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ABSTRACT
UML Sequence Diagrams are one of the most commonly used
type of UML diagrams in practice. Their semantics is often
considered to be straightforward, but a more detailed anal-
ysis reveals diverse interpretations. These different choices
must be properly supported by verification tools. This paper
describes a formal framework for capturing semantic choices
in a precise and modular way. The user is then able to select
the semantics of interest, mix different interpretations, and
analyze diagrams according to the chosen solution. This
solution is supported by Corretto, our UML verification en-
vironment, to allow the user to play with different semantics
and prove properties on Sequence Diagrams, accordingly.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Theory, Verification

Keywords
UML, metric temporal logic, formal semantics

1. INTRODUCTION
The detailed specification of a complex system would help

the user understand its global behavior and become more
confident about its correctness. Even if the particular domain
would require precise and formal means, we often prefer to
model a system through simple, visual notations, and UML is
clearly one of the first choices in these years. UML provides
both a significant set of (simple) visual notations and a great
variety of modeling tools.

UML diagrams can be used to model (complex) systems
and describe their peculiar aspects, but they would become
even more interesting if one were able to use them to prove
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some properties formally. Rigorous analysis requires that
the behavior of the modeling elements be stated unambigu-
ously, but the complexity of the notation and its informal
nature hamper its complete formalization. Several attempts
have tried to formalize particular diagrams [5, 7], but these
approaches are partial and only cover specific interpretations.

Supporting different (all) UML diagrams and diverse se-
mantics is the main goal of our framework Corretto1 [9]. In
this paper we focus on Sequence Diagrams, which are often
used to capture the most significant scenarios that describe
how the components of a complex system interact.

The semantics of Sequence Diagrams is often assumed to
be straightforward and shared, but the interpretation of the
details makes the difference. UML 2 introduced combined
fragments and more sophisticated control statements, and
the interpretation of resulting diagrams has become even
more complex. The different solutions that ascribe Sequence
Diagrams with formal semantics tend to propose specific
solutions [5, 7] with limited interoperability.

In contrast, this paper does not aim to introduce yet
another semantics, but it studies the most significant pro-
posals, organizes them into a single coherent framework, and
proposes a solution to interpret Sequence Diagrams in a
compositional and modular way. Users can decide the inter-
pretations of the key aspects of their interest and the result
is a complete and coherent semantics; then, provided some
simple constraints are respected to avoid making inconsistent
decisions, our framework accommodates all other aspects.

The proposed theoretical approach is implemented in Cor-
retto and allows the user to easily play with the different
semantics. The user can simulate the behavior of the diverse
semantics and verify the satisfiability of the properties of
interest. S/he can thus understand how the system behaves
or work on the satisfiability of the properties and then obtain
the guarantees the system must offer.

The rest of the paper is organized as follows. Section 2
informally introduces the possible interpretations of the dif-
ferent constructs of Sequence Diagrams. Section 3 presents
our formalization framework and explains how to compose
different, meaningful semantics. Section 4 sketches Corretto
and explains how the user can work with the different se-
mantics. Section 5 briefly surveys related approaches and
Section 6 concludes the paper.

2. DIFFERENT INTERPRETATIONS
The interpretation of Sequence Diagrams is sometimes

tricky. The OMG specification [1] does not define their

1https://github.com/mmpourhashem/CorrettoUML
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semantics in detail to foster their adoption in different do-
mains, but this allowed for diverse interpretations: for exam-
ple, Micskei and Waeselynck [8] survey thirteen (sometimes
similar) different alternatives.

We use the diagram of Figure 1 (SDSearch) to illustrate
interpretations, explore ambiguities, and identify possible
solutions. Informally, app is given a list of keywords, it pings
server1 and server2 in parallel and passes the keywords
to the first server that replies. app also periodically updates
the screen with the results obtained from the server.

Most of the problems come with the interpretation of com-
bined fragments. They allow the user to model complex
interactions among objects in a succinct and organized man-
ner. Each combined fragment depends on an interaction
operator : alt, opt, par, loop, break, seq, neg, and oth-
ers [1]. Every combined fragment comprises one or more
operands and associated guards (nothing means true). Each
operand, in turn, contains messages —and further combined
fragments— that are processed according to the interaction
operator associated with the enclosing combined fragment.

