1703.06712v1 [cs.SE] 20 Mar 2017

arxXiv

Scrum for Cyber-Physical Systems:
A Process Proposal

Stefan Wagner
University of Stuttgart
Institute for Software Technology
Stuttgart, Germany

stefan.wagner@informatik.uni-stuttgart.de

ABSTRACT

Agile development processes and especially Scrum are chang-
ing the state of the practice in software development. Many
companies in the classical IT sector have adopted them
to successfully tackle various challenges from the rapidly
changing environments and increasingly complex software
systems. Companies developing software for embedded or
cyber-physical systems, however, are still hesitant to adopt
such processes.

Despite successful applications of Scrum and other agile
methods for cyber-physical systems, there is still no complete
process that maps their specific challenges to practices in
Scrum. We propose to fill this gap by treating all design
artefacts in such a development in the same way: In software
development, the final design is already the product, in
hardware and mechanics it is the starting point of production.

We sketch the Scrum extension Scrum CPS by showing
how Scrum could be used to develop all design artefacts for a
cyber physical system. Hardware and mechanical parts that
might not be available yet are simulated. With this approach,
we can directly and iteratively build the final software and
produce detailed models for the hardware and mechanics
production in parallel.

We plan to further detail Scrum CPS and apply it first in
a series of student projects to gather more experience before
testing it in an industrial case study.

Categories and Subject Descriptors

K.6.3 [Management of Computing and Information
Systems|: System Management; D.2.9 [Software Engi-
neering]: Management—=Software process models

General Terms

Management, Standardization

Keywords
Scrum, Agile, Cyber-physical

(©ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 1st International Workshop on Rapid Con-
tinuous Software Engineering, https://doi.org/10.1145/2593812.2593819.

1. INTRODUCTION

Embedded software systems, mobile and desktop applica-
tions as well as Internet and cloud systems are converging
into large, complex and distributed systems that interact
with the real world via sensors and actuators. For this new
kind of systems, the term cyber-physical systems has been
coined. “Cyber-physical systems (CPS) are physical and engi-
neered systems whose operations are monitored, coordinated,
controlled and integrated by a computing and communication
core.” [7]

Building these complex systems is still a challenge. For
example, good software engineering processes are essential to
get reliable CPS [5]. In the classical information system de-
velopment, agile approaches have gained a large acceptance
and provide many advantages beyond traditional approaches.
Even for embedded software, agile development is more and
more accepted. Salo and Abrahmsson [9] conclude from
a survey with European embedded software development
organisations that “The results also indicate that the appre-
ciation of the agile methods and their individual practices
appears to increase once adopted and applied in practice.”

1.1 Problem Statement

Yet, outside of software development, agile development
process are not widely used. “Agile system engineering prac-
tices have matured for software projects while hardware sys-
tem engineering continues to embrace classical development
techniques.” |[4] A general barrier for using agile methods for
hardware development is the higher difficulty in modifying
hardware. In addition, there is no clearly defined, detailed
description how Scrum should be used for hardware devel-
opment and how the integration with software development
should work which is essential for CPS. Lee |5] describes chal-
lenges and research directions in cyber-physical systems and
proposes, among others, to “Rethink the hardware/software
split”.

1.2 Research Objectives

We have the general goal to provide a clearly described,
detailed and applicable Scrum variation for CPS development
called Scrum CPS together with empirical evidence that it
works for developing such systems. Scrum CPS shall give
concrete guidelines how to build all parts of a CPS and ensure
their integration. In this paper, we aim to provide a first
sketch of Scrum CPS for further discussions.

1.3 Contribution

This paper is only a first step to reach our objectives. We
proposes a first draft of Scrum CPS based on a discussion
of CPS challenges and existing work. Its innovation is the
explicit handling of concurrent hardware and software de-
velopment and a concentration on building explicit design
models for hardware components that can be simulated to-
gether with the development to enable early software- and
hardware-in-the-loop tests.

