
Power-Aware NoCs through Routing and Topology Reconfiguration
Ritesh Parikh, Reetuparna Das and Valeria Bertacco

Department of Computer Science and Engineering, University of Michigan
{parikh, reetudas, valeria}@umich.edu

ABSTRACT
With the advent of multicore processors and system-on-chip designs,
intra-chip communication demands have exacerbated, leading to a grow-
ing adoption of scalable networks-on-chip (NoCs) as the interconnect
fabric. Today, conventional NoC designs may consume up to 30%
of the entire chip’s power budget, in large part due to leakage power.
In this work, we address this issue by proposing Panthre: our solu-
tion deploys power-gating to provide long intervals of uninterrupted
sleep to selected units. Packets that would normally use power-gated
components are steered away via topology and routing reconfigura-
tion, while Panthre provides low-latency alternate paths to their desti-
nations. The routing reconfiguration operates in a distributed fashion
and guarantees that deadlock-free routes are available at all times. At
runtime, Panthre adapts to the application’s communication patterns
by updating its power-gating decisions. It employs a feedback-based
distributed mechanism to control the amount of sleeping components
and of packets detours, so that performance degradation is kept at a
minimum. Our design is flexible, providing a mechanism that design-
ers can use to tradeoff power savings with performance, based on ap-
plication’s requirements.
Our experiments on multi-programmed communication-light work-

loads from the SPEC CPU2006 suite show that Panthre reduces total
network power consumption by 14.5% on average, with only a 1.8%
degradation in performance, when all processor nodes are active. At
times when 15-25% of the processor cores are communication-idle,
Panthre enables leakage power savings of 36.9% on average, while
still providing connected and deadlock-free routes for all other nodes.

Categories and Subject Descriptors
C.1.2 [PROCESSORARCHITECTURES]: Multiprocessors—Inter-
connection Architectures

General Terms
Design,Algorithms

Keywords
network-on-chip, power-gating, routing-reconfiguration

1. INTRODUCTION
Networks-on-chip (NoCs) have become increasingly widespread in

recent years due to the extensive integration of many components
in modern multicore processors and SoC designs. NoCs are scal-
able and flexible, however, they are crippled by excessive power con-
sumption [6]. Particularly problematic for NoC structures is leakage
power, which is dissipated regardless of communication activity or
lack thereof. At high network utilization, static power may comprise
more than 74% of the total NoC power at a 22nm technology node
[16], and this figure is expected to increase in future technology gen-
erations. At low network utilization, leakage power is an even higher
fraction of the total power budget for the NoC. With growing system
integration, larger and larger portions of the NoC will be only lightly
used at any point in time, with the lightly used set varying with each
application and even within a single application over time.
As the NoC is a distributed and shared resource, conventional power-

gating schemes [7] that opportunistically put components to sleep dur-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
DAC 2014, June 1-5, 2014, San Francisco, California, USA.
Copyright is held by the owner/authors. Publication rights licensed to ACM.
ACM 978-1-4503-2730-5/14/06 ...$15.00.

ing periods of no activity are ineffective. The problem is two-fold:
i) even when lightly utilized, NoC components often do not observe
long idle-periods, failing even to compensate for the energy spent in
the power-gating event itself, and ii) packets that encounter sleeping
components in their paths accrue latencies due to wake-up delays.
Power-gating at a finer granularity than entire routers [11] provides
more sleeping opportunities. However, it further worsens the prob-
lem of accumulated wakeup latencies, as it puts components to sleep
more aggressively. Early wakeup with lookahead routing was pro-
posed to compensate for wakeup latency [10]. However, for a typical
2-stage pipeline router, lookahead can only hide a small fraction of
the wakeup latency, which is typically many cycles. In our evalua-
tions with multi-programmed workloads, we have identified that such
conventional schemes often lead to significant application slowdown.
A workload stressing only a portion of the network creates opportu-

nities for power-gating the remaining, lightly-used portions of the net-
work. However, deterministic routing algorithms provide fixed routes
among source-destination pairs, and in practice do not allow for isola-
tion of any network component. A possible solution is to use an adap-
tive routing algorithm and deflect packets toward active units when
they encounter a sleeping component on their regular path. However,
this approach requires additional resources to maintain deadlock free-
dom, which must be kept active at all times. Moreover, accruing mul-
tiple deflections leads to increased packet latency.
Our solution, called Panthre (for Power-aware NoC through Rout-

ing and Topology Reconfiguration), overcomes these issues by mod-
ifying routing paths periodically so to exclude lightly used portions
of the topology. When Panthre determines that the set of power-
gated components must be updated, it executes route reconfiguration
to avoid the new set of power-gated components, while providing
deadlock-free routes for all packets. This step eliminates deflections
and the need for dedicated resources to support deadlock-freedom.
Panthre leverages the rich set of alternate paths that are available in
NoC fabrics to keep traffic away from sleeping components. It also
proactively adapts to application demands by power-gating only those
network components that are under-utilized. Based on our analysis,
Panthre may disable multiple router resources, adding up to 99% of
the router’s static power (Section 3.1).
Naturally, Panthre leads to an increase in traffic on the links kept

active, by channeling traffic away from sleeping components. It is
therefore essential for Panthre that substantial low-usage links exist
in the NoC. To this end, we conducted a study, whose findings are
plotted in Figure 1. The plot shows the contribution of network links
to total network activity. Our testbed consisted of an 8x8 mesh CMP
running a network-light multiprogrammed mix of applications from
the SPEC CPU2006 suite. Links are sorted by increasing utilization
during the execution, and the plot on the right indicates what fraction
of network traffic (Y axis) was carried out by a given fraction of sorted
links. The plot on the left is an enlargement of the contribution by the
bottom 30% of active links: only 10% of the traffic travels through
the bottom 30% of used links. Beyond the 30 percentile of utilization,
this disparity is no longer obvious, thus, Panthre’s goal is to identify
and leverage the 30% least used links, so to maximize power savings
without a significant load increase on active links.