Figure 1: Example Sequence Diagram.

The first problem we address concerns the role played
by the borders of a combined fragment. They can act as
mere (graphical) containers of operands, whose execution
order can then cross the borders, or be used to constrain the
execution sequence of the messages of the different operands
based on their position in the diagram. For example, in
this latter case, it would not be possible for replyS1 to
be sent before pingS2 is received. More rigorously2, T1 =

2The notation we use in this paper decomposes a message in
the two events that correspond to sending (!) and receiving

{〈!?pingS1, !pingS2〉, 〈!replyS1〉, 〈?pingS2〉} would be a trace
fragment that satisfies the semantics of the diagram according
to the former interpretation, but it would violate the latter
since !replyS1 cannot happen before ?pingS2.

The more general question is thus how the executions of
the different combined fragments are blended ([Combine]
in Figure 2). The OMG states that: “The semantics of an
interaction operand is given by its constituent interaction
fragments combined by the implicit seq operation”. This
means that the combined semantics is defined through the se-
mantics of seq, which obliges fragments to combine operands
through weak sequencing (WS in Figure 2). If two events
refer to the same lifeline, they follow the top-down order
imposed by the lifeline. If they refer to different lifelines
whose corresponding objects exchange messages (e.g., pingS1
and replyS1 between app and server1), then the send
event on the first lifeline must also come before the receive
event on the second lifeline. Hence, the order on a lifeline
partially depends on the order of exchanged messages. Fi-
nally, if two events refer to independent lifelines, i.e., that do
not exchange messages, they can appear in any order (e.g.,
replyS1 and replyS2 can happen in any order).

The OMG also states that borders do not impose any
ordering constraint, and that the events before a combined
fragment may happen after it and the events after the com-
bined fragment may happen before it. [8] highlights that
several proposed semantics, e.g., the work by Fernandes et
al. [5], do not comply with what the OMG states. They
impose an additional constraint on the weak sequencing that
forces a synchronous composition (SYNC) among the differ-
ent elements: the sequence of event occurrences respects the
borders of combined fragments; i.e., events before a combined
fragment happen before it and events after the combined
fragment happen after its conclusion. This means that OMG
would allow T1 to be a fragment of a correct execution trace,
while this further constraint would forbid it.

Combined fragments can also embed loops, but how the
events in the different iterations are combined ([Loop]) is
questionable. The occurrences in one iteration can: (a) be
strictly separated from or (b) be interleaved with those of the
others. Thus, the correctness of T2 = {〈!?searchNextS1It1〉,
〈!?resultS1It1〉, 〈!updateResultS1It1〉, 〈!?searchNextS1It2〉,
〈!?resultS1It2〉, 〈?updateResultS1It1〉, 〈!updateResultS1It2〉,
〈?updateResultS1It2〉}, where ItX means the xth iteration,
is questionable.

The OMG states that the semantics of loop is equivalent
to the recursive application of the semantics of seq (WS).
These loops then become more permissive than those in
programming languages —since their iterations cannot be
intertwined. If one needed to mimic them, this would not be
possible, in line with the OMG specification, even by using
general ordering3 in loop. Knapp and Wuttke [7] proposed
to have weak sequencing for all fragments but loops. If
iterations are to be combined synchronously (SYNC), T2

would not be a correct execution trace, while it would be
acceptable according to the pure OMG specification.

Even the evaluation of guards comes with some problems
([When]). One may say that (a) all lifelines evaluate guards

it (?). The shortcut !?m is equivalent to !m and ?m at the
same time instant, and a pair of 〈 〉 enclose the events that
happen at the same time.
3A general ordering is a binary relation between events that
describes that an event must occur before another in a trace.
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Figure 2: Different configurations obtained from the
four choices.

at a single global time (SGT), or (b) each lifeline does it at
particular independent local times (ILT). For example, T1

corresponds to the case in which app and server1 interact
through the first operand of the alt fragment, and server1
replies before server2 has received the ping request. The
correctness of this sequence depends on how the execution of
composed fragments is interpreted: synchronous composition
imposes that all guards be evaluated by each lifeline when the
execution of the combined fragment starts. Weak sequencing
would allow the first lifeline entering the combined fragment
to evaluate guards and decide which operand to execute, if
needed. All other lifelines must then obey the decision taken
by the first lifeline, even if meanwhile guards have changed.

