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Abstract

In this work, elliptic curve cryptography (ECC) is used to make an efficient implementation of a public-key cryptography
algorithm on the ARM Cortex-M0+. The goal of this implementation is to make not only a fast, but also a very low-power
software implementation. To aid in the elliptic curve parameter selection, the energy consumption of different instructions on
the ARM Cortex-M0+ was measured and it was found that there is a variation of up to 22.5% between different instructions.
The instruction set architecture (ISA) and energy measurements were used to make a simulation of both a binary curve and a
prime curve implementation, and the former was found to have a slightly faster execution time with a lower power consumption.
Binary curve arithmetic use instructions which requires less energy than prime curve arithmetic on the target platform. A new
field multiplication algorithm is proposed, called López-Dahab with fixed registers, which is an optimization of the
López-Dahab (LD) algorithm. The proposed algorithm has a performance improvement of 15% over the LD with rotating
registers algorithm (which is the current fastest optimization of the LD algorithm). A software implementation that uses the
proposed algorithm was made in C and assembly, and on average our implementation of a random point multiplication requires
34.16 µJ, whereas our fixed point multiplication requires 20.63 µJ. The energy consumption of our implementation beats all known
software implementations on embedded platforms, of a point multiplication, on the same equivalent security level by a factor of
7.4.

I. INTRODUCTION

A typical application for public-key cryptography in the ultra low-power domain is for Wireless Sensor Network (WSN). A
WSN is an ad-hoc wireless network that consists of a number of nodes and one or more base stations. WSNs require security,
because they communicate through an insecure communication medium and they often operate unattended. As these devices
are made to be economically viable, they have a limited amount of energy, computation power, memory and communication
abilities. A node’s lifetime is also directly influenced by the amount of energy that it uses to perform computations and is
therefore also directly influenced by the efficiency of its algorithms.

Due to their high computational requirements, RSA [1] and DSA [2] are considered to be impractical for use in WSNs,
where the devices are very constrained in processing power and energy. ECC [3], [4] is an attractive alternative due to its
low computational and memory requirements, and is particularly useful in hybrid cryptosystems where PKC is used for key
exchange, and symmetric cryptography is used for the efficient encryption of data. Digital signatures are also useful for WSNs,
as they can guarantee the authenticity, and integrity of the data. To perform a key exchange the Elliptic Curve Diffie-Helman
exchange (ECDH) can be used, and for generating digital signatures the Elliptic Curve Digital Signature Algorithm (ECDSA)
could be used.

The ARM Cortex-M0+ [5] is a low cost, ultra low-power microcontroller that provides great performance due to its 32-
bit architecture, and it features a small but powerful instruction set. The authors are convinced that the chosen platform is
appropriate for WSNs not only because of its specs, but also as first integrations of this unit are already announced [6]. As
this processor has only been available since 2012, we do not know of any other PKC implementations optimized for this
architecture. By being the first to make an implementation on this architecture we are setting a benchmark to which the
performance of future implementations can be measured.

We now present to you the new state of the art in low-power software implementations of ECC on the ARM Cortex-
M0+. Efficient long number arithmetic will be performed on the architecture using assembly optimizations for the processor’s
instruction set. The results will be compared to the existing solutions in the ultra low-power domain, as well as to a standard
library which have been compiled on ARM.

The rest of the paper is organized as follows. First, we will discuss related work in the low-power domain, followed by a
discussion on the methods that were used to perform the parameter, and algorithmic selection for our implementation. Next,
we describe our results, and compare it with the results from implementations found in literature and in software libraries.
Subsequent, we discuss some ideas for future work, and finally we provide a general conclusion.

II. RELATED WORK

Here we will discuss the related work of low-power software implementations of ECC. There is an evolution of algorithms
and hardware, and therefore the overview follows a chronological order, with a focus on the López-Dahab (LD) [7] field
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multiplication method, as our implementation is based on this. The LD method and window parameter w will be discussed
in more detail later. A number of low-power implementations exist in the literature; however, in the past a lot of the focus
has gone towards software implementations on existing WSNs like the 8-bit MICA2 and MICAz (which both contain the
ATMega128L) and the 16-bit TelosB (which contains the MSP430). Only a small number of implementations were found in
the literature for ARM microcontrollers like the IMote2 (which contains the ARMv5TE based PXA271), and the ARM7TDMI.

