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ABSTRACT
Systems-on-chip are increasingly designed at the system level by
combining synthesizable IP components that operate concurrently
while interacting through communication channels. CAD-tool ven-
dors support this System-Level Design approach with high-level
synthesis tools and libraries of interface primitives implementing
the communication protocols. These interfaces absorb timing dif-
ferences in the hardware-component implementations, thus enabling
compositional design. However, they introduce also new challenges
in terms of functional correctness and performance optimization.
We propose a methodology that combines performance analysis
and optimization algorithms to automatically address the issues that
SoC designers may accidentally introduce when assembling com-
ponents that are specified at the system level.
Categories and Subject Descriptors
B.5 [RTL Implementation]: Design Aids
General Terms
Algorithms, Design, Experimentation
Keywords
High-Level Synthesis, SystemC

1. INTRODUCTION
The complexity of modern Systems-on-Chip (SoC) is driving the

adoption of Electronic System Level (ESL) design methodologies
that raise the level of abstraction above RTL design and promote
the reuse of components [13]. These components are increasingly
specified with high-level programming languages, such as C++ and
SystemC, to speed up system-level simulation and enable their im-
plementation as energy-efficient hardware accelerators [18].

Fig. 1 shows an abstraction of the hardware part of a typical ESL
design flow. An application (or part of an application) that will
be implemented in hardware is specified as a set of components
which operate concurrently while interacting through communica-
tion channels. These components are expressed, for instance, as
synthesizable SystemC processes. Their specifications may be the
result of partitioning and refinement steps from a higher-level algo-
rithmic description or may be taken from libraries of pre-designed
Intellectual Property (IP) blocks. High-level synthesis (HLS) tools
are used to synthesize a hardware implementation for each com-
ponent after performing various micro-architectural optimizations.
Indeed, given a SystemC process, SoC designers can obtain sev-
eral alternative implementations by applying a variety of “HLS
knobs” such as: loop unrolling, loop pipelining, resource sharing,
etc. These implementations form a Pareto-optimal set of choices
in a multi-objective optimization space that represent design trade-
offs in terms of performance metrics versus area/power costs.
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Fig. 1: ESL design flow for SoC accelerators.

State-of-the-art HLS tools offer excellent intra-process optimiza-
tion but very limited support for inter-process optimization. Hence,
choosing the best implementation of each component for a given
SoC and combining these implementations into an optimal system
design are still manual, time-consuming tasks. To assist SoC de-
signers in this effort, CAD-tool vendors provide libraries of inter-
face primitives. These offer an application programming interface
(API) to specify communication and synchronization among pro-
cesses at the system-level as well as synthesizable implementations
that can be combined with the implementation of each process in
a modular fashion [4, 7, 16]. Examples of these primitives are the
blocking read/write commands to receive/send messages in a syn-
chronized way on a point-to-point channel between two processes.
By encapsulating low-level signals, absorbing the timing differ-
ences across processes, and providing pre-designed implementa-
tions, these interface libraries support Transaction-Level Modeling
(TLM) [8] and relieve SoC designers from the tedious task of cre-
ating a communication protocol.

On the other hand, the lack of automated tools for performance
analysis and optimization at the system level makes the use of these
libraries very challenging. The larger the number of components
the harder the challenge. In particular, since the interface primi-
tives are called within separate SystemC processes, they introduce
serialization into the data transfers across the corresponding com-
ponents. This may cause performance loss and, in the worst case,
system deadlock. We address this problem by making three contri-
butions: (1) a formal model to capture the impact of the interface
primitives on system-level performance; (2) an efficient algorithm
that, for a given system design, optimizes the use of these primi-
tives in each process while ensuring absence of deadlock; and (3) a
CAD tool to optimize the implementation of the computation part
within each process and the inter-process communication channels.

Combined these contributions support a novel design method-
ology that enables compositional HLS and efficient system-level
design-space exploration, thus improving ESL design productivity.