2. RELATED WORK

The original way to manage more than one Scrum team
working on the same product is the Scrum of Scrums [8|. It
is an additional Scrum on top of the other teams composed of
members of each of these teams. They are chosen in a way so
that they can best discuss the inter-team dependencies. This
approach, however, does not prescribe any common and fixed
synchronisation points which are necessary for the complex
interplay of different hardware/software components in an
CPS.

Leffingwell [6] introduces the concept of an Agile Release
Train (ART) as a metaphor for synchronising agile teams.
In certain intervals (cadence) the Scrum teams working in
parallel have to put their increments on the release train to
create a (potential) release. These intervals comprise several
sprints. A team can also decide to put no new features on
the train and only adapt their interfaces to the changes made
by other teams and their features and components. We see
this as a good fit to the diverse components needed to be
developed for a CPS and employ the ART in our proposed
process.

Xie et al. [12] describe a preliminary systematic review on
empirical studies of the use of agile methods in embedded
software development. They describe relevant characteristics
of embedded software development such as hardware depen-
dence or specific development environments. We take these
characteristics and discussed responses into account but the
review is rather brief.

Shen et al. [10] provide a more comprehensive systematic
review on agile in embedded software development. They give
a good overview on the literature describing the experiences
so far. They conclude that the state of theory as well as
“research on applying agile methods to embedded software
development is distinctly not mature |...]”. We describe
a theoretical proposal in this paper which we plan to flesh
out in more detail and then empirically evaluate in future
projects.

Srinivasan, Dobrin and Lundqvist [11] also describe the
state of the art in agile for embedded systems development.
They concentrate more on the organisational change aspect
of introducing such methods while we propose a concrete
process.

Similarly, Cawley, Wang and Richardson [2] discuss the
state of the art in using lean and agile methods in regulated,
safety-critical systems. They conclude that corresponding
standards can be mapped to agile practices although not
always satisfactorily. Further issues are discussed, for exam-
ple that refactoring can invalidate earlier certification. They
state that “It would be useful to look at the governance of
Lean/Agile software development in these domains with a
view to identifying how to design policies and product lifecy-

cles [...]”. W react to this challenge with an explicit process
variation for safety-critical systems.

Huang, Darrin and Knuth [4] describe positive experiences
with using Scrum and XP practices in systems engineering
for satellite development. They stress that development
phases had to change but describe not in detail how different
Scrums are used to achieve this. They give, for example, the
closeness to the sponsors as a positive effect of agile system
engineering.

Cordeiro et al. [3] give the most detailed agile methodology
for developing embedded software. They use some practices
of XP and Scrum to achieve a highly iterative process. We
will build on their work, concentrate on clear guidelines for
applying Scrum and extend it to CPS.

3. SCRUM CPS

We propose the Scrum variation called Scrum CPS as a
clearly described and defined process for the agile develop-
ment of cyber-physical systems. To address the real needs in
developing CPS, we first look at the challenges posed by CPS
development onto the development process. We summarise
the major challenges with our proposed solutions in Tab.

The central idea of the Scrum CPS process is sketched
in Fig. We designate a sprint either as design sprint
or hardware sprint. The initial sprints are always design
sprints starting with central parts of the architecture of the
CPS. As software is design and product at the same time,
we can already build operational software. This software is
developed and tested together with hardware simulations
from design models we build in parallel.

The produced hardware designs (together with potentially
other items from the product backlog) become part of the
sprint backlog for the subsequent hardware sprint. The
hardware sprint refines and extends the design models and
builds the actual hardware. First we produce prototypes
and later the blueprints for the final hardware. At the
end of the hardware sprints, we get potentially shippable
product increments as well as modifications for the product
backlog which can then be introduced into design sprints. A
product increment is then really a combination of software
and hardware that could be given to a user — although the
hardware might still be crude, it would be useable.