Szczechowiak et al. [8] made binary curve, and prime curve implementations for the Tmote Sky and the MICA2, based
on the MIRACL library. Multiplication on prime curves use Hybrid multiplication [9], and multiplication on binary curves
use the Karatsuba-Ofman multiplication algorithm. For binary fields they used binary Koblitz curves as no expensive doubling
operations are required. For their fixed point multiplication in prime fields they did some pre-computation with the Comb
method and w = 4. Their point multiplications in prime fields was found to be faster than in binary.

Kargl et al. made software implementations on the ATMega128L for prime, and binary fields [10]. For multiplication in the
binary field they use LD with w = 4, and a Montgomery-ladder algorithm which provides a constant execution time for point
multiplication.

B. Oliveira et al. [11] made an implementation for the PXA27x on an underlying binary field of order 2271. They made an
optimization of the LD algorithm, called the LD with rotating registers method. They also performed immediate
reduction of the upper half of the words instead of writing them to memory for later reduction. Assembly optimizations were
used for field arithmetic.

P. Szczechowiak et al. [12] made an implementation in 2271 that uses the LD with w = 8, and 2-bit scanning. Two pointers
are used to access the appropriate bytes in memory, thereby avoiding a multi-precision shift of the partial product vector.

Aranha et al. [13] made an optimization to the LD algorithm, called LD with rotating registers, where the
memory accesses of intermediate values are reduced by making use of a rotating register scheme. In their implementation on
the ATMega128L, they interleave multiplication with the reduction operation, and modular squaring is done with the table-
based method interleaved with the reduction step so that the upper half of the words which are produced by squaring doesn’t
need to be written to memory.

S. Erdem [14] made several binary curve implementations for the ARM7TDMI using the operand-scanning method combined
with LD with w = 4.

Gouvea et al. [15] made implementations on prime curves, binary curves, and binary Koblitz curves for MSP430
microcontrollers. Comba [16] multiplication is used for 160-bit prime curves, and Karatsuba-Ofman [17] multiplication is
used for 256-bit prime curves. For binary fields they use LD multiplication for the 163-bit underlying field, and Karatsuba-
Ofman with LD for the 283-bit underlying field.

III. METHODS

In this section, we present you with the methods that were used to perform the parameter and algorithmic selection that is
necessary to make an efficient and low-power ECC implementation. First, we will discuss the model that was used to make a
curve selection. Next, we will discuss some of the algorithmic choices that was made.

A. Matching a curve to the architecture

In order to make an efficient and low-power implementation it is necessary to select the appropriate curve for the architecture
of the target platform. A model was made to determine the instruction usage, cycle count, and energy usage of a specific curve.
For the model we considered only Binary Koblitz, and prime curves. Efficient algorithms and coordinate systems were selected
to perform a point multiplication. The core of this model consisted of an analysis of the instructions required for performing a
field multiplication algorithm, as this is most dominant routine in terms of execution time in an ECC. From this we estimated
the execution times for performing a point multiplication, and we came to two conclusions: (1) Binary Koblitz curves will lead
to a slightly faster implementation (2) Binary curves require less power than prime curves, due to the binary curve arithmetic
using many XOR and shift instructions, whereas prime curves require instructions which requires less energy (shift and XOR
vs multiply and ADD) on the target platform (See section IV-A).

B. Field arithmetic algorithms

Here we will discuss some of the different field arithmetic algorithms that were used during analysis and implementation.
1) Multiplication: Consider two binary polynomials x(z) and y(z) of degree at most m − 1. The output of the field

multiplication function should produce the result of the polynomial multiplication x(z) · y(z).
The López-Dahab (LD) field multiplication algorithm is a windowed multiplication algorithm for F2m . Its goal is to reduce

the number of multi-precision shift operations by scanning the input parameter x with w bits at a time and performing a table
lookup, thereby reducing the number of outer loop iterations to only dW/we, where W is the word size of the processor. The
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lookup table is computed with T (u) ← u(z) · y(z) for all polynomials u(z) of degree lower than w. The number of words
required to store the lookup table is given by:{

2w(n + 1) , if degree(y) > nW − (w − 1),
2w(n) , if degree(y) ≤ nW − (w − 1), (1)

where n is the number of words needed for the field parameter. This means that if the degree of the most significant word of y
is smaller or equal to W − (n− 1), then the lookup table will fit into 2wn words. This is due to the fact that while generating
the lookup table, y gets shifted by w − 1 which causes the polynomial to overflow into the next word.

