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Abstract

We consider the problem of load balancing in dynamic dis-
tributed systems in cases where new incoming tasks can
make use of old information. For example, consider a multi-
processor system where incoming tasks with exponentially
distributed service requirements arrive x a Poisson process,
the tasks must choose a processor for service, and a task
knows when making this choice the processor loads from T
seeonds ago, What is a good strategy for choosing a pro-
cessor, in order for tasks to minimize their expected time
in the system? Such models can also be used to describe
set tings where there is a transfer delay between the time a
task enters a system and the time it reaches a processor for
service.

Our models are based on considering the behavior of
limiting systems where the number of processors goes to
infinity. The limiting systems can be shown to accurately
describe the behavior of sufficiently large systems, and simu-
lations demonstrate that they me reasonably accurate even
for systems with a small number of processors. Our stud-
ies of specific models demonstrate the importance of using
randomness to break symmetry in these systems and yield
importaut rules of thumb for system design. The most sig-
nificant result is that only small amounts of load information
cart be extremely useful in these settings; for example, hav-
ing incoming tasks choose the least loaded of two randomly
chosen processors is extremely effective over a large range
of possible system parameters. In contrast, using global
information can actuzdly degrade performwtce unless used
correctly; for example, unlike most settings where the load
information is current, having tasks go to the least loaded
server can significantly hurt performance.

1 Introduction

Distributed computing systems, such as networks of work-
stations or mirrored sites on the World Wide Web, face the
problem of using their resources effectively. If some hosts lie
idle while others are heavily loaded, system performance can
fall significantly. To prevent this, iood bakmcing is used to
distribute the workload, improving performance measures
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such as the expected time a task spends in the system.
Although determining an efiective load balancing strategy
depends strongly on the details of the underlying system,
general models from both queueing theory and computer
science often provide valuable insight and general rules of
thumb.

In this paper, we develop analytical models for the re-
alistic setting where old load information is available. For
example, suppose we have a system of n servers, and incom-
ing tasks must choose a server and wait for service. If the
incoming tasks know the current number of tasks already
queued at each server, it is often best for the task to go
to the server with the shortest queue [18]. In many actual
systems, however, it is unrealistic to assume that tasks will
have access to up to date load information; global load infor-
mation may be updated only periodically, or the time delay
for a task to move to a server may be long enough that the
load information is out of date by the time the task arrives.
In this case, it is not clear what the best load balancing
strategy is.

Our models yield surprising results. Unlike similar sys-
tems in which up to date information is available, the strat-
egy of going to the shortest queue can lead to extremely bad
behavior when load information is out of date; however, the
strategy of going to the shortest of two randomly chosen
queues performs well under a large range of system param-
eters. This result suggests that systems which attempt to
exploit global information to balance load too aggressively
may stier in performance, either by misusing it or by adding
significant complexity.

1.1 Previous Work

The problem of how to use old information is generally ne-
glected in theoretical work, even though balancing workload
from distributed clients baaed on incomplete or possibly out
of date server load information may be an increasingly com-
mon system requirement. A recent work by Awerbueh, Azar,
Fiat, and Leighton [2] covers a similar theme, although their
models are substantially different from ours.

The idea of each task choosing from a small number of
processors in order to balance the load haa been studied be-
fore, both in theoretical and practical contexts. In many
models, using just two choices per t zsk can lead to an expo-
nential improvement over one choice in the maximum load
on a processor. In the static setting, this improvement ap-
pears to have first been noted by Karp, Luby, and Meyer
auf der Heide [fl. A more complete analysis was given by
Azar, Broder, Karlin, and Upfal [3]. In the dynamic set-
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ting, this work was extended in [12, 13]; similar results were
independently reported in [22].

in the queuing theory community, similar previous work
includes that of Towsley and Mlrchandaney [17] and that
of Mirchandaney, Towdey, and Stankovic [9, 10]. These au-
thors examine how some simple load sharing policies are
affected by communication delay, extending a similar study
of load balancing policies by Eager, Lazowska, and Zahorjan
[5]. Their analyses are based on Markov chains associated
with the load sharing policies they propose and simulations.