Besides the evaluation time, more than one guard may be
true in an alt fragment ([Choice]). If this is the case, one
could: (a) pick one nondeterministically (ND), or (b) select
the first true guarded operand from the top (FFT). The
OMG only states that: “At most one of the operands will
be chosen”, but there is no advice on the selection in case
of alternatives. Most of the known interpretations simply
pick one true-guarded operand nondeterministically. Others
simply select the first one from the top. The latter choice is
the way to go if one adopted the implicit assumption that
operands are ordered top-down according to their priority.

All aforementioned problems, and choices, must be prop-
erly addressed, and one single solution be identified. There
might be different ways of presenting a scenario by means of
Sequence Diagrams, but there must always be one and only
one interpretation of the diagram.

To this end, the decision tree of Figure 2 summarizes our
analysis and identifies six possible coherent and complete
interpretations given the different choices and their mutual
constraints. Gray nodes identify inconsistent interpretations,
and therefore the derivation is aborted. For example, a
coherent interpretation cannot use SGT and WS: a single
global time cannot be selected when fragments are composed
according to weak sequencing. Similarly, WS for loops is not
compatible with SYNC, as composing fragments through
synchronous composition and iterations in loops through
weak sequencing would be incoherent.

Of the six resulting configurations, Config5 is the only one
that fully complies with OMG’s specification. Config3 and
Config4 are special cases: they use a single global time to

evaluate the guards associated with loops, and independent
local times on each lifeline for the other fragments.

3. FORMAL SEMANTICS
This section presents our modular, unifying approach for

formalizing the different semantic variants described in Sec-
tion 2. The approach is based on temporal logic and builds
on previous work [4] on the formalization and verification of
UML diagrams —not limited to Sequence Diagrams. Tem-
poral logic is well suited for our purposes, because it allows
us to focus on the different aspects of the semantics by using
separate groups of formulae, and then obtain the complete
formalization through simple logic conjunction.

At the basis, given a Sequence Diagram S, we introduce
a set of logic propositions that capture the behavior of the
elements of S. For example, proposition SStart describes the
start of the execution of diagram S. If S includes a message m
that is exchanged between two objects, propositions mStart

and mEnd correspond to the message being respectively sent
and received, and so on. Every element of S that is relevant
for its semantics has a corresponding proposition, including
the borders of combined fragments (to represent when they
are crossed during the execution of S), their guards, etc.
Then, for each aspect of the semantics of a Sequence Diagram
S, we introduce logic formulae that capture it. For example,
given a lifeline L of S, we introduce a set of formulae, say
OrdL, that capture the ordering of events along the lifeline. If
L1 . . .Ln are all the lifelines of S, the complete formalization
of the ordering of events through S is given by OrdS =∧n

i=1OrdLi .
Now, consider a combined fragment C that spans different

lifelines, such as those depicted in Figure 1. A set of formu-
lae, say SemC, captures the semantics of C, including the
conditions under which C is entered (for example, whether all
lifelines enter the fragment at the same time or not) or exited.
Formula OrdS ∧ SemC constrains the ordering of events to
obey the semantics of C. Note that formulae OrdS and SemC
will include common propositions such as, for example, the
proposition corresponding to C being entered, since it is also
an event that occurs along the lifelines. These shared proposi-
tions provide a form of “synchronization” among the various
parts of the formalization, as their behavior is constrained
by several concurring aspects.

The different variants presented in Section 2 give rise to
different ways of formalizing the various aspects of a Sequence
Diagram S. For example, the semantics of combined fragment
C is different depending on whether a SYNC or a WS
semantics is used. If we indicate by SemSYNC

C the semantics of
C in the former case and by SemWS

C the one in the latter, then
changing from one to the other is as simple as substituting
SemWS

C for SemSYNC
C in OrdS ∧ SemSYNC

C .
In the rest of this section we provide some details of the

formalization of the semantic variants presented in Section 2.
The approach exploits the metric temporal logic TRIO [6],
which allows users to express timing properties of systems,
including real-time ones. In fact, though in this paper we fo-
cus on the flexibility and modularity aspects of our approach
rather than the real-time ones, we allow users to express and
verify metric properties such as “message m1 will be followed,
within 3 time units, by message m2”. TRIO adopts a linear
notion of time, and can be used to express properties over
both discrete and continuous temporal domains; here we only
focus on the former.



