chine [1]. 

However, the amount of storage that can be attached to a single 
machine is limited. In this paper, we explore the possibility of run-
ning X-Stream in the cloud taking advantage of the large amount 
of storage that can be attached to a virtual machine, thereby break-
ing the barriers inherent in attaching storage to a single machine. 
Accessing storage in the cloud represents a fundamentally different 
environment from physically attached storage on a machine. The 
most important difference is the presence of an intervening network 
with its associated bandwidth and latency limitations. 

In this paper we analyse the performance of X-stream on the 
Amazon EC2 [2] and Windows Azure [3] cloud environments and 
demonstrate the following: 

 
 The network becomes the performance bottleneck when 

processing graphs from remote storage 
 X-Stream's performance can be improved by 

 Using local instance storage for smaller graphs 
 Provisioning the network for better performance 
 Compression to reduce the amount of data transferred 

The rest of this paper is structured as follows. In Section 2 we 
give a brief description of the X-Stream graph processing engine 
and its aspects that are of significance to this work. Section 3 de-
scribes the environment our experiments were set in as well as what 
our use case scenarios were. Section 4 covers our hypotheses and 
supporting experimental results. For generalization, we provide re-
sults from a subset of our experiments when run on Windows Azure 
[3].  The results are shown in section 5. Finally, we conclude in 
Section 7. 

2. X-stream 

X-stream is an edge-centric graph processing engine that sequen-
tially iterates over edges. It provides a scatter-gather model allow-
ing users to write vertex-centric programs consisting of a scatter 
and a gather step. 

edge_scatter(edge e) 
  generate update from e.source  
gather(update u) 

apply update u to u.destination  
while not done      

for all edges e        
  edge_scatter(e)     
for all updates u   

update_gather(u) 

Figure 1. Edge-centric Scatter-Gather 



Figure 1 illustrates the programming model for X-Stream. In or-
der to execute the scatter step, X-Stream iterates sequentially over 
the edge list and checks whether the source vertex has an update. If 
so it appends an update for the destination vertex to the update list. 
It then iterates over all updates and applies each update to the target 
vertex. This allows expressing a variety of graph algorithms. For 
example, in the case of the popular Pagerank algorithms, the update 
is a fraction of the current rank of the vertex, propagated via the 
edge to the targeted vertex. All the incoming updates are summed 
to compute the new rank for the vertex. 

X-Stream partitions the graph such that the vertex data for each 
partition fits in RAM, while leaving edges and updates on second-
ary storage. Executing the programming model (Figure 1) for a 
graph partition then results in sequential access to secondary stor-
age for edges and updates. As demonstrated in [1], the much larger 
sequential access bandwidth to secondary storage directly attached 
to a physical machine allows X-Stream with its unique program-
ming model to outperform a number of graph processing solutions 
including Graphchi [4]. 

Our starting point for this paper is the implementation described 
in [1]. We added the necessary environmental support for X-Stream 
to start up and execute in the cloud. In addition, we implemented 
compression for the edge and updates lists. This was straightfor-
ward as we access both sequentially, this paper includes results 
from both the zlib [5] and snappy [6] compression algorithms. 

3. Experimental Environment 

We used the Amazon EC2 cloud infrastructure for our experiments; 
the main components of which are shown in Figure 2. Each physi-
cal machine (host computer) runs multiple virtual machines (in-
stances). The instances share a physical NIC to connect to the net-
work through which they can access remote storage (EBS vol-
umes). Each physical machine also has a number of attached local 
disks (called instance store) that can be accessed by running in-
stances. Instance storage is ephemeral lasting only for the lifetime 
of the VM, while EBS volumes are persistent across invocations of 
the VM. The EBS volumes can easily be detached and attached to 
another instance. In some cases the performance of the EBS vol-
umes can be improved by striping the volumes into a RAID-0 array. 

We used Amazon EC2 m1.large instances with 7.5GB of RAM 
and eight virtual CPUs, each approximately equal to a 1-1.2Ghz 
2007 Opteron or Xeon processor. The VM runs a para-virtualized 
64-bit Ubuntu Precise (server edition). 