Our works expands on this work in several directions.
We apply a fluid-limit approach, in which we develop a de-
terministic model corresponding to the limiting system as
n + oo. We call this system the infinite system, and also
refer to the method aa the infinite system approach. This
approach h= successfully been applied previously to study
load balancing problems in [1, 12, 13, 14, 15, 22] (see also
[1] for more references, or [21] for the use of this approach
in a difTerent setting), and it can be seen aa a generaliza-
tion of the previous Markov chain analysis. Using this tech-
nique, we examine several new models of load balancing in
the presence of old information. In conjunction with simu-
lations, our models demonstrate several basic but powerful
rules of thumb for load balancing systems, most notably the
effectiveness of using just two choices.

The remainder of this paper is organized aa follows: in
Section 2, we describe a general queueing model for the prob-
lems we consider. In Sections 3, 4, and 5, we consider dif-
ferent models of old information. For each such model, we
present a corresponding infinite system, and using the infi-
nit es yst ems and simulations we determine important behav-
ioral properties of these models. We conclude with a section
on open problems and further directions for research.

2 The Bulletin Board Model

Our work will focus on the following natural dynamic model:
tasks arrive as a Poisson stream of rate An, where J < 1, at a
collection of n servera. Each task chooses one of the servera
for service and joins that server’s queue; we shall specify
the policy used to make this choice subsequently. Tasks are
served according to the First In First Out (FIFO) protocol,
and the service time for a task is exponentially distributed
with mean 1. We are interested in the expected time a task
spends in the system in equilibrium, which is a natural mea-
sure of system performance, and more generally in the dis-
tribution of the time a customer spends in the queue. Note
that the average arrival rate per queue is A <1, and that the
average service rate is 1; hence, assuming the tasks choose
servers according to a reasonable strategy, we expect the sys-
tem to be stable, in the sense that the expected number of
tasks per queue remains finite in equilibrium. In particular,
if each task chooses a server independent] y and uniformly
at random, then each server acts as an M/M/1 queue (Pois-
son arrivals, exponentially distributed service times) and is
clearly stable. We will examine the behavior of this system
under a variety of methods that tasks may use to choose
their server.

We will allow the tasks choice of server to be determined
by load information from the servera. It will be convenient if
we picture the load information as being located at a bulletin
board. We strongly emphasize that the bulletin board is a
purely theoretical construct used to help us describe various
possible load balancing strategies and need not exist in re-
ality. The load information contained in the bulletin board

need not correspond exactly to the actual current loads; the
information may be erroneous or approximate. Here, we fo-
cus on the problem of what to do when the bulletin board
contains old information (where what we mean by old infor-
mation will be specified in future sections).

We shall focus on di.dributedsystems, by which we mean
that the tasks cannot directly communicate in order to co-
ordinate where they go for service. The decisions made by
the tasks are thus based only on whatever load information
they obtain and their entry time. Although our modeling
technique can be used for a large class of strategies, in this
paper we shall concentrate on the following natural, intuitive
strategies:

Choose a server independently and uniformly at ran-
dom.

Choose d servers independently and uniformly at ran-
dom, check their load information from the bulletin
board, and go to the one with the smallest load. *

Check all load information from the bulletin board. and
go to the server with the smallest load.

The strategy of choosing a random server has several
advantages: it is easy to implement, it has low overhead,
it works naturally in a distributed setting, and it is known
that the expected lengths of the queues remain finite over
time. However, the strategy of choosing a small number of
servers and queueing at the least loaded has been shown to
perform significantly better in the case where the load in-
formation is up to date [5, 12, 13, 22]. It haa also proved
effective in other similar models [3, 7, 13]. Moreover, the
strategy also appears to be practical and have a low over-
head in distributed settings, where global information may
not be available, but polling a small number of processors
may be possible. Going to the server with the smallest load
appears natural in more centralized systems where global in-
formation is maintained. Indeed, going to the shortest queue
haa been shown to be optimal in a variety of situations in a
series of papera, start ing for example with [18, 20]. Hence it
makes an excellent point of comparison in this setting.