To ensure that these different sprints are synchronised
and produce a coherent CPS, we adopt the ida of an Agile
Release Train (ART) from [6] as shown in Fig. 2] The whole
execution of the process is structured into cascades with a
potential release at the end. Before each release, there can
be several sprints by each team. Yet, any team knows that
they have to deliver something for the release. In the worst
case, they will deliver the last version with possibly adapted
interfaces only.

In the following, we discuss the two types of sprints in
more detail and propose variations depending on the concrete
application area of the CPS.

3.1 Design Sprints

Design sprints are responsible for the system design. They
produce designs for hardware and software components.
While for hardware this means an executable description
of an abstraction of the future hardware, the design for soft-
ware is the software itself. We often differentiate in software
engineering between design and implementation. Design then
contains architecture descriptions with the proposed decom-

Design Sprint u
Backlog C
Design Sprint
Planning

Design Sprint
Retrospective
[] |

[1] |
[|] |
[|] |

Product
Backlog

T = < &9 Hardware NFA

Hardware Sprint
Retrospective

Hardware Sprint
Review

Design Sprint
Review

Potentially shipable
product increment

Design Sprint
Execution

Potentially shipable

software increment

and hardware design
1

Hardware Sprint

\ | Hardware
Planning

Design

Hardware Sprint
Backlog

Hardware Sprint
Execution

Figure 1: An overview of the Scrum CPS process

<S
<3

Potential Release \

Figure 2: The Agile Release Train

position into components or interface descriptions. As in
Scrum in general, this will be used and created in Scrum CPS
as well where appropriate. Yet, in comparison to hardware,
software itself is still a design because there is no manufac-
turing step in the process. Hence, we can see software itself
on the same level as detailed, behavioural hardware designs.

This means, we produce workable software together with
hardware designs we can simulate and, thereby, “integrate”
the software and hardware designs in early design sprints.
In some sense, because working software is created first, we
could call this software-driven system engineering. Using
software and hardware designs, we can — fitting to usual agile
ways of development — test from the first sprint on using
software-in-the-loop tests.

The hardware could be designed, for example, with the
rapid hardware definition language (Rapid HDL) as proposed
in . It allows to script hardware using “reusable software
objects, communication between hardware and software is

)

automatic, and synthesis is automated using a free tool chain.’
This then produces a suitable basis for the sprint backlog of
further design sprints as well as hardware sprints.

Further challenges, we have not yet explicitly incorporated
into the design sprint process are how to handle the complex-
ities of highly networked and real-time components. We will
need to work on that in more detail to understand whether
it can be addressed by the process itself or if it is a matter
of the modelling and development methods used.

3.2 Hardware Sprints

The result of the design sprints are “only” design models
we can simulate. This is already a very good basis for further
hardware development as the models show how hardware
and software will need to interact. Yet, there are many more
detailed decisions to be made in hardware development. This
depends to a large degree on what kind of hardware we need
to build. It also might make sense to structure the hardware
development into separate Scrum teams working on electrics,
electronics and mechanics, for example.

Based on the design models and further detailing, the hard-
ware engineers build prototypes which show certain aspects
of the future hardware. This includes laying out the hardware
designs and creating a bill of materials. Then we order the
prototypes or assemble them ourselves. Programmable logi-
cal devices can play the role of quickly adaptable hardware.
This was, for example, already recognised in the development
of the first Macintosh at Apple: “Burrell Smith developed a
unique hardware design style based on programmable array
logic chips (PAL chips), which enabled him to make changes
much faster than traditional techniques allowed, almost with

Table 1: Major Process Challenges and Solutions in
Scrum CPS (adapted and extended from [7])

Software/ CPS consist potentially of new soft-

hardware ware, electrical, electronic and mechan-

co-design ical components. They all need their
own timelines for development but need
to be synchronised. We use the Agile
Release Train as method to structure
the different Scrum teams. In addition,
we define always a major design team
which initially and regularly looks at
the overall CPS architecture.

Robustness, FEarly and comprehensive design using
safety, software directly as well as design mod-
security els that we can simulate help to detect
quality problems early in software- and
hardware-in-the-loop tests.

