
The Concept of "Ba" Applied to Software Knowledge

Nuno Flores, Ademar Aguiar, Hugo Sereno
Department of Informatics Engineering

University of Porto - Faculty of Engineering
Rua Roberto Frias s/n, Porto, Portugal

{nuno.flores, ademar.aguiar, hugosf}@fe.up.pt

ABSTRACT
Software development is a knowledge-intensive activity. Soft-
ware products usually start as a simple idea, or a vision, and
then progress towards a final deliverable product. Along this
evolution, there is a lot of knowledge that is captured, or-
ganized, and shared, leading to new knowledge, both as a
whole and within specific development activities. The con-
cept of ”Ba” provides a foundation to advance individual
and collective knowledge, which describes knowledge cre-
ation as a spiral involving tacit and explicit knowledge: the
Socialization, Externalization, Combination, Internalization
model (a.k.a. SECI model). By applying this foundation
to software development, we found issues that may hinder
the effective knowledge management cycle. In this paper,
we present a vision and a set of requirements for tools to
overcome such issues and therefore better support the whole
process of software knowledge evolution.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—
tools

General Terms
Software Development, Knowledge Management, Tools

Keywords
software knowledge, software process, knowledge creation

1. INTRODUCTION
Developing software is a highly creative process. Creativ-

ity comes from having an idea and devising ways to mate-
rialize that idea into a software product. Nevertheless, it is
not just a mental process. It is something that takes place
in the ”phenomenal” space. This space can emerge from in-
dividuals, working groups, project teams, and other clusters
within an organization or community.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE ’14, June 2 - June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2860-9/14/06 ...$15.00.

Knowledge is intangible, boundary-less and dynamic. When
it becomes tangible, it turns into information and resides in
media and networks. Knowledge-creating teams play a key
role in value creation, but if this knowledge isn’t used at
a specific time and place, it is of no value. ”Ba” is where
knowledge creation takes place1.

The concept of ”Ba” [13] provides a platform for advancing
individual and collective knowledge by unifying the physical
space (e.g. offices, open spaces, meeting rooms), the vir-
tual space (e.g. e-mail, chat rooms, task and team planning
apps), and the mental space (e.g. shared experiences, ideas,
ideals, visions), where knowledge creation takes place. ”Ba”
defines knowledge creation as a cyclic process of interactions
between tacit and explicit knowledge, whether of the self, the
team, or the organization. It names it ”Socialization Exter-
nalization Combination Internalization” (SECI) model.

”Ba” can be mapped into the software development pro-
cess, recognizing that the SECI model is present through-
out the several stages of development, although at different
paces in different activities.

The authors research goal is to find out that, despite exist-
ing tools providing support for many software development
activities, when it comes to knowledge management, there
are still gaps that hinder the effective support of the SECI
cycle within the software development process, Those gaps
should then be analyzed to inspire the creation or evolution
of better software development practices and tools.

This paper presents a shared vision and a set of require-
ments that tools should cover so that the ”Ba” concept can
be better supported in software development, and therefore
to help the evolution of knowledge along the software lifecy-
cle. This work results from a collective effort conducted by
the authors and their students along a master’s course on
Agile Methods in the University of Porto.

2. MANAGING SOFTWARE KNOWLEDGE
Managing knowledge is all about individuals, teams and

organizations collectively sharing knowledge. Within the
software development lifecycle, all these elements play a role
in the huge amount of knowledge created, shared and reused.

Knowledge creation is the incorporation and merging of
new and old experiences to provide new knowledge. Conse-
quently, knowledge rarely stays in the same state or is under-
stood in the same context. In a software project, knowledge
is created by past experiences of other projects and prac-
tical experience of processes from other companies. When

1Actually, the word ”Ba” roughly translates into the English
word ”place”

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

CHASE’14, June 2 – June 3, 2014, Hyderabad, India
ACM 978-1-4503-2860-9/14/06
http://dx.doi.org/10.1145/2593702.2593713

95

this knowledge is shared with other individuals, it is en-
hanced, merged and refined to create new knowledge. Due
to its intrinsic tacit nature, knowledge at this level becomes
a challenge to capture and record outside of the individuals
minds.

Effective knowledge transfer depends on both the devel-
opment methodology, the organization culture, and the sup-
port by any existing infrastructure.