We develop analytical results for the limiting case aa
n + co, for which the system can be accurately mod-
eled by an infinite system. The infinite system consists
of a set of differential equations, which we shall describe
below, that describe the expected behavior of the system.
This corresponds to the exact behavior of the system as
n ~ co. More information on this approach can be found
in [6, 8, 12, 13, 14, 15, 22]. (We note, however, that this
approach works ody because the systems for finite n have
an appropriate form aa a Markov chain; indeed, we initially
require exponent ial service times and Poisson arrivals to en-
sure this form. ) Previous experience suggests that using the
infinite system to estimate performance metrics such as the
expected time in the system proves accurate, even for rela-
tively small values of n [5, 12, 13, 14]. We shall verify this for
the models we consider by comparing our analytical results
with simulations.

1In this and other strategies, we assume that ties are broken ran-
domly. Also,the d choices are made without replacement m our simu-
lations; in the infinite system setting, the difference betw,wn choosing
with and without replacement is negligible.
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3 Periodic Updates

The previous section has described possible ways that the
bulletin board can be used. We now turn our attention to
how a bulletin a board can be updated. Perhaps the most
obvious model is one where the information is updated at
periodic intervals, In a client-server model, this could corre-
spond to an occasional broadcast of load information from
all the servers to all the clients. Because such a broadcast
is likely to be expensive (for example, in terms of commu-
nication resources), it may only be practical to do such a
broadcast at infrequent intervafs. Alternatively, in a system
without such centrahzation, servers may occasionally store
load information in a readable location, in which case tasks
may be able to obtain old load information from a small set
of servers quickly with low overhead.

We therefore suggest the periodic update model, in which
the bulletin board is updated with accurate information ev-
ery T seconds. W]thout loss of generalit y, we shall take the
update times to be O,T, 2T, . . .. The time between updates
shall be called a phase, and phase i will be the phase that

ends at time iT. The time that the last phase began will be
denoted by T~, where t is the current time.

The infinite system we consider will utilize a twc-
dimensional family of variables to represent the state space.
We let Pi,j (t) be the fraction of queues at time t that have
true load j but have load i posted on the bulletin board.
We let qi(t)be the rate of arrivals at a queue of size i at
time t; note that, for time-independent strategies, the rates
qi(t) depend only on the load information at the bulletin
boards and the strategy used by the tasks, and hence is the
same as qi (Tt ). In this case, the rates q, change whenever
the bulletin board is updated.

We first consider the behavior of the system during a
phase, or at all times t# kT for integers k ~ O. Consider a
server showing i customers on the bulletin board, but having
j customers: we say such a server is in state (i, j). Let
i, j > 1. What is the rate at which a server leaves state
(i, j)? A server leaves this state when customer departs,
which happens at rate u = 1, or a customer arrives, which
happens at rate qi(t).Similarly, we may ask the rate at
which customers enter such a state. This can happen if
a customer arrives at a server with load i posted on the
bulletin board but having j -1 customers, or a customer
departs from a server with load i posted on the bulletin
board but having j+ 1 customers. This description naturally
leads us to model the behavior of the system by the following
set of differential equations:

dPi,O(t)
dt

= Pi,,(t) – P,,O(t)q~(t) ;

dPi,J (t)
dt

= (Pi,j-l(t)qi(t) + p,,j+l (~))

(1)

(2)

- (pi,j(~)qi(t) + Pt,,(t)) , j 21.

These equations simply measure the rate at which servers
enter and leave each state. (Note that the case j = O is a
speciaf case. ) W bile the queueing process is random, how-
ever, these differential equations are deterministic, yielding
a fixed trajectory once the initiaf conditions are given. In
fact, these equations describe the limiting behavior of the
process as n + m, as can be proven with standard (albeit
complex) methods [6, 8, 13, 14, 15, 21, 22]. Here we take
these equations as the appropriate limiting system and focus
on using the differential equations to study load balancing
strategies.

For integers k ~ O, at t = kT there is a state jump as the
bulletin board is updated. At such t,necessarily Pi,j (t) = O
for all i #j, as the load of afl servers is comectly portrayed
by the bulletin board. If we let P,,j(t-) = Iimz+,. Pi,3(z),
so that the Pi ,J(t - ) represent the state just before an update,
then

p,,!(t) = ~PJ,i(t-).
J

3.1 Specific Strategies

We consider what the proper form of the rates g, are for
the strategies we examine. It will be convenient to detine
the load variables b,(t) be the fraction of servers with load i
posted on the bulletin board; that is, bi (t) = ~~o P;,j (t).