Table 1: TRIO operators used in this paper.
Operator Definition Meaning

Futr(φ,d) d > 0 ∧ Dist(φ, d) φ occurs d instants in the future

Past(φ,d) d > 0 ∧ Dist(φ,−d) φ occurred d instants in the past

Alw(φ) ∀t(Dist(φ, t)) φ always holds

Lasts(φ,d) ∀(0 <t< d ⇒ Futr(φ, t)) φ holds for the next d time units

Lasted(φ,d) ∀(0< t< d ⇒ Past(φ, t)) φ held for the last d time units

Until(φ,ψ) ∃t(Futr(ψ,t)∧Lasts(φ,t)) ψ will occur and φ will hold until then

Since(φ,ψ) ∃t(Past(ψ,t)∧Lasted(φ,t)) ψ occurred and φ held since then

Table 1 defines some typical TRIO operators in terms
of the basic Dist operator, where Dist(φ, d) means that φ
holds at the instant exactly d time units from the current
one. There are also variants of the operators that include
one or both of the endpoints of an interval; for example,
Lastsei(φ, d) = ∀(0 <t≤ d⇒ Futr(φ, t)).

3.1 Basic Modules
We start by presenting the formulae that capture cross-

cutting aspects of the semantics of Sequence Diagrams.

3.1.1 Order
The formalization of the ordering between two events is

the simplest part of the semantics, and it is the building
block for formalizing partial and general ordering in Sequence
Diagrams. However, even the simple notion of“ev1 is followed
by ev2” raises some questions about the validity of traces.
What if we had ev1 and no ev2 afterwards? Is ev1 alone
valid? Dually, what if we had ev2 without a previous ev1?
Can they occur at the same time? Several interpretations
are possible.

Mono-Directional Order.
Event ev2 may be triggered by the occurrence of event ev1

under certain circumstances. In this case we formalize that,
after ev1, ev2 occurs, provided that a suitable guard holds
when ev1 occurs. However, if the ordering is only mono-
directional, an occurrence of ev2 does not imply a previous
ev1. Formula (1) captures this notion of ordering (where
guard and exception are placeholders for sub-formulae that
are introduced below).

ev1 ∧ guard⇒

(
Untilei((¬ev1 ∧ ¬ev2), exception) ∨
Untilei((¬ev1 ∧ ¬exception), ev2)

)
(1)

The next formula, instead, defines that event ev2 cannot
occur at the same time as its trigger (ev1):

ev1 ∧ guard⇒ ¬ev2. (2)

Following [4], we write the modular semantics of Sequence
Diagrams to fit it into a larger UML semantics, which also
includes other diagrams such as Interaction Overview Dia-
grams. Hence, we allow a Sequence Diagram to be stopped at
any time during its execution, provided a suitable event (an
exception, for example a timeout) occurs. This is captured by
Formula (1), which states that ev2 occurs after ev1 ∧ guard
holds, unless an exception intervenes. Finally, we introduce
the following abbreviation:

OrderMonoD(ev1, ev2, guard, exception, isConcurrent)
def
={

(1) if isConcurrent = true
(1) ∧ (2) otherwise

Mono-Directional Reverse Order.
When event ev2 is necessarily triggered by event ev1, but

not all occurrences of ev1 produce ev2, then we formalize
that the former has to be preceded by the latter, but not the
converse. This is captured by the following formula:

ev2 ⇒ Sinceei((¬ev2 ∧ ¬exception), (ev1 ∧ guard)) . (3)

Abbreviation OrderMonoDRev is similar to OrderMonoD
and is omitted for brevity.