�

��

��

��

��

���

� �� �� �� ��� �
��

��
��

��
�	

�
�

��

�
��

�

�

�

��

��

� �� �� 	��
��

��
��

��
�	

�
�

��

�
��

�

����

����
��
������
���
���

������
��
��	������������	
���
�
��
������

Figure 1: Fraction of traffic load shared by the least utilized links. The
fraction of traffic transferred by the bottom 30% of used links is small, thus
Panthre targets this pool for power-gating without burdening other links.

��������
���	�
��	

�
��������������
������

�������	���	��
��
�	�������

�������	��������
��
	���
��	���	��
������	�

���	���
	���
���	��������
	���������

���	�

������	����
�����
	���

����	� ����!���
��������
��������	

��
	��
����
	�

��������	
�
�	�
����
��

" # $

% & '

(�)

*��	�����+
������
��
	���

��������!��������
�����!��
��	����

 ����

���

�
�
�

���

�
�
�

�����!,� �����
	�����������

Figure 2: Overview of Panthre. Panthre consists of four components at each
router: a) a usage activity count and compare (ACC) framework to identify
lightly used components, b) an ON/OFF decision engine that determines the set
of components to be power-gated, c) a Panthre-enabled route computation unit
that can execute in the background without interrupting regular NoC operation,
and d) an anomaly-based feedback algorithm that tracks application’s needs
dynamically and send updates to the ON/OFF engine.

Panthre deploys a simple and distributed framework for activity
collection and subsequent exclusion of low-usage components. Even
though frequent decisions to power-gate components are made locally
at each router, Panthre’s novel reconfiguration solution ensures unin-
terrupted full connectivity and deadlock-freedom of the NoC topol-
ogy globally at runtime. Panthre, by construction, is also free of
reconfiguration-induced routing deadlock [9], thus eliminating the need
for costly deadlock-recovery protocols [2, 14]. Finally, it can recon-
figure frequently without ever interrupting normal network operation.
In our evaluation with multiprogrammed benchmarks running on a

8x8 mesh network, Panthre was able to reduce NoC power consump-
tion by 14.5% on average for communication-light workloads, while
causing less than a 2% application slowdown. In contrast, power-
gating with lookahead [10, 11], leads to 9-11% application slowdown
if implemented at a router level, while causing as much as 20% per-
formance loss if fine-grained power-gating is applied. Finally, Pan-
thre leakage power savings can be as much as 36.9% on average,
under the fair assumption that 10-16 nodes of a 64-node CMP are
communication-idle at any given time.

2. RELATEDWORK
A number of power-gating schemes have been been proposed for

NoC components, operating at different levels of granularity: routers
[10], ports [11], VCs [12], buffers [8]. However, all such schemes suf-
fer from accumulated wakeup times and excess energy spent in each
power-gating event. NoRD [2] elongates periods of router sleep by
steering light, sleep-interrupting traffic to a low-power ring network
that is always kept active. However, NoRD requires additional VC re-
sources for deadlock-freedom. In addition, NoRD requires substantial
dedicated hardware design and verification effort. Router Parking [14]
proposes to completely switch off routers associated with idle cores by
leveraging route-reconfiguration at a central node. Such a process re-
quires dedicated channels to communicate with the central entity and
typically takes a long time, often requiring to suspend network opera-
tion. As a result, such centralized schemes provide little adaptivity and
can only be applied at a coarse-granularity (entire routers), and only
when communication patterns are known well in advance. Catnap [4]
proposes the use of multiple lightweight networks in CMPs, while
applying power-gating at the network granularity to keep the perfor-
mance overhead low. However, Catnap is only applicable to CMPs
with high-bandwidth requirements, and unlike Panthre, it cannot be
utilized for fine-grained power-gating.
Finally, route-reconfiguration has been well studied in the literature

in the context of fault-tolerant routing. However, faults are rare oc-
currences, and therefore the majority of the algorithms designed for
fault tolerance are centralized and take significant time and hardware
resources. A notable exception is Ariadne [1], which describes a very
quick (4K cycles for a 64 node network) and lightweight route recon-
figuration scheme (<2% area overhead). Ariadne, however, also re-
quires suspending the NoC operation during reconfiguration and can
lead to reconfiguration-induced deadlocks. In our context, since we
frequently reconfigure the NoC routing, network suspension would be
detrimental. In contrast, our route reconfiguration algorithm, although
inspired by Ariadne, provides deadlock-freedom throughout the re-
configuration, with no interruption of the mainstream NoC activity.

�����

���
�

	
�
�

�	�
��

�� �
��
�	����

��
�	����

�����

�
����

��������	�
���� �
�
������	�
����
��	�����	
��
����

����	�����	
��
����

�����	
��������	

���	���	

�����	
�������	

��������	
�����
�

��
	�

�
�

�	�
��

��

��
��	����
��

����������

��
��	����
��

����������

����������������������	�	���������������������	�	��������
�����	�	����	�	��� !	�	�!

Figure 3: A datapath segment. 99% of the router leakage power is dissipated
in the 5 datapath segments of the baseline mesh router. Results from DSENT
at 22nm node.

3. PANTHRE DESIGN
Panthre consists of four components at each router: i) a component

usage collection framework (ACC), ii) a lightweight ON/OFF decision
engine that determines the set of links to power-gate based on local us-
age data, iii) a route compute module that updates the routing tables
using broadcasts after each decision event, without interrupting nor-
mal NoC operation, and iv) a feedback-based anomaly-detection and
management unit that communicates updates to the ON/OFF decision
engine so that Panthre can adapt dynamically to changing communi-
cation patterns in the application over time. The four components of
Panthre are highlighted in Figure 2. These four components are imple-
mented using fast and lightweight distributed hardware, with minimal
information communicated globally via a few single-bit wires. The
lightweight distributed hardware allows Panthre to adjust to applica-
tion communication needs very quickly and without ever interrupting
normal network operation.

