
Relative Liveness and Behavior Abstraction
(Extended Abstract)

U1rich Nitsche*

University of Zurich, Department of Computer Science

Winterthurerstr. 190, CH-8057 Zurich, Switzerland

Email: nitsche@ifi.unizh.ch

Pierre Wolper

University of Li&ge, Institute Montefiore, B28

B-4000 Li&ge Sart Tilman, Belgium

Email: pw@montefiore.ulg. ac.be

Abstract

This paper is motivated by the fact that verifying liveness
properties under a fairness condition is often problematic,
especially when abstraction is used. It shows that using
a more abstract notion than truth under fairness, specifi-
cally the concept of relative liveness property can lead to
interesting possibilities. Technically, it is first established
that deciding relative liveness is a PSPACE-complete prob-
lem and it is shown that relative liveness properties ca ai-
ways be satisfied by some fair implementation. Thereafter,
the interaction between behavior abstraction and relative
Iiveness properties is studied and it is proved that relative
liveness properties can be verified on behavior abstractions,
if the abstracting homomorphism is simple in the sense of
Ochsenschlager.
Keywords. Verification, Relative Liveness Properties, Be-
havior Abstraction, Simple Homomorphisms.

1 Introduction

To be able to verify liveness properties of a system [3], it
is almost always necessary to include a fairness hypothesis
in the system description [9]. Indeed, int reducing a fair-
ness hypothesis makes it possible to ignore behaviors that
correspond to extreme execution scenarios and that, in any
case, would not occur in any reasonable implementation.
Even though th:s intuition is clear, making fairness precise
is somewhat more complicated: should one be “weakly” or
“strongly” fair, “transition” or “process” fair, or isn’t “jus-
tice” or even “compassion” what fairness should really be
[15]? Of course, there is a rational way of choosing which
fairness notion is adequate for a given problem by consider-
ing the nature of the model being used and making reason-

“Ulrich Nitsche was supported by a DA AD-fellowship HSP
11/AUFE to visit the University of Li&ge. Parts of this work have
been done during his visit. He is supported by the Swiss National
Science Foundation (SNSF).

permission to make digital/lxwd copies o!’011or PM of Ibis nmterial for

pemnal or chu+sroom use is granted without fee provided lb~l tht copies

are not mde or distributed for protit or commercial iwiwmtmge, lIw copy-

right nolice. the title of the publication md its dirte appmr. and notice is

given thnt copyright is hy permission of the M’hl, Inc.10 cow olberwiw,
to re”~lblidl, 10 post On sewersor 10 redis!ributc LOlists, requires specitic

petiiwion antiw fee

1997 F’OIX”’97 .Sflrrto Borhrn (‘.4 i FM
Copyright 1997 ACkl 0-X979 I -952-1 /97/R .$3 5[1

able assumptions about how it might be implemented, but
it remains that this choice is crucial and delicate.

Furthermore, introducing a fairness hypothesis often
makes the verification process somewhat more problematic.
This is especially true when abstraction is used. Indeed,
since after moving to the abstract level one deals with a re-
duced set of observable, it can become impossible to express
correctly the fairness hypothesis under which the system is
correct. This makes one wish for a more general and ab-
stract notion of truth under fairness that would contribute
to simplifying verification, especially in the context of ab-
straction. Intuitively, the notion to be formalized is that of
a property being true provided one is given “some control”
over the choices made during infinite executions. In other
words, one wants to characterize the properties that can be
made true by “some fair implementation” of the system.

In this paper, we show that the concept of being a relia-
tiue liveness property is a suitable abstraction of truth under
fairness that lends itself easily to verification in the context
of abstraction by using the techniques of [16, 20, 21, 22],
Relative Iiveness properties are Iiveness properties within
the universe of behaviors of the system. Their definition is
a relativized version of the definition of liveness: every prefix
of a behavior of the system can be extended to an infinite be-
havior that satisfies the property. This concept and the dual
notion of relative safety property were introduced in [12] as
a means of clarifying the shift from liveness to safety when
timing constraints are introduced in a system. It can also
be traced to the notion of machine-closed property [1, 2, 4].

Here we make a different use of the concept and view
it as an abstraction of a liveness property being true under
fairness. In fact, we interpret relative liveness as a satis-
faction relation for properties represented by temporal logic
formulas [8, 23]. Notice that for a property to be a rela-
tive liveness property of a system does correspond, in the
desired abstract sense, to the property being satisfied under
fairness. Indeed, in crude terms, the system almost satis-
fies its relative liveness properties: it just needs the “help of
some fairness” (remember that every prefix of a behavior of
the system can be extended to an infinite behavior that sat-
isfies the relative Iiveness property). Furthermorel we show
that for w-regular systems and properties, deciding relative
liveness and relative safety are PSPACE-complete problems,
This and the fact that, in a reasonable sense, relative live-
ness properties can be satisfied by some fair implementation
are first indications of the usefulness of the abstraction ap-