Bidirectional Order.
This is the conjunction of the two previous cases: ev1 oc-

curs if, and only if, ev2 also occurs later (unless an exception
occurs before):

Order(ev1, ev2, guard, exception, isConcur)
def
=

OrderMonoD(ev1, ev2, guard, exception, isConcur) ∧
OrderMonoDRev(ev1, ev2, guard, exception, isConcur)

3.1.2 Borders
Each Sequence Diagram, combined fragment, lifeline, oper-

and of combined fragment and message has a beginning, an
end, and a duration throughout which the element is “active”
(e.g., a message that was sent and has yet to be received, or
an operand that was entered and not exited); hence, we treat
them as “modules”, each with its own semantics. For each
module M we introduce three predicates M , MStart and
MEnd capturing, respectively, the module being “active”, its
start, and its end. Formulae (4)-(5) formalize their behavior.

M⇔ Sinceei(¬MEnd ∧ ¬exception,MStart) (4)

MStart ⇒ Untilei(¬MStart,MEnd ∨ exception) (5)

Formula (4) defines that a module is active from its start until
its end (which could occur with an exception in the enclosing
module), and Formula (5) states that after a module starts,
it must end, possibly because of an exception, and there is
no further start until then. Abbreviation Borders captures
the semantics of the start and end of a module:

Borders(Module, exception)
def
= (4) ∧ (5).

3.1.3 Auxiliary Operators
It is useful to introduce, as abbreviations, variations of the

“eventually” TRIO operators (SomF and its past counterpart
SomP) that have the meaning of “eventually during the cur-
rent execution of the enclosing fragment” (which could be a
combined fragment or possibly the whole Sequence Diagram).
We call these abbreviations SomFIni and SomPIni, where
the subscript i means that the current instant is included.
They are defined as follows (we only show the definition of
SomFIni, the other being dual):

SomFIni(ev1, enclosingModule)
def
=

¬Untilii(¬ev1, enclosingModuleEnd) .

3.2 Combined Fragments
As Figure 2 shows, to define the semantics of Sequence

Diagrams there are four choices to make. In the rest of this
section we describe how these choices impact different pieces
of the formal semantics, and we show how they are combined
to form a complete semantics of diagrams. Due to lack of
space, we mostly focus on the alt combined fragment, and
we provide highlights of par and loop.



3.2.1 Alternative
Let us consider an alt fragment Alt that is part of a

Sequence Diagram S . We first consider the semantics when
the choices for [Combine] and [Choice] are, respectively,
WS and ND. Then, we show how the semantics changes
for different choices. The following formula —introduced in
Section 3.1.2 —defines the basic behavior of the start and
end propositions of Alt , and it identifies SStop as the event
that can interrupt the execution of the combined fragment.

Borders(Alt ,SStop) (6)

Formula (7) defines that fragment Alt is activated as soon
as one of the n lifelines it spans (which are indicated in the
formula by Alt Li, with 1 ≤ i ≤ n) enters the fragment
(which is represented by proposition Alt Li

Start).

(

n∨
i=1

Alt Li
Start ⇒ Alt) ∧ (AltStart ⇒

n∨
i=1

Alt Li
Start) (7)

To capture the different semantics, we introduce propositions
to represent when a lifeline Lj enters the combined fragment
Alt (Alt Lj

Start) and when it enters one of its m operands

OP i (Alt OP i L
j
Start). The two events are of course related,

as entering operand OP i occurs if, and only if, the com-
bined fragment was previously entered. This is captured by
Formula (8), in which the guard Alt OP i implies that the
lifeline can enter only the active operand; that is, lifelines
that enter the combined fragment at different instants must
enter the same operand.

m∧
i=1

n∧
j=1

Order(Alt Lj
Start,Alt OP i L

j
Start,

Alt OP i,SStop, true)
(8)

Formula (9), instead, defines that the exit operand OP i of a
lifeline Lj of fragment Alt is followed by Lj exiting Alt itself.

m∧
i=1

n∧
j=1

OrderMonoD(Alt OP i L
j
End,Alt Lj

End,

true,SStop, true)
(9)

Formula (10) captures the semantics of the else operand of
Alt , which is entered if, and only if, the guards of all other
operands are false when the combined fragment is entered.

Alt OPElse
Start ⇔ (¬(

m∨
i=1

Alt Guard i) ∧AltStart) (10)

Formula (11) defines that when combined fragment Alt starts
being executed, exactly one of its operands (possibly the else
operand) starts its execution.