2.1 Development Methodology Factor
Looking at a traditional ”waterfall” methodology, it is ex-

pected that requirements do not change, issues do not arise,
and that things go as planned. In this scenario, little knowl-
edge would be lost as there was no need to feed it back to
the knowledge management process. But frequently, extra
requirements are discussed with the customer, issues prompt
in and planning shifts and the knowledge process is not up-
dated. As a result, knowledge is lost, causing the client
relationship being damaged, time being spent in redoing re-
quirements and project loses on turn over [11]. A more agile
or iterative methodology improves this highly likely change
of knowledge, by shortening the creation cycle and minimiz-
ing the need for explicit knowledge to be available. Never-
theless, there are still caveats regarding the transfer of tacit
knowledge throughout the whole development process, spe-
cially between phases and respective people involved, where
its iterative nature is not in sync with each other.

2.2 Organization Culture Factor
It is a misconception to assume that all companies shar-

ing knowledge have their people communicating regularly
and have a great working environment. A large amount of
tacit knowledge is lost due to fear of a work colleague, or a
culture where no one talks to each other, or a culture where
everyone leaves after a short period, therefore forming no
relationships [13]. The key here is communication, whereas
if it is not properly promoted and supported, it may become
a barrier to effective knowledge transfer.

2.3 Infrastructure Factor
Supporting knowledge transfer should cover both conver-

sion of knowledge into information (explicitly formatted arte-
facts, e.g. documents, code, models, etc.) and capturing of
tacit knowledge into explicit knowledge (promoting commu-
nication through the infrastructure, e.g. comments, forums,
chat rooms). This infrastructure is usually articulated with
the development process by having specific tools covering
specific activities (e.g. planning, communicating, coding,
testing, documenting, etc.). Despite most of them being in-
tegrated in a single environment, they are not seamlessly
incorporated with the knowledge they interchange. There
are still chunks of knowledge that are lost in the process
of interchanging information within the infrastructure and
between the process and its actors.

Overall, there are barriers in all knowledge management
scenarios originating from people, process and technology.
It is therefore important to understand how the knowledge
flows within the whole software development process envi-
ronment and, at the utmost, provide support for collabora-
tion and sharing, managing of tacit knowledge and feedback
into the knowledge base. The ”Ba”concept presents a knowl-
edge creation idea that can also be found in the process of

Figure 1: The SECI model of knowledge creation.
Adapted from [14]

developing software and that should be accounted for when
trying to support software knowledge management.

3. "BA" APPLIED TO SOFTWARE
The ”Ba”concept [14] defines knowledge creation as a self-

transcendental process. Although quite an abstract idea, it
can be practiced by following the ”Socialization Externaliza-
tion Combination Internalization” (SECI) cycle or model. It
categorizes knowledge as being explicit or tacit.

Explicit knowledge can be expressed in words or numbers
and shared in various forms and formats (data, documents,
specifications, etc.). It can be transmitted between individ-
uals both formally and systematically.

Tacit knowledge is highly personal and hard to formalize
(hunches, intuition, subjective insight, etc.), making it diffi-
cult to share with others. It has two dimensions: technical,
encompassing personal skills and know-how, and cognitive,
consisting of beliefs, ideas, values and mental models.

According to this model, knowledge creation is a spiralling
process of interactions between explicit knowledge and tacit
knowledge, and is composed of four conversion steps:

Socialization Involves the sharing of knowledge between
individuals. Knowledge is exchanged through joint ac-
tivities and physical proximity. Sometimes just sharing
the same working environment allows for dissemina-
tion of tacit knowledge.

Externalization Expressing tacit knowledge and its trans-
lation into comprehensive forms that can be under-
stood by others. It forces tacit knowledge to be ar-
ticulated into explicit knowledge through expression
techniques (words, concepts, narratives, etc.), using
dialogue to support the effective conversion.

Combination Involves the conversion of explicit knowl-
edge into more complex sets of explicit knowledge.
Key issues are communication, sharing and system-
atization of knowledge. This phase goes through three
phases: collecting externalized knowledge and combin-

96

ing it; disseminating it over the organization; and im-
proving its usability.

Internalization Individuals convert the explicit knowledge
into new tacit knowledge by action and practice. Learn-
by-doing and training are common practices that allow
internalization of knowledge, updating concepts and
methods, and the way individuals (and, thus, the or-
ganization) perceives the world.

Thus, the SECI Model (depicted in Figure 1) describes
a dynamic process of exchange and transformation between
explicit and tacit knowledge, conceptualizing the evolution
of knowledge within a social organization through a series
of self-transcendental processes.

Software development encompasses several activities, lead
by different people, playing different roles, with a wide range
of technical skills in several disciplines, globally involving a
large set of interdependent artefacts. All of the knowledge
involved must be efficiently exchanged, shared, and commu-
nicated, sometimes face to face, other times using digital
tools. In all these interconnections (person to person, tool
to person, tool to tool) may reside possible points of com-
munication inefficiency that must be analyzed and managed,
being some of them possibly supported by tools.