45

http://crossmark.crossref.org/dialog/?doi=10.1145%2F259380.259419&domain=pdf&date_stamp=1997-08-01

preach for this concept for verification.
This usefulness is even more apparent when considering

abstraction. Indeed, relative liveness enables us to circum-
vent the fact that truth under fairness is usually not pre-
served by abstraction mappings. Precisely, we consider ab-
stractions defined by language homomorphisms in the con-
text of systems described by w-languages. We prove that
whether a property is a relative Iiveness property can be
reliably checked on the abstract system, provided that the
homomorphism is stmpie in the sense of [21]. simplicity of
the homomorphism essentially means that it is faithful with
respect to the continuation of a word within a language,
i.e. the image of the continuation is the continuation of the
image of the word and the image of the language.

2 Introductory Examples

To motivate the definitions we present later on, we start with
a small example of a concurrent reactive system. Consider
the system described M a Petri net in Figure 1.

I i
reject no

1,

Figure 1: A small system

It is a server that, after having received a request, can
send a result or a rejection to its client, depending on
whether the resource it manages has been treeed or locked.
The possible behaviors of the system are represented by the
finite-state system shown in Figure 2 (the reachability graph
of the Petri net). The initial state is shaded grey, a conven-
tion we will also use in subsequent state diagrams.

mno
reject request

lock lock lock
free free free

reject request

‘esu’wes
Figure 2: The behaviors of the small system

From Figure 2, it is easy to see that our system does not
satisfy the propositional linear time temporal logic [8, 23]
property 00(re.wU). Indeed, lock (request .noweject)” is a
computation of the system that does not satisfy ❑IO(resuU).
Nevertheless, it is clear that what is missing for the property
00 (resdt) to be true is a fairness hypothesis on the system
executions. The notion of relative liveness property captures
this: ❑IO(result) is a relative liveness property of the set of
behaviors described by Figure 2.

Figure 3 gives a finite-state diagram describing the be-
haviors of a system similar to the one of Figure 1 but con-
taining an error: in Figure 3, if the resource is locked, there

is no possibility to free it again. There is also another differ-
ence, namely that in Figure 3 a request can also be rejected
when the resource is available, but the motivation for this
is linked to our subsequent discussion of abstraction, The
point to notice now, is that no notion of fairness can make
❑0(resuU) true of the new system and that the notion of
relative Iiveness property captures this again: ❑0(resuU)
is not a relative Iiveness property of
described in Figure 3.

Areject no

the set of behaviors

wlock lock

request
result,

reject yes

Figure 3: The behaviors of the small system with an error

Let us now consider abstraction. Imagine we are only
interested in the actions request, result, and reject. We
thus consider an abstraction homomorphism that maps all
other actions to the empty word. If we apply this homomor-
phism to the transition system of Figure 2, we obtain after
reduction the transition diagram of Figure 4. The property
❑0(result) is a relative liveness property of th~ behaviors
described in Figure 4. Can we conclude from there that it is

result

e
request

reject

Figure 4: An abstract version of the small system.

also a relative liveness property of the behaviors described
by Figure 2? Not without caution since Figure 4 is also
obtained by abst ratting from Figure 3. What distinguishes
the two abstractions is the nature of the homomorphism. In
the case of F@re 2 the homomorphism preserves relative
liveneas properties, whereas it does not do so in the case of
Figure 3. In Section 8 we will elaborate on this and show
that, if the homomorphism is simple in the sense of [21], one
can conclude that relative liveness properties that hold on
the abstract system also hold on the concrete system.

3 Preliminaries

For defining our concepts, we need several notions from lan-
guage theory [5, 7, 11, 24]. Let L ~ 2“ be a language and
let Lu ~ E“ be an w-language.

Definition 3.1 The left quotient of L by a word w c Z“ is
dejined bg cod(w, L) = {v E E“ [wv E L}. The left quo-
tient of LW by w c)2* ;S similarly defined by wnt(w, Lw) =
{z E Zw I WZE Lw}.

The left quotient describes the possible continuations of
a word in a language. When considering system behaviors, it

46

describes “what can happen after w has happened”. There-
fore we denote the left quotient of L by w by cent (w, L),
“the set of continuations of w in L“, instead of the notation
W-’(L) common in l~guage theory

The notation pre(L) designates the set of prefixes of
words in L. A language L is called prejix-closed if and only
if L = pre(L). For an w-word z, pre(z) designates the set
of all finite prefixes of z and, for an w-language Lw, pre(Lw)
designates the set of all finite pretixes of u-words in Lu. The
limit of a language L is the set hn(L) = {z c Z“ I Yw E
pre(z) : w E L}. Here, “3m ...” abbreviates: “there exist
infinitely many different ...”. The notation z(~...), n E ~,
represents the suffix z“zn+lz~+z . . . of an w-word z E V’
starting with the n:h letter of z.

