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Model Predictive Control with Signal Temporal Logic Specifications

Vasumathi Raman1, Alexandre Donzé2, Mehdi Maasoumy2,
Richard M. Murray1, Alberto Sangiovanni-Vincentelli2 and Sanjit A. Seshia2

Abstract— We present a mathematical programming-based
method for model predictive control of discrete-time cyber-
physical systems subject to signal temporal logic (STL) speci-
fications. We describe the use of STL to specify a wide range
of properties of these systems, including safety, response and
bounded liveness. For synthesis, we encode STL specifications as
mixed integer-linear constraints on the system variables in the
optimization problem at each step of a model predictive control
framework. We present experimental results for controller
synthesis for building energy and climate control.

I. INTRODUCTION

Temporal logics provide a compact mathematical for-
malism for specifying desired behaviors of a system. In
particular, algorithms for verification and synthesis for these
logics enable construction of discrete supervisory controllers
satisfying the specified properties. These discrete controllers
have successfully been used to construct hybrid controllers
for cyber-physical systems in domains including robotics [9]
and aircraft power system design [25]. However, for physical
systems that require constraints not just on the order of
events, but on the temporal distance between them, simu-
lation and testing is still the method of choice for validating
properties and establishing guarantees; the exact exhaustive
verification of such systems is in general undecidable [1].

Signal Temporal Logic (STL) [22] was originally devel-
oped in order to specify and monitor the expected behavior
of physical systems, including temporal constraints between
events. STL allows the specification of properties of dense-
time, real-valued signals, and the automatic generation of
monitors for testing these properties on individual simulation
traces. It has since been applied to the analysis of several
types of continuous and hybrid systems, including dynamical
systems and analog circuits, where the continuous variables
represent quantities like currents and voltages in the circuit.
STL has the advantage of naturally admitting a quantitative
semantics which, in addition to the yes/no answer to the
satisfaction question, provides a real number grading the
quality of the satisfaction or violation. Such semantics have
been defined for timed logics including Metric Temporal
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Logic (MTL) [10] and STL [8] to assess the robustness of
the systems to parameter or timing variations.

Model Predictive Control (MPC) is based on iterative,
finite horizon, discrete time optimization of a model of the
plant. At any given time t, the current plant state is observed,
and an optimal control strategy computed for some finite time
horizon in the future, [t, t + H]. An online calculation is
used to explore possible future state trajectories originating
from the current state, finding an optimal control strategy
until time t + H . Only the first step of the computed
optimal control strategy is implemented; the plant state is
then sampled again, and new calculations are performed
on a horizon of H starting from the new current state.
While the global optimality of this sort of “receding horizon”
approach is not ensured, it tends to do well in practice. In
addition to reducing computational complexity, it improves
the system robustness with respect to exogenous disturbances
and modeling uncertainties [23].

In this paper, we frame MPC in terms of control synthesis
from STL specifications. The objective is to specify desired
properties of the system using a STL formula, and synthesize
control such that the system satisfies that specification, while
using a receding horizon approach. Recent work on optimal
control synthesis of aircraft load management systems [18]
represented STL-like specifications as time-dependent equal-
ity and inequality constraints, yielding a Mixed Integer Lin-
ear Program (MILP). The MILP was then solved in an MPC
framework, yielding an optimal control policy. However, the
manual transformation of specifications into equality and
inequality constraints is cumbersome and problem-specific.
As a key contribution, this paper presents two automatically-
generated MILP encodings for STL specifications.

Receding horizon control for temporal logic has been con-
sidered before in the context of Linear Temporal Logic (LTL)
[28], where the authors propose a reactive synthesis scheme
for specifications with GR(1) goals. The authors in [12] also
propose an MPC scheme for specifications in synthetically
co-safe LTL – our approach extends synthesis capabilities
to a wider class of temporal logic specifications. In [5],
the authors consider full LTL but use an automata-based
approach, involving potentially expensive computations of a
finite state abstraction of the system and a Buchi automaton
for the specification. We circumvent these expensive oper-
ations using a Bounded Model Checking (BMC) approach
to synthesis. In [3], the authors present a predictive control
scheme to stabilize mixed logical dynamical systems on
desired reference trajectories, while fulfilling propositional
logic constraints and heuristic rules. A major contribution of



this work is to extend the constraint specification language
for such systems to STL.