2. MOTIVATING EXAMPLE
The graph of Fig. 2(a) models a simple system consisting of five

processes (represented by vertices P2 . . . P6) communicating via
eight point-to-point unidirectional channels (represented by arcs
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Fig. 2: A motivating example.

a . . . h.) When specifying this kind of systems, designers develop
also a testbench that captures the environment in which they oper-
ate: this is modeled by vertices Psrc and Psnk, which produce and
consume data for the system under design, respectively.

A portion of the synthesizable SystemC code of process P2 is
reported in Listing 1. The process behavior is specified in an un-
timed or loosely-timed TLM style [15] following a common struc-
ture: after a reset phase (lines 13-14), there is the main infinite
loop (lines 15-27). Each loop iteration consists of three phases: in-
put reading (lines 16-18), computation (line 20, hereby omitted),
and output writing (lines 22-26). In particular, during the input
and output phases the process communicates with other processes
using the interface primitives. With the get primitive it acquires
input data that are stored in a local memory array (lines 16-18).
With the put primitives it emits output data on channels b, d and
f , respectively. The process executes continuously the sequence
of three phases unless suspended due to either an explicit wait()
statement in the computation phase or implicit waits present in the
implementation of the interface primitives, as explained next.

The interface primitives used in this example implement a block-
ing communication protocol similar to the one described in [4]: a
put in a process (e.g. ou1.put in P2, line 23) is associated to a
corresponding get in the communicating process at the other hand
of a channel (e.g. a get in P3 on channel b); only when both pro-
cesses reach the corresponding statements the transfer of data can
occur. Conversely, if a process reaches its statement before the
other, it gets suspended until the other is also ready to communi-
cate. The use of such blocking protocol is very common and all
CAD vendors support it by providing API and implementation li-
braries for similar interface primitives1 Notice that the logic to sus-
pend the protocol is transparent to the user as it is specified within
the implementation of the get and put primitives.

The use of predefined interfaces simplifies the compositional
design and synthesis of SoCs but it is not risk free. Although
EDA vendors guarantee the timing and functional correctness of
the interface implementations, designers may accidentally intro-
duce system-level bugs or performance degradation when assem-
bling components through these primitives. Debugging these prob-
lems is time consuming as it may requires many simulations and
repeated HLS tool runs.

The serial nature of the SystemC process induces an order not
only among the three main phases of its behavior (input, compu-
tation, and output) but also on the execution of the primitive state-
ments. For instance, process P2 first sends data to P3 on channel b
with ou1.put, then to P6 on d with ou2.put, and finally to P5 on
f with ou3.put. Similar orders are defined among multiple get

1Other protocols are also provided. In this paper we focus on blocking protocols but
our approach applies also to non-blocking protocols as described in [6].

Listing 1: Synthesizable SystemC code of process P2.

1 #include <systemc.h>
2 #include <hls_interface_library.h>
3 SC_MODULE(P2) {
4 sc_in<bool> clk, rst;
5 b_get_socket<packet_t> in1;
6 b_put_socket<packet_t> ou1, ou2, ou3;
7 SC_CTOR(P2) {
8 SC_CTHREAD(p2, clk.pos());
9 reset_signal_is(rst, false);

10 //...
11 }
12 void p2(void) {
13 // reset ...
14 wait();
15 while(true) {
16 // input
17 for (int i = 0; i<2; i++)
18 { data_in1[t] = in1.get(); } //from P_{src}
19 //via channel a
20 // computation ...
21

22 // output
23 ou1.put(data_ou1); //to P_3 via channel b
24 for (int i = 0; i<3; i++)
25 { ou2.put(data_ou2[i]); } //to P_6 via channel d
26 ou3.put(data_ou3); //to P_5 via channel f
27 }
28 }
29 private:
30 packet_t data_ou1, data_ou3;
31 packet_t data_in1[2], data_ou2[3];
32 };

statements. For instance, we could assume that the code of process
P6 was specified such that it first reads data from P5, then from P2,
and finally from P4. If this was the case, however, the combination
of these specifications would lead to a major problem: deadlock!
In fact, process P2 is prevented from sending data to P5 on channel
f because it is suspended on its ou2.put on channel d waiting to
communicate with P6. But P6 is suspended on its get on chan-
nel g waiting to read from P5, which itself cannot reach the put
statements in the output phase because is suspended on its get on
channel f waiting for P2.