To describe propertied%, we use propositional linem tem-
poral logic (PLTL) [8, 23]. PLTLformulas are defined with
respect to a set AP of atomic propositions. All atomic
propositions and the proposition true are PLTL-forinulas.
If ~ and < are PLTbforrnulas, then so are =(~), (~) A (~),
0(<) and (<) U ({). There exist additional operators that
are abbreviations of particular operator combinations:

(f) V (C)= +(+)) A (Y(c))),
(0* (() = (+)) v (()*

%%’’$%; ‘c)) A ((~) - (t)),
❑(f) : -(o(+))):

(t) B(<) = =((=(<))~(()).

PLTL-formulaa are interpreted over infinite sequences of
truth values for the atomic propositions, i.e. over functions
of the type IV + 2AP or, equivalently over w-words defined

AP For convenience, we will also interpreton the alphabet 2 .
PLTL formulas over infinite words defined on an arbitrar

,42alphabet X with the help of a labeling function A :8 + 2 .
The semantics of a PLTL formula with respect to an infinite
word x E 2“ and a labeling function A : E + 2AP is then
the following. (Read “~” as “satisfies.”)

z, A + true.
If q is an atomic proposition, then z, A # q if
and only if q E A(zo).
If q = =(<), then Z, A 1= q if and only if it is not
the case that x,A # <.
If q = (~) A (<), then z,A + q if and only if
z,~+<andz,~+<.
If q = O(c), then z,A 1= q if and only if
%..),~ I=&.
If q = (~)U ((), then x, ~ + q if and only if there
exists i E M such that ~(i,), A # ~ and, for all
,?’< i, ‘(j...), A + t.

The meaning of the other operators can be derived from
their definition. We will write Lw, A + q if and only if, for
allz ELw, z, A+q.

Definition 3.2 A property P over an alphabet 2 is a sub.ret
of Xw. An w-language Lw ~ E’” satisfies P if and onlg if
LWQ P. For an alphabet E and a labeling function A : Z +
ZAP, the property represented bg a PLTL-formuia q over AP
istheset Ln={z EEw Iz,A+9}.

4 Relative Liveness and Safety

In this section, we review the definition of relative liveness
properties of an w-language, as well as their counterpart
relative safety properties. Let L~ ~ V be an w-language
representing the behavior of a system and let P G X“ be a
property.

Definition 4.1 A property P is a relative liveness property
of Lu (written L. ~L P) if and only if Vw E pre(Lu), 3x E
cortt(w, Lu) such that wx E P.

Definition 4.2 A property P is a relative safety property
of L. if and only if Vx c Lu, if x # P, then 3W E pre(x) :
b’z E cont(w, Lu) : WZ$! P.

Remark 1 If Lw = Ew, then the definitions of relative live-
ness and relative sajet~ become ezactly the definitions of live-
ness and safety given in [3].

To prove the decidability of relative liveness and safety
for regular w-languages, we use the following characteriz~
tions of these properties.

Lemma 4.3 P is a relative liveness property of L. if and
only if

pre(LW) = pre(Lw n P).

Lemma 4.4 P is a relative safety proper%y of LW if and
only if

Lu n lim(pre(Lw n P)) ~ P.

Theorem 4.5 Given an w-regular w-language Lu and an
w-regular property P given by nondeterrninistic Btichi au-
tomata or PLTL formulas, determining if P is a relative
liveness or safety property b decidable and is a PSPACE-
complete problem.

Proof The characterizations given by Lemma 4.3 and
Lemma 4.4 reduce the problem to questions decidable in
PSPACE [24, 10] (notice that for PLTL formulas one can
build in PSPACE an automaton for the formula and for its
complement [28]). Hardness can be established by a reduc-
tion from regular language inclusion [10]. ❑

Note that Lemma 4.3 provides the link between relative
liveness and machine closure. Indeed, recall the following
definition [1, 2, 4].

Definition 4.6 Let A $ Lw ~ Z“, for an alphabet ,2.
(Lti, A) is called a machtne closed live structure if and only
ifpre(L~) G pre(A).

We thus have that P ~ Ew is a relative liveness property
of Lu if and ordy if (Lw, P n Lu) is a machine closed live
structure (see Lemma 4.3).

General properties can always be represented as the in-
tersection of a Iiveness and a safety property [3]. As given
precisely below, the relativized version of this result is that
a property holds for an w-language if it is both a relative
Iiveness and a relative safety property of the language.

Tlmorem 4.T An w-language ZW satisfies a property P
{LW ~ P) if and only if P ia a relative safety and a rel-
ative ltveness property of L~.

Proof If Lw ~ P, then, trivially, P is a relative safety and
a relative liveness property of Lw.