Our work extends the standard BMC paradigm for finite
discrete systems [4] to STL, which accommodates contin-
uous systems. In BMC, discrete state sequences of a fixed
length, representing counterexamples or plans, are obtained
as satisfying assignments to a Boolean satisfiability (SAT)
problem. The approach has been extended to hybrid systems,
either by computing a discrete abstraction of the system [24],
[13] or by extending SAT solvers to reason about linear
inequalities [2], [11]. Similarly, MILP encodings inspired by
BMC have been used to generate trajectories for continuous
systems with Linear Temporal Logic specifications [15],
[16], [27], and for a restricted fragment of Metric Temporal
Logic without nested operators [14]. However, this is the first
work to consider a BMC approach to synthesis for full STL.

Our main contribution is a pair of BMC-style encodings
for STL specifications as MILP constraints on a cyber-
physical system. We show how these encodings can be used
to generate open-loop control signals that satisfy finite and
infinite horizon STL properties, and moreover to generate
signals that maximize quantitative (robust) satisfaction. We
also demonstrate how our MILP formulation of the STL
synthesis problem can be used as part of existing MPC
frameworks, to compute feasible and optimal controllers
for cyber-physical systems under timed specifications. We
present experimental results comparing both encodings, and
a case study of controller synthesis on a model of a Heating
Ventilation and Air Conditioning (HVAC) system; another
case study on the control of a smart-building level micro-
grid was previously reported in a work-in-progress version
of this paper [26]. We show how the MPC schemes in these
examples can be framed in terms of synthesis from an STL
specification, and present simulation results to illustrate the
effectiveness of our methodology.

II. PRELIMINARIES

A. Discrete-Time Continuous Systems

We consider discrete-time continuous systems of the form

xt+1 = f(xt, ut) (1)

where t = 0, 1, . . . are the time indices, x ∈ X ⊆
(Rnc×{0, 1}nl) are the continuous and binary/logical states,
u ∈ U ⊆ (Rmc × {0, 1}ml) are the (continuous and logical)
control inputs, and x0 ∈ X is the initial state. A run
x = x0x1x2... is an infinite sequence of its states, where
xt ∈ X is the state of the system at index t, and for each
t = 0, 1, ..., there exists a control input ut ∈ U such that
xt+1 = f(xt, ut). Given an initial state x0 and a control input
sequence uN = u0u1u2 . . . uN−1, the resulting horizon-
N run of a system modeled by (1), which we denote by
x(x0,u

N ) = x0x1x2...xN is unique. Note that a horizon-N
run as defined here has N + 1 states. We also introduce a
generic cost function J(x,u) that maps runs to R.

B. Signal Temporal Logic

We assume that STL formulas are provided in negation
normal form, so all negations appear in front of predicates.
An STL formula can always be rewritten as a negation
normal form formula of length linear in the original length.
STL formulas are thus defined recursively as:

ϕ ::= µ | ¬µ | ϕ ∧ ψ | ϕ ∨ ψ | �[a,b] ψ | ϕ U[a,b] ψ

where µ is a predicate whose value is determined by the sign
of a function of an underlying signal x, i.e., µ ≡ µ(x) > 0,
and ψ is an STL formula. The validity of a formula ϕ with
respect to signal x at time t is defined inductively as follows:

(x, t) |= µ ⇔ µ(x(t)) > 0
(x, t) |= ¬µ ⇔ ¬((x, t) |= µ)
(x, t) |= ϕ ∧ ψ ⇔ (x, t) |= ϕ ∧ (x, t) |= ψ
(x, t) |= ϕ ∨ ψ ⇔ (x, t) |= ϕ ∨ (x, t) |= ψ
(x, t) |= �[a,b] ϕ ⇔ ∀t′ ∈ [t+ a, t+ b], (x, t′) |= ϕ
(x, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (x, t′) |= ψ

∧∀t′′ ∈ [t, t′], (x, t′′) |= ϕ.