To avoid deadlock is necessary to properly reorder the interface-
primitive statements within the processes. For instance, we could
reorder the put statements of P2 such that channel f is written be-
fore channel b, which in turn is written before channel d and, at the
same time, reorder the get statements of P6 such that channel e is
read before g, which is read before d. But the task of detecting and
removing deadlock by code inspection becomes much harder with
the complexity of the design. In the simple example of Fig. 2(a)
there are already 36 possible order combinations. More generally,
this number grows as:

∏
p∈P

(
(|in_chan(p)|)! × (|out_chan(p)|)!

)
,

where P is the set of processes.
Further, not all deadlock-avoiding orders are the same in terms

of system performance: e.g. the second order given above avoids
deadlock but yields a design with a suboptimal data-processing
throughput because it forces a serial execution among processes
that could run concurrently. One may think that such serialization
would only impact the simulation speed and not the final imple-
mentation because, after all, hardware is inherently parallel. But
this is not the case. The serial nature of the SystemC process in
combination with the use of interface libraries and HLS may impact
negatively the performance of the final hardware implementation.

Example. Consider the finite state machine (FSM) of Fig. 2(b) that is
generated by a commercial HLS tool as part of the synthesis of the RTL
implementation (Verilog code) for process P2 of Listing 1. This FSM is the
result of combining the implementation of the blocking primitives for the
I/O phases of P2 from the interface library (where the protocol is already
implemented in a cycle-accurate manner) with the HLS of the computation
phase. The resulting hardware circuit also iterates among the input, com-



putation, and output phases. There are as many I/O states as the number of
get/put statements to be executed in the original process. The self-loop
in each of these state allows the circuit to stall for multiple clock cycles
when it must wait on a given channel for the circuit implementing the cor-
responding process to be ready for a data transfer. The chains of input and
output states are separated by a chain of computation states. The length
of this chain depends on the micro-architecture obtained through HLS: the
more parallel is the micro-architecture, the shorter is the chain of compu-
tation states (but, generally, the more costly is the circuit implementation
in terms of area and power.) A similar FSM is generated for each of the
processes of Fig. 2(a). While each FSM enforces a serial progress of the
computation of its circuit, naturally all hardware circuits can progress in
parallel. Still, the degree of parallelism in the operation of the RTL imple-
mentation corresponds directly to the degree of concurrency in the execu-
tion of the corresponding SystemC specification. At the core of this corre-
spondence there is the relative ordering of the I/O primitive statements. In
particular, a shrewd order reduces the number of clock cycles that a com-
ponent circuit spends waiting for a successful communication. This order,
however, depends also on the micro-architectural choices made during the
HLS synthesis of the computation part of each process. 2

Hence, in addition to the question of how to avoid deadlock effi-
ciently, there is a second question: is it possible to jointly optimize
the intra-process computations and the inter-process communica-
tions in order to maximize the system performance? The rest of the
paper will answer positively to both questions.

3. PERFORMANCE ANALYSIS
The previous section showed how the main infinite loop in the

synthesizable SystemC processP2 translates into the cyclic-structure
FSM of Fig 2(b), which controls the hardware circuit obtained from
P2 through HLS. A similar FSM is synthesized as part of the im-
plementation of each other process in the system. Since pair of
processes communicate via a blocking interface, the implementa-
tion of the channel connecting the corresponding pair of circuits
translates also in a cyclic structure, with request/acknowledge sig-
nals controlling the synchronized data transfers. In summary, the
resulting hardware implementation of the overall system is char-
acterized by a set of cyclic control structures, which have various
lengths and interact in a way that is determined by the topology
of the system specification. The performance of such deterministic
concurrent system can be formally modeled using Timed Marked
Graphs. This is a sub-class of Petri Nets can efficiently model con-
current systems, particularly those with periodic behavior [3, 14].