Architecture By using detailed design models to-
gether with simulations we build early
consistent and global architectures.
Bringing the design models into the
sprint backlog of hardware sprints, we
ensure that all components reflect this
architecture.

Real-time Again, the early design models can re-
abstrac- veal bottlenecks and problems with real-
tions time constraints. In addition, the possi-
bility of early prototypes and hardware-
in-the-loop tests can be used to assure

such constraints.

Sensor and CPS emphasise the connectedness of
mobile many quite different components. To
networks some degree, the availability of mod-
els for simulations and in-the-loop tests
helps to test these aspects. In addition,
the Agile Release Train ensures com-
patible interfaces between components

connected via networks.

Model- For everything but software directly,

based Scrum CPS demands model-based de-

develop- velopment. We always build models

ment we can simulate together for all compo-
nents including the created software.

Verification, Scrum CPS enforces an early verifica-
validation, tion and allows the developers to reg-
certifica- wularly and comparably early validate
tion the system with stakeholders. Certifi-
cation is more problematic and needs a
mapping of the applicable standard to

Scrum CPS.

the fluidity of software.’EI Hence, we can now test important
aspects to refine the hardware designs and add additional or
changed items to the product backlog so they can be worked
on in the next design sprints. Depending on the nature of the
prototypes, we aim to run hardware-in-the-loop tests with
the prototypes and the existing software from the design
sprints.

As soon as any hardware prototypes are available, the
sprint will contain inspections, such as visual inspections,
multi-meter checks and turn-on tests. Based on these inspec-
tions and tests, we probably need to debug the prototype.
This will lead to changes in the design for the design sprints.

After several hardware sprints and a synchronisation with
the design sprints that the design is stable, we will take the
final steps to mass produce the hardware.

3.3 Variations

In the following, we will discuss some potential variations
of Scrum CPS depending on the nature of the components
of the system.

3.3.1 Safety-Critical Components

In many cases, because of the close connection to the
physical world, at least parts of an CPS are safety-critical.
Safety-critical means here that the component can create haz-
ards for the system environment that can lead to accidents
harming people or with other catastrophic consequences.
These components and the system containing these compo-
nents need to be developed with special care to avoid these
consequences. In particular, the development organisation
needs to follow applicable standards for the corresponding
domain of the component. For electronic and software compo-
nents, the IEC 61508 needs to be followed. Certain domains
have created specific standards, such as the ISO 26262 for
such components in automotive systems. Those standards
usually prescribe various aspects of the process, sometimes
also specific methods and product properties. Depending
on the standard, we might need to modify Scrum CPS to
conform with it. Some aspects are easy to achieve or at least
not more difficult in a Scrum setting. For example, MC/DC
test coverage or traceability links from requirements to code
is often required for higher safety integrity levels. These
would be good candidates for inclusion into the definition of
done of a sprint.

3.3.2 New Cloud Components

In the design sprints, we assumed so far that we only build
design models for the hardware components but build the
concrete software components as in the final product. A
variation could be used for the more cloud-dependent parts
of the CPS. Maybe the cloud part is not yet available or we
do not want to reveal it yet. Then it might be acceptable to
only build a simulation of the cloud service.

3.3.3 Hardware Design Language

Scrum CPS assumes that the hardware design is always
an executable simulation. Scrum CPS does not prescribe
what modelling language should be used for the simulation.
This could simply be the programming language used to
build the other, productive software over general purpose
modelling languages, such as SysML with corresponding

1h‘ctp ://www.folklore.org/StoryView.py?project=
Macintosh&story=The_Macintosh_Spirit.txt

http://www.folklore.org/StoryView.py?project=Macintosh&story=The_Macintosh_Spirit.txt
http://www.folklore.org/StoryView.py?project=Macintosh&story=The_Macintosh_Spirit.txt

tools, to specialised modelling languages and tools, such
as Matlab Simulink and Stateflow. This might change the
process and when and how it is able to run software- and
hardware-in-the-loop tests.