A signal x = x0x1x2... satisfies ϕ, denoted by x |= ϕ, if
(x, 0) |= ϕ. Informally, x |= �[a,b] ϕ if the property defined
by ϕ holds at every time step between a and b, and x |=
ϕ U[a,b] ψ if ϕ holds at every time step before ψ holds, and
ψ holds at some time step between a and b. Additionally,
we define �[a,b] ϕ = > U[a,b] ϕ, so that x |= �[a,b] ϕ if ϕ
holds at some time step between a and b. Note that since we
deal only with discrete-time systems, the STL formulas we
consider refer only to intervals over discrete time values.

An STL formula ϕ is bounded-time if it contains no
unbounded operators. The bound of a bounded formula ϕ
is the maximum over the sums of all nested upper bounds
on the temporal operators; this provides a conservative
maximum trajectory length required to decide satisfiability
of the formula ϕ. For example, if the STL formula is
�[0,10] �[1,6] ϕ, then we require N ≥ 10 + 6 = 16 in order
to determine whether the formula is satisfiable. The bound
can be computed in time linear in the length of the formula.

C. Robust Satisfaction of STL formulas

Quantitative or robust semantics define a real-valued func-
tion ρϕ of signal x and t such that (x, t) |= ϕ ≡ ρϕ(x, t) >
0. This is computed recursively from the above semantics
in a straightforward manner, by propagating the values of
the functions associated with each operand using min and
max operators corresponding to various STL operators. For
example, the robust satisfaction of µ1 ≡ x − 3 > 0 at
time 0 is ρµ1(x, 0) = x(0) − 3. The robust satisfaction of
µ1∧µ2 is the minimum of ρµ1 and ρµ2 . Temporal operators
can be treated as conjunctions and disjunctions along the
time axis, e.g., the robust satisfaction of ϕ = �[0,2] µ1 is
ρϕ(x, t) = mint∈[0,2] ρ

µ1(x, t) = mint∈[0,2] x(t) − 3. The



complete robust semantics is defined as follows:

ρµ(x, t) = µ(x(t))
ρ¬µ(x, t) = −µ(x(t))
ρϕ∧ψ(x, t) = min(ρϕ(x, t), ρψ(x, t))
ρϕ∨ψ(x, t) = max(ρϕ(x, t), ρψ(x, t))
ρ�[a,b] ϕ(x, t) = mint′∈[t+a,t+b] ρ

ϕ(x, t′)
ρϕ U[a,b] ψ(x, t) = maxt′∈[t+a,t+b](min(ρψ(x, t′),

mint′′∈[t,t′] ρ
ϕ(x, t′′))

III. PROBLEM STATEMENT

We now formally state the STL control synthesis problem
and its MPC formulation.

Problem 1 (Optimal Controller Synthesis from STL):
Given a system of the form (1), initial state x0, trajectory
length N , STL formula ϕ and cost function J , compute

argminuN J(x(x0,u
N ))

s.t. x(x0,uN ) |= ϕ
Problem 2 (MPC from STL Specifications): Given a sys-

tem of the form (1), initial state x0, STL formula ϕ and cost
function J , at each time step t, compute

argminuH,t J(x(xt,u
H,t),uH,t))

s.t. x(x0,u) |= ϕ,

where H is a finite horizon provided as a user input
or selected in some other fashion, uH,t is the horizon-
H control input computed at each time step t, and u =
uH,00 uH,10 uH,20 ....

In Sections IV and VI, we present both an open-loop solu-
tion to Problem 1, and a solution to Problem 2 for bounded-
time STL formulas. In the absence of an objective function
J on runs of the system, we maximize the robustness of
the generated runs with respect to ϕ. A key component of
our solution is encoding the STL specifications as MILP
constraints, which can be combined with MILP constraints
representing the system dynamics to efficiently solve the
resulting state-constrained optimization problem.