4. "BA" TOOL SUPPORT
There are lots of existing tools that provide support to

software knowledge management. Usually, their knowledge-
view is centered around the process, the artifacts, and the
communication [16]. To evaluate the usefulness of a tool in
supporting ”Ba”, the analysis should encompass other as-
pects beyond those of just coping with the crystallization
and evolution of explicit knowledge. It should be noted
that the SECI cycle regards human interaction and emo-
tions, which have a relevant part in the knowledge creation
process. Therefore, the authors propose that tools support-
ing the ”Ba” concept should take the following requirements
into consideration:

• Team (people) awareness. The tools should have a
way to represent the people that is important and rel-
evant to the knowledge creation and the evolution pro-
cess. There should be a way to form relationships be-
tween community members and notions on who can
be more helpful in certain activities. The presence of
role-playing and gamification features would allow for
a better engagement and commitment of users.

• Sense of common place. ”Ba” roughly translates into
the English word ”place”. Users should feel comfort-
able and with a familiar feeling when using the tool.
It should gather common and shared knowledge, and
the user should feel he/she belongs there, and has a
role (or roles) to play. Much like a ”neighbourhood” or
a place one goes to ”hang out”.

• Strong interaction. Open dialogue, debating, brain-
storming, and sharing thoughts and ideas should be at
the core of the tool support. P2P communication, chat
rooms, forums, comments, blogs, and similar features
are examples of supporting tools.

• Personal tailoring. Users need to have ”their place”,
where they can rearrange their own knowledge and

tailor it to their personal needs. It instills a sense of
privacy and ownership that brings stability and confi-
dence into the tool.

• Content-flexible. The tool should allow a variety of
content formats and simple ways of manipulating those
contents. Externalizing tacit knowledge into a readily
understandable form should come as a natural ability
of using the tool. Text, images, drawings, whiteboards,
sound bits, videos and other information containers
should be available for the users to communicate and
share their own knowledge.

• Allow for practice. Either integrated or articulated
with, the tool should allow the users to materialize
their activities into its expected products. Artifacts
editors, IDEs for development, mind mappers for jot-
ting down ideas, are just a few examples of tools that
promote the ”learn-by-doing” philosophy for incorpo-
rating tacit knowledge.

Take notice that such supporting set of tools is expected to
be adopted within a larger context, encompassing the orga-
nization’s culture and practices that, in conjunction, would
promote the knowledge creation process within the software
team. The authors aim to validate that only with such a
combination can the ”Ba” concept be truly supported within
an ecosystem of software development.

5. CASE STUDY
A case study was performed by the authors specifically to

experiment the application of the ”Ba” concept to software
development. This was done in the context of a contract for
the development of a technological platform to support the
MOVERCADO ecosystem [4].

The contract consists on the development of a complex
mobile-based messaging platform that enables a more effi-
cient aid distribution and impact, by facilitating interactions
between all its parts. The platform has two main compo-
nents: the flow board, responsible for helping to define and
orchestrate those interactions, its inputs needed and the out-
puts produced in specific flows; and a web interface, enabling
management of reports, dashboards and campaigns, created
according to existing flows, together with their related in-
formation (e.g. flows, activities, products, services, partici-
pants).

In order to balance effort with effective reusability, the
development was done in a fast-paced way, throughout six
iterations of two-weeks using an agile process (Scrum) and
best practices of evolving reusable software systems [15].

As depicted in Figure 2, a team of 20 elements was en-
gaged in the whole agile development process, playing dif-
ferent roles, and producing diversified artefacts. Activities
ranged from producing an initial and further versions of the
strategic vision (done by stakeholders), to planning (done
by the product owners team with the development team), to
all other kind of activities required, such as programming,
designing, modeling, system administration, and customer
support.

All the elements were organized in sub-teams according
to their roles, each having a specific leader, and all perform-
ing highly specific work, although intrinsically related and
interdependent between teams.

97

release management

operational support

product management software development

stakeholders team

product owners team

Sprint
2 weeks

multidisciplinary team
programmers, devops, designers, metamodeler

Def. of Ready

Product Backlog

Def. of DoneAccept. Tests

+

Sprint Backlog

Product
Increment

staging

vision, user needs,
business goals,
strategy, risks

Grooming Sprint Planning

descriptions,
breakdown,

priorities

velocity, sizing,
dependencies,

construction, technics

clarity

testable

feasable

Sprint Review

External
Release

tested

merged

doc'ed

Release
Acceptance

end users

customer's
testers team

production

Internal
Release

users
interaction

ticket

issue

zen

user support
knowledge base

support agents team

ticket analysis

ticket refinement

zen
ticket
closed

zen

issue

Agile Process Definition: Roles, Activities, Artifacts, Tools
Ademar Aguiar, Software Engineering Group

September 2013

Figure 2: MOVERCADO process: roles, activities,
artifacts, tools

To properly support an efficient and effective knowledge
creation process (the so called ”spiral of knowledge”), a small
combination of tools was adopted, which included a wiki, a
project management tool, a software forge, and a user sup-
port system. Beyond these, cloud services were used to share
some documents and video-audio-and-chat messaging rooms
and email were used for fast synchronous and asynchronous
communication.

