

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

CloudDP'14, April 13 - 16 2014, Amsterdam, Netherlands

Copyright 2014 ACM 978-1-4503-2714-5/14/04…$15.00.

http://dx.doi.org/10.1145/2592784.2592789.

Scale-up Graph Processing in the Cloud: Challenges and
Solutions

Jasmina Malicevic

EPFL

jasmina.malicevic@epfl.ch

Amitabha Roy

EPFL

amitabha.roy@epfl.ch

Willy Zwaenepoel

EPFL

willy.zwaenepoel@epfl.ch

Abstract

Processing large graphs is an important part of the big-data prob-
lem. Recently a number of scale-up systems such as X-Stream,
Graphchi and Turbograph have been proposed for processing large
graphs using secondary storage on a single machine. The design
and evaluation of these systems however have focused on physical
machines. We expect that a natural evolution of such systems is to
the cloud where a virtual machine would run the graph processing
algorithm and access the graph from secondary storage remotely
connected through the network. We evaluate a state of the art graph
processing system called X-Stream in EC2 to identify challenges in
this space. Our primary finding is that the network bandwidth be-
tween a virtual machine and remote storage becomes the limiter for
performance. We show that this bottleneck can be somewhat alle-
viated through the use of VM local instance storage, network pro-
visioning and compression.

Categories and Subject Descriptors D.1.3 [Programming tech-

niques]: Concurrent Programming – Parallel Programming; D.4.2
[Storage Management]: Secondary Storage; E.1 [Data]: Data
Structures – Graphs and Networks

General Terms Algorithms, Performance.

Keywords x-stream, large graph processing, cloud computing, stor-
age, compression

1. Introduction

Graph processing has become an important analytics problem in the
big data domain. Until recently processing large graphs had re-
quired large clusters or expensive supercomputers. This has
changed with systems such as GraphChi and X-stream that enable
the processing of large graphs on a single machine. This paper fo-
cuses on X-Stream, a state of the art graph processing system that
can handle a Facebook social network sized graph on a single ma-
chine [1].

However, the amount of storage that can be attached to a single
machine is limited. In this paper, we explore the possibility of run-
ning X-Stream in the cloud taking advantage of the large amount
of storage that can be attached to a virtual machine, thereby break-
ing the barriers inherent in attaching storage to a single machine.
Accessing storage in the cloud represents a fundamentally different
environment from physically attached storage on a machine. The
most important difference is the presence of an intervening network
with its associated bandwidth and latency limitations.

In this paper we analyse the performance of X-stream on the
Amazon EC2 [2] and Windows Azure [3] cloud environments and
demonstrate the following:

 The network becomes the performance bottleneck when

processing graphs from remote storage
 X-Stream's performance can be improved by

 Using local instance storage for smaller graphs
 Provisioning the network for better performance
 Compression to reduce the amount of data transferred

The rest of this paper is structured as follows. In Section 2 we
give a brief description of the X-Stream graph processing engine
and its aspects that are of significance to this work. Section 3 de-
scribes the environment our experiments were set in as well as what
our use case scenarios were. Section 4 covers our hypotheses and
supporting experimental results. For generalization, we provide re-
sults from a subset of our experiments when run on Windows Azure
[3]. The results are shown in section 5. Finally, we conclude in
Section 7.

2. X-stream

X-stream is an edge-centric graph processing engine that sequen-
tially iterates over edges. It provides a scatter-gather model allow-
ing users to write vertex-centric programs consisting of a scatter
and a gather step.

edge_scatter(edge e)
 generate update from e.source
gather(update u)

apply update u to u.destination
while not done

for all edges e
 edge_scatter(e)
for all updates u

update_gather(u)

Figure 1. Edge-centric Scatter-Gather

Figure 1 illustrates the programming model for X-Stream. In or-
der to execute the scatter step, X-Stream iterates sequentially over
the edge list and checks whether the source vertex has an update. If
so it appends an update for the destination vertex to the update list.
It then iterates over all updates and applies each update to the target
vertex. This allows expressing a variety of graph algorithms. For
example, in the case of the popular Pagerank algorithms, the update
is a fraction of the current rank of the vertex, propagated via the
edge to the targeted vertex. All the incoming updates are summed
to compute the new rank for the vertex.

X-Stream partitions the graph such that the vertex data for each
partition fits in RAM, while leaving edges and updates on second-
ary storage. Executing the programming model (Figure 1) for a
graph partition then results in sequential access to secondary stor-
age for edges and updates. As demonstrated in [1], the much larger
sequential access bandwidth to secondary storage directly attached
to a physical machine allows X-Stream with its unique program-
ming model to outperform a number of graph processing solutions
including Graphchi [4].