If P is a relative safety property of Lw, then Lw n
/irn(pre(Lw fl P)) S P (Lemma 4.4). If, additionally, P
is a relative Iiveness property of Lw, then, by Lemma 4.3,
pre(Lw) = pre(Lw n P). Therefore, we can replace
pre(Lu n P) by pre(Lu) in the safety condition and obtain
L. fl {irn(pre(Lw)) S P, Because Lw n /irn@re(Lw)) = L.,
we finally obtain L- ~ P. D

47

As shown in [12], relative liveness and safety properties
also have an elegant definition within the Cantor topology,
i.e. the topological space over 2“ compatible with the fol-
lowing metric [7]. (For topological notions see [14].)

Deflnit ion 4.8 Let common(z, y) designate the longest
common prejix of two w-words x and g in E“. We define
the metric d(z, ~) by

,

Vz c Zw : d(z, z) = O.

Lemma 4.9 A propert~ P is a relative liveness property of
an w-language Lw if and only if Lw n P is a dense set in LU.

Lemma 4.10 A property P is a relative safety property of
an w-language Lw if and only if LW n P is a closed set in
Lu.

5 Implementing Systems that Satisfy Relative Liveness
Properties

If a property is a relative liveness property of a set of be-
haviors, our expectation is that a fair implementation of
this set of behaviors will satisfy the property in the classical
sense. Unfortunately, this is not true for every implemen-
tation, even if one aasumes strong fairness. As an example,
consider the set of behaviors {a, b}w. It is not sufficient to
impose strong fairness on the minimal automaton represent-
ing {a, b}w in order to satisfy all relative liveness properties
of {a, b}w. For instance, O(a A (Oa)) would not be satisfied,
even though it is a relative Iiveness property of {u, b}’”. The
reason for this is that, even if fairness is used, more state
information needs to be kept in order to be able to satisfy
the property O(a A (Oa)). However, it is always possible to
add sufficient state information to a system in order to turn
relative liveness properties into properties that are satisfied
in the classical sense under fairness. The following Theorem
makes this precise.

Theorem 5.1 Let LW be a limit closed jinite-state set of
behaviors (one accepted by a finite state automaton without
acceptance conditions) and let P be an w-regular property.
Then, if P is a relative liveness property of Lw, there exists
a finite-state system d such that the w-language accepted by
A is L~ and all strongly fair computations in A satisfy P.

Proof Since P is a relative liveness property of Lw, by
Lemma 4.3 we have that pre(Lw) = pre(Lw rl P). Fur-
thermore, since Lu is limit closed we have that Lti =
lim(pre(Lw)) and hence

LW= lim(pre(LW (l P)). (1)

Consider thus a reduced Buchi automaton A accepting
L. (l P (by reduced we mean that states from which no
w-word can be accepted have been eliminated). The finite-
state system Awe are trying to construct is A with its accep-
tance condition removed. Indeed, by equation (1) A accepts
LW. Furthermore, all strongly fair infinite computations of
A will go infinitely often through an accepting state of A
and thus will satisfy p. ❑

The Theorem we have just proved gives an interesting
insight into relative liveness properties. They are the prop-
erties that fairness makes true of the system, but possibly
at the cost of adding state information to the system imple-
mentation in a noninterfering way, i.e. without altering the
set of limit-closed behaviors of the system.

6 Behavior Abstractions

We now turn to the problem of verifying a system using ab-
straction. We consider finite-state transition systems with-
out acceptance conditions. Hence the finite-word languages
accepted by the systems we consider are the prefix-closed
regular languages, and the w-languages they accept are the
limits of pretk-closed regular languages.

We consider abstractions that hide or rename the actions
of our systems. Precisely, we consider abstmcting homomor-
phisms that are extensions of alphabetic language homomor-
phisms to mappings on finite and infinite words aa defined
below.

Definition 6.1 Let h : X ~ (X’ U {E}) be a total func-
tion (E designates the empty word) and let Em = Z* U X“.

Then, the abstracting homomorphism genemted by h is the
extension of h to a mapping h : W’ ~ E’m dejined as fol-
lows. For all words w = WIW2W3 . . . W. E Z-, n E IV, we

define h(w) = huh... h(w~). For all W-WOrdS

Z= XI Z2X3 . . . E V’, we define h(z) = huh...,
if Jirn(h(pre(z))) # 0. Otherwise, if lim(h(pre(z))) = 0,
then h(z) is undefined.

This leads naturally to the following definition of the
abstract behavior of a system under an abstracting homo-
morphism.

Definition 6.2 Let S be a system whose behaviors are the
limit lim(L) of a prefix-closed regular language L. Then,
the abstract behavior of S with respect to the abstmcting
homomorphism h is lim(h(L)).

Our goal is to prove properties of the beha~-iors hm(L)
of a system S by only considering the abstract behaviors
lirn(h(L)) for some abstracting homomorphisms h. More
specifically, we are int crested in the preservation of relative
Iiveness properties under the abstraction homomorphism.