Amazon provides a cost-performance trade-off for accessing the 
EBS volumes as follows: 

 Since the network of the instance can be used for various pur-
poses, IO requests can get delayed. The solution is to run an 
instance as “EBS optimized”.  This reserves 500Mb/s network 
throughput solely for communicating with the device. 

 The disk holding the EBS volume is also shared between mul-
tiple tenants. EC2 therefore allows the user to pay for a “provi-
sioned EBS volume”. One can provision 30 IOPS per gigabyte. 
One IO operation cannot exceed 16KB and reaching peak pro-
visioned IOPS requires the number of outstanding IOs to be 
maintained at least at 5 per 200 provisioned IOPS. 
 
The combinations of storage type (instance and EBS), RAID 

and provisioning can be large. We pruned our experimental space 
down to the following types, eliminating those we knew would be 
outperformed by a different type on this list. 

 
 Instance store (Instance) 
 Two standard EBS volumes organized in a software RAID-0 

array. No provisioning for either the network nor the IO device 
(EBS_S2S)  

 Two provisioned EBS volumes organized in a software RAID-
0 array accessed from a non EBS network optimized instance 
(EBS_S2P)  

 Two EBS standard volumes in a RAID-0 array and an EBS op-
timized instance (EBS_P2S)  

 Two EBS provisioned volumes in a RAID-0 array and an EBS 
optimized instance (EBS_P2P)  
 
The number of provisioned IOPS was 1000 (500 for each vol-

ume). 

4. Experiments 

4.1.1 Characterizing the EC2 platform 

We first characterized the EC2 platform from the perspective of X-
Stream. We used the fio [7] tool to benchmark the bandwidth avail-
able to storage from the VM. In order the simulate the workload 
presented by X-Stream, we did sequential I/O by issuing a single 
synchronous request at a time varying the size of the request. This 
approximates X-Stream's disk access pattern that issues sequential 
I/O of constant configurable size to disk, using asynchronous I/O 
to ensure that there is always exactly one outstanding request to 
disk. The results are shown in Figures 3 for sequential reads and 
Figure 4 for sequential writes. We drew the following conclusions. 

 1. The fastest storage is the instance store. Moving to remote 
storage on EC2 therefore provides persistence and increased 

space in return for performance. 

2. In terms of peak achievable bandwidth for sequential reads, 

provisioning the network has a bigger payoff than provisioning 
storage in the case of reads. 

 3. In terms of peak achievable bandwidth for sequential writes, 
provisioning the drives has a marginally better payoff than pro-
visioning the network. 

Figure 2. Amazon EC2 structure 



 
Our interpretation of the results is that for EC2 the EBS volumes 

appear to be faster than the network. Hence, in the case of reads 
requesting large chunks of data becomes counter-productive be-
cause the responses are bottlenecked by the network leaving the 
drives idle. In the case of writes larger request sizes are better as 
there is no data to send back and there are less network overheads 
for larger request sizes. 

A corollary of this is that for reads, provisioning IOPS on the 
EBS volumes is wasteful as the network is the bottleneck on the 
return path. More benefit is obtained by provisioning the network. 
On the other hand, for writes the drives cannot keep up with the 
network. This is likely a consequence of the EBS volumes being 
stored on SSD that have poor write performance as compared to 
read performance. 
Noting that the peak write bandwidth of provisioned volumes is 
only marginally higher, we conduct further experiments without 
provisioned volumes. 

4.1.2 X-stream baseline performance 

For our tests we generated a synthetic undirected graph using the 
RMAT generator. We used 25 as the scaling factor making the 
number of vertices 225 (32M) and the number of edges 229 (512M). 
The I/O  included reading in the edge list and writing out the up-
dates for the gather phase as well as reading in the updates for the 
scatter phase. Since the entire vertex set fits into memory, only one 
partition was created and the vertices remained in memory for the 
entire experiment. 

We ran BFS, Connected components (BFS forest) and Pagerank 
on the graph and the results are shown in Figures 5, 6 and 7.  In 
addition to the storage configurations described above, we also ex-
perimented with increasing the number of volumes in the RAID 
array. The sequential access nature of X-Stream means that it can 

take advantage of the extra bandwidth offered by RAID arrays on 
physical machines. We therefore wanted to explore whether the 
same was also true in the cloud. The relative performance of 
EBS_P2S, EBS_S2S and Instance storage are consistent with the 
fio rest results. Instance storage performs the best followed by 
EBS_P2S and finally by EBS_S2S. Moving from local instance 
storage to remote storage on EC2 affects the performance of 
graph processing by as much as 4X. 