We propose a new optimization to the (LD) field multiplication algorithm, and call it the López-Dahab with fixed
registers method. This algorithm aims to reduce the number of memory operations by keeping as many words of the
internal state vector as possible inside registers. The most frequently used words are stored inside fixed register positions, and
the least frequently used words are stored inside memory. On the target platform it is feasible to store a maximum of nine
words inside registers.

Algorithm 1 shows the LD with fixed registers for n = 8, and a register count of n + 1.The vector v denotes the
internal state vector of 2n words which contains the intermediate results, which are stored inside memory, as well as fixed
register positions. The n + 1 most frequently used words are stored inside registers (r), and the remaining n − 1 words are
stored inside memory (m). It was observed that v[3 · · · 12] are the most frequently used n+1 elements and are therefore stored
inside the registers. v[0 · · · 2] and v[13 · · · 15] are the least frequently used n − 1 elements inside v and are therefore stored
inside memory.

Fig. 1 provides a visual representation of the algorithm. All the light colored squares represents words which are stored in
memory, and all the dark colored squares represents words which are stored in registers. First the lookup table (indicated with
LUT) is computed from the input parameter x. Each cell inside the LUT represents 8 words stored in memory. The vector C
contains the partial products of the multiplication, and consists of words stored inside memory, as well as in registers. The
vector y is split into sections of w bits, and these sections are used as an index into the LUT. The index is used to read a
cell in the LUT, and add it to C. As each cell contains 8 words, 8 words are read from the LUT, and then added to C. The
lookup and add process is repeated 8 times, each time offset by one more word. After the eighth lookup, C is left shifted by
4 bits. This is repeated 8 times, but in the final iteration the shift is not required.

In order to reduce the number of memory operations the field multiplication algorithm can be interleaved with the reduction
algorithm.

Algorithm 1 López-Dahab with fixed registers multiplication in F2m for n = 8.
Input: x(z) = x[0 · · ·n− 1], y(z) = y[0 · · ·n− 1]
Output: v(z) = v[0 · · · 2n− 1] = x(z)y(z)
Note: v denotes the internal state vector composed of n − 1 memory addresses and n + 1 registers. v ←
(m[0], m[1], m[2], r0, r1, · · · , rn, m[3], m[4], m[5], m[6]).

1: Compute T (u)← u(z)y(z) for all polynomials u(z) of degree lower than w
2: v[0 · · · 2n− 1]← 0
3: for j ← dW/we − 1 downto 0 do
4: for k ← 0 to n− 1 do
5: u = (x[k]� j ·W ) & 0xF
6: for l← 0 to n− 1 do
7: v[l + k]← v[l + k]⊕ T [u][l]
8: end for
9: end for

10: if (j 6= 0) then
11: v(z) = v(z) · zw

12: end if
13: end for
14: return v

2) Reduction: Since the curve we are using has a sparse reduction polynomial, the reduction can be efficiently computed
one word at a time.

3) Inversion: Inversion is done by means of the Extended Euclidean Algorithm [18] for polynomials. This algorithm makes
use of two multi-precision internal state variables (u and v). One expensive operation that is called for in the algorithm is
swapping u with v. The swap operation can be avoided by writing two separate segments of code in which both segments
perform the same operations, but where the names of the variables are interchanged. This eliminates a large number of expensive
memory operations. Another optimization is to use two variables to store the index of the most significant non-zero word of



3

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15

X0X1X2X3X4X5X6X7

iteration<8

yes

Y0Y1Y2Y3Y4Y5Y6Y7

LUT

Word in register 

Word in memory

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15 ≪4

Fig. 1. The proposed LD with fixed registers algorithm in F2m for n = 8. The lookup table LUT is generated from the input scalar x. The main
loop is executed 8 times for w = 4. The input parameter y is split up into sections of w bits which are used as an index for the LUT.

u and v. This allows for performing a fast calculation of the degree of the polynomial and a reduced number of memory
operations in the variable field shift function.