3.1 Fine-Grained Power Gating
Panthre provides fine-grained power-gating by allowing components

to be excluded at the granularity of a single unidirectional link. Upon
careful examination of routers’ datapath, we identified that powering-
down a unidirectional link between two routers is equivalent to pow-
ering down the corresponding crossbar contact and the output port at
the upstream router, the unidirectional link itself, and the input port,
input buffer and crossbar contacts at the downstream router. We call
this combined set of components, a datapath segment: it represents
the smallest granularity at which routing-based reconfiguration can
be applied for the purpose of power-gating. The concept of a data-
path segment is illustrated in Figure 3. Fortunately, crossbar, links and
buffers consume most of the leakage power in a router, and they can all
be powered off by our approach. DSENT [16] reports that 99% of the
leakage power consumption of our baseline mesh router synthesized at
22nm can be attributed to its 5 datapath segments. The remaining 1%
is attributed to shared units such as route computation and allocators.
Note that Panthre is unable to exclude the local datapath segment (the
one connecting to the local core) in absence of alternate paths for them
to connect to the NoC. Therefore, in the rest of this paper, we exclude
these local datapath segments from our computations, and assume that
orthogonal power-saving schemes are being deployed for them.

3.2 Execution Flow
Panthre operates in epoch-based execution, with power-gating deci-

sions made at the beginning of each epoch for the entire epoch. Thus,
Panthre can ensure that power-gated components can be off for at
least one epoch-long interval. The distributed activity counter units
(ACC, Figure 2) periodically collect datapath segment usage statis-
tics by means of simple counters: the data is then used to guide the
decision process for the next epoch. Panthre’s decision process is sim-
ple: all datapath-segments that experience activity below a threshold
(ATH) are put to sleep. Thereafter, a route update process updates
routing tables to operate the network in the new configuration. Note,
however, that different communication loads require different ATH

for Panthre to be effective. A fixed value could lead to an excessive
or insufficient number of power-gated segments. Therefore, we pro-
pose a threshold update algorithm that leverages feedback from the
distributed anomaly detection units. When the number of segments
power-gated is excessive, two types of anomalies may arise: i) a large
fraction of packets suffer long detours to their destinations, and ii)
congestion due to the increased load on active links.
Thus, we detect these anomalies locally at each router and broad-

cast them globally using single-bit wires. Each ON/OFF decision en-
gine is equipped with logic to update the threshold value based on

� �

� �

�

�

� � 	

��
���
��������
����
�������

���
����
������������
��������

����
�������

����

��
��

!
���"
����
�����������
��������
�
�"����
��
�#���" ���
�#�
����"
��������
!
���
��������������
�����#
��������
����
������������
!
���
��������������
���������
�������� ����
�����������$

� �

� �

�

�

� � 	

%�
��������
���$
��
�"�

��������
����
����
������

��
��������
�������

&'(&))
����������

� �

� �

�

�

� � 	

* �����

��������

��
��

��
��

��������
	���
���

����

����

�������

 �����

Figure 4: Panthre’s reconfiguration algorithm allows power-gating decisions
to be made independently at each router, without causing disconnection or
deadlock. a) Breadth-first construction of the up*/down* spanning tree and
corresponding turn restrictions. Each turn restriction node (L-group), presents
a power-gating choice between datapath-segments. b) A minimally-connected
network configuration degenerates into a spanning tree. c) A dynamically-
adapted NoC where low-usage datapath-segments are power-gated.

this information. Note that the global anomaly broadcast ensures that
ATH values are kept consistent throughout the NoC. This aspect, in
turn, guarantees that power-gating decisions are fair, tackling the least
used segments in the NoC. In addition, Panthre naturally provides the
ability to systematically trade-off performance for power savings by
adjusting criterion for the detection of these anomalies. With Panthre,
stable and power-efficient configurations are typically attained 10-15
epochs (1 epoch is 10K cycles in our design) after a program phase
change, which is quick considering that application phases are up to
10s of millions of cycles.

3.3 Reconfiguration Algorithm
A hallmark of Panthre is that all power-gating decisions can be

made independently at each router, while deadlock-freedom and con-
nectivity among all nodes is still guaranteed throughout execution.
This allows for frequent reconfigurations, in the order of one recon-
figuration event per tens of thousands of cycles. In addition, Panthre
eliminates the need of any additional hardware to recover from patho-
logical scenarios such as deadlock. This is a great advantage in terms
of silicon cost (and power), and it also limits the impact of recon-
figuration on performance. Panthre’s reconfiguration is based on the
up*/down* routing algorithm, which breaks deadlocks by forbidding
certain through-router connections between non-local links (‘turns’).
Up*/down* routing works by organizing all network nodes on a span-
ning tree, starting from a root node of choice. Each node receives a
unique order based on its distance from the root, equidistant nodes are
ordered arbitrarily. Thereafter, all routes involving going first away
from the root node (down-traversal) and then towards it (up-traversal)
are marked invalid. This ensures deadlock-freedom, as all depen-
dency cycles involve at least one ‘down→up turn’(down-traversal fol-
lowed by up-traversal). A breadth-first construction of the spanning
tree rooted at node 0 is shown in Figure 4a. As an example, 1→4
is a down-traversal, while 4→3 is an up-traversal. Therefore, turn
1→4→3 must be marked invalid.
Note that a spanning tree, by definition, connects all the nodes in the