IV. OPEN-LOOP CONTROLLER SYNTHESIS

The encoding of Problem 1 as an MILP consists of system
constraints and STL constraints as defined below.

A. Constraints on system evolution

The first component of the set of constraints is provided
by the system model. The system constraints encode valid
finite (horizon-N ) trajectories for a system of the form (1) –
these constraints hold if and only if the trajectory x(x0,uN )
satisfies (1) for t = 0, 1, ..., N . Note that this is quite general,
and accommodates any system for which the resulting con-
straints and objectives form a mixed integer-linear program.
Examples include a building-level smart grid control system
model [20] and mixed-logical dynamical systems such as
those presented by Bemporad and Morari [3].

B. STL constraints
Given a formula ϕ, we introduce a variable zϕt , whose

value is tied to a set of mixed integer linear constraints
required for the satisfaction of ϕ at position t in the state
sequence of length N . In other words, zϕt has an associated
set of MILP constraints such that zϕt = 1 if and only if
ϕ holds at position t. We recursively generate the MILP
constraints corresponding to zϕ0 – the value of this variable
determines whether a formula ϕ holds in the initial state.

1) Predicates: The predicates are represented by con-
straints on system state variables. For each predicate µ ∈ P ,
we introduce binary variables zµt ∈ {0, 1} for times t =
0, 1, ..., N . The following constraints enforce that zµt = 1 if
and only if µ(xt) > 0:

µ(xt) ≤ Mtz
µ
t − εt

−µ(xt) ≤ Mt(1− zµt )− εt
where Mt are sufficiently large positive numbers, and εt are
sufficiently small positive numbers that serve to bound µ(xt)
away from 0. Note that zt = 1 if and only if µ(xt) > 0.
This encoding restricts the set of STL formulas that can be
encoded using our approach to those over linear predicates,
but admits arbitrary STL formulas over such predicates.

2) Boolean operations on MILP variables: As described
in Section IV-B.1, each predicate µ has an associated binary
variable zµt which equals 1 if µ holds at time t, and 0
otherwise. In fact, by the recursive definition of our MILP
constraints on STL formulas, each operand ϕ in a Boolean
operation has a corresponding variable zϕt which is 1 if ϕ
holds at t and 0 if not. Here we define Boolean operations on
these variables; these are the building blocks of our recursive
encoding. The definitions in this subsection are identical to
those in [27].

Logical operations on variables zψt ∈ [0, 1] are defined as
follows:
Negation: zψt = ¬zϕt zψt = 1− zϕt

Conjunction: zψt = ∧mi=1z
ϕi

ti

zψt ≤ z
ϕi

ti , i = 1, ...,m,

zψt ≥ 1−m+
∑m
i=1 z

ϕi

ti

Disjunction: zψt = ∨mi=1z
ϕi

ti

zψt ≥ z
ϕi

ti , i = 1, ...,m,

zψt ≤
∑m
i=1 z

ϕi

ti
Given a formula ψ containing a Boolean operation, we

add new continuous variables zψt ∈ [0, 1], and set zψt = ¬zµt ,
zψt = ∧mi=1z

ϕi

ti , and zψt = ∨mi=1z
ϕi

ti for ψ = ¬µ, ψ = ∧mi=1ϕi
and ψ = ∨mi=1ϕi, respectively. These constraints enforce that
zψt = 1 if ψ holds at time t and zψt = 0 otherwise.

3) Temporal constraints: We first present encodings for
the � and � operators. We will use these encodings to
define the encoding for the U[a,b] operator.

Always: ψ = �[a,b] ϕ

Let aNt = min(t+ a,N) and bNt = min(t+ b,N)

Define zψt = ∧b
N
t

i=aNt
zϕi

The logical operation ∧ on the variables zϕi here is as defined
in Section IV-B.2. Intuitively, this encoding enforces that the
formula ϕ is satisfied at every time step on the interval [a, b]
relative to time step t.