Definition 1. A timed marked graph is a graph defined as a 5-
tuple G = (P, T, F, d,M0), where P is a finite set of places, T
is a finite set of transitions, F ⊆ (P × T ) ∪ (T × P ) is a set of
arcs, d : T → N+ is a timing function, and M0 : P → N+ is
the initial marking, and such that P ∩ T = ∅ ∧ P ∪ T = ∅ and
∀p ∈ P.(|{t.(t, p) ∈ F}| = |t.(p, t) ∈ F | = 1).

In other words, a TMG is a bipartite directed graph with two
kinds of vertices (places and transitions), where each place has ex-
actly one incoming edge and one outgoing edge; the timing func-
tion associates a delay to each transition; places can hold zero or
more tokens; transitions cannot hold tokens, but they can fire; the
initial marking specifies how many tokens each place holds before
any firing. A firing creates a new marking by moving tokens around
in the graph. A transition is enabled to fire when the place on each
of its incoming edges has at least one token. When a transition
fires, it takes a token from each of its incoming places and puts a
new token into each of its outgoing places. While the firing activity
may change the overall number of tokens in a TMG G , the num-
ber M0(c) of tokens that are present on a cycle c of G is invariant
under any firing sequence.

Definition 2. The cycle time π(t) of a transition t of a TMG G
is the average time separation between two consecutive firings of t
and its reciprocal gives the average firing rate of t.
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Fig. 3: The TMG model of P2 in Listing 1 and Fig. 2.

If G is strongly connected, then a firing sequence eventually leads G
back to the initial marking M0 after firing every transition an equal
number of times. All transitions of a strongly-connected TMG G
have the same cycle time, which is called the cycle time of G and de-
noted as π(G). This is a natural performance metric for the system
modeled by G because its reciprocal is the rate of consumption/pro-
duction of tokens, i.e., the throughput of the system.

Definition 3. The cycle mean of cycle c of TMG G is the ratio
of the number M0(c) of tokens that are present on c divided by the
sum of the delays of its transitions, i.e., µ(c) = M0(c)∑

t∈c d(t)
.

The cycle time π(G) of G is equal to the reciprocal of the min-
imum cycle mean across all cycles in G . A cycle c with µ(c) =
π(G) is critical cycles. Calculating the minimal cycle mean and
identifying the critical cycles by the Definition 3 is impractical,
since it requires the enumeration of all the elementary cycles of
G . More efficient methods exist, based on linear programming [12]
or graph theory [5]. For our purposes we adopted Howard’s algo-
rithm [2], a polynomial-time algorithm in the size of the problem
that is well-known to the stochastic-control community [5].

We developed a TMG model that allows us to complete an effi-
cient perform analysis of the systems introduced in Section 2 with-
out the need of time-consuming simulation. We present the model
for the case of blocking primitives but it can be applied also to other
primitives such as non-blocking 2. The computation phase of a pro-
cess is modeled by a single place connected to a transition whose
time delay is equal to the latency of the micro-architecture imple-
mentation obtained through HLS. For the I/O phases, each channel
used by the process is modeled by two places (a put-place and a
get-place) that feed the same channel transition, whose time delay
is equal to the minimum latency of the channel.

Example. Fig. 3 shows the portion 3 of TMG associated with process
P2 in Listing 1 and Fig. 2. The serial nature of the process translates into
a chain of transitions in the TMG: the transition associated to channel a
is followed by transition L2 that models the computation phase of P2 and
then by three transitions, for channels b, d and f , respectively. Each channel
transition is fed by a place modeling the get (put) statement in P2 and a
place modeling the put (get) statement in the corresponding process on that
channel. For instance, the transition for channel b is fed by a put-place for
P2 and a get-place that is part of the model of P3. 2

Since the process iteratively executes the three phases, the first
read operation, e.g., get21 follows the last write operation, e.g.,
put23. For the initial marking, a token is placed in the first get-place
of each process, e.g., get21 to model that its behavior starts with
the first read operation. Also, a token is placed on the put-place of
the test-bench process ( e.g., putsrc1 ) to model the behavior of an
environment that is always ready to provide new input data: when
transition a fires a new token will be available (after some latency)
in putsrc1 .