graph and it is acyclic. In this context, Panthre’s route-reconfiguration
algorithm leverages the fact that turn restrictions are placed between
two links when only one of them can be part of the spanning tree.
Because of this, it is possible to power-gate one of the two datapath
segments connected to a disabled turn and still maintain full network
connectivity. Figure 5 illustrates the property just outlined: the left
portion of the figure shows a spanning tree construction, such that
nodes 0,1 and 3 are already on the spanning tree rooted at node R,
while node 2 is being added. It can be noted that either link 0-2 or
link 3-2 are sufficient to connect to node 2. Since both are available,
there will be a turn restriction 0-2-3. A similar situation is shown on
the right side of the figure, where links 1-3 and 2-3 are sufficient to
reach the to-be-added node 3, and the turn restriction is 1-2-3. The
middle part of the figure shows a more general case, where both node
2 and 3 are being added to the spanning tree, using links 0-2 and 1-3,
respectively. In this case, either the turn 0-2-3 or 1-3-2 must be dis-
abled to break the cycle. Depending on the turn restriction placement,
this situation degenerates into the one shown on the left or the right.
In order to organize Panthre’s reconfiguration process, we call any

two links connected by a disabled turn an L-group, as shown in Fig-

�

��

�

�

�

�
� �

�

�

�

����	
�
����
����	

���

��������	

���

�	

��������	

���

�	

�

� �

����	�
����
����

����	

���

	�����

���������	�����

��������	
��

	������	

���

����

� �

��	�
	���
�

��	��
	��

����	

Figure 5: Each turn restriction provides an opportunity for power-gating
one bidirectional link. Panthre leverages this property to put low-utilization
links to sleep. Note how the property holds for any topology.

ure 4a. Therefore, a decision can be taken locally at each L-group, to
power-gate one of the two bi-directional datapath links, while the net-
work would still be connected globally. Note that each bi-directional
links comprises two opposite unidirectional datapath segments (see
Section 3.1). In the extreme case when all L-groups decide to power-
down two datapath segments each, the topology will degenerate into a
spanning tree, as shown in Figure 4b. Panthre leverages a distributed
and adaptive datapath-segment ON/OFF decision engine that deter-
mines the power-gating decisions locally at each L-group, according
to application communication characteristics. An example network
configuration produced using Panthre is shown in Figure 4c.
Even though many reconfiguration algorithms [1, 14] replace dead-

lock free routing paths with another set of deadlock-free routing paths
after reconfiguration, packets in-transit following the old routing paths
can cause deadlocks by interacting with packets following the new
routing paths. This is because paths valid in the old routing function
might be disabled in the new routing function, or vice-versa. To cir-
cumvent this issue, Panthre ensures that any newly developed routing
configuration complies with the turn-restrictions that were determined
for an all-powered-ON NoC configuration (e.g., Figure 4a), eliminat-
ing the possibility of reconfiguration-induced deadlocks. Since Pan-
thre only disables a link if it is part of a turn-restriction (L-group), the
corresponding turn would not be exercised, whether the correspond-
ing link is enabled or disabled. Intuitively, if all L-groups maximally
power-gate, the network topology will degenerate into a spanning tree
(Figure 4b), and none of the restricted turns would be exercised. Note
that Panthre’s reconfiguration, though transparent and deadlock-free,
may lead to reordering of packets between a source-destination pair.
For systems where point-to-point ordering is essential, such as certain
cache coherence protocols, we suggest the use of tag matching and
reordering of packets at network interfaces (e.g., Tilera [17]).
Table 1 summarizes Panthre’s leakage power saving potential when

applied to different topologies. The table reports the total number
of non-local datapath-segments in each topology and the number of
datapath-segments required to construct the spanning tree (#span-seg).
During periods of low activity, all the non-spanning datapath-segments
could potentially be power-gated without sacrificing connectivity. We
observe that Panthre has a great potential for reducing power con-
sumption in popular topologies, such as meshes and tori, up to a 51%
static power saving in a 8x8 torus.

topology #seg #span-seg %off topology #seg #span-seg %off

mesh-4x4 48 30 38 mesh-8x8 224 126 44

torus-4x4 64 30 53 torus-8x8 256 126 51

Table 1: Panthre’s leakage power saving potential for various topologies.

3.4 Panthre Implementation
In this section we discuss the detailed functionality and the hard-

ware requirements of each of Panthre’s four components as shown in
Figure 2. We then overview the application-adaptive algorithm.

Activity Counters and Comparator (ACC). An ACC unit is associ-
ated with each datapath-segment that belongs to an L-group. The ac-
tivity counters are 10-bit counters, incremented upon each flit travers-
ing the corresponding datapath-segment. In addition, a 6-bit compara-
tor (compares high order bits only) is required to compare against the
ATH value provided by the ON/OFF decision engine to determine the
power-gating status of the segment in the next epoch. An 8x8 mesh
has 49 L-groups, with 4 datapath-segments each.
We monitor usage activity on an epoch-to-epoch basis. The smaller

the epoch size, the more frequently Panthre initiates reconfiguration

��������	
��
�
����

���
	�

�	�
��������
����	��

�������������
�
	�������

������� �����
�
���
��

� �
� �
�

!"�
������

!"�#�����	
��
�
����	���
���	
�

!"�
������

��
������
���������	�

	��
���
�����

��������	�
���
	����	��

�������	�������������	�����

����������������
�������������

����������������������
����
���������

������������������������������	

��	�����������������	�

�����������������

�	���
 ����������!"������	�

Figure 6: Panthre’s route computation unit consists of an up-to-date routing
table reflecting the power-gating status of the NoC, and a default logic-based
routing unit to provide a backup route, if the routing table is unavailable due to
ongoing reconfiguration.

to quickly adapt to application characteristics. However, the lower-
bound on epoch size is constrained by the latency of our: i) recon-
figuration (∼4K cycles), and ii) statistics collection (few thousand
cycles for capturing patterns). We determined that an epoch size of
10K cycles provides a good tradeoff between reconfiguration over-
head and the amount of time Panthre takes to adapt to changing appli-
cation characteristics.We further determined that power-gating a data-

path segment that is used for more than 2
10 cycles within an interval

of 10K cycles, is always detrimental to performance. Therefore, our
activity counters are only 10-bits wide, and all datapath-segments with
even higher activity are always kept active. In addition, the ATH val-

ues are incremented or decremented in quanta of at least 24, and thus
comparing the 6 high order bits of the counters is sufficient.