Another conclusion from the results is that while RAID helps 
with local instance storage it has very little effect with remote stor-
age. The extra bandwidth afforded by sequential access to the 

RAID volumes is unavailable at the X-Stream end due the 
bandwidth limitations of the intervening network. The improve-
ments with RAID on local instance storage are consistent with X-
Stream’s performance on physical machines [1] that improvements 
for RAID in the region of 50% for two disks. 

 X-Stream has a key configuration parameter that dictates the 
size of requests made to storage when sequentially streaming data 
to or from it. By default (and in the results presented thus far) it is 
set to 16MB, as that was the optimum setting for physical machines 
with attached storage. 

The fio test results however suggest that peak throughput is ob-
tained using 1MB requests for sequential writes and 64KB requests 
for sequential reads.  Therefore we decided to do another set of tests 
for each of the benchmarks with these I/O chunk sizes. The results 

Figure 3. Sequential read bandwidth 

Figure 6. X-stream results for Connected Components 

Figure 5. X-stream results for BFS 

Figure 4.  Sequential write bandwidth 



are shown in Figures 8, 9 and 10. We can conclude that a 1M I/O 
chunk size gives the best results with EC2 infrastructure as opposed 
to 16M with physical infrastructure. It is possible that even better 
performance might be possible by having different chunk sizes for 
the input and output paths. Unfortunately, X-Stream does not sup-
port this at the moment. Using X-Stream in the cloud would be a 
key motivator for adding such support. 

 

4.1.3 Compressed I/O 

Provisioning the network comes with a trade-off of 9% in price in-
crease for the instance for 12% of performance improvement in re-
turn.  

Therefore we wanted to explore mitigating the bottleneck by 
storing and retrieving compressed sequences of edges and updates.  

We analysed the gain with compressed I/O on both, EBS_S2S 
and EBS_P2S. 

The sequential access nature of X-Stream makes such compres-
sion possible. We added compression support to the X-Stream 
codebase from [1]. We experimented with two different compres-
sion algorithms: zlib [5]  and snappy [6]. Zlib provides somewhat 
better compression ratios in return for increased latency to decom-
press and compress blocks.  

Table 1. Zlib and snappy compression ratios for different graphs 

 

In Table 1 we display the compression ratio of the synthetic 
graph we have used thus far in the paper as well as the Twitter [8] 
real world graph. The compression ratio is much better with the 
Twitter dataset due to the correspondence of vertex numbering with 
connectivity as the graph was generated by a crawler. In addition, 
the Twitter dataset has its edge-list sorted as an artefact of being 
generated from a compressed sparse row representation. The syn-
thetic graph and the Twitter dataset therefore represent opposite 
ends of the spectrum in terms of compressibility of edge lists.  

We ran experiments in this section with a 1M I/O chunk size, 
guided by our results from the previous section. We first consider 
the results displayed in Figures 11, 12 and 13 from executions on 
the synthetic graph. From these results, one may conclude the fol-
lowing: 

 It is possible for I/O bandwidth to exceed the capability of 

in-memory compression and decompression. This somewhat 
counter-intuitive result is because sequential accesses to SSDs used 
in EC2 is extremely fast, providing as much as 180 MB/s. On the 
other hand we have observed in separate tests that, zlib is unable to 
handle streams at more than 150 MB/s. This is why compression 
provides no benefit with instance stores. Snappy is faster than zlib 
and is able to keep up with the EBS volumes thereby providing 
benefit.  

Benefits from compression can accrue even if the edge list is 

not compressible. Snappy provides benefits for synthetic graphs 
on EBS volumes even though the edge list is not compressible. This 

Figure 7. X-stream results for Pagerank  

Figure 9. Results with variable request size on EBS_S2S 

Figure 10. Results with variable request size on EBS_P2S 

Figure 8. Results with variable request size on Instance store 

Graph name UncompressedZlib Snappy

Synthetic graph 6GB 5.2GB(13.3%) 6.1GB(0%)

Twitter 17GB 11GB(35.3%) 14GB(17.6%)



is because it is able to compress the updates reducing the time 
needed to write them out and read them back in. 