4. EXAMPLE: FITNESS TRACKING

To make the process proposal more concrete, we apply it
to a hypothetical fitness tracking CPS. The purpose of the
system is to track the movements of a person and to give
feedback to motivate her or him to exercise more. The system
consists of a smart wristlet with sensors, actuators and a
small screen, a smartphone app on a modern smartphone
and a cloud service with a corresponding web interface. This
structure is shown in Fig.

Smartphone App

I

7

J Smart wristlet

d /
\-’v—)

«»Q >

<>

Cloud & Web Interface

Figure 3: Overview of the Fitness Tracking CPS

The wristlet tracks the movements of the person, connects
via Bluetooth to the smartphone for syncing the movement
data and shows a movement score. With the synced informa-
tion, it also vibrates when more movement is needed, and it
suggests activity via the small screen. The smartphone app
connects to the cloud service via Internet. The cloud service
captures all the movement data and personal configurations.
It also allows social functions such as comparing one’s results
with those of friends.

We chose this example because it is a well-known type
of system and it contains only a small portion of hardware
development. This limits the representativeness of the exam-
ples but allows a more thorough discussion. We assume we
only have to develop the wristlet hardware. All smartphone
and server hardware is standard.

Following Scrum CPS, we start with creating a product
backlog. We cannot go into details of the backlog but discuss
some examples. In general, the above mentioned vision
should be adequately represented. Example backlog items
will be more general, design-oriented, such as “As a user,
I want to be able to see my movement data in numerical
and diagrammatical form on my smartphone.”; as well as

more concrete software or hardware related items, such as
“As a user, I want to be able to connect my wristlet to my
smartphone.”

Let us assume we have two teams of about 10 people
available to build our CPS. As we have hardware development
involved, we go for a 90-days cadence with 30-days sprints.
Next, we plan the first sprints which will be design sprints
for both teams. As the biggest innovation and value for the
product owner will be in the wristlet itself, one team starts
with a design sprint for it. This fits also to the expectation
that there will be more hardware sprints needed to develop
the wristlet. An early concentration on its design helps to
avoid waiting for the hardware later. The other team chooses
the second highest area of value: the smartphone app. Both
teams select the corresponding backlog item for their sprint
backlogs and start the sprint executions. In the executions,
we follow the regular Scrum practices like Daily Scrums. We
build the hardware design as CAD models and in Rapid HDL.
In parallel, we start with implementing the first stories in
software to be run on the hardware to be developed and the
smartphone. We close the sprint with software-in-the-loop
tests.

In the next sprint planning, we decide to continue with
design sprints for both teams as we have several more design-
related backlog items for the wristlet. We select them into
the sprint backlog for one team and smartphone app items
in the backlog for the other team. We execute the sprint as
above but decide after the tests that the hardware design
is ready to be built as a prototype. Hence, in the following
sprints, we have one hardware sprint for the wristlet and
a design (software) sprint for the smartphone app. In the
hardware sprint, we build up the first hardware prototype
and improve it while running the existing software on it. In
the design sprint, we extend and improve the corresponding
software. We can now run also hardware-in-the-loop tests to
assure the quality of the product increment. Both sprints
also are allowed to give feedback for changing the product
backlog based on the experiences of the sprint.

After these three sprints, we have reached our first syn-
chronisation point where each team has to put its cargo onto
the release train. This means, we have a first version of the
CPS we can show to (potential) customers or marketing and
get feedback. As we still have prototype hardware, we will
not make a full release out of it, however.

In the next sprints, we extend the system sprint by sprint
by the smartphone app and the cloud service. In the hardware
sprints, we iteratively improve the hardware and finally give
it to a full assembly. The last sprints implement the last
missing backlog items and concentrate on system testing the
whole CPS.