Essential information about the relative liveness prop-
erties of iirn(L) is contained in the sets cont(w, L), for
w E L. At the abstract level, we obviously have access
to cont(h(w), h(L)), but we really need h(amt(w, L)) in
order to be able to establish relative liveness properties
that will also hold at the concrete system level Thus, we
need investigate the relation between the sets h(ccmt (w, L))
and cunt (h(w), h(L)) and find conditions under which
cont(h(w), h(L)) can be used instead of h(cont(w, L)).

In general, h(cont(w, L)) is a proper subset of
cord (h(w), h(L)). In order to obtain sufficient reformation
about h(cont(w, L)) from Cont(h(w), h(L)), one would be
tempted to require equality of the two sets, However, this
is stronger than needed. Indeed, since we are dealing with
relative liveness properties, it is sufficient that the behav-
iors in cont(h(ro), h(L)) “eventually” become behaviors in
h(cont(w, L)). This condition is the one called mmplicity of
an abstraction homomorphism in [21]. Its exact definition
is the following.

Definition 6.3 An abstmcting homomorphism h : Ern -+
Z’m is simple for a language L c 2“ and a word w E L
if and only if there ezists u E cont(h(w), h(L)) such that
cont(rq cont(h(w), h(L))) = cont(u, h(cont(w, L))). The ho-
momorphism h is simple for L if and only if it is simple for
L and all words w c L.

Theorem 8.2 will show that this definition indeed meets
all the requirements we have informally described above.
More details about simple homomorphisms can be found in
[21].

48

7 Preservation of Linear Properties

Before turning to the preservation of relative liveness prop-
erties under simple homomorphisms, we need some general
results about abstraction homomorphisms and properties.
The problem we address is that the properties true of the
abstracted system and of the concrete system can rarely be
identical. Indeed, one needs to take into account the fact
that the abstraction can rename or hide symbols. Our goal
here is to define a transformation on properties that mirrors
this.

We consider properties defined by PLTL formulas (see
Section 3). In order to make the definition of property trans-
formations easier and to make the interpretation of formu-
las over words more direct (remember that we are dealing
with systems represented by sets of infinite words), we define
some normal forms for PLTL formulas.

A first restriction is to consider only positive normaf form
formulas.

Definition 7.1 A PLTL-formula rI is in positive normal
form if and onl~ if the .wpe of all negations is a single
atomic proposition.

Now we turn to the problem of interpreting formulas over
words. Our generic way of doing this (see Section 3) is to
use a mappingA:x + 2APfromthe alphabet E of the
word to the subsets of the atomic propositions AP of the
formula. However, in this context, it is quite natural to
consider the elements of X directly as atomic propositions,
which implies that one is using a mapping k such that
Vaez: ~~(a) = {a}. We define a normal from that
corresponds to this.

Definition 7.2 Let E be an aiphabet. We say that a PL2”L
formula q is in X-normal form if and only if q is in positive
normal form and all its atomic propositions are in E (i.e.
AP ~ Z).

For an alphabet E, the canonical X-1abeling function & :
x +22 iS the one such that such that VUE X : An(a)= {a}.

We will assume bti default that, on a word z over the
alphabet E, a formula in E-normal form is interpreted with
the canonical E-1abeling function. We will write z, AE ~ q to
express that the word z satisjies the E-normal form formula
q under the canonical E-labeling junction Az.

Note that using S-normal for formulas is not really re-
strictive. Indeed, for any PLTL-formulas q over a set AP of
atomic proposition and any labeling function A :2 + 2AP,
there exists a PLTL-formula q’ in E-normal form such that,
forallz ~IY, z, A+qifandonlyifz, k l=q’.

We now turn to the interaction between properties and
abstraction homomorphisms. Consider an abstraction ho-
momorphism h : Em ~ E’m and assume we have estab-
lished a (Z’-normal form) property q of the abstract version
LL of a system obtained under this homomorphism. Of what
system can we say that the property is true on the concrete
level? One would expect h-l (L~). However, this is a lan-
guage on ‘Z on which we cannot directly interpret q. One
could modify q to take this into account, but it is simpler
to modify the labeling fimction.

Definition ?.3 For alphabets X and E’, and for an abstmc-
tion homomorphism h : 2= ~ Z’m, the canonical h= Dt-

labeling function ~hzz, : ~ - 2E’’J{C};s the one such that

such that Va E ~ : ~h~=, (a) = {h(a)}.

Notice that this labeling function maps some letters to
the proposition e which stands for the empty word. So, we
can’t expect a formula v true of the abstract system L~ to
be true of h- 1(LL), even using the mapping h=z,. Indeed,
this mapping takes care of the fact that letters are renamed,
but does not take care of the fact that ~ is the empty word.
What is needed is to ignore the empty word in the evaluation
of the formula. This is handled by transforming the formula
q from U-normal form to Z’ U c-normaf form as follows.