Eventually: ψ = �[a,b] ϕ

Define zψt = ∨b
N
t

i=aNt
zϕi This encoding enforces that the

formula ϕ is satisfied at some time step on the interval [a, b]
relative to time step t.
Until: ψ = ϕ1 U[a,b] ϕ2

The bounded until operator U[a,b] can be defined in terms of
the unbounded U (inherited from LTL) as follows [7]:

ϕ1 U[a,b] ϕ2 = �[0,a] ϕ1 ∧ �[a,b] ϕ2 ∧ �[a,a](ϕ1 U ϕ2)

We define

zϕ1 U ϕ2

t = zϕ2

t ∨ (zϕ1

t ∧ z
ϕ1 U ϕ2

t+1 )

for t = 1, ..., N − 1, and

zϕ1 U ϕ2

N = zϕ2

N .

Given this encoding of the unbounded until and the encod-
ings of �[a,b] and �[a,b] above, we can encode

z
ϕ1 U[a,b] ϕ2

t = z
�[0,a] ϕ1

t ∧ z �[a,b] ϕ2

t ∧ z �[a,a](ϕ1 U ϕ2)

t .

By induction on the structure of STL formulas ϕ, zϕt = 1
if and only if ϕ holds on the system at time t. With this
motivation, given a specification ϕ, we add a final constraint:

zϕ0 = 1. (2)

The union of the STL constraints, system constraints and
loop constraints gives the MILP encoding of Problem 1; this
enables checking feasibility of this set and finding a solution
using an MILP solver. Given an objective function on runs
of the system, this approach also enables finding the optimal
open-loop trajectory that satisfies the STL specification.

Mixed integer-linear programs are NP-hard, hence compu-
tationally challenging when the dimensions of the problem
grow. Hence, the computational costs of our encoding and
approach are in terms of the number of variables and
constraints in the resulting MILP. If P is the set of predicates
used in the formula, then O(N · |P |) binary variables are
introduced. In addition, continuous variables are introduced
during the MILP encoding of the STL formula. The number
of continuous variables used is O(N · |ϕ|), where |ϕ| is the
length (i.e. the number of operators) of the formula. Finally,
loop constraints introduce N additional binary variables.

V. ROBUSTNESS-BASED ENCODING

The robustness of satisfaction of the STL specification,
as defined in II-C, provides a natural objective for the
MILP defined in section IV-B.3, either in the absence of,
or as a complement to domain-specific objectives on turns
of the system. The robustness can be computed recursively
on the structure of the formula in conjunction with the
generation of constraints. Moreover, since max and min
operations can be expressed in an MILP formulation using
additional binary variables, this does not add complexity to
the encoding (although the additional variables do make it
more computationally expensive in practice).

In this section, we sketch the encoding of the predicates
and Boolean operators using an MILP; the encoding of the
temporal operators builds on these encodings as in Section
IV-B.3. Given a formula ϕ, we introduce a variable rϕt , and
an associated set of MILP constraints such that rϕt > 0 if
and only if ϕ holds at position t. We recursively generate the
MILP constraints, such that rϕ0 determines whether a formula
ϕ holds in the initial state. Additionally, we enforce that the
value of rϕt = ρϕ(x, t).

For each predicate µ ∈ P , we now introduce variables
rµt for time indices t = 0, 1, ..., N , and set rµt = µ(xt).
For rψt where ψ is a Boolean formula, we assume that each
operand ϕ has a corresponding variable rϕt = ρϕ(x, t). Then
the Boolean operations are defined as:

Negation: rψt = ¬rφt rψt = −rφt
Conjunction: rψt = ∧mi=1r

ϕi

ti

m∑
i=1

pϕi

ti = 1 (3)

rψt ≤ r
ϕi

ti , i = 1, ...,m (4)

rϕi

ti − (1− pϕi

ti )M ≤ r
ψ
t ≤ r

ϕi

ti +M(1− pϕi

ti ) (5)

where we introduce new binary variables pϕi

ti for i =
1, ...,m, and M is a sufficiently large positive number. Then
(3) enforces that there is one and only one j ∈ {1, ...,m}
such that bϕj

ti = 1, (4) ensures that rψt is smaller than all
rϕi

ti , and (5) enforces that rψt = r
ϕj

tj if and only if bϕj

tj = 1.
Together, these constraints enforce that rψt = mini(r

ϕi

ti ).