AltStart ⇒
∨

i∈[1,m]∪Else

(Alt OP i
Start∧

∧
j∈[1,m]∪Else

j 6=i

¬Alt OPj
Start) (11)

Formula (12) formalizes that the combined fragment ends
when one of its operands (which, by the constraints above,
must be the one that was chosen for execution) terminates.∨

i∈[1,m]∪Else

Alt OP i
End ⇔ AltEnd (12)

Finally, Formula (13) states that an operand is chosen only
if its guard is true when Alt starts its execution.

m∧
i=1

(Alt OP i
Start ⇒ AltStart ∧Alt Guardi) (13)

The semantics of the Alt combined fragment is completed by
adding the formulae defining the behavior of each operand,
but we skip this for brevity.

Finally, we define the following abbreviation (where Fi is
the ith formula in the paper):

AltCF(Alt,WS,ND)
def
=

∧
i∈[6,13]

Alw(Fi).

If the user selects FFT as semantic choice instead of ND,
Formula (11) is replaced by the following one, which selects
an operand OP i only if its guard holds, and Guardj is false
for all j < i:

m∧
i=1

Alt OP i
Start ⇔ AltStart∧Alt Guard i∧¬

i−1∨
j=1

Alt Guardj

(14)
In this case we have the following abbreviation:

AltCF(Alt,WS,FFT)
def
=

∧
i∈[6,10]∪[12,14]

Alw(Fi).

If the choice of [Combine] is SYNC instead of WS, the
admissible traces are a subset of those allowed by WS, since
there are additional constraints on the start and end of the
combined fragment. More precisely, in this case the following
formula is added:

(AltStart ⇔
n∧

i=1

Alt Li
Start)∧(AltEnd ⇔

n∧
i=1

Alt Li
End) (15)

and the corresponding abbreviation becomes the following:

AltCF(Alt,SYNC,ND)
def
=

∧
i∈[6,13]∪{15}

Alw(Fi).

Another possibility to define AltCF(Alt,SYNC,ND) is to
replace each proposition Alt Li

Start (resp. Alt Li
End) with

AltStart (resp. AltEnd), and to eliminate Formula (7), which
is in this case subsumed by the others.

3.2.2 Parallel
For a par combined fragment the only meaningful semantic

choice is between WS and SYNC. As mentioned above, the
semantics of SYNC can be obtained by adding constraints
to the WS semantics, so we focus on the latter.

When a par combined fragment P is activated (i.e., when
one of the lifelines enters the fragment first) the guards of
its operands are evaluated and for those that are true the
corresponding operands are activated. When another lifeline
enters the fragment, it is allowed to start executing its events
in the activated operands in parallel. If all guards evaluate
to false, the par fragment collapses over all lifelines, that is,
its start coincides with its end, as defined by Formula (16).

PStart∧¬
m∨
i=1

P Guardi ⇒
n∧

i=1

SomFIni
(
P Li

Start ∧ P Li
End,P

)
.

(16)

Conversely, Formula (17) states that the end point of a
lifeline in a par fragment should occur either at the same
time of its start point (in case all guards are false), or when
it leaves the last operand of the fragment.



n∧
i=1

(P Li
End ⇒

(P Li
Start ∧ SomPIni(PStart ∧ ¬

∨
j∈[1,m]

P Guardj , P )) ∨

(
∨

j∈[1,m]

P OP j Li
End ∧

∧
j∈[1,m]

(P OP j L
i ⇒ P OP j L

i
End))

(17)

The full semantics of fragment P is then obtained by the
conjunction of Formulae (16) and (17), plus others similar
to those presented in Section 3.2.1.

3.2.3 Loop
A loop fragment with a min and a max number of it-

erations has the same behavior as a min number of seq
fragments (i.e., it would behave according to the sequential
semantics of Sequence Diagrams), followed by a max−min
number of opt fragments (which are a special case of the
alt fragment). Each of the above fragments contains the
same operand, indicated in the following as Loop OP , which
is repeatedly activated during the loop. The options for the
semantics of loops (see Figure 2) are WS or SYNC.

We build the WS semantics by reducing a loop to a se-
quence of seq and opt fragments, as explained above. Since
in a WS semantics different lifelines can be in different it-
erations of the loop at the same time (e.g., lifeline L1 is in
iteration 1, but L3 is in iteration 2), we introduce different
sets of predicates for each iteration. Then, the semantics of
each iteration is produced similarly to the case presented in
Section 3.2.1, using its specific propositions. In addition, the
end events of each iteration are linked to the start events of
the next one by the ordering mechanisms of Section 3.1.1.