Definition 7.4 Let q be a PLTL-formula in Z’ -normal
form. We define recursively a mapping T(q) that yields a
formuia in E’ U e-normal form (see Figure 5; & designates
binary boolean operators: $ E {A, V, +, +}).

true,

=(true),

a,

(=(a)) A (l(c)).

(T(t))i(T(c)),

((c) v (T(t))) U (T(()),

(T(f)) B (T(c)),

0(7-(()),

(0((~) v (T(t)))) A (O(O(T({)))),

(e) U((+f)) A (O((t) U(T(C))))),

if q = true,

if q=-(a) and a cX’,

if q = (()~(~),

if q = (OU((),

if q = ({) B (~),

if q = O(t),

if ~ = O(c),

if q = 0(().

Figure 5: The syntactical transformation of PLTL.

As defined, the mapping T does not modifi pure Boolean
formulas (not including any ternpoml opemtor). However, a
pure Boolean formula q should b~ mapped to (~) U (q). We
thus eztend T into a mapping R such that R(q) is T(q)
with all masimal pure Boolean subformulas lb replaced by
(&)~ (<b).

We can now give a statement relating a property true on
an abstraction of a system to a property true at the concrete
level [17, 16]

Lemma 7.6 Let L. G X’”, let q be a PLTL-forrnula in
X’-normal form, and let h : Xm - Z’m be an abstmcting
homomorphism. Then

L~,Az, # q - h-l(LL),~h,x, ~ ~(n).

8 Preservation of Relative Liveneaa Properties

Let L ~ X“ be a prefix-closed language, let h : ~m ~
Z’m be an abstracting homomorphism, and let q be a
PLTL-formula in E’-normal form. Assume that q is a
relative liveness property of lirn(h(L)); in our notation
lim(h(L)), & ~ q. We wi~ prove that, if the homomor-

1phisms h is simp e, then q is also a relative livqess property
of lirn(L) in the sense that lirn(L), ~It~z, ~ R(q).

a&~To establish thk result we need a con ltlon that allows
to commute limit application of the homomorphism.

49

Lemma 8.1 If L ~ Z* is a prejix-closed regular language
and h : Em ~ I?m is an abstracting homomorphism, then
lim(h(L)) = h(lim(L)).

Proof (outline) The case h(lirn(L)) ~ lim(h(L)) is
straightforward. To show lzm(h(L)) ~ h(lim(L)), we use
Konig’s Lemma ([13], Lemma 3.3.). We can show that,
to each u-word Z’ E lim(h(L)), there exists a sequence
(ttm)n~~ of words in L such that (U~)ncN generates m

w-word x in Mn(L) and h(z) = z’ [16]. ❑

Using Lemma 8.1, we can now prove our result relating a
relative liveness property of lirn(h(L)) to a relative liveness
property of Jim(L).

Theorem 8.2 Let L C Z“ be a prejiz-closed regular lan-
guage, let h : V ~ Z’w be an abstracting homomorphism
such that h is simple on L and h(L) does not contain mazi-
mal words (words not being a proper prefix of another word
in h(L)), and let q be a PLTL-fomnula in X’-normal form.
we have that

lim(h(L)), AW~L q implies Jim(L), Ahzz, ~~ R(9).

Proof We assume that lim(h(L)), Ax,~L q and derive
tire(L), ~hxn, ~L ~(q). By definition lim(L), ~h=z, ~. ~(q)

if for all u E L, thgre exists some z E cont(u,lirn(L)) such
that WE,~hx=, ~ R(q). Consider thus an arbitrary u E L.
Because h is simple on L, there exists v E cont(h(u), h(L))
such that

cont(v, h(cont(u, L))) =

cont(v, cont(h(u), h(L))) = (1)

cont(h(u)v,h(L)).

By our hypothesis that lim(h(L)), AZ,~L q, we have that
VT E pre(lim(h(L))) : 3s E cont(r, iinz(h(L))) : rs, AE~~ q,
and in particular, substituting h(u)v for r that there exists
some ~ E cont(h(u)v, lim(h(L))) = lim(cont(h(u)v, h(L)))
such that

h(u)v~, AZ, 1= q. (2)

Given equation (1) this is equivalent to

y C hn(cont(v,h(cont(u, L)))) =

cent(v, Iirn(h(cont(u, L)))).

Thus we know that vy is in lim(h(cont(u, L))), which, in
view of Lemma 8.1, is equivalent to

vv e h(fzrn(cont(u, L))).

So, there exists z E lirn(cont(u, L)) such that

h(z) = Vg. (3)

Viewing vy as a single word z, we have thus shown that
for all u c L, there exists z E Iim(cont(u, L)) and z E
cont(h(u), lim(h(L))) such that h(z) = z (equation (3)) and
h(u)z, & + q (equation (2)).