4) Squaring: Squaring is done by means of a 16-bit lookup table with 256 entries, requiring 4 kB. To reduce redundant
memory operations, modular reduction is interleaved with the squaring functions. The lower half of the output of the squaring
operation is kept inside the registers and the upper half is expanded and then immediately reduced. The upper half of the
elements are therefore not required to be stored first and reduced later.

C. Analysis of multiplication algorithms

As field multiplication is the most dominant routine in terms of execution time in an ECC, three field multiplication methods
were analyzed to determine the best match for the target platform. For all three methods a window size of w = 4 is used,
where a single precomputation table of 16n words (4 kB) is required. This is valid under the assumption that the scalar y is
short.

For both the analysis of the LD with rotating registers, and the LD with fixed registers methods, we
assume that n + 1 registers are available for storing the partial products.

TABLE I
ESTIMATED CYCLE REQUIREMENTS FOR FIELD MULTIPLICATION IN F2233 .

Method Read Write XOR

A 16n2 + 23n 8n2 + 30n 8n2 + 30n− 7
B 8n2 + 39n− 8 46n 8n2 + 38n− 7
C 8n2 + 24n + 1 31n + 1 8n2 + 30n− 7

Method A: LD
Method B: LD with rotating registers
Method C: LD with fixed registers
The number of shift operations remain constant at 42n − 21
for all three methods

TABLE II
ESTIMATED CYCLE REQUIREMENTS FOR FIELD MULTIPLICATION IN F2233 .

Method Read Write XOR Shift Total∗

A 1208 752 745 315 4980
B 816 368 809 315 3492
C 689 233 745 315 2968

Method A: LD
Method B: LD with rotating registers
Method C: LD with fixed registers
The total number of shift operations is constant at 42n − 21
for all three methods
∗ Memory operations are assumed to require two cycles per
operation

The total number of operations and cycle estimates are shown in Table I and Table II respectively. The cycle estimate
assumes that a memory operation will take 2 cycles and all other operations take only 1 cycle to complete. When comparing
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the LD method to the LD with rotating registers method, we see a drastic reduction in the number of memory
operations due to the implementation of the rotating register scheme, which minimizes the storing of intermediate values in
memory. When comparing the LD with fixed registers method to the LD with rotating registers, we see
a further reduction of memory accesses due to the more efficient usage of registers. The LD with fixed registers has
a performance increase of 15% over the LD with rotating registers method, and a performance increase of 40%
over the standard LD method.

As we would like to make an implementation that will have the fastest possible execution time we made an implementation
with the LD with fixed registers algorithm, which has the lowest estimated cost of only 2968 cycles.

D. Point multiplication

Point multiplication is the operation of multiplying a scalar k with a point P on an elliptic curve, and it is responsible for
the majority of the execution time of an ECC system. It is defined by the repeated addition of the point P with itself, k − 1
times:

kP = P + P + · · ·+ P︸ ︷︷ ︸
k−1 additions

.

Point multiplication can be done by multiplying a scalar with either a fixed point, or with a random point. For the fixed
point multiplication, the point can be seen as a constant, and therefore some precomputations can be done on this point in
order to speed up the multiplication.

IV. RESULTS

This section will be used to present our key results. First, we will discuss the measurements setup, and the results from our
measurements. Next, we will present two implementations, and compare them to the state of the art low-power implementations
implementations found in literature, as well as in software libraries

A. Measurements setup and results

In order to determine the energy usage of different instructions as well as cryptographic software implementations, a system
was designed to measure the power consumption of the target platform.

The power consumption for a number of different instructions were measured in order to investigate the effect of different field
arithmetic algorithms on the overall power consumption. Table III shows the results of energy measurements for instructions
which are relevant to prime and binary field arithmetic. A variation in energy consumption of up to 22.5% was observed
between different instructions. The ADD instruction was found to be the most energy hungry, requiring 6.9% more energy than
any other measured instruction. This is important for the choice of the underlying field because binary field arithmetic require
a large amount of shift (LSL and LSR) and XOR instructions, whereas on prime field arithmetic require a large amount of
MUL and ADD instructions.

TABLE III
THE ENERGY USED PER CYCLE FOR DIFFERENT INSTRUCTIONS. THE CLOCK FREQUENCY IS 48MHZ.