The ON/OFF Decision Engine is deployed for each L-group and
maintains and updates the ATH value. It interfaces with the anomaly
management unit to decide when the ATH value should be incre-
mented or decremented. To this end, a 6-bit adder/subtracter circuit
is required at each L-group. In addition, the ON/OFF decision engine
instructs the route computation unit to initiate a route-update once new
power-gating decisions are made. For simplicity of implementation,
decision engines associated with all L-groups operate in a synchro-
nized manner. This is achieved by simply ensuring that the ATH up-
dates, the ON/OFF decisions and the route-updates are all applied only
at epoch ends. After a datapath-segment has been power-gated, a few
packets may still require to go through old routes to make forward
progress. In this situation, the datapath-segment behaves as a conven-
tional power-gating state machine: waking up on packet arrival and
sleeping again upon its departure. Note that this scenario is extremely
rare, and does not offset the benefits of Panthre: our experiments in-
corporate the delays and power costs due to these situations.

The Panthre-enabled Route Computation Unit is shown in Figure
6. It consists of two sub-components: i) a logic-based distributed
routing (LBDR) implementation [5] that provides routes correspond-
ing to an all-segments-ON configuration, and ii) a routing table that
stores the most up-to-date routes, reflecting the power-gating status of
the network. Having a backup LBDR implementation has three ad-
vantages: i) upon detection of an anomaly it allows the network to
instantly switch to an all-segments-ON mode and limit performance
impact, ii) it allows the routing table to be updated bit-by-bit in the
background by providing a default path if no valid option yet exists in
the table, and iii) it can be implemented cheaply. LBDR is a critical
unit for Panthre as it allows uninterrupted operation even during re-
configuration. Note that all dynamic NoC route configurations follow
the minimal set of turn restrictions, and hence packets are never stalled
in router buffers due to unavailability of valid routing paths.
To reduce the natural congestion around the root node that is typical

of up*/down* routing, we select root nodes in low-congestion topol-
ogy locations, and implement popular optimizations such as depth-
first construction of the spanning tree and load-balanced path selec-
tion [15]. We are therefore able to extract at-par performance com-
pared to XY routing, as is evident from the results in Section 5, where
the baseline uses XY routing. Also note that Panthre disables all its
functionalities at heavy loads, as at that operating condition its power
savings are minimal anyway. This keeps Panthre free of any additional
congestion or power dissipation at high loads.
We leverage a distributed route-update algorithm inspired by Ari-

adne [1] to update the routing table on each reconfiguration event. Ari-

����������	
	��
�
�
������������

������������
���������������

������������

����
������	���
��������

��
�����
�����
�������

���	
	�����

���	�
	����

���	�
	����

�����

�

�

�

�

�

�

�������	

��
����	����
����	
	��������

�����
	�����

����	
	 !���� "�

	�	
	��

	�	
	��

	�	
	�

�	
	���

Figure 7: Panthre’s application-adaptive algorithm - flow chart.

adne utilizes time-synchronized broadcasts from all destination routers
in turn, communicated to all routers through simple forwarding oper-
ations. Each broadcast takes 64 cycles in an 8x8 mesh, and the entire
reconfiguration process is completed in ∼4K cycles. Figure 6 sum-
marizes the features of Ariadne’s route-update algorithm. If Ariadne-
style functionality is already available in fault-tolerant NoCs, it can be
leveraged by Panthre with only minor modifications.

The Anomaly Management Unit monitors two types of adverse be-
haviors due to power-gated datapath segments: i) excessive detours,
and ii) network congestion. For the purpose of detecting excessive
detours, a special ‘misroute’ bit is reserved in the header flit of every
packet. We set this bit if, at any router, a packet is routed through a
port that takes it further away from the destination. For a mesh topol-
ogy, this is as simple as calculating the relative X and Y coordinates of
current and destination nodes: this information is already available in
logic-based routing algorithms [5]. Each destination counts the frac-
tion of packets that suffered a detour over those that did not. If the
ratio is >1, the destination node will broadcast a misrouting flag on a
single-bit wired-OR ring (Figure 2). We deploy one wired-OR ring for
each of 4 8x2 regions in our 8x8 mesh. These 4 rings drive a separate
wired-AND connection, and the root node is designated to monitor
its anomaly status. If the wired-AND connection is set, the root node
broadcasts an anomaly code on a 1-bit global wire that all routers can
snoop. In other words, our detour detection scheme raises a flag if at
least one node in each of the 4 regions observes more than 50% mis-
routes. We use a similar, but simpler scheme for congestion detection,
inspired by the maximum buffer occupancy metric of [4]. If the total
buffer occupancy, at any time and at any router in the NoC, is more
than a certain threshold (29 in our implementation), the router noting
the congestion broadcasts the anomaly code on the same 1-bit global
wire used for reporting excessive detours.

Panthre’s Application-adaptive Algorithm is shown in Figure 7.
At the start of execution, ATH is initialized to its maximum value,
ATHmax (= 800 in our setup). All datapath segments with utilization
above this value are never considered for power-gating. Among the
others, the ones with activity below ATH are switched-off. At the end
of the execution epoch, the application-adaptive algorithm takes dif-
ferent actions based on whether or not an anomaly is flagged. If an
anomaly is flagged (right part of the figure), suggesting that too many
links are powered-off, then all components are instantly powered back
on. This anomaly indicates that the current ATH value is causing
too aggressive power-gating. Therefore, if anomalies are detected in
the last L consecutive epochs (L=3 in our design), ATH is lowered.
Power-gating decisions are then reassessed in light of the new ATH

value. Note that decreasing ATH reduces the amount of switched-
off segments and, in turn, decreases the likelihood of anomalies in
the near future. In addition, the threshold values are lowered in two
phases, with first a coarse-grain (∆ATH = 128 in our setup), and then
a fine-grained tuning (∆ATH = 16).
If an entire epoch is executed without any anomaly being flagged