 Next, we consider breadth-first search over the real-world 
Twitter graph in Figure 14. This graph has a far better compression 
ratio for the edge list and therefore even the slower zlib is able to 
provide benefits for EBS volumes as the reduction in amount of 
data transferred more than makes up for the slower speed of zlib 
compression and decompression.  

In general, compression is an effective technique to improving 
the performance of graph processing on EC2 using X-Stream. For 
our tests we were able to improve performance between 12%-30%. 

Furthermore, we saw that when the compression is efficient, 
like with zlib on the twitter graph, the provisioned instance is 
cheaper by approximately 40%. 

 

 
 

5. Windows Azure 

In order to generalize our findings we ran a subset of the tests per-
formed on Amazon EC2 on Microsoft’s cloud platform. The plat-
form itself offers different options from EC2 and categorizes in-
stances and storage in a slightly different manner. The first differ-
ence is that there is no provisioning of either network or IOPS but 
rather, they guarantee 500 IOPS for each attached disk. In this sec-
tion we do not go into the specific details of the offered options but 
we chose the environment that is most compatible with what we 
had on Amazon.  

The tests were run on Ubuntu 12.04 on Extra Large instances 
that offer 8 CPU cores and 16GB of RAM. Since this is larger than 
what we had on Amazon, we restricted X-stream to use the same 
amount of RAM as on EC2. We ran BFS, Connected Components 
and Pagerank on the following combinations of storage devices: 

 Local storage 
 One external disk of 20GB 
 Two external disks with 20GB each striped in a software 

RAID-0 array 
Before running X-stream, we ran the same fio tests as on EC2 

in order to determine the best request size. The results are in agree-
ment with the results on EC2 in the sense that the local storage is 
6X faster for sequential reads and 2X faster for sequential writes. 
A difference was that for the external storage the peaks for reads 
and writes were for requests of 32MB. In order for our tests to be 
fair we chose this as our I/O chunk size on Azure.  

Figures 15 illustrates the performance of X-stream on local and 
external storage as well as improvement that can be gained with 
compression.  

As on EC2 the network is a limiting factor and the speedup 
gained by attaching new disks and striping them into RAID array 
is only marginal. 

6. Conclusion 

In this paper we have evaluated processing of large-scale graphs 
using X-Stream in the cloud and discussed the benefits and down-
sides of the cloud environment. Cloud storage is attractive due to 
the easy availability of large amounts of storage, something that is 

Figure 11. Compression on instance store 

Figure 13. Compression on EBS_P2S 

Figure 15. Windows Azure - X-stream execution times on differ-
ent storage types and with different compression schemes on 
each type  

 

Figure 12. Compression on EBS_S2S 

Figure 14. BFS on the twitter graph on EBS_S2S and EBS_P2S 



difficult to achieve with physical machines. One can therefore po-
tentially scale the problem size tackled using the elasticity of the 
cloud.  

Our most important conclusion is that the network is a serious 
bottleneck when accessing remote storage thereby limiting such 
scalability. This means that although cloud services can provide 
large amounts of storage for graphs, there is a penalty on perfor-
mance due to the network to storage becoming a bottleneck.  

For the specific case of EC2, we found a set of partial mitiga-
tions to this problem. Provisioning the network helps to improve 
performance by relieving the network bottleneck. A more cost-ef-
fective way of improving performance is through compression to 
reduce the amount of data moved on the network. We showed that 
it is necessary to use a compression algorithm with adequate per-
formance to keep up with streaming bandwidths available on EC2.  

A more effective solution for scaling graph processing in the 
cloud is to distribute X-Stream execution across multiple virtual 
machines thereby gaining aggregate bandwidth to storage. To this 
end we are engaged in the construction of a scale-out version of X-
Stream. Unlike other distributed graph processing solutions such as 
Powergraph [9] this scale-out solution does not need to place the 
graph in main memory. We therefore would require far fewer vir-
tual machines than Powergraph to process the same graph and – we 
expect- extend X-Stream's scope to terascale graphs (trillions of 
vertices and edges) in the cloud, something currently possible only 
on high-end supercomputers and massive clusters. 
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