Disjunction: ψ = ∨mi=1r
ϕi

ti is encoded similarly to con-

junction, replacing (4) with rψt ≥ rϕi

ti , i = 1, ...,m Using
a similar reasoning to that above, this enforces rψt =
maxi(r

ϕi

ti ).
The encoding for bounded temporal operators is defined

as in Section IV-B.3; robustness for the unbounded until is
defined using sup and inf instead of max and min, but these
are equivalent on our finite trajectory representation with
discrete time. By induction on the structure of STL formulas
ϕ, this construction yields rϕt > 0 if and only if ϕ is satisfied
at time t. Therefore, we can replace the constraints over zϕt
in Section IV-B.3 by these constraints that compute the value
of rϕt , and instead of (2), add the constraint rϕ0 > 0.

Since we consider only the discrete time semantics of
STL in this work, the Boolean encoding in Section IV-B.3
could be achieved by converting each formula to LTL, and
using existing encodings such as that in [27]. However, the
robustness-based encoding we presented in this section has
no natural analog for LTL. The advantage of this encoding
is that it allows us to maximize the value of rϕ0 , obtaining
a trajectory that maximizes robustness of satisfaction. Addi-
tionally, an encoding based on robustness has the advantage
of allowing the STL constraints to be softened or hardened as
necessary. For example, if the original problem is infeasible,
we can allow ρϕ0 > −ε for some ε > 0, thereby easily
modifying the problem to allow a limited violation of the
STL property.



The disadvantage is that it is more expensive to compute,
due the the additional binary variables introduced during
each Boolean operation. Additionally, including robustness
as an objective makes the cost function inherently non
convex, with potentially many local minimums, and harder
to optimize. On the other hand, the robustness constraints
are more easily relaxed, which allows us to use a simpler
cost function, which can make the problem more tractable.

VI. MODEL PREDICTIVE CONTROL SYNTHESIS

In this section, we will describe a solution to Problem 2
by adding STL constraints to an MPC problem formulation.
At each step t of the MPC computation, we will search for
a finite trajectory of fixed horizon length H , such that the
accumulated trajectory satisfies ϕ.

A. Synthesis for bounded-time STL formulas

The length of the horizon H is chosen to be at least the
bound of formula ϕ. At time step 0, we will synthesize
control uH,0 using the open-loop formulation in Section IV,
including the STL constraints on the length-H trajectory.
We will then execute only the first time step uH,00 . At
the next step of the MPC, we will solve for uH,1, while
constraining the previous values of x0, u0 in the MILP, the
STL constraints on the trajectory up to time H . In this
manner, we will keep track of the history of states in order to
ensure that the formula is satisfied over the length-H prefix
of the trajectory, while solving for uH,t at every time step t.

B. Extension to unbounded formulas

For certain types of unbounded formulas, we can stitch
together trajectories of length H using a receding horizon
approach, to produce an infinite computation that satisfies
the STL formula. An example of this is safety properties,
i.e. ϕ = �(ϕMPC) for bounded STL formulas ϕMPC . For
such formulas, at each step of the MPC computation, we will
search for a finite trajectory of horizon length H (determined
from ϕMPC as in Section VI-A) that satisfies ϕMPC .