In the case where a task chooses d servers r—m’d~mly,and
goes to the one with the smallest load on the bulletin board,
we have the arrival rate

~i(t)=A(Ej~ibJ(t))d- (Ej>ib,(t))d
hi(t)

The numerator is just the probability that the shortest
posted queue length of the d choices on the bulletin board
is size i. To get the arrival rate per queue, we scale by A,
the arrival rate per queue, and bi(t),the total fraction of
queues showing i on the board. In the case where d = 1, the
above expression reduces to qi(t)= A,and all servers have
the same arrival rate, as one would expect.

To model when tasks choose the shortest queue on the
bulletin board, we develop an interesting approximation.
We assume that there always exists servers posting load O
on the bulletin board, and we use a model where tasks go
to a random server with posted load O. As long as we start
with some servers showing O on the bulletin board in the
infinite system (for instance, if we start with an empty sys-
tem), then we wifl always have servers showing load O, and
hence this strategy is valid. In the case where the number
of queues is finite, of course, at some time all servers will
show bad at least one on the billboard; however, for a large
enough number of servers the time between such events is
large, and hence this model will be a good approximation.
So for the shortest queue policy, we set the rate

,4
90(t) =qq,

and all other rates q,(t) are 0.

3.2 The Fixed Cycle

In a standard deterministic dynamical system, a natural
hope is that the system converges to a fixed point, which
is a state at which the system remains forever once it gets
there; that is, a fixed point would correspond to a point

P = (P:,J ) such that ~ = O. The above system clearly
cannot reaeh a fixed point, since the updating of the bulletin
board at time t = kT causes a jump in the state; specifi-
cally, all Pi,j with i # j become O. It is, however, possible
to find a jixed cycle for the system. We find a point P
such that if P = (P,,l (koT)) for some integer ko ~ 01 then
P = (P,,J(kT)) for all k > ko. In other words, we find a
state such that if the infinfie system begins a phase in that
state, then it ends the phase in the same state, and hence
repeats the same cycle for ever y subsequent phase. (Note



that it also may be possible for the process to cycle only af-
ter multiple phases, instead of just a single phase. We have
not seen this happen in practice, and we conjecture that it
is not possible for this system.)

To ftnd a fixed cycle, we note that this is equivalent to
finding a vector F = (~i) such that if r; is the fraction of
queues with load i at the beginning of the phase, the same
distribution occurs at the end of a phase. Given an initial 7,
the arrival rate at a queue with i tasks from time O to T can
be determined. By our assumptions of Poisson arrivals and
exponential service times, during each phase each server acts
as an independent M/M/l queue that runs for T seconds,
with some initial number of tasks awaiting service. We use
this fact to find the r;.

Formulae for the distribution of the number of tasks at
time T for an M/M/l queue with arrival rate A and i tasks
initially have long been known (for example, see [4, pp. 60-
64]); the probability of finishing with j tasks after T seconds,
which we denote by ~i,j, is

where here B=(z) is the modified Bessel function of the first
kind. If? gives the distribution at the beginning and end of
a phase, then the ~i must satisfy nl = ~, ~j m,,i (T), and
this can be used to determine the n,. “

It seems unlikely that we can use the above characteri-
zation to find a closed form for the state at the beginning
of the phase of for the fixed cycle in terms of T. In practice
we find the fixed cycle easily by running a truncated version
of the system of differential equations (bounding the maxi-
mum values of i and j) above until reaching a point where
the change in the state between two consecutive updates is
sufficiently small. This procedure works under the assump-
tion that the trajectory always converges to the fixed cycle
rapidly. (We discuss this more in the next section. ) Alterna-
tively, from a starting state we can apply the above formulae
for m:,j to successively find the states at the beginning of
each phase, until we find two consecutive states in which
the difference is sufficiently small. Simulating the differen-
tial equations has the advantage of allowing us to see the
behavior of the system over time, as well as to compute sys-
tem measurements such as the expected time a task spends
in the system.