When the chosen semantics for loops is SYNC, the for-
malization can be simplified. Since all lifelines execute the
same iteration at the same time, we introduce only one set
of propositions for operand Loop OP . We keep track the
current iteration through propositions that describe a finite
counter C, whose values range from 0 to max.

For example Formula (18) defines that if, at the end of an
iteration, the guard of the loop is false and the number of
iterations is over or at the minimum, then the execution of
the loop ends.

Loop OPEnd ∧ C ≥ min ∧ ¬Loop Guard⇒ LoopEnd (18)

Table 2: Experimental results with Corretto (times
are in seconds).

Config1 Config2 Config3 Config4 Config5 Config6

T1
Result UNSAT UNSAT SAT SAT SAT SAT

Time 6 6 31 27 40 33

T2
Result UNSAT UNSAT UNSAT UNSAT SAT SAT

Time 6 6 15 14 40 38

P1
Result PASSED PASSED FAILED PASSED FAILED PASSED

Time 14 11 41 36 64 46

P2
Result PASSED PASSED PASSED PASSED PASSED PASSED

Time 13 11 57 37 53 41

TC
Result UNSAT UNSAT UNSAT UNSAT SAT SAT

Time 12 9 30 24 42 34

Formula (19) states that, if the guard holds at the end of
the iteration, we have a nondetrministic choice of continuing
with the loop or ending it (⊕ is the exclusive or).

Loop OPEnd ∧ C ≥ min ∧ C < max ∧ Loop Guard

⇒ Futr(Loop OPStart, 1)⊕ LoopEnd

(19)

Finally, Formula (20) states that when the maximum num-
ber of iterations is reached, the execution ends.

Loop OPEnd ∧ C = max⇒ LoopEnd (20)

The complete semantics of the loop fragment is produced
from the basic building blocks in a similar way as before.

4. INITIAL EVALUATION
The proposed modular semantics for Sequence Diagrams

has been implemented within Corretto, our toolset for the
formal verification of UML models. The tool is built on top
of the eclipse-based Papyrus UML modeler4 and translates
UML diagrams into TRIO formulae, which are then fed to
Zot [2] for their formal verification.

We used the resulting toolset for verifying the Sequence Di-
agram of Figure 1. This is only a first evaluation and a more
complete assessment is in progress. We compared the differ-
ent configurations, and present some of their discrepancies,
in three ways:

(i) We injected the previously introduced traces T1 and
T2 as additional specifications for the system and checked
whether the system were satisfiable.

(ii) We asserted properties P1 and P2, introduced below,
to check whether they held for the system.

(iii) We imposed the time constraints introduced below on
the system to study some real-time requirements.

Table 2 summarizes the results produced by the tool and
the average times needed to obtain them (although the dif-
ference between min and max values is always less than a
second).
Zot allows one to inject a partial (or complete) trace T

and check whether it complies with the model. If it does, Zot
returns a complete version of T (SAT) as output, otherwise
the output is empty (UNSAT). We used this feature to
analyze traces T1 and T2 and confirm the informal results
already introduced in Section 2: T1 is not satisfiable for
those configurations that adopt the synchronous composition
of combined fragments, whereas T2 is satisfiable only for
Config5 and Config6, that is, for those configurations that
exploit weak sequencing for composing fragments.

Property P1 is defined as follows: “If server1 sends a
reply to app one time instant before server2 does, app will
not send any search request to server2 during the current
execution of diagram SDSearch”. Its formal equivalent is

P1
def
= Alw

(
replyS1Start ∧ Futr(replyS2Start, 1)⇒
¬SomFIni(searchNextS2Start, SDSearch)

)
.