Our starting point for this paper is the implementation described
in [1]. We added the necessary environmental support for X-Stream
to start up and execute in the cloud. In addition, we implemented
compression for the edge and updates lists. This was straightfor-
ward as we access both sequentially, this paper includes results
from both the zlib [5] and snappy [6] compression algorithms.

3. Experimental Environment

We used the Amazon EC2 cloud infrastructure for our experiments;
the main components of which are shown in Figure 2. Each physi-
cal machine (host computer) runs multiple virtual machines (in-
stances). The instances share a physical NIC to connect to the net-
work through which they can access remote storage (EBS vol-
umes). Each physical machine also has a number of attached local
disks (called instance store) that can be accessed by running in-
stances. Instance storage is ephemeral lasting only for the lifetime
of the VM, while EBS volumes are persistent across invocations of
the VM. The EBS volumes can easily be detached and attached to
another instance. In some cases the performance of the EBS vol-
umes can be improved by striping the volumes into a RAID-0 array.

We used Amazon EC2 m1.large instances with 7.5GB of RAM
and eight virtual CPUs, each approximately equal to a 1-1.2Ghz
2007 Opteron or Xeon processor. The VM runs a para-virtualized
64-bit Ubuntu Precise (server edition).

Amazon provides a cost-performance trade-off for accessing the
EBS volumes as follows:

 Since the network of the instance can be used for various pur-
poses, IO requests can get delayed. The solution is to run an
instance as “EBS optimized”. This reserves 500Mb/s network
throughput solely for communicating with the device.

 The disk holding the EBS volume is also shared between mul-
tiple tenants. EC2 therefore allows the user to pay for a “provi-
sioned EBS volume”. One can provision 30 IOPS per gigabyte.
One IO operation cannot exceed 16KB and reaching peak pro-
visioned IOPS requires the number of outstanding IOs to be
maintained at least at 5 per 200 provisioned IOPS.

The combinations of storage type (instance and EBS), RAID

and provisioning can be large. We pruned our experimental space
down to the following types, eliminating those we knew would be
outperformed by a different type on this list.

 Instance store (Instance)
 Two standard EBS volumes organized in a software RAID-0

array. No provisioning for either the network nor the IO device
(EBS_S2S)

 Two provisioned EBS volumes organized in a software RAID-
0 array accessed from a non EBS network optimized instance
(EBS_S2P)

 Two EBS standard volumes in a RAID-0 array and an EBS op-
timized instance (EBS_P2S)

 Two EBS provisioned volumes in a RAID-0 array and an EBS
optimized instance (EBS_P2P)

The number of provisioned IOPS was 1000 (500 for each vol-

ume).

4. Experiments

4.1.1 Characterizing the EC2 platform

We first characterized the EC2 platform from the perspective of X-
Stream. We used the fio [7] tool to benchmark the bandwidth avail-
able to storage from the VM. In order the simulate the workload
presented by X-Stream, we did sequential I/O by issuing a single
synchronous request at a time varying the size of the request. This
approximates X-Stream's disk access pattern that issues sequential
I/O of constant configurable size to disk, using asynchronous I/O
to ensure that there is always exactly one outstanding request to
disk. The results are shown in Figures 3 for sequential reads and
Figure 4 for sequential writes. We drew the following conclusions.

 1. The fastest storage is the instance store. Moving to remote
storage on EC2 therefore provides persistence and increased

space in return for performance.

2. In terms of peak achievable bandwidth for sequential reads,

provisioning the network has a bigger payoff than provisioning
storage in the case of reads.

 3. In terms of peak achievable bandwidth for sequential writes,
provisioning the drives has a marginally better payoff than pro-
visioning the network.

Figure 2. Amazon EC2 structure

Our interpretation of the results is that for EC2 the EBS volumes

appear to be faster than the network. Hence, in the case of reads
requesting large chunks of data becomes counter-productive be-
cause the responses are bottlenecked by the network leaving the
drives idle. In the case of writes larger request sizes are better as
there is no data to send back and there are less network overheads
for larger request sizes.

A corollary of this is that for reads, provisioning IOPS on the
EBS volumes is wasteful as the network is the bottleneck on the
return path. More benefit is obtained by provisioning the network.
On the other hand, for writes the drives cannot keep up with the
network. This is likely a consequence of the EBS volumes being
stored on SSD that have poor write performance as compared to
read performance.
Noting that the peak write bandwidth of provisioned volumes is
only marginally higher, we conduct further experiments without
provisioned volumes.

4.1.2 X-stream baseline performance

For our tests we generated a synthetic undirected graph using the
RMAT generator. We used 25 as the scaling factor making the
number of vertices 225 (32M) and the number of edges 229 (512M).
The I/O included reading in the edge list and writing out the up-
dates for the gather phase as well as reading in the updates for the
scatter phase. Since the entire vertex set fits into memory, only one
partition was created and the vertices remained in memory for the
entire experiment.