(left portion of the figure), indicating that our current configuration
is performance-friendly, the next epoch is executed without updating
power-gating decisions. However, if no violations are observed in the
last N consecutive epochs (N=16 in our design), suggesting that our
power-gating selection is too conservative and there is room for greater
power savings, ATH is increased and ON/OFF decisions are redone.
After M (=10) successive ATH increments, we determine that the ap-
plication load has considerably increased and the current ATH value
is far from optimal, thus we update ATH to ATHmax, and re-execute
the algorithm from the start. The state machine for our algorithm is

� �

� �

��

�

� � �

	
��
�
�	�����
	���

��
�	

�� �� ��

��

�

�

��

� �

� �

��

�

� � ���
�	

�� �� ��

��

�

�

��

�����
��
���
���������������
��
	
�����	������	�
����
�

����
��
��
���
���

�	������
����
�	������������	�
����

�����	
�

��!"
����#����
�
��	�
����
�
��

"�������
�
������
�����$�

Figure 8: Complete router shutdown within Panthre. Routers associated
with idle cores can be put to sleep while maintaining system connectivity, as
long as they correspond to leaf nodes in the routing’s spanning tree . Routers
that can never be considered for shutdown are called ‘compulsory’. a) Success-
ful shutdown of routers 7 and 13. b) Routers 11 and 14 cannot be simultane-
ously shutdown because this would lead to isolating node 15.

very simple and can be implemented in hardware at low cost. It is
replicated in each ON/OFF decision engine at every L-group, requir-
ing a 6-bit adder/subtracter for ATH updates, and small counters and
comparators for the other parameters (L,M,N).

Implementation overhead. The unidirectional ring wire for anomaly
broadcast, combined with wired-OR and wired-AND wires for detec-
tion of excess detours, leads to an wiring area overhead of only 0.39%
[16], in comparison to the channels of our baseline router. We also as-
sume that Ariadne-style route-updating functionality is already avail-
able for fault-tolerance. All other Panthre components are extremely
lightweight, with small counters, comparators and adders added to
each L-group. Therefore, compared to the deep buffers and many vir-
tual channels of modern routers, Panthre-specific logic is trivial both
in terms of power and area. Finally, the additional hardware is primar-
ily for monitoring, and thus does not add to the critical path delay.

4. COMPLETE ROUTER SHUTDOWN
If some cores in a CMP system are idle, neither sending nor re-

ceiving traffic, the routers corresponding to these cores could be com-
pletely power-gated, as long as doing so does not isolate any active
node. A complete router shutdown is equivalent to shutting down 8
datapath segments (4 incoming and 4 outgoing), and hence is a very lu-
crative power-saving option. Panthre’s deadlock-free and connectivity-
preserving reconfiguration algorithm can be easily extended to shut
down entire routers, and still provide all its valuable properties.
A router can be considered a candidate for shutdown only if it is a

leaf node in at least one of Panthre’s spanning tree constructions. The
intuition behind this observation is that a leaf node is connected to
the rest of the tree only via a single link. In addition, that link is only
used for transferring packets originating or destined for that leaf router.
Therefore, if the leaf node is communication-idle, that single link can
be switched-off without affecting the remaining topology. To provide
an example, in Figure 8, the ‘compulsory’ routers that can never be
completely shut down are shaded in black. In the setup of the Figure,
the root is node 0 and the spanning tree was generated breadth-first.
Note that the compulsory routers are set once a root node and a turn-
restriction configuration have been selected. Note also that in an 8x8
mesh, only 13 out of 64 routers are compulsory. We equipped Panthre
to distinguish between compulsory nodes and those that can be shut
down, and to apply shutdowns whenever possible for communication-
idle nodes. If all compulsory routers are kept active, and if connec-
tivity is at all possible after shutting down all routers associated with
sleeping cores, Panthre too is successfully able to provide connectivity
and deadlock-freedom.
For applications that lead to 25% idle cores in the network, entire

router shutdowns can be successfully applied to 48% of routing con-
figurations. The integration of this scheme with Panthre is also simple:
upon a group of cores notifying their idle state, the routers associ-
ated with them (if they are not compulsory for connectivity) are put
to sleep. A route-update procedure is then executed and, if all active
cores are still connected to the root core (this can be easily detected
by analyzing the routing table), Panthre continues in router shutdown
mode. If, however, connectivity is lost, Panthre defaults back to its
baseline routing.

5. EXPERIMENTAL RESULTS
We evaluated Panthre on a cycle-level trace-driven multi-core sim-

(a) Processor @2GHz

Cores
2-wide fetch/commit

64-entry ROB

coherence 4-hop MESI, 64B block

L1 cache
Private: 32KB/node

ways:4 latency:2

L2 cache
Shared: 256KB/node

ways:16 latency:6

Memory
Distributed: 1GB/bank

banks:4 latency:160

(b) Network @2GHz

Topology 8x8 mesh, 128 bit links

Pipeline 2-stage VC flow ctrl

VCs 4 VCs/port, 8 flits/VC

Routing
XY for baseline

up*/down* for Panthre

Workload
synthetic: uniform

multi-prog: SPEC CPU06

Simulation synthetic: 5M

(cycles) multi-prog: 10M

Table 2: Experimental CMP: configuration of processor and network.