3.3 Convergence Issues

Given that we have found a fixed cycle for the relevant infi-
nite system, import ant questions remain regarding conver-
gence. One question stems from the approximation of a
finite system with the corresponding infinite system: how
good is this approximation? The second question is whether
the trajectory of the infinite system always converges to its
fixed cycle, and if so, how quickly?

For the first question, we note that the standard meth-
ods referred to previously provide only very weak bounds
on the convergence rate between infinite and finite systems.
By focusing on a specific problem, proving tighter bounds
may be possible (see, for example, the discussion in [21]),
In practice, however, as we shall see in Section 3.4, the in-
finite system approach proves extremely accurate even for

small systems, and hence it is a useful technique for gauging
system behavior.

For the second question, we have found in our exper-
iments that the system does always converge to its fixed
cycle, although we have no proof of this. The situation is
generally easier when the trajectory converges to a fixed
point, instead of a fixed cycle, as we shall mention in sub-
sequent sections. (See also [13].) Proving this convergence
hence remains an interesting open theoretical question.

3.4 Simulations

We present some simulation results, with two main purposes
in mind: first, we wish to show that the infinite system ap-
proach does in fact yield a good approximation for the finite
case; second, we wish to gain insight into the problem load
balancing using old information. We choose to emphasize
the wcond goal. As such, we plot data from simulations of
the actual queueing process (except in the case where one
server is chosen at random; in this case we apply standard
formulae from queueing theory). We shall note the devi-
ation of the values obtained from the infinite system and
these simulations where appropriate.

This methodology may raise the question of why the in-
finite system models are useful at all. There are several
reasons: Iirst, simulating the differential equations is often
much faster than simulating the corresponding queueing sys-
tem; this issue will be explored further in the final version
of the paper. Second, the infinite systems provide a the-
oretical framework for examining these problems that can
lead to formal theorems. Third, the infinite system provides
good insight into and accurate approximations of how the
system behaves, independent of the number of servers. This
information should prove extremely useful in practice.

In Figures 1 and 2, the results for various strategies are
given for arrival rates A = 0.5 and A = 0.9 for n = 100
servers. In all cases, the average time a task spends in the
system for the simulations with n = 100 are higher than the
expected time in the corresponding infinite system. When
A = 0.5, the deviation between the two results m-e smaller
than 1% for all strategies. When A = 0.9, for the strategy
of choosing from two or three servers, the simulations are
within 1-2% of the results obtained from the infinite system.
In the case of choosing the shortest queue, the simulations
are within 6-17V0of the infinite system, again with the av-
erage time from simulations being larger. We expect that
this larger discrepancy is due to the inaccuracy of our model
for the shortest queue system, as mentioned in Section 3.1;
however, this is suitably accurate to gauge system behav-
ior. These results demonstrate the accuracy of the infinite
system approach,

Several surprising behaviors manifest in the figures.
Fkst, although choosing the shortest queue is best when
information is current (T = O), for even very small values
of T the strategy performs worse than randomly selecting
a queue, especially under high loads (that is, large A). Al-
though choosing the shortest queue is known to be subop-
timal in certain systems with current information [19], its
failure in the presence of old information is dramatic, Also,
choosing from just two servers is the best of our proposed
strategies over a wide range of T, although for sufficiently
large T making a single random choice performs better.

We suggest some helpful intuition for these behaviors. [f
the update interval T is sufficiently small, so that only a few
new tasks arrive every T seconds, then choosing a shortest
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Figure 3: Strategy comparison at J = 0.90.

queue performs very well, as tasks tend to wait at servers
with short queues. As T grows larger, however, a problem
arises; all the tasks that arrive over those T seconds will go
oniy to the small set of servers that appear lightly loaded on
the board, overloading them while other servers empty. The
system demonstrates what we call herd behauion herds of
tasks all move together to the same locations. (As a real-life
example of this phenomenon, consider what happens at a su-
permarket when it is announced that “Aisle 7 is now open.”
Very often Aisle 7 quickly becomes the longest queue.) As
the update interval T + 00, the utility of the bulIetin board
becomes negligible (and, in fact, it can actually be mislead-
ing!), and the best strategy approaches choosing a server at
random. Although this intuition is helpful, it remains sur-
prising that making just two choices performs substantially
better than even three choices over a large intervaf of values
of T thatseem likely to arise in practice.