VII. EXPERIMENTAL RESULTS

A. Boolean vs Robust Encoding

We implemented the Boolean and robust encodings on top
of the tools Breach [6] and Yalmip [17] and first present
preliminary experimental results obtained with the following
formulas:
• ϕ1 = �[0,0.1] x

(1)
t > 0.1

• ϕ2 = �[0,0.1](x
(1)
t > 0.1) ∧�[0,0.1](x

(2)
t < −0.5)

• ϕ3 = �[0,0.5] �[0,0.1](x
(1)
t > 0.1)

• ϕ4 = �[0,0.2](x
(1)
t > 0.1 ∧ ( �[0,0.1](x

(2)
t > 0.1)

∧ �[0,0.1](x
(3)
t > 0.1)))

In this study, we used the trivial system x = u, where x

is a 3-dimensional signal (i.e. xt = x
(1)
t x

(2)
t x

(3)
t ), so that

no constraint is generated for the systems dynamics, and the
cost function J(x,u) =

∑N
k=1 ‖utk‖1. Note that the output

of this procedure for a formula ϕ is a signal of minimal
norm which satisfies ϕ when using the Boolean encoding

Formula #constraints Yalmip Time (s) Solver time (s)
ϕ1 154 488 1.71 2.04 0.0070 0.0085
ϕ2 364 897 1.94 2.69 0.0115 0.0229
ϕ3 244 1282 1.84 3.15 0.0064 0.1356
ϕ4 574 1330 2.29 3.37 0.2167 238.6

TABLE I
BOOLEAN (LEFT) VS ROBUST (RIGHT) ENCODINGS. YALMIP TIME

REPRESENTS THE TIME TAKEN BY THE TOOL YALMIP IN ORDER TO

GENERATE THE MILP AND SOLVER TIME IS THE TIME TAKEN BY THE

SOLVER GUROBI TO ACTUALLY SOLVE IT.

and which satisfies ϕ with a specified robustness ρϕ(x) =
0.1 for the robust encoding. For each formula we computed
the Boolean and robust encodings for an horizon N = 30
and sampling time τ = 0.025s and report the number of
constraints generated by each encoding, the time to create
the resulting MILP with Yalmip and the time to solve it
using the solver Gurobi.1 All experiments were run on a
laptop with an Intel Core i7 2.3GHz processor and 16GB of
memory.

A first observation is that for both encodings, most of the
time is spent creating the MILP, while solving it is done in a
fraction of second. Also, while the robust encoding generates
3 to 5 times more constraints, the computational time to
create and solve the corresponding MILPs is hardly twice
more. The exception is solving the MILP for ϕ4, which
takes significantly more time for the robust encoding than
for the Boolean encoding. The reason is hard to pinpoint
without a more thorough investigation, but we can already
note that solving a MILP is NP-hard, and while solvers use
sophisticated heuristics to mitigate this complexity, instances
for which these heuristics fail are bound to appear.

B. Mathematical Model of a Building

Next we consider the problem of controlling building
indoor climate, using the model proposed by Maasoumy et
al [21].

1) Heat Transfer: As shown in Fig. 1, a building is
modeled as a resistor-capacitor circuit with n nodes, m of
which are rooms and the remaining n−m walls. We denote
the temperature of room ri by Tri . The wall and temperature
of the wall between rooms i and j are denoted by wi,j and
Twi,j , respectively. The temperature of wi,j and ri room are
governed by the following equation:

Cwi,j
dTwi,j

dt
=

∑
k∈Nwi,j

Trk − Twi,j

Ri,jk
+ ri,jαi,jAwi,j

Qradi,j

(6)

Cri
dTri
dt

=
∑
k∈Nri

Tk − Tri
Ri,ki

+ ṁrica(Tsi − Tri)+

wiτwi
Awini

Qradi + Q̇inti , (7)

where Cwi,j , αi,j and Awi,j
are heat capacity, a radiative

heat absorption coefficient, and the area of wi,j , respectively.

1http://www.gurobi.com/



Fig. 1. Resistor-capacitor representation of a typical room with a window.

Ri,jk is the total thermal resistance between the centerline of
wall (i, j) and the side of the wall on which node k is located.
Qradi,j is the radiative heat flux density on wi,j . Nwi,j

is
the set of all nodes neighboring wi,j . ri,j is a wall identifier,
which equals 0 for internal walls and 1 for peripheral walls
(where either i or j is the outside node). Tri , C

r
i and ṁri are

the temperature, heat capacity and air mass flow into room i,
respectively. ca is the specific heat capacity of air, and Tsi is
the temperature of the supply air to room i. wi is a window
identifier, which equals 0 if none of the walls surrounding
room i have windows, and 1 if at least one of them does.
τwi is the transmissivity of the glass of window i, Awini is
the total area of the windows on walls surrounding room i,
Qradi is the radiative heat flux density per unit area radiated
to room i, and Q̇inti is the internal heat generation in room i.
Nri is the set of neighboring room nodes for room i. Further
details on this thermal model can be found in [21].