Consider now the language ~ = pre(ux) of prefixes of
UX. Clearly, hn(~) = {UZ} and hn(~(fi)) = {h(u) z}.

Because h(u)z, & + ~, limJh(L)), ,4Z, ~ q,- Using
Lemma 7.5 and given that hn(L) ~ h-~ (lim(h(L))), we
obtain hm(J?), ~hn , + ~(q), Or UZ, Ah= , ~ fi(~). We

have this shown t%at for ail u c L,_ t~ere exists z G
cont(u, lim(L)), such that UZ,~h~z, # R(q). Thus we have

shown that hm(L), &X, ~L R(q) •l

As shown in Section 2 with an example, Theorem 8.2
does not hold, if we do not require the abstracting homo-
morphism to be simple.

Theorem 8.3 Let L C E* be a prej?z-closed regular lan-
guage. Let h : Em ~ I%’ be an abstracting homomo~hism
such that h(L) does not contain mam”mal words. Let q be a
PLTL-formula in E’ -normalform Then

Proof We aiwume that lim(L), ~h,z, ~~ R(q) and show
lzn@(L)), Ax, ~~ q. Let w’ E pre(hrt(h(L))), let w c

pre(hm(L)) rl h-lJw’), and let z E cont(w, lirn(L)) such
that WZ,Ah=., ~ R(q).

If h(wz) is defined, then, by Lemma 7.5, h(wz), & #q.
Therefore, there exists an z’ = h(z) E cont(w’, lirn(h(L)))
such that W’Z’,& # q.

If h(wz) is undefined, then there is a prefix v of wx such
that h(cont(v, pre(wz))) = {c}. (In fact, there are infi~itely
many of these prefixes v.) Then, by definition -of R and
&,, we have, for ~ y G ~W, that vy, ~hx=, + R(q).

If there exists a y G U’ such that h(y) E
cotzt(h(v), lirn(h(L))), then let z’ be the only w-word in
cont(w , {h(v~)}). c’ is in cont(w’, iirn(h(L))). According
to Lemma 7.5, w’z’, & + q.

If there exists no y G EW such that h(y) E
cont(h(v),hn(h(L))), then h(L) contains maximal words,
which contracts the theorem’s preconditions.

So, for all w’ E pre(lim(h(L))), there exists an
z’ c cent (w’, 6irn(h(L))) such that W’Z’,AZI b q. Thus
lirn(h(L)), J=, ~~ q. u

Corollary 8.4 Let L ~ 2“ be a prejiz-closed regular lan-
guage, let h : W’ ~ X’w be an abstmcting homomo~hism
such that h is simple on L and h(L) does not contain maxi-
mal words, and let q be a PLTL-formuia in X’-normal form.
Then

Proof This corollary is a summary of Theorem 8.2 and
Theorem 8.3. 0

If h(L) contains maximal words, we have to extend them
by {#}* as presented in [20], to keep maximal words “visi-
ble” when considering bn(h(L)).

9 Conclusion

We have introduced relative liveness properties as an ab-
straction of properties true under fairness. One major ad-
vantage of relative liveness properties is that they can be
verified using behavior abstraction under simple homomor-
phisms as is shown in Theorem 8.2. A related result for the
VU30-fragment of CTL* appears in [18, 19]. Additionally,
a recent result [20] shows that simplicity of homomorphisms
is also a necessary condition for the preservation of relative
liveness properties under abstraction.

For practical purposes, it is essential to be able to ob-
tain a representation of the abstract behavior of a system
without an exhaustive construction of the finite-state system
generating the original behavior. A compositional analysis

50

technique [22] makes it possible to compute the finite-state
representation of the abstract behavior by a partial state-
space exploration. Therefore, regarding the results of this
paper, we can check relative liveness properties of specifi-
cations without an exhaustive construction of their state-
spaces. An application of abstraction techniques to the de-
tection of undesired feature interactions in intelligent net-
works can be found in [6].

Relative liveness properties reveal a satisfaction relation
for properties that informally says: “almost all computa-
tions satisfy the property.” In this sense, they appear to be
close to properties that are probabilistically true [26, 27]. It
would be an interesting topic for further study to investigate
the exact link between relative liveness and probabilistic ver-
ificat ion.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

ABADI, M., AND LAMPORT, L. The existence of refine-
ment mappings. SRC Report 29, DEC System Research
Center, July 1988.

ABADI, M., AND LAMPORT, L. Composing specifica-
tions. SRC Report 66, DEC System Research Center,
October 1990.

ALPERN, B., ANDSCHNEIDER,F. B. Defining liveness.
fn~ownation Processing Letters 21, 4 (October 1985),
181-185.

ALUR, R., AND HENZINGER, T. A. Local liveness
for compositional modeling of fair reactive systems.
In Computer Aided Verification (CAV) ’95 (1995),
P. Wolper, Ed., vol. 939 of Lecture Notes in Computer
Scinece, Springer, pp. 166-179.