4. CHANNEL ORDERING
In Section 2 we explained how the system performance depends

both on the micro-architecture implementing the computation phase
of each process and the relative ordering of the put and get state-
ments in their I/O phases. The graph of Fig. 4(a) represents the
2The model for the non-blocking case is given in [6].
3The complete TMG for the system is reported in [6].
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result of running HLS on the system of graph Fig. 2: each vertex is
now annotated with a number representing the latency of the pro-
cess computation, which depends on the synthesized microarchi-
tecture; each arc is annotated with the minimum latency required to
complete the transfer of one data item on the corresponding chan-
nel 4 With these latencies values, the suboptimal ordering discussed
in Section 2 yields a data-processing throughput equal to 0.05. This
is the reciprocal of a cycle time equal to 20, which can be computed
with the method presented in Section 3. However, the optimum cy-
cle time is actually 12, i.e. 40% better. This is obtained by ordering
the put statement of P2 to access the channels as (b, d, f ) and the
get statements ofP6 to access the channels (d, g, e) (see Fig. 4(c).)
Algorithm 1 finds this optimum ordering while guaranteeing also
absence of deadlock.

Algorithm Description. The algorithm is a sequence of three
main steps (lines 1-5): Forward Labeling, Backward Labeling and
Final Ordering.

Forward Labeling performs a modified depth-first traverse of the
system graph starting from the source Tsrc, while using a queue to
track the vertex to be considered next (line 10-11). While visiting
a vertex, each of its outgoing arcs e = (x, y) is considered (line
13) following any order among its put statements (this could be
an order given by the designer or the suboptimal of Section 2.) The
head of arc e is labeled with (w, t), where w ∈ N+ is a weight and
t ∈ N+ is a timestamp. The weight is equal to the sum of three
values: the maximum among the weights associated with the arcs
entering x, the sum of the latency of each arc leaving x, and the
latency of x (line 17). The assigned timestamp is a global progres-
sive number for the forward traversal. Finally, if arc e is the last arc
visiting y then y is put in the queue.

Example. When Forward Labeling reaches P2, the outgoing arcs are
considered in the order f, b, d. Hence, the corresponding timestamps are
2, 3, and 4. The weight associated to these arcs is 13, i.e., the sum of
MaxInArcWeight(P2) = 3, SumOutArcLatency(P2) = 5, and
GetVertexLatency(P2) = 5. See the red labels marking the arc heads
in Fig. 4(b). 2

Backward Labeling is a similar procedure and is not reported
here for lack of space 5 The procedure starts from the sink vertex
Tsnk and traverses the graph backward. The key difference is that
when a vertex is visited, its incoming arcs are considered following
the increasing order of the timestamps which have been assigned to
the arc heads during Forward Labeling. Also, the weight is com-
puted as the sum of: the maximum value of the weights associated
4A data item can be decomposed in packets to be transferred through multiple
put/get iterations.
5The complete algorithm is reported in [6].

Algorithm 1: Channel ordering algorithm.
1 Procedure ChannelOrdering(G)

Data: G = 〈V,E〉 is a direct graph
Result: G′ where the arcs have been ordered

2 G′ ← ForwardLabeling(G)

3 G′′ ← BackwardLabeling(G′)

4 G′′′ ← FinalOrdering(G′′)

5 return G′′′

6 Procedure ForwardLabeling(G)
7 CreateEmptyQueue(queue)
8 SetAllNodesNotVisited(V )
9 timestamp← 1

10 Enqueue(queue, SourceV ertex)
11 while IsNotEmpty(queue) do
12 x← Dequeue(queue)
13 foreach arc ∈ OutArcs(x) do // arc is (x, y)
14 MarkAsVisited(y)
15 if LastVisitingArc(arc, y) then
16 Enqueue(queue, y)

17 weight← MaxInArcWeight(x)+
SumOutArcLatency(x)+
GetVertexLatency(x)

18 SetArcHeadWeight(arc, weight)
19 SetArcHeadTimeStamp(arc, timestamp)
20 timestamp← timestamp + 1

21 return G

22 Procedure BackwardLabeling(G)
23 //omitted

24 Procedure FinalOrdering(G)
25 foreach x ∈ Vertices(G) do
26 order ← 1
27 foreach arc ∈ OrderByHeadWeight(InArcs(x)) do
28 SetHeadOrder(arc, order)
29 order ← order + 1

30 order ← 1
31 foreach arc ∈ OrderByTailWeight(OutArcs(x)) do
32 SetTailOrder(arc, order)
33 order ← order + 1

34 return G

with the arcs leaving x, the sum of the latency of each arc enter-
ing x, and the latency of x. The assigned timestamp is a global
progressive number for the backward traversal.