The heat transfer equations for each wall and room yield
the following system dynamics:

ẋt = f(xt, ut, dt), yt = Cxt

Here xt ∈ Rn is the state vector representing the temperature
of the nodes in the thermal network, and ut ∈ Rlm is the
input vector representing the air mass flow rate and discharge
air temperature of conditioned air into each thermal zone
(with l being the number of inputs to each thermal zone,
e.g. air mass flow and supply air temperature). The vector dt
stores the estimated disturbance values, aggregating various
unmodeled dynamics such as Tout, Q̇int and Qrad, and can
be estimated using historical data [21]. yt ∈ Rm is the output
vector, representing the temperature of the thermal zones, and
C is a constant matrix of proper dimension.
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Fig. 2. Room temperature control with constraints based on occupancy,
expressed in STL.

C. MPC for Building Climate Control

We consider a commercial building that has an HVAC
system controlled by an MPC. We adopt the MPC formula-
tion proposed by Maasoumy et al. [19], with the objective
of minimizing the total energy cost (in dollar value). Denote
by τ the length of each time slot, and by H the prediction
horizon (in number of time slots) of the MPC. Assume that
the system dynamics are also discretized with a sampling
time of τ . Here we consider τ = 0.5 hr and H = 24.
At each time t, the predictive controller solves an optimal
control problem to compute ~ut = [ut, . . . , ut+H−1], and
minimizes the cumulative norm of ut:

∑H−1
k=0 ‖ut+k‖. We

assume known an occupancy function occt which is equal to
1 when the room is occupied and to 0 otherwise. The purpose
of the MPC is to maintain a comfort temperature given by
T conf whenever the room is occupied while minimizing the
cost of heating. This problem can be expressed as follows:

min
~ut

H−1∑
k=0

‖ut+k‖ s.t.

xt+k+1 = f(xt+k, ut+k, dt+k),

xt |= ϕ with ϕ = �[0,H]((occt > 0)⇒ (Tt > T conf
t )

ut+k ∈ Ut+k, k = 0, ...,H − 1

The STL formula was encoded using the robust MILP
encoding and results are presented in Figure 2. Again we
observed that creating the MILP structure was longer than
solving an instance of it (4.1s versus 0.15s). However, by
using a proper parametrization of the problem in Yalmip,
the creation of the MILP structure can be done once offline
and reused online for each step of the MPC, which makes
the approach promising and potentially applicable even for
real-time applications.



VIII. DISCUSSION

The main contribution of this paper is a pair of bounded
model checking style encodings for signal temporal logic
specifications as mixed integer linear constraints. We showed
how our encodings can be used to generate control for
systems that must satisfy STL properties, and additionally
to ensure maximum robustness of satisfaction. Our for-
mulation of the STL synthesis problem can be used as
part of existing controller synthesis frameworks to compute
feasible and optimal controllers for cyber-physical systems.
We presented experimental results for controller synthesis
on simplified models of a smart building-level micro- grid
and HVAC system, and showed how the MPC schemes in
these examples can be framed in terms of synthesis from
an STL specification, with simulation results illustrating the
effectiveness of our proposed synthesis.

Future work will further explore synthesis in an MPC
framework for unbounded STL properties. As mentioned in
Section VI-B, this is an easy extension of our approach
for certain types of properties. Extending this to arbitrary
properties has ties to online monitoring of STL properties,
which we intend to explore. We have already demonstrated
the ability to synthesize control for systems on both the
demand and supply sides of a smart grid. We view this as
progress toward a contract-based framework for specifying
and designing components of the smart grid and their inter-
actions using STL specifications.
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