ulator [3], modeling a 64-core CMP system as described in Table 2.
We used a front-end functional simulator based on Pin [13] to collect
instruction traces from applications, which are then transfered to the
trace-driven cycle-level simulator. We also integrated a detailed on-
chip network model, simulating a state-of-the-art two-stage router, de-
scribed in Table 2b. In addition to the baseline design with no power-
gating and the Panthre design, we also implemented router-level con-
ventional power-gating with lookahead wakeup (PG_conv) [10] and
a fine-grained port-level power-gating scheme (PG_fg) [11], for com-
parison. For both PG_conv and PG_fg, we used an idle-detection time
of 4 cycles of inactivity [10]. The Panthre design parameters described
in Section 3.4 (e.g., ATHmax), are calibrated after detailed design
space exploration to provide a suitable trade-off between performance
and power: Figure 7 indicates our balanced values.
We analyzed our framework with two types of workloads: synthetic

uniform random traffic, as well as 35 applications from the SPEC
CPU2006 and commercial (sap, tpcw, sjbb, sjas) benchmark suites.
We experiment across 40 randomly generated multi-programmed work-
load mixes, with each mix containing 10 copies each of 6 applica-
tions randomly picked from our suite of 35 applications. For brevity
of results, we categorize the 40 workload mixes into four categories
of 10 workloads each, based on the amount of cache misses per kilo
instructions (MPKI). Most network transactions originate because of
misses in the caches, and hence MPKI correlates well with applica-
tion communication load. The light category has benchmarks within
MPKI of 200, while light-med spans the MPKI range 200-500. The
med group includes relatively network heavy benchmarks, with MPKI
between 500-1500, while the heavy category covers the MPKI range
1500-2500.
A considerable amount of energy is spent in putting components

to sleep and bringing them back up. The amount of sleeping time
required to compensate for this energy loss is called the ‘breakeven
time’. In our evaluation, we assume a breakeven time of 10 cycles
and a wakeup delay of 4ns, in agreement with previous research [2,
10]. The effective sleeping time after accounting for breakeven en-
ergy, is called compensated sleep cycles (CSC) [10]. The CSC over
total execution is a direct measure of leakage power savings. In our
results, we report CSC values, in addition to latency increase and ap-
plication slowdown. Finally, we use DSENT [16] to estimate total
network power, accounting for both dynamic and static power at the
22nm technology node. For dynamic energy, DSENT is used to report
energy spent per event (for e.g., buffer write), which is then tracked
accurately in our cycle-level simulator.

5.1 Synthetic Traffic
We first compare Panthre with other power-gating schemes using

synthetic random traffic. Random traffic is the worst case scenario for
Panthre, as it distributes traffic uniformly across the network, reduc-
ing the number of low-usage links. Panthre’s primary goal is to ex-
tract maximum power-savings by only turning-off low value datapath-
segments, keeping latency degradation in check. Figure 9a plots the
average packet latency for each of the solutions evaluated. It is clear
from the figure that PG_conv and PG_fg both lead to a high latency
increase (>2x at low load). This is due to the fact that, at low load,
network components observe packet traversals infrequently, and spend
most of their time sleeping. Therefore, packets accumulate wakeup la-
tency at each hop. At this injection rate, both the conventional power-
gating schemes spend more than 75% of the time asleep. However,
this level of latency degradation leads to unacceptable (>10%) appli-
cation slowdown, as we will note in Section 5.2. Note that the la-
tency and CSC for PG_conv, both decrease with increasing network
load. However, we observe that at the injection rate where the latency
degradation becomes acceptable for PG_conv (0.16 flits/cycle/node),

�

��

��

��

��

��

��

��

�	�� �	�� �	�
 �	��
����������	
�����
�������
�������

��
����� �������
����� �������

�
�

���
��

�
�

	�
�

��
�

��
��

��
�

��
�

(a) Average network latency. Conven-
tional power-gating schemes suffer up to 2x
increase in latency and, hence, are detri-
mental to performance. In contrast, Panthre
keeps latency degradation under check.

�

�

�

�

��

��

��

��

�	�� �	�� �	�� �	�
 �	�� �	�� �	�� �	��

����������	
�����
�������
�������

�
��

�
�

��
�

��
�

�

��

�
��

��

�

�

(b) Compensated sleep cycles under Pan-
thre. Panthre’s leakage power savings de-
crease with increasing load, the average
ranges between 9.8% and 20.8% for injec-
tion rates varying from 0.01 to 0.16.

Figure 9: Network latency and CSC under uniform random traffic.

the CSC value drops down to only 2.7%.
In contrast, Panthre’s latency degradation is only 16.5% on average

for the range of injection rates shown in the graph. At an injection rate
beyond 0.16 flits/cycle/node, Panthre leads to negligible latency degra-
dation, as it tries to keep all links active at such high load. Naturally,
the power-savings are also little at that point, as almost all components
are considered vital and not switched off. At low traffic loads, how-
ever, Panthre can lead to more than 20% leakage power savings (CSC),
as can be noted from Figure 9b. With increasing load, CSC values de-
crease, but Panthre still save 10.3% leakage power on average for the
range shown in the graph.

5.2 Multiprogrammed Workloads
Panthre is designed to save leakage power only when it is possible to

do so without degrading performance. Figure 10a shows the speedup
values for all power-gating schemes, normalized to the baseline CMP
with no power-gating capability. The average slowdown with Pan-
thre is only 1.9% across all four benchmark categories. In contrast,
PG_conv and PG_fg lead to 9.8% and 15.7% slowdown averaged over
all benchmark categories, respectively. Slowing down the applica-
tion by such an amount is detrimental to system energy consumption,
and therefore these conventional power-gating schemes cannot be de-
ployed in modern CMPs. In Figure 10b, we show that Panthre saves
15.6% leakage power for communication-light workloads on average,
while 9.8% leakage power is saved on average across all benchmark
categories. The total network power is reduced by 14.5%, 9.3%, 6.1%
and 5.1% for light, light-med, med and heavy workloads, respectively.
With substantial power savings at very little performance degradation,
Panthre provides a good design trade-off for power-aware systems.
Additionally, if the designers are willing to sacrifice performance, the
Panthre algorithm can be easily tuned for aggressive power-gating.

����

���

����

���

����

�

�	
�� �	
��
��� ��� �����

�
�

��
��

��
	

��

		

�

�������
����	����

������� �������
����
 �����	��

(a) Normalized application speedup.
Panthre limits the performance degradation
to within 2% in most cases, while conven-
tional power-gating causes more than 10%
application slowdown on average.