Example. When the backward-labeling procedure reaches P6, its in-
coming arcs are considered following the order d, g, e. The weight asso-
ciated to these arcs is 10, i.e., the sum of MaxOutArcWeight(P6) = 2,
SumInArcLatency(P6) = 6, and GetVertexLatency(P6) = 2.
See the blue labels marking the arc tails in Fig. 4(b). 2

Final Ordering sorts the get statements of each process accord-
ing the ascending values of the head weights (line 28) and the put
statements according to descending values of the tail weights (line
32). In both cases, ties among the weight values are broken ac-
cording the ascending values of the timestamps: this tie-break is
necessary to avoid certain deadlock situations, which may occur in
graphs with some symmetric structures.

Example. Since the head weights of arcs e, d, g are 19, 13, 17, process
P6 read first from channel d, then g, and finally e. Also, since the tail
weights of arcs b, d, f, are 16, 10, 13, process P2 writes first channel b,
then f and finally d. 2

The basic idea of the algorithm is to sort the chain of put state-
ments in each process by giving priority to those statements that
start a path whose aggregate latency is longer than the others and
to sort the chain of get statements in each process by giving pri-
ority to those that end a path whose aggregate latency is shorter
than the others. The result of this choices is an optimization of the
system performance.

The overall complexity of the algorithm is O(n log(n)) in the
size of the graph. It requires two depth-first visits that take time
O(|E|) and space O(|V |) in the worst case to store the verices in
the queue. The sorting of the arcs takes O(|E| log(|E|)), which
dominates the overall complexity.



5. DESIGN METHODOLOGY
In Section 4 we described how the algorithm for producing the

optimal channel reordering is based on the process latencies, de-
fined by the synthesized micro-architecture implementing their com-
putation phase. Varying these latencies may result in a different
ordering and, in turn, a different system-level performance. To ex-
plore the design space we developed the methodology based on the
idea of separation of concerns [10] between computation (optimiz-
ing of process latencies) and communication (channel reordering).
As shown in Fig. 5, the starting point is a system model with a set
of Pareto-optimal µ-architectures that differ in terms of latency and
area occupation. The designer can also specify the targets (e.g. the
target cycle time TCT ) of the overall system. At each iteration,
given the current cycle time (CT) and the associated critical cycle
computed with the performance model presented in Section 3, the
goal is to optimize the overall system to meet the given constraints
by first exploring the available µ-architectures and then applying
the channel ordering based on the resulting process latencies.

Given the target cycle time TCT , we define the performance
slack sp as sp = TCT − CT . If sp > 0, the constraint is met and
we can thus perform area optimization (area recovery). If sp ≤ 0,
we reduce the latency of the processes on the critical cycle (timing
optimization).

Given the set of processes P and the implementations I , a binary
variable xi,p ∈ P × I denotes if the final system includes imple-
mentation i for process p. Each process must have one and only
one implementation. The latency gain li,p is the (positive or neg-
ative) difference between the current latency of process p and the
latency of i. The area gain ai,p is the (positive or negative) differ-
ence between the current area of p and the area of i. These values
represent the differences introduced by selecting implementation i
instead of the current one for process p.