5. CONCLUSIONS

In this paper, we have proposed a variation of Scrum called
Scrum CPS for a clear definition of how to use Scrum for
developing cyber-physical systems to gain all the benefits
that agile development has to offer for software-only develop-
ments. There is a series of challenges in CPS in general and
several of them also influence the needed contents of a cor-
responding development process. We have briefly discussed
these challenges and mapped them to our process proposal.
Using a hypothetical example of a fitness tracker CPS, we
discussed the application of the process.

This brief sketch can only be a start. We are in the process
of further detailing Scrum CPS to make it usable in real
CPS projects. Using this description, we plan to work with
other research groups in electrical and mechanical engineering
to apply Scrum CPS in student projects. We will closely
monitor these projects to better understand its benefits and
problems to further improve it. With the improved process
description, we aim to run case studies in industry for further
validate the approach.

6. ACKNOWLEDGEMENTS

I would like to thank Jan-Peter Ostberg who gave valuable
feedback on a first draft of this paper.

7. REFERENCES

[1] J. N. Allen, H. S. Abdel-Aty-Zohdy, and R. L. Ewing.
Agile hardware development with rapid hardware
definition language. In 2009 IEEE International
Conference on Electro/Information Technology
(EIT’09), pages 383-388. IEEE, 2009.

[2] O. Cawley, X. Wang, and I. Richardson. Lean/agile
software development methodologies in regulated
environments — state of the art. In Proc. Lean
Enterprise Software and Systems, volume 65 of LNBIP,
pages 31-36. Springer, 2010.

[3] L. Cordeiro, C. Mar, E. Valentin, F. Cruz, D. Patrick,
R. Barreto, and V. Lucena. An agile development
methodology applied to embedded control software
under stringent hardware constraints. In ACM
SIGSOFT Software Engineering Notes, page 5. ACM,
2008.

[4] P. M. Huang, A. G. Darrin, and A. A. Knuth. Agile
hardware and software system engineering for
innovation. In Proc. 2012 IEEE Aerospace Conference,
pages 1-10. IEEE, 2012.

[5] E. A. Lee. Cyber-physical systems-are computing
foundations adequate. In Proc. NSF Workshop on
Cyber-Physical Systems, 2006.

[6] D. Leffingwell. Agile Software Requirements. Lean
Requirements Practices for Teams. Programs, and the
Enterprise. Addison-Wessley, 2011.

[7] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic.
Cyber-physical systems: the next computing revolution.
In Proc. 47th Design Automation Conference, pages
731-736. ACM, 2010.

[8] K. Rubin. Essential Scrum. A Practical Guide to the
Most Popular Agile Process. Addison-Wessley, 2013.

[9] O. Salo and P. Abrahamsson. Agile methods in
european embedded software development
organisations: a survey on the actual use and
usefulness of extreme programming and scrum. IET
Software, 2(1):58-64, 2008.

[10] M. Shen, W. Yang, G. Rong, and D. Shao. Applying
agile methods to embedded software development: A
systematic review. In Proc. 2nd International
Workshop on Software Engineering for Embedded
Systems (SEES), pages 30-36. IEEE, 2012.

[11] J. Srinivasan and R. Dobrin. ’state of the art’ in using
agile methods for embedded systems development. In
Proc. 33rd Annual IEEE Computer Software and
Applications Conference (COMPSAC’09), pages
522-527. IEEE, 2009.

[12] M. Xie, M. Shen, G. Rong, and D. Shao. Empirical
studies of embedded software development using agile
methods: a systematic review. In Proc. 2nd
International Workshop on FEvidential Assessment of
Software Technologies (EAST 2012), pages 21-26.

ACM, 2012.

	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives
	1.3 Contribution

	2 Related Work
	3 Scrum CPS
	3.1 Design Sprints
	3.2 Hardware Sprints
	3.3 Variations
	3.3.1 Safety-Critical Components
	3.3.2 New Cloud Components
	3.3.3 Hardware Design Language

	4 Example: Fitness Tracking
	5 Conclusions
	6 Acknowledgements
	7 References