We ran BFS, Connected components (BFS forest) and Pagerank
on the graph and the results are shown in Figures 5, 6 and 7. In
addition to the storage configurations described above, we also ex-
perimented with increasing the number of volumes in the RAID
array. The sequential access nature of X-Stream means that it can

take advantage of the extra bandwidth offered by RAID arrays on
physical machines. We therefore wanted to explore whether the
same was also true in the cloud. The relative performance of
EBS_P2S, EBS_S2S and Instance storage are consistent with the
fio rest results. Instance storage performs the best followed by
EBS_P2S and finally by EBS_S2S. Moving from local instance
storage to remote storage on EC2 affects the performance of
graph processing by as much as 4X.

Another conclusion from the results is that while RAID helps
with local instance storage it has very little effect with remote stor-
age. The extra bandwidth afforded by sequential access to the

RAID volumes is unavailable at the X-Stream end due the
bandwidth limitations of the intervening network. The improve-
ments with RAID on local instance storage are consistent with X-
Stream’s performance on physical machines [1] that improvements
for RAID in the region of 50% for two disks.

 X-Stream has a key configuration parameter that dictates the
size of requests made to storage when sequentially streaming data
to or from it. By default (and in the results presented thus far) it is
set to 16MB, as that was the optimum setting for physical machines
with attached storage.

The fio test results however suggest that peak throughput is ob-
tained using 1MB requests for sequential writes and 64KB requests
for sequential reads. Therefore we decided to do another set of tests
for each of the benchmarks with these I/O chunk sizes. The results

Figure 3. Sequential read bandwidth

Figure 6. X-stream results for Connected Components

Figure 5. X-stream results for BFS

Figure 4. Sequential write bandwidth

are shown in Figures 8, 9 and 10. We can conclude that a 1M I/O
chunk size gives the best results with EC2 infrastructure as opposed
to 16M with physical infrastructure. It is possible that even better
performance might be possible by having different chunk sizes for
the input and output paths. Unfortunately, X-Stream does not sup-
port this at the moment. Using X-Stream in the cloud would be a
key motivator for adding such support.

4.1.3 Compressed I/O

Provisioning the network comes with a trade-off of 9% in price in-
crease for the instance for 12% of performance improvement in re-
turn.

Therefore we wanted to explore mitigating the bottleneck by
storing and retrieving compressed sequences of edges and updates.

We analysed the gain with compressed I/O on both, EBS_S2S
and EBS_P2S.

The sequential access nature of X-Stream makes such compres-
sion possible. We added compression support to the X-Stream
codebase from [1]. We experimented with two different compres-
sion algorithms: zlib [5] and snappy [6]. Zlib provides somewhat
better compression ratios in return for increased latency to decom-
press and compress blocks.

Table 1. Zlib and snappy compression ratios for different graphs

In Table 1 we display the compression ratio of the synthetic
graph we have used thus far in the paper as well as the Twitter [8]
real world graph. The compression ratio is much better with the
Twitter dataset due to the correspondence of vertex numbering with
connectivity as the graph was generated by a crawler. In addition,
the Twitter dataset has its edge-list sorted as an artefact of being
generated from a compressed sparse row representation. The syn-
thetic graph and the Twitter dataset therefore represent opposite
ends of the spectrum in terms of compressibility of edge lists.

We ran experiments in this section with a 1M I/O chunk size,
guided by our results from the previous section. We first consider
the results displayed in Figures 11, 12 and 13 from executions on
the synthetic graph. From these results, one may conclude the fol-
lowing:

 It is possible for I/O bandwidth to exceed the capability of

in-memory compression and decompression. This somewhat
counter-intuitive result is because sequential accesses to SSDs used
in EC2 is extremely fast, providing as much as 180 MB/s. On the
other hand we have observed in separate tests that, zlib is unable to
handle streams at more than 150 MB/s. This is why compression
provides no benefit with instance stores. Snappy is faster than zlib
and is able to keep up with the EBS volumes thereby providing
benefit.

Benefits from compression can accrue even if the edge list is

not compressible. Snappy provides benefits for synthetic graphs
on EBS volumes even though the edge list is not compressible. This

Figure 7. X-stream results for Pagerank

Figure 9. Results with variable request size on EBS_S2S

Figure 10. Results with variable request size on EBS_P2S

Figure 8. Results with variable request size on Instance store

Graph name UncompressedZlib Snappy

Synthetic graph 6GB 5.2GB(13.3%) 6.1GB(0%)

Twitter 17GB 11GB(35.3%) 14GB(17.6%)

is because it is able to compress the updates reducing the time
needed to write them out and read them back in.