We define two problems.
Area recovery: given a system with sp > 0, determine the IP

configurations that minimize the area occupation without affecting
the critical cycle (i.e., maintaining CT < TCT ).
This problem is a variant of the knapsack problem to maximize∑

i,j xi,j ∗ ai,j while respecting constraint
∑

i,j xi,j ∗ (−li,j) ≤
sp for the processes on the critical cycle. Since the implementa-
tions are Pareto optimal, moving towards a positive area gain cor-
responds to a negative latency gain and vice versa. �

Timing optimization: given a system with sp < 0, determine the
IP configurations to minimize the difference CT − TCT .
This problem corresponds to a classical optimization problem, where
we aim at maximizing

∑
i,j xi,j ∗ li,j , i.e., the cumulative latency

gain for all the processes j on the critical cycle. �

These problems can be formulated as instances of Integer Linear
Programming (ILP), with constraints to discard the configurations
already optimized. The formulation with area constraints is the
dual problem and is omitted due to lack of space.

6. EXPERIMENTAL RESULTS
We developed ERMES, a prototype CAD tool based on the pro-

posed methodology. It uses the GLPK (GNU Linear Programming
Kit) package to solve the ILP formulations. We applied ERMES
to the case study of an MPEG-2 Encoder, which had been previ-
ously designed in our team [11]. This design was refactored so
that each process is specified using a loosely-timed TLM style fol-
lowing the common structure described in Section 2. The result-
ing system-level specification consists of 26 processes described
in synthesizable SystemC and interconnected through 60 blocking
channels (Table 1). These processes are connected to two addi-
tional processes which act as a test-bench by providing the image
streams and receiving the encoded images, respectively.

The characteristics of the MPEG-2 Encoder algorithm are good
to highlight the main challenges of designing a complex SoC accel-
erator. In particular, its system-level block diagram contains struc-
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Fig. 5: Outline of the proposed methodology.

Table 1: Experimental setup of the MPEG-2 Encoder.
Processes 26 Channels 60
Lines of Code ∼9,000 Image Size (pixels) 352x240

HLS knobs loop pipelining, Pareto points 171loop unrolling, ..
Technology 45nm Frequency 1GHz

tures that may cause deadlock or performance degradation if the
communication protocol is not properly configured: these include
recovergent paths (as for the example of Fig. 1) and feedback loops.

By applying the method for compositional HLS and design-space
exploration proposed by Liu and Carloni [11], we derived many al-
ternative Pareto-optimal µ-architectures for the inner computation
core of each process. Since computation is not intertwined with
communication, these characterizations are not affected by channel
ordering and can be performed as a preprocessing step. We per-
formed the characterization of the channel latencies based on the
quantity of the data to be transferred and the physical constraints
imposed by the HLS tool for the channels. These latencies range
from 1 to 5,280 clock cycles and do not depend on channel ordering
or the process implementations.

Using the approach proposed in [11], we obtained also a set of of
Pareto-optimal implementations for the overall system. Notice that
these implementations are optimal among all those that can be ob-
tained without making any automatic modification to the SystemC
code (including possible reordering of the interface-primitive state-
ments within the processes.) Indeed, they are based on the choice
of a conservative ordering that guarantees absence of deadlock but
may introduce unnecessary serialization of processes that could run
in parallel, similarly to the situation described in Section 2. Without
the support of a tool like ERMES, it is difficult to go beyond such
conservative ordering because there are simply too many possible
ordering combinations to consider, with the additional risk of intro-
ducing a deadlock. Furthermore, the identification and correction
of deadlock situation typically require multiple lengthy simulations
of the entire SystemC design.

Instead, the applications of the proposed methodology and the
ERMES tool allows us to perform richer design-space explorations
and to obtain better implementations. To show its capabilities we
report the results obtained starting from two implementations from
the given set. Implementation M1 has the best performance as it
features the fastest implementations for the computational part of
each process: specifically, it delivers a CT of 1,906 KCycles with
an area occupation of 2.267mm2. ImplementationM2 is the result
of trading-off performance for a smaller area occupation: it has a
CT of 3,597 KCycles with an area of 1.562mm2.

When applied to implementation M1, ERMES is capable of de-
tecting some unnecessary serialization of processes that could run
in parallel. By reordering the interface primitives of some pro-
cesses, it resolved this issue without making any change on their
core computational parts. The result is a 5% improvement of the
CT without any increase in area occupation.