BERSTEL, J. 2Yansductions and Contezt-F#-ee Lan-
guages, first ed. Studlenbiicher Informatik. Teubner
Verlag, Stuttgart, 1979.

CAPELLMANN,C., DEMANT, R., FATAHI-VANANI,F.}
GALVEZ-ESTRADA, R., NITSCHE, U., AND OCHSEN-
SCHLAGER,P. Verification by behavior abstraction: A
case study of service interaction detection in intelligent
telephone networks. In Computer Aided Verification
(CAV) ’96 (New Brunswick, 1996), vol. 1102 of Lec-
ture Notes in Computer Science, pp. 466-469.

EILENBERG, S. Automata, Languages and Machines,
vol. A. Academic Press, New York, 1974.

EMERSON, E. A. Temporal and modal logic. In van
Leeuwen [25], pp. 995-1072.

FRANCEZ, N. Fairness, first ed. Springer Verlag, New
York, 1986.

GAREY, M. R., AND JOHNSON, D, S. Comput-
ers and Intractability. A Guide to the Theory of NP-
Compietenew. W.H. Freeman and Co.} New York, 1979.

HARRISON, M. A. Introduction to Formal Language
Theory, first ed. Addison-Wesley, Reading, Mass., 1978.

HENZINGER,T. A. Sooner is safer than later. Zn~orma-
tion Processing Letters 49 (1992), 135-141.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

HOOGEBOOM,H., ANDROZENBERG, G. Infinitary lan-
guagea: Basic theory and applications to concurrent
systems. In Curmmt fiends in Concurrenc~ (1986),
J. de Bakker, W.-P. de Roever, and G. Rozenberg, Eds.,
vol. 224 of Lecture Notes in Computer Science, Springer
Verlag, pp. 266-342.

KELLEY, J. L, General Topology. Van Nostrand,
Princeton, 1955.

MANNA, Z., AND PNUELI, A. The Tempoml Logic
oj Reuctiue and Concurrent Systems—Specification,
first ed. Springer Verlag, New York, 1992.

NITSCHE, U. Verification of Co- Opemting Systems
and Behauiour Abstmctton. PhD thesis, University of
Frankfurt, Germany. handed in 1996.

NITSCHE, U. Propositional linear temporal logic
and language homomorphisms. In Logical Founds.
tions of Computer Science ’94, St. Petersburg (1994),
A. Nerode and Y. V. Matiyasevich, Eds., vol. 813 of
Lecture Notes in Computer Science, Springer Verlag,
pp. 265-277.

NITSCHE, U. A verification method based on homo-
morphic model abstraction. In Proceedings of the 19th
Annual ACM Symposium on Principles of Distributed
Computing (Los AngeIes, 1994), ACM Press, p. 393.

NITSCHE, U. Verification and behavior abstraction -
towards a tractable verification technique for large dis-
tributed systems. Journal of Systems and Software 99,
3 (June 1996), 273-285.

NITSCHE, U., AND OCHSENSCHLAQER,P. Approxi-
mately satisfied properties of systems and simple lan-
guage homomorphisms. Information Processing Letters
60 (1996), 201-206.

OCHSENSCHLAGER,P. Verification of cooperating sys-
tems by simple homomorphisms using the product net
machine. In Workshop: Algorithmen und Werkzeuge
fir Petrinetze (1994), J. Desel, A. Oberweis, and
W. Reisig, Eds., Humboldt Universitiit Berlin, pp. 48-
53.

OCHSENSCHLAGER,P. Compositional verification of
cooperating systems using simple homomorphisms. In
Workshop: Algotithmen und Werkzeuge frir Pettinetze
(1995), J. Desel, H. Fleischhack, A. Oberweis, and
M. Sonnenschein, Eds., Universitat Oldenburg, pp. 8-
13.

PNUELI, A. The temporal logic of programs. In l%o-
ceedings of the 18th Annuai IEEE Spmposium on Foun-
dations of Computer Science (1977), pp. 46-57.

Ti-IOMAS, W. Automata on infinite objects. In van
Leeuwen [25], pp. 133-191.

VAN LEEUWEN, J., Ed. Formal Models and Semantics
(1990), vol. B of Handbook of Theoretical Computer Sci.
ence, Elaevier.

VARDI, M. Y. Automatic verification of probabilis-
tic concurrent finite-state programs. In Proceedings of
the 2?6thIEEE S~mposium on Foundations of Computer
Science (Portland, October 1985), pp. 327-338.

51

(27] VARDI, M. Y., AND WOLPER, P. An automata-
theoretic approach to automatic program verification.
In Proceedings of the 1st Symposium on Logic in Com-
puter Science (Cambridge, June 1986).

[28] VARDI, M. Y., AND WOLPER, P. Reasoning about
infinite computations. Information and Computation
115, 1 (November 1994), 1-37.

52