Since in this specific Sequence Diagram no guard is defined
for the two operands of alt, both guards are implicitly true,
and according to the FFT variant of [Choice], the first
operand is always chosen. Consequently, for configurations
in line with FFT, the second operand of alt never gets

4http://www.eclipse.org/papyrus/

http://www.eclipse.org/papyrus/


activated, and the property holds for them. Among the other
configurations, it holds for Config1 (since the two replies
are separated by a border, they can only occur in the order
depicted in the diagram), but not for Config3 and Config5.
In the counterexamples provided by Corretto for the two
cases in which the property fails, T3 = {〈!replyS1〉,〈!replyS2〉,
〈?replyS2〉, 〈?replyS1〉, 〈!replyS1〉, 〈!searchNextS2〉} is part
of the traces, because the sending of replyS1 and replyS2
can be in any order thanks to the choice of weak sequencing.
P2 is “If app receives a reply from server1 one time

instant before receiving one from server2, app will not send
any search request to server2 during SDSearch”; its formal
equivalent is very similar to the one of P1, and is omitted
for brevity. The property holds for every configuration; that
is, for all traces, no matter the interpretation, if there is
?replyS1 at time instant t and ?replyS2 at t+1, then there
is no !searchNextS2 at any future time instant in the trace.

Corretto also supports time constraints. Here the focus is
not on their formalization; rather, we exploit this capability
to study the real-time-related behavior of SDSearch and the
impact of the different configurations. We set the number
of loop iterations to 2 in order to ease the understanding
of the diagram. The three time constraints state that the
transmission of messages updateResultS1 and updateRe-
sultS2, that is, the time difference between sending and
receiving them, takes at least one time instant and that
the whole SDSearch takes no longer than 8 time instants.
This is captured by the following annotations added to the
Sequence Diagram:

(@updateResultS1End −@updateResultS1Start) ≥ 1

(@updateResultS2End −@updateResultS2Start) ≥ 1

(@SDSearchEnd −@SDsearchStart) ≤ 8

Table 2 shows that these constraints can only be satisfied
if Config5 and Config6 are adopted. These are the cases
where weak sequencing is used to manage loop iterations.

Even if preliminary, our results witness the importance of
the semantics adopted for reasoning on Sequence Diagrams.
It cannot remain implicit, and the designer must be both
fully aware of the subtle choices and be able to set them.

5. RELATED WORK
Sequence Diagrams have been formalized in different ways

because of the complexity of UML, their possible differ-
ent uses, and the incompleteness of the OMG specification.
Micskei and Waeselynck [8] investigated almost all proposed
interpretations and categorized them based on their semantic
choices. Only few of them have been introduced by their
authors in a way that is rigorous and amenable for formal
verification. Due to this limitation, and because of lack of
space, this section focuses on the proposals that address the
formalization of composed fragments, and it explains how
these interpretations can be obtained through our modular
solution.

Fernandes et al. [5] exploit colored Petri nets to explain
their semantics, where combined fragments execute in a
synchronized way and loop iterations are strictly separated.
Since the alt interaction operator is more permissive than
if-then-else in programming languages5, they constrain it
and assume that the designer always assign disjoint guards
5More than one guard can be true at the same time.

to its operands. Given these assumptions, and the rest of the
choices they make, their semantics would fit either Config1
or Config2 of Figure 2.

Knapp and Wuttke [7] propose a translation of Sequence
Diagrams into automata. Model checking can then be used
to verify the properties of interest against the synthesized op-
erational description. Besides proposing a formal semantics
for the main interaction operators, they also introduce a new
one called sloop, that is, a loop whose iterations are strictly
separated from one another. Putting sloop aside, their
semantics complies with OMG specification, which is equiva-
lent to our Config5. However, if the designer used sloop
instead of loop, then this semantics would correspond to
our Config3.

Our configurable semantics answers some of the recom-
mendations proposed by Atlee et al. [3] for improving the
usability of formal methods. They recommend that trans-
formation tools be semantically configurable, and that the
commonalities among different implementations be factored
out and exploited. This is exactly the key goal of this work,
and more in general of Corretto, our customizable verification
environment for UML.

6. CONCLUSIONS AND FUTURE WORK
The paper presents a comprehensive, modular semantics

for UML Sequence Diagrams that accommodates existing in-
terpretations. Besides the theoretical setting, the paper also
proposes a first evaluation of the six possible configurations
we have identified through Corretto, our UML verification
toolset. The plan for the future is to cover the whole set of
combined fragments and keep studying the different inter-
pretations ascribed to the diverse UML diagrams.
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