 Next, we consider breadth-first search over the real-world
Twitter graph in Figure 14. This graph has a far better compression
ratio for the edge list and therefore even the slower zlib is able to
provide benefits for EBS volumes as the reduction in amount of
data transferred more than makes up for the slower speed of zlib
compression and decompression.

In general, compression is an effective technique to improving
the performance of graph processing on EC2 using X-Stream. For
our tests we were able to improve performance between 12%-30%.

Furthermore, we saw that when the compression is efficient,
like with zlib on the twitter graph, the provisioned instance is
cheaper by approximately 40%.

5. Windows Azure

In order to generalize our findings we ran a subset of the tests per-
formed on Amazon EC2 on Microsoft’s cloud platform. The plat-
form itself offers different options from EC2 and categorizes in-
stances and storage in a slightly different manner. The first differ-
ence is that there is no provisioning of either network or IOPS but
rather, they guarantee 500 IOPS for each attached disk. In this sec-
tion we do not go into the specific details of the offered options but
we chose the environment that is most compatible with what we
had on Amazon.

The tests were run on Ubuntu 12.04 on Extra Large instances
that offer 8 CPU cores and 16GB of RAM. Since this is larger than
what we had on Amazon, we restricted X-stream to use the same
amount of RAM as on EC2. We ran BFS, Connected Components
and Pagerank on the following combinations of storage devices:

 Local storage
 One external disk of 20GB
 Two external disks with 20GB each striped in a software

RAID-0 array
Before running X-stream, we ran the same fio tests as on EC2

in order to determine the best request size. The results are in agree-
ment with the results on EC2 in the sense that the local storage is
6X faster for sequential reads and 2X faster for sequential writes.
A difference was that for the external storage the peaks for reads
and writes were for requests of 32MB. In order for our tests to be
fair we chose this as our I/O chunk size on Azure.

Figures 15 illustrates the performance of X-stream on local and
external storage as well as improvement that can be gained with
compression.

As on EC2 the network is a limiting factor and the speedup
gained by attaching new disks and striping them into RAID array
is only marginal.

6. Conclusion

In this paper we have evaluated processing of large-scale graphs
using X-Stream in the cloud and discussed the benefits and down-
sides of the cloud environment. Cloud storage is attractive due to
the easy availability of large amounts of storage, something that is

Figure 11. Compression on instance store

Figure 13. Compression on EBS_P2S

Figure 15. Windows Azure - X-stream execution times on differ-
ent storage types and with different compression schemes on
each type

Figure 12. Compression on EBS_S2S

Figure 14. BFS on the twitter graph on EBS_S2S and EBS_P2S

difficult to achieve with physical machines. One can therefore po-
tentially scale the problem size tackled using the elasticity of the
cloud.

Our most important conclusion is that the network is a serious
bottleneck when accessing remote storage thereby limiting such
scalability. This means that although cloud services can provide
large amounts of storage for graphs, there is a penalty on perfor-
mance due to the network to storage becoming a bottleneck.

For the specific case of EC2, we found a set of partial mitiga-
tions to this problem. Provisioning the network helps to improve
performance by relieving the network bottleneck. A more cost-ef-
fective way of improving performance is through compression to
reduce the amount of data moved on the network. We showed that
it is necessary to use a compression algorithm with adequate per-
formance to keep up with streaming bandwidths available on EC2.

A more effective solution for scaling graph processing in the
cloud is to distribute X-Stream execution across multiple virtual
machines thereby gaining aggregate bandwidth to storage. To this
end we are engaged in the construction of a scale-out version of X-
Stream. Unlike other distributed graph processing solutions such as
Powergraph [9] this scale-out solution does not need to place the
graph in main memory. We therefore would require far fewer vir-
tual machines than Powergraph to process the same graph and – we
expect- extend X-Stream's scope to terascale graphs (trillions of
vertices and edges) in the cloud, something currently possible only
on high-end supercomputers and massive clusters.

References

[1] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: Edge-centric
Graph Processing Using Streaming Partitions,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles,
New York, NY, USA, 2013, pp. 472–488.

[2] https://www.windowsazure.com

[3] http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/.

[4] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale
Graph Computation on Just a PC,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, Berke-
ley, CA, USA, 2012, pp. 31–46.

[5] http://zlib.net/.

[6] https://code.google.com/p/snappy/.

[7] http://freecode.com/projects/fio.

[8] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a Social
Network or a News Media?,” in Proceedings of the 19th International
Conference on World Wide Web, New York, NY, USA, 2010, pp.
591–600.

[9] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Power-
Graph: Distributed Graph-parallel Computation on Natural Graphs,”
in Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, Berkeley, CA, USA, 2012, pp. 17–30.

.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://zlib.net/
https://code.google.com/p/snappy/
http://freecode.com/projects/fio