Instruction Energy [pJ]

LDR 10.98
LSR 12.05
MUL 12.14
LSL 12.21
XOR 12.43
ADD 13.45

B. Comparison with other libraries

Table IV and Table V shows the proposed implementation compared with low power implementations found in literature, as
well as in software libraries. In the cases where the energy consumption were not provided in the author’s results, the values
are estimated from the typical energy consumption values found in [19], [20]. Both the ARM7TDMI, and the PXA271 are
more powerful platforms than the ARMv6-M based ARM Cortex-M0+ because they both have larger instruction sets; however,
the ARM Cortex-M0+ uses less energy than either the ARM7TDI or the PXA271.

The MIRACL Crypto SDK [22] is an open-source Elliptic Curve Crypto SDK that supports many different platforms. It is
a C library with some field arithmetic in assembly for many of its supported the platforms. Some timings for this library can
be found in [21] and are also listed in Table IV.

The RELIC toolkit [23] is an open-source cryptographic library that supports many different architectures.



5

TABLE IV
TIMINGS FOR POINT MULTIPLICATIONS. ALL TIMINGS ARE GIVEN IN MILLISECONDS AND ENERGY IS GIVEN IN MICROJOULES (µJ). THE ATMEGA128L

RUNS AT 7.37MHZ EXCEPT WHEN INDICATED WITH a , THE MSP430 RUNS AT 8.192MHZ, THE ARM7TDMI RUNS AT 80MHZ, AND THE ARM
CORTEX-M0+ RUNS AT 48MHZ.

Multiply
Platform Author Curve [ms] [µJ]

ARM7TDMI MIRACL [21] P-192 38r 182.4e

ARM7TDMI MIRACL [21] P-224 53r 254.4e

ATMega128L Aranha et al. [13] K-163 320r 9600e

ATMega128La Kargl et al. [10] 167-bitb 763r 24840e

ATMega128L Aranha et al. [13] K-233 730r 21900e

Cortex-M0+ This work kG sect233k1 39.70f 20.63m

Cortex-M0+ This work kP sect233k1 59.18r 34.16m

Cortex-M0+ Relic kP K-233 115.7r 69.48m

Cortex-M0+ Relic kG K-233 117.1f 70.26m

MSP430F1611 NanoECC [8] P-160 720f 8847m

MSP430F1611 NanoECC [8] K-163 1040f 12780m

a Runs at 8MHz.
m Energy values obtained by measurement.
e Energy values obtained by estimation.
f Fixed-point multiplication.
p A custom prime curve is used.
r Random point multiplication.

TABLE V
AVERAGE CYCLE TIMES FOR MODULAR MULTIPLICATION AND MODULAR SQUARING ON DIFFERENT PLATFORMS.

Word
Author Platform size Sqr Mul Field

S. Erdem [14] ARM7TDMI 32 348 4359 F2228

S. Erdem [14] ARM7TDMI 32 389 5398 F2256

Aranha et al. [13] ATMega128L 8 570 4508 F2163

Aranha et al. [13] ATMega128L 8 956 8314 F2233

Kargl et al.[10] ATMega128L 8 - 2593 F160

Kargl et al.[10] ATMega128L 8 663 5490 F2167

P. Szczechowiak
et al. [12]

ATMega128L 8 1581 13557 F2271

Gouvea [15] MSP430X a 16 630 741 F160

Gouvea [15] MSP430X a 16 199 3585 F2163

Gouvea [15] MSP430X a 16 1369 1620 F256

Gouvea [15] MSP430X a 16 325 8166 F2283

This work Cortex-M0+ 32 395 3672 F2233

TinyPBC [11] PXA271 32 187 2025 F2271

TinyPBC [11] PXA271 b 32 187 1411 F2271

a This model has a long 32-bit multiplier
b This model (wMMX) has a SIMD instructions set.

In the following text we will present two implementations. First, we will present an implementation that relies exclusively
on the RELIC toolkit to make all its computations. Next, we present an implementation that was largely developed in C and
assembly, but also makes use of the RELIC toolkit to perform some calculations. The curve and algorithmic parameters for
both implementations were chosen to match each other as close as possible.