When applied to implementation M2 with different input con-



straints, ERMES can perform automatically two different types of
iterative design-space explorations. The left-hand side of Fig. 6
shows a timing-optimization exploration as the result of imposing a
constraint on the target cycle time TCT = 2, 000 KCycles with the
goal of substantially improving performance. The right-hand side
of Fig. 6 shows an area-recovery exploration that is based on run-
ning ERMES with a much more relaxed constraint (TCT = 4, 000
KCycles) in order to reduce the area occupation. Even if they start
from the same implementation M2, the two explorations present a
different evolution due to the different input constraints.

In the first exploration, ERMES immediately generates a new im-
plementation that meets the target cycle time while increasing the
area occupation. Then, it tries unsuccessfully to reduce the area
overhead, as the second implementation violates the given con-
straint. The situation is recovered in the third iteration and the last
one confirms that no further changes can be applied. The final im-
plementation gives a speed-up of 2x with respect to the initial one,
with an area overhead of 44.57%.

In the second exploration the starting point already meets the
target cycle time. Hence, ERMES turns to optimize the area. The
first generated implementation gives a significant area reduction but
violates the timing constraint. In the following iteration ERMES
removes the timing violation without affecting the area occupation.
After the last iteration, the resulting implementation yields an area
reduction of 32.46% with respect toM2, in exchange for a timing
degradation of less than 1%.

ERMES automatically executes very interesting optimizations.
For example, during the third iteration of the first exploration, it
improves the system performance by selecting much faster imple-
mentations for some of the processes on the critical cycle. The
corresponding area overhead is recovered by selecting smaller im-
plementations for other processes (including other processes on the
critical cycle), provided that the cumulative balance of their latency
gains remains positive. As a result, the cycle time is effectively re-
duced, with minor additional changes in the area occupation of the
final design. Notice that, as it generates a new implementation, the
algorithm for channel reordering optimizes the performance in al-
most all the cases, but the last ones where no changes are applied
to the process latencies.
Analysis of scalability. Since the complexity of the proposed ap-
proach only depends on the system topology, we designed a set
of synthetic SoC benchmarks to evaluate also its scalability. We
generated graphs with up to 10,000 processes interconnected with
15,000 channels, along with a corresponding set of hypothetical µ-
architectures. The resulting benchmarks have characteristics simi-
lar to those of the MPEG-2, including the presence feedback loops
and reconvergent paths. The experimental results demonstrate that
our approach scales well, as ERMES takes a time of the order of a
few minutes in the worst cases [6].

7. RELATED WORK
The serialization of the communication that may arise with the

use of commercial HLS tools is a problem that has received limited
attention in the literature. One may think that this problem can be
solved by breaking the channel operations in multiple concurrent
processes. However, this often leads to inefficient designs because
HLS tools create as many memory ports as the number of con-
current processes insisting on that memory and the memory size
scales badly with the number of ports. Many designers thus prefer
to reduce the number of processes and use a design style with three
phases (input reading, computation and output writing) like the one
assumed in Section 2. This simplifies system-level analysis and op-
timization and has been effectively adopted in many works based
on synchronous dataflow and Kahn process networks (e.g. [9, 19]).
These models of computation, however, lead to communication
channels based on FIFOs, which must be carefully sized [10]. Also,
they do not handle the serialization issues introduced by the inter-
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Fig. 6: Design-space exploration starting from M2.

face primitives offered with modern HLS tools. Deadlock detection
has been studied for blocking primitives in CSP systems [17], but
the interactions and the ordering among the channels was not con-
sidered. Deadlock removal has been addressed in the context of
SystemC simulation kernels [1], but no approaches were proposed
for preventing a deadlock and optimizing the system performance
in hardware designs described in SystemC.

8. CONCLUSIONS
We proposed a novel methodology and an associated CAD tool

for supporting compositional HLS of complex SoC accelerators.
It focuses on the integration of IP components through the use of
the interface libraries offered by HLS commercial tools and co-
optimizes the computation micro-architecture and the communica-
tion channels. The experimental results show the efficiency of our
approach in the automatic optimization of a complex design. Future
work will involve the co-optimization of the memory elements.
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