The same behavior is also apparent even with a much
smaller number of servers. In Figure 3 we examine simula-
tions of the same strategies with only eight servers, which
is a reafistic number for a current multi-processor machine.
In this case the approximations given by the infinite system
are less accurate, although for T > 1 they are still within
2070 of the simulation. Other simulations of smafl systems
demonstrate similar behavior, and as the number of servers
n gI’OWS the infinite system grows more accurate. Hence,
even for small systems, the infinite system approach provides
reasonable estimates of system behavior and demonstrates
the trends as the update intervaf T grows.

Finally, we note again that in all of our simulations of
the differential equations, the infinite system rapidly reaches
the fixed cycle suggested in Section 3.2.

4 Continuous Update

The periodic update system is just one possible model for
old information; we now consider another natural model for
distributed environments. In a continuous update system,
the bulletin board is updated continuously, but the board
remains T seconds behind the true state at all times. Hence
every incoming task may use load information from T sec-
onds ago in making their destination decision. This model
corresponds to a situation where there is a transfer delay
between the time incoming jobs determine which processor
to join and the time they join.

We will begin by modeling a similar scenario. Suppose
that each task, upon entry, sees a bflboard with informa-
tion with some time X ago, where X is an exponentially
distributed random variable with mean T, and these ran-
dom variables are independent for each task. We examine
this model, and later consider what changes are necessary
to replace the random variable X by a constant T.

Modeling this system appears difficult, because it seems
that we have to keep track of the past. Instead, we shall
think of the system as working as foflows: tasks first enter
a waiting room, where they obtain current load information
about queue lengths, and immediately decide upon their des-
tination according to the appropriate strategy. They then
wait for a time X that is exponentially distributed with
mean T and independent among tasks. Note that tasks have
no information about other tasks in the waiting room, in-
cluding how many there are and their destinations. After
their wait period is finished, they proceed to their chosen
destination; their time in the waiting room is not counted as
time in the system. We claim that this system is equivalent
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to a system where tasks arrive at the servers and choose a
server based on information from a time X ago as described.
The key to this observation is to note that if the arrival prm
cess to the waiting room is Poisson, then the exit process
from the waiting room is also Poisson, as is easily shown by
standard arguments. Interestingly, another interpretation of
the waiting room is as a communication delay, correspond-
ing to the time it takes a task from a client to move to a
server. This model is thus related to similar models in [9].

The state of the system will again be represented by a
collection of numbers for a set of ordered pairs. In this case,
Pi,) will be the fraction of servers with j current tasks and i
tasks sitting in the waiting room; similarly, we shall say that
a server is in state (i, j) if it has j tasks enqueued and i tasks
in the waiting room. In this model we let qj(t) be the arrival
rate of tasks into the waiting room that choose servers with
current load j as their destination. The expression for qj
will depend on the strategy for choosing a queue, and can
easily be determined, as in Section 3.1.

To formulate the differential equations, consider fist a
server with in state (i, j), where i, j ~ 1. The queue can
leave this state in one of three ways: a task can complete
service, which occurs at rate p = 1; a new task can enter the
waiting room, which occurs at rate q, (t); or a message can
move from the waiting room to the server, which (because of
our assumption ,of exponentially distributed waiting times)
occurs at rate ~. Similarly one can determine three ways
in which a server can enter (i, j). The following equations
include the boundary cases:

dPi,O(t)— =
dt

dPi,j (t)— =
dt

P,,,(t) – qo(t)Pc),cl(t) ;

Pi,,-l(t)
polj+l(~) + ~ – %(t)%(t)

- Po,,(t), j ~ 1;

qO(t)pi-l,O(t) + pi,l (t) – qO(t)pt,O(t)

ipco(t) , j ~ ~.
T’

P,,,+ l(t)+
(i+ l)P*+I,J-l{:l + qj(t)Pi-l,J(t)

T

4.1 The Fixed Point

Just as in the periodic update model the system converges
to a fixed cycle, simulations demonstrate that the continu-
ous update model quickly converges to a fixed point, where
dPt,j(t)

= O for all i, j. We therefore expect that in a suit-
ab$ large tinite system, in equilibrium the distribution of
server states is concentrated near the dktribution given by
the fixed point. Hence, by solving for the fixed point, one
can the estimate system metrics such as the expected time
in the queue (using, for example, Little’s Law). The fixed
point can be approximated numerically by simulating the
differential equations, or it can be solved for using the fam-

dP,,J (t)
ily of equations = O. In fact, this approach leads to
predictions of syste~ behavior that match simulations quite
accurately} as we wiU detail in Section 4.3.