1) RELIC implementation: The RELIC toolkit was used to make an implementation with the following configuration: A
binary Koblitz curve of order 2233 is used. The left-to-right wTNAF method with w = 4 was used for point multiplication.
Point additions are done in mixed LD-affine coordinates. Fast reduction is done because the reduction polynomial is trinomial.
Inversion is performed with the Extended Euclidean algorithm and squaring is done using the table-based method. The easy-
to-understand arithmetic option is selected but this could be replaced with calls to the GMP library. However, we were unable
to get the GMP library cross-compiled for the ARM Cortex-M0+ and were therefore unable to test this feature.

The RELIC implementation was measured to have an average power consumption of 600 µW while performing a random
point multiplication, and 600.5 µW while performing a fixed point multiplication. This implementation requires an average
of 5621045 cycles, and 72.5 µJ for a random point multiplication, and only 5553828 cycles, and 71.6 µJ for a fixed point
multiplication. The average cycle time and energy usage of this implementation is compared to others in Table IV.

2) Proposed implementation: An implementation was made using C and assembly. The binary Koblitz sect233k1 curve
was used. For point multiplication the left-to-right wTNAF method was used. A value of w = 4 was used for random point
multiplication (kP ), and w = 6 for fixed point multiplication (kG). Point additions are done in mixed LD-affine coordinates.
The RELIC toolkit was used to perform the TNAF precomputation, and TNAF transformation of the scalar k. The LD with
fixed registers method was used for field multiplication, fast reduction was done one word at a time, inversion was
done with the Extended Euclidian algorithm, and squaring was done with the table-based method. All the field arithmetic was
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implemented in C and assembly.
Our proposed implementation was measured to have an average power consumption of 577.2 µW for a random point

multiplication, and 519.6 µW for a fixed-point multiplication. On average our implementation of the random point multiplication
requires 2814827 cycles, and 36.6 µJ, whereas our fixed point multiplication requires 1864470 cycles, and 24.6 µJ. Therefore
our implementation has a cycle count that is 1.99 times faster than the RELIC implementation for random point multiplication,
and has a cycle count which is 2.98 times faster than the RELIC implementation for fixed point multiplication. The average
execution time and energy usage of this implementation is compared to others in Table IV and Table V. The C and assembly
implementations’ cycle times for the field arithmetic routines are shown in Table VI. The accumulated execution time for
different operations are shown in Table VII for both a random point multiplication (kP ), as well as a fixed point multiplication
(kG).

TABLE VI
AVERAGE CYCLE TIMES FOR FIELD ARITHMETIC ALGORITHMS IN F2233 .

Operation C language Assembly

Modular Squaring 419 395
Inversion 141 916 -
LD with rotating registers 5 592 -
LD with fixed registers 5 964 3 672
kP 3 516 295 2 761 640
kG 2 494 757 1 864 470

TABLE VII
TOTAL ACCUMULATED TIMINGS PER OPERATION FOR RANDOM POINT MULTIPLICATION (kP ), AND FIXED POINT MULTIPLICATION (kG).

Operation kP kG

TNAF Representation 178 135 185 926
TNAF Precomputation 398 387 0
Multiply 1 108 890 821 178
Multiply Precomputation 249 750 184 950
Square 362 379 342 294
Inversion 139 936 139 656
Support functions 377 350 376 392
Total 2 814 827 1 864 470

V. FUTURE WORK

The current implementation doesn’t execute in constant-time and is therefore at risk of a power analysis attack. It would be
very interesting to see the results of an implementation where the point multiplication routine is implemented in constant-time
by using an algorithm like the Montgomery-Ladder [24] method.

VI. CONCLUSION

We made an ECC implementation based on a binary Koblitz curve in F2233 , because we estimated that it will lead to
a faster implementation with a lower energy consumption than a prime curve implementation with an equivalent security
level. A new field multiplication algorithm was proposed, called the López-Dahab with fixed registers, which
is an optimization of the López-Dahab (LD) algorithm. Our proposed algorithm has a cycle count of 3672 cycles, and a
performance improvement of 15% over the LD with rotating registers algorithm. Our implementation of a random
point multiplication requires 2814827 cycles, and 34.16 µJ, whereas our fixed point multiplication requires 1864470 cycles, and
20.63 µJ. The energy consumption of our implementation beats all known software implementations on embedded platforms,
of a point multiplication, on the same equivalent security level by a factor of 7.4.
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