�

�

�

��

��

��	
� ��	
��
��
��
����

���������	�
����

�
	�

�
�

��
��

�
�

��
��

��
�	

	
��

�

(b) Compensated sleep cycles (CSC)
saved by Panthre. For light workloads, the
average leakage power savings are 15.6%,
while Panthre saves less for heavy work-
loads (6.7%).

Figure 10: Network latency and CSC with multi-programmed workloads.

5.3 Complete Router Shutdown
As discussed in Section 4, Panthre can shutdown completely, a sig-

nificant number of routers associated with idle cores, and still ensure
connectivity and deadlock-freedom among the active cores. This prop-
erty is useful in scenarios where certain cores are communication-idle
for substantial periods of time. The gains are reflected in the power-
savings with complete-router-shutdown (Panthre_RS) under low in-
jection rate (0.01 flits/cycle/node) and uniform traffic, as shown in
Figure 11b. It can be noted that 36.9% of leakage power can be saved
on average for 10-16 idle cores. Note that, if Panthre_RS is unsuccess-
ful at maintaining connectivity for active cores after complete router
shutdown, it reverts to its baseline approach of isolating only datapath

�

�

��

��

��

��

��

��

� � � �� �� ��

��������	�
���

��������

	
��
��

	
��
�����

�
������

��
�

���
�

�
�

��
���

�
�

��
��

��
��

��
�

(a) The average network latency increase
in both Panthre and Panthre_RS is kept un-
der check. Panthre_RS delivers a lower la-
tency compared to basic Panthre.

��

��

��

��

��

� � � �� �� ��
��������	�
���

��������

	
��
��

	
��
�����

�
��

�
�

�
��

��

�

�
��

��
��

��
��

��
�

(b) Percentage compensated sleep cycles
(CSC) for Panthre_RS is 37% for 10-16 idle
cores. Panthre_RS improves power savings
further over Panthre.

Figure 11: Panthre’s latency and CSC when complete router shutdown is
enabled at a low injection rate and for uniform random traffic.

segments. As shown in Figure 11a, Panthre_RS keeps latency increase
under 30% on average, providing both better power saving and latency
profile than our baseline Panthre solution.

6. CONCLUSION
Panthre maximizes leakage power savings by guaranteeing long pe-

riods of uninterrupted power-gating for NoC components. It leverages
topology and routing reconfiguration to steer traffic away from sleep-
ing components to minimize the latency impact. Panthre’s application-
adaptive reconfiguration algorithm is implemented in a lightweight
distributed manner, and guarantees a globally-connected and deadlock-
free network at all times. In addition, Panthre monitors events indicat-
ing network performance degradation and updates its power-gating de-
cisions to provide a more suitable power-performance trade-off. Our
experiments with light multi-programmed workloads show that Pan-
thre reduces total network power by 14.5% on average, with only a
1.8% degradation in performance. Panthre’s network power savings
can be as much as 36.9% on average if 10-16 nodes are idle in a 64-
node CMP.

Acknowledgements
This work was partially supported by NSF grant #0746425 and C-
FAR, within STARnet, a Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA.

7. REFERENCES
[1] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco. ARIADNE: Agnostic

reconfiguration in a disconnected network environment. In Proc. PACT, 2011.
[2] L. Chen and T. M. Pinkston. NoRD: node-router decoupling for effective

power-gating of on-chip routers. In Proc. MICRO, 2012.
[3] R. Das, O. Mutlu, T. Moscibroda, and C. Das. Application-aware prioritization

mechanisms for on-chip networks. In Proc. MICRO, 2009.
[4] R. Das, S. Narayanasamy, S. Satpathy, and R. G. Dreslinski. Catnap: energy

proportional multiple network-on-chip. In Proc. ISCA, 2013.
[5] J. Flich and J. Duato. Logic-based distributed routing for NoCs. Computer

Architecture Letters, 7(1), 2008.
[6] J. Howard et al. A 48-core ia-32 message-passing processor with dvfs in 45nm

cmos. In Proc. ISSCC, 2010.
[7] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose.

Microarchitectural techniques for power gating of execution units. In Proc.
ISLPED, 2004.

[8] G. Kim, J. Kim, and S. Yoo. Flexibuffer: reducing leakage power in on-chip
network routers. In Proc. DAC, 2011.

[9] O. Lysne, J. M. Montañana, J. Flich, J. Duato, T. M. Pinkston, and T. Skeie. An
efficient and deadlock-free network reconfiguration protocol. IEEE Trans.
Computers, 57(6), 2008.

[10] H. Matsutani, M. Koibuchi, H. Amano, and D. Wang. Run-time power gating of
on-chip routers using look-ahead routing. In Proc. ASPDAC, 2008.

[11] H. Matsutani, M. Koibuchi, D. Ikebuchi, K. Usami, H. Nakamura, and H. Amano.
Ultra fine-grained run-time power gating of on-chip routers for cmps. In Proc.
NoCs, 2010.

[12] H. Matsutani, M. Koibuchi, D. Wang, and H. Amano. Adding slow-silent virtual
channels for low-power on-chip networks. In Proc. NoCs, 2008.

[13] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing
representative portions of large intel itanium programs with dynamic
instrumentation. In Proc. MICRO, 2004.

[14] A. Samih, R. Wang, A. Krishna, C. Maciocco, C. Tai, and Y. Solihin.
Energy-efficient interconnect via router parking. In Proc. HPCA, 2013.

[15] J. Sancho, A. Robles, and J. Duato. An effective methodology to improve the
performance of the up*/down* routing algorithm. IEEE Trans. Parallel and
Distributed Systems, 15(8), 2004.

[16] C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh, and
V. Stojanovic. DSENT - a tool connecting emerging photonics with electronics for
opto-electronic networks-on-chip modeling. In Proc. NoCs, 2012.

[17] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. Brown, and A. Agarwal. On-chip interconnection architecture of the
tile processor. Micro, IEEE, 27(5), 2007.