Using techniques discussed in [13, 14], one can prove
that, for all the strategies we consider here, the fixed point is
stable, which informally means that the trajectory remains
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Figure 4: Each task sees the loads from T seconds ago.

close to its fixed point (once it gets close). We omit the
straightforward argument in this extended abstract. Our
simulations suggest that in fact the infinite system converges
e~ponentiaily to its fixed point; that is, that the dktance
between the fixed point and the trajectory decreases geo-
metrically quickly over time. (See [13, 14].) Although we
can prove this for some special cases, proving exponential
convergence for these systems in general remains an open
question.

4.2 Continuous Update, Constant Time

In theory, it is possible to extend the continuous update
model to approximate the behavior of a system where the
bufletin board shows load information from T seconds ago;
that is, where X is a constant random variable of value T.
The customer’s time in the waiting room must be made
(approximately) constant; this can be done effectively us-
ing Erlang’s method o~ stages. The essential idea is that we
replace our single waiting room with a series of r consec-
utive waiting rooms, such that the time a task spends in
each waiting room is exponentially distributed with mean
T/r. The expected time waiting is then T, and the variance
decreases with r; in the limit as r + cm, it is as though

the waiting time is constant. Taking a reasonable sized r
can lead to a good approximate ion for constant time. Other
distributions can be handled similarly. (See, e.g., [14],)

In practice, this model is difficult to use, as the state of
a server must now be represented by an r + l-dimensional
vector that keeps track of the queue length and number of
customers at each of the r waiting rooms. Hence the num-
ber of states to keep track of grows exponentially in r. It
may still be possible to use this approach in some cases, by
tmncating the state space appropriately; however, for the
remainder, we will consider this model only in simulations.

4.3 Simulations

As in Section 3.4, we present results from simulating the ac-
tual queueing systems. We have chosen the case of n = 100
queues and J = 0.9 as a representative case for illustrative
purposes. As one might expect, the infinke system proves
more accurate as n increases, and the differences among the
strategies grow more pronounced with the arrivaf rate.
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We first examine the behavior of the system when X,
the waiting room time, is a fixed constant T. In this case
the system demonstrates behavior remarkably similar to the
periodic update model, as shown in Figure 4. For example,
choosing the shortest server performs poorly even for small
values of T, while two choices performs well over a broad
range for T.

When we consider the case when X is an exponentially
distributed random variable with mean T, however, the sys-
tem behaves radically differently (Figure 5). All three of
the strategies we consider do extremely well, much better
than when X is the fixed constant T. We found that the
deviation between the results from the simulations and the
infinite system are very small; they are within 1-270 when
two or three choices are used, and 5-20~0 when tasks choose
the shortest queue, just as in the case of periodic updates
(Section 3.4).

We suggest an interpretation of this surprising behavior,
beginning by considering when customers choose the short-
est queue. In the periodic update model, we saw that this
strategy led to “herd behavior”, with all tasks going to the
same small set of servers. The same behavior is evident in
this model, when X is a fixed constant; it takes some time
before entering customers become aware that the system
loads have changed. In the case where X is randomly dis-
tributed, however, customers that enter at almost the same
time may have different views of the system, and thus make
different choices. Hence the “herd behavior” is mitigated,
improving the load balancing. Similarly, performance im-
proves with the other strategies as well.

We justify this interpretation by considering other dis-
tributions for X; the cases where X is uniformly distributed
on [T/2, 3T/2] and on [0, 2Tl are given in Figures 6 and Fig-
ures 7. Both perform noticeably better than the case where
X is fixed at T. That the larger interval performs dramati-
cally bet ter suggests that it is useful to have some tasks that
get very accurate load information (i.e, where X is close to
O); this also explains the behavior when X is exponentially
distributed.