Although it proved to be a valuable toolset, there were
some barriers regarding contextual knowledge classification
and user contribution, specially in the interfaces of the dis-
tinct teams, roles, and activities, and also in the intercon-
nection of the individual tools, where some knowledge got
lost and became disconnected. The authors suggested, as
an improvement, to lean from a traditional wiki towards a
semantic wiki, for example, and integrate it into the devel-
opment environment, planning tool, and content authoring
support using more social collaborative features.

6. RELATED WORK
Regarding software knowledge management, candidate tools

and techniques may range from evolutionary software forges [7] [3]
or weakly-typed wikis [8] to collective knowledge systems [10][9]
or collaboration-enhanced IDEs [5] [2] [1]. Their impact on
parts or the whole development process is yet to be assessed
regarding the SECI knowledge cycle.

7. CONCLUSIONS
As a conclusion, we claim that the ”Ba” concept applied

to software development may help uncover points of inef-
ficiency in terms of software knowledge evolution and that
there are still room to improve its support through proper
tool support.

There are still many issues that arise and that should be
dealt with in forthcoming research, such as: How does the
”Ba”concept fares when compared to other knowledge trans-
fer models like minimalist documentation [6] or SLEs [12]?
Are there specific differences regarding software knowledge
at different levels of abstraction (e.g., architectural knowl-
edge vs. code knowledge) when applying the SECI cycle?

In future work we aim to envision a toolset, an environ-
ment, or set of tools that might cover the still unsupported
”holes” in ”Ba”’s applied to software.

8. REFERENCES
[1] Collide. https://code.google.com/p/collide/ [Online;

accessed March 2014].

[2] Devtable. http://try.devtable.com [Online; accessed
March 2014].

[3] Github. http://github.com [Online; accessed March
2014].

[4] Movercado: a mobile-techonology based ecosystem for
efficient aid distribution. http://enter.movercado.org
[Online; accessed March 2014].

[5] Rational team concert. http://www-
01.ibm.com/software/rational/products/rtc/ [Online;
accessed March 2014].

[6] A. Aguiar. Framework Documentation – A Minimalist
Approach. PhD thesis, University of Porto, Faculty of
Engineering, 2003.

[7] F. Correia. Supporting the evolution of software
knowledge with adaptive software artifacts. In
SPLASH’10, Reno/Tahoe, Nevada, USA, 2010.

[8] F. Correia, H. Ferreira, N. Flores, and A. Aguiar.
Incremental knowledge acquisition in software
development using a weakly-typed wiki. In WikiSym -
5th International Symposium on Wikis. Orlando,
Florida, USA, 2009.

[9] N. Flores. Patterns and Tools for Improving
Framework Understanding: a Collaborative Approach.
PhD thesis, University of Porto, Faculty of
Engineering, 2012.

[10] T. Gruber. Collective knowledge systems: Where the
social web meets the semantic web. Journal of Web
Semantics, 2007.

[11] P. Grunbacher and P. Briggs. Surfacing tacit
knowledge in requirements negotiation: experiences
using easywinwin. In Proceedings of the 34th Annual
Hawaii International Conference on System Sciences,
2001.

[12] J. Hart. Intro to social learning environments: A
social learning resource.
http://janeknight.typepad.com/socialmedia/2009/10/
intro-to-social-learning-environments-a-social-learning-
resource.html [Online; retrieved June 13,
2013].

[13] I. Nonaka. Knowledge Management - Critical
Perspectives on Business and Management. Routledge,
2005.

[14] I. Nonaka and N. Konno. The concept of ”ba”:
Building a foundation for knowledge creation.
California Management Revies, 40(3):40–54, Spring
1998.

[15] D. Roberts and R. Johnson. Evolving frameworks: A
pattern language for developing object-oriented
frameworks. In Proceedings of the Third Conference on
Pattern Languages and Programming. Addison-Wesley,
1996.

[16] J. Whitehead. Collaboration in software engineering:
A roadmap. In I. C. Society, editor, Future of Software
Engineering within the International Conference on
Software Engineering, pages 214–225, Washington,
DC, 2007.

98