This setting demonstrates how randomness can be used
for symmetry breakhg. In the periodic update case, by hav-
ing each task choose from just two servers, one introduces
asymmetry. [n the continuous update case, one can also
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introduce asymmetry by randomizing the age of the load
information.

This setting also demonstrates the danger of assuming
that a model’s behavior does not vary strongly if one changes
underlying distributions. For example, in many cases in
queueing theory, results are proven for models where ser-
vice times are exponentially dktributed (as these results are
often easier to obtain), and it is assumed that the behav-
ior when service times are constant (with the same mean)
is similar. In some cases there are even provable relation-
ships between the two models (see, for example, [11, 16]). In
this case, however, changing the distribution of the random
variable X causes a dramatic change in behavior.

5 Individual updates

In the models we have considered thus far, the bulletin board
contains load information from the same time t for all the
servers. 1t is natural to ask what happens when servers up-
date their load information at different times, as may be the
case in systems where servers individually broadcast load
information to clients. In an individual update system, the
servers update the load information at the bulletin board
individually. For convenience we shalf assume the time be-
t ween each update for every server is independent and expo-
nentially distributed with mean T. Note that, in this model,
the bulletin board contains only the load information and
does not keep track of when the updates have occurred.

The state of the system will again be represented by a
collection of ordered pairs. In this case, Pi ,j will be the
fraction of servers with true load j but load i posted on the
bulletin board. We let q,(t) be the arrival rate of tasks to
servers with load i posted on the bufietin board; the expres-
sion for q, will depend on the strategy for choosing a queue.
We let S1(t) be the total fraction of servers with true load
i at time t,regardless of the load displayed on the bulletin
board; note Si(t) = ~, P,,,(t).

The true load of a server and its displayed load on the
bulletin board match when an update occurs. Hence when
considering how Pi,i changes, there will a term correspond-
ing to when one of the fraction S, of servers with load i
generates an update. The following equations are readily
derived in a similar fashion as in previous sections.

dP,,o(t)
— = F’i,l (t) - p4,0(t)9, (t) – pi,O(~)/~ ;

dP:(t)

dt
= P*,J-*(t)qi(t) + P*,J+l (t) – P,,j(t)ql(t)

– P,,)(t) – P,,)(t) /T, j ~ 1 ,i #j;

dPO,O(t)
dt

= Pi,l(t) - Pi,O(t)gi (t) – PO,O(t)/T + SO(t)/T ;

dPi,i(t)
dt

= P,,, -~(t)q*(t) + P,,,+,(t) – P:,:(t) ql(t)

– Pl,l(t) – Pi,,(t)/T + S,(t)/T ,i ~ 1.

As with the continuous update model, in simulations this
model converges to ,a fixed point, and one can prove that
this fixed point is stable. Qualitatively, the behavior ap-
pears similar to the periodic update model, as can be seen
in Figure 8.
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Figure 8: Each server updates the board every Y seconds,
where X is exponentially distributed with mean ‘1’.

6 Open Questions and Conclusions

We have considered the question of how useful old informa-
tion is in the context of load balancing. In examining various
models, we have found a surprising rule of thumb: choosing
the least loaded of two random choices according to the old
load information performs well over a large range of system
parameters and is generally better than similar strategies,
in terms of the expected time a task spends in the system.
We have also seen the importance of using some random-
ness in order to prevent customers from adopting the same
behavior, as demonstrated by the poor performance of the
strategy of choosing the least loaded server in this setting.

We believe that there is a great deaf more tobe done
in this area. Generally, we would like to see these models
extended and applied to more reahstic sit uatiom. For ex-
ample, it would be interesting to consider this question with
regard to other load balancing scenarios, such as in virtual
circuit routing, or with regard to metrics other than the ex-
pected time in the system, such as in a system where tasks
have deadlines. A different theoretical framework for these
problems, other than the infinite system approach, might
be of use as well. In particular, it would be convenient to
have a method that yields tighter bounds in the case where
n, the number of servers, is small. Finally, the problem of
handling more realistic arrival and service patterns appears
quite difficult. In particular, it is wefl known that when ser-
vice distributions are heavy-tailed, the behavior of a load
balancing system can be quite dWerent than when service
distribution are exponential; however, we expect our rule of
thumb performs well in this scenario as well.
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