
Search-Based Security Testing of Web Applications

Julian Thomé
Saarland University

Saarbrücken, Germany
s9jnthom@stud.uni-

saarland.de

Alessandra Gorla
Saarland University

Saarbrücken, Germany
gorla@cs.uni-
saarland.de

Andreas Zeller
Saarland University

Saarbrücken, Germany
zeller@cs.uni-
saarland.de

ABSTRACT
SQL injections are still the most exploited web application
vulnerabilities. We present a technique to automatically de-
tect such vulnerabilities through targeted test generation.
Our approach uses search-based testing to systematically
evolve inputs to maximize their potential to expose vulner-
abilities. Starting from an entry URL, our BIOFUZZ proto-
type systematically crawls a web application and generates
inputs whose effects on the SQL interaction are assessed at
the interface between Web server and database. By evolving
those inputs whose resulting SQL interactions show best po-
tential, BIOFUZZ exposes vulnerabilities on real-world Web
applications within minutes. As a black-box approach, BIO-

FUZZ requires neither analysis nor instrumentation of server
code; however, it even outperforms state-of-the-art white-
box vulnerability scanners.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms
Security

Keywords
Security testing, SQL injections, Search-based testing

1. INTRODUCTION
Web applications are easy to access, and easy to deploy.

Unfortunately, they also are easy to attack. SQL injections
(SQLI) form one of the most common class of attacks. An
SQLI attack inserts malicious SQL statements into an entry
field for execution—to extract data, to bypass authentica-
tion, or to execute remote commands.

As an example for a SQLI attack, consider WebChess, a
Web application for online chess playing [29]. When log-
ging into WebChess (Figure 1), the user has to provide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SBST ’14, June 2 - June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2852-4/14/06 ...$15.00.

BioFuzz

1 Introduction

The objective of this thesis is to successfully develop a mechanism to generate input for
web-applications to detect security vulnerabilities. By these days, Cross-site scripting
attacks (XSS) and SQL-Attacks are very common for web application. According to
the report of WhiteHat Security [5, p.6], SQL-Injections were detected in 11% of the
websites. It is thereby on the eighth position in the top ten vulnerability classes. Al-
though XSS attacks are more common with a rate of 55%, I will focus on SQL-Injections
in this thesis, since its effects are more significant. XSS Attacks are targetet against
the computers of single users whereas SQL-Injections are normally allowing an attacker
to get a huge amount of secret information. In their overview paper [1], Jason Bau,
Elie Bursztein, Divij Gupta and John Mitchell are also stating the importance of good
security vulnerability black-box scanners because XSS, SQL-Attacks, and various forms
of Cross-Channel Scripting attacks have consistently counted as three of the top four
reported vulnerability classes.

2 The general approach

Figure 1: Webchess

The screenshot above shows the login page of a PHP web-application called WebChess.
WebChess is a platform that allows people to play chess online against each other. As
one can see, its login page expects a user to type in his username and password. This will

Master-Thesis Proposal Page 2 of 14

Figure 1: WebChess login page. To bypass authen-
tication, enter ’ OR 1=1 # as user name, and an
arbitrary password.

<?php
. . .
$query=”SELECT ∗ FROM playe r s WHERE nick=’ ” .

$ POST [’ username ’] . ” ’ AND password=’ ” .
$ POST [’pwd ’] . ” ’ LIMIT 1” ;

$ l og in check=$db−>f e t ch ($query) ;
i f (! $ l og in check) {

// l o g i n f a i l e d
exit ;

} else {
// s u c c e s s f u l l o g i n

}
?>

Figure 2: WebChess login code, omitting sanitiza-
tion.

his user name and password. The PHP code in Figure 2
would then issue a SQL query to check whether the user is
authenticated—namely by checking whether user name and
password appear in the “players” table:
SELECT * FROM players WHERE nick=’max’ AND pass-
word=’1234’

If a malicious user, however, enters a “user name” in the
form ’ OR 1=1 #, the query becomes:
SELECT * FROM players WHERE nick = ’ ’ OR 1=1 #’ AND
password = ’1234’

In this statement, the SQL expression 1=1 always evalu-
ates to true, and everything behind the hash sign becomes
an SQL comment. This query always returns a non-empty
result and thus allows the user to bypass authentication.

Injecting ’ OR 1=1 # is an instance of a so-called tau-
tology attack, which is just one of many patterns of SQL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SBST’14, June 2 – June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2852-4/14/06...$15.00
http://dx.doi.org/10.1145/2593833.2593835

5

HTTP
proxy

Input
generator

BioFuzz

Crawler

Replay
component

DB logger[username]
[pwd]

S0

S1 S2

Server

SQL Database
SQL Query

URL

URL +
Form Input

Figure 3: How BIOFUZZ works. Using a Web crawler, BIOFUZZ builds a finite state machine model of the
web application, and by means of a HTTP proxy it identifies the parameters exchanged between clients and
servers. The input generator then sends form inputs to the server, and evolves the inputs by checking how
close the resulting SQL queries are to an attack. The result is a set of SQLI attacks exposing vulnerabilities
in the application.

injections. Due to the risk of SQLI attacks, a number of
techniques has been developed to prevent and detect them.
Sanitizing escapes quotes in third-party input, as well as
other fragments with semantics. In a large Web application,
however, one single missed sanitization still exposes full vul-
nerabilities. White-box techniques thus instrument or ana-
lyze server code to track information flow through the code;
however, they require that the code be available for analysis
or instrumentation, which is difficult in systems composed of
several third-party components. Black-box techniques test
Web applications against given attack patterns. They do not
require code access, but are limited in the set of patterns.
Due to these deficiencies, SQLI are still the most exploited
Web vulnerabilities.1 2

In this paper, we present and explore BIOFUZZ, a security
tester for Web applications that uses evolutionary black-box
testing 3 to detect vulnerabilities, specifically SQL injections.
As sketched in Figure 3, BIOFUZZ generates inputs at the
Web application level and intercepts SQL statements at the
interface between server code and database. In contrast to
white-box techniques, BIOFUZZ does not require code access
and thus is applicable in a far wider range of situations. In
contrast to the state of the art in black-box techniques, BIO-

FUZZ is not restricted to a set of given patterns, but instead
systematically evolves inputs to detect vulnerabilities.

To evolve inputs, BIOFUZZ leverages search-based testing,
a family of test generation techniques that use evolutionary
algorithms to systematically evolve a population of inputs
towards a given target: the higher the fitness of an input,
the greater its chance to be further evolved. The typical

1https://www.whitehatsec.com/resource/stats.html
2http://www.veracode.com/blog/2013/07/
the-real-cost-of-a-data-breach-infographic
3BIOFUZZ is a black-box technique in the sense that it does
not need access to the server side code. Still, it requires
access to the server, because it needs to log the interactions
to the database.

target of search-based testing is to maximize coverage; con-
sequently, the closer an input gets to yet uncovered behav-
ior, the higher its fitness. In our case, however, the target
is to find SQL vulnerabilities. As a fitness function, BIO-

FUZZ thus specifically evolves inputs whose characteristics
are close to triggering an attack:

a) Exhibit SQL grammar fragments. This favors a malicious
input, such as the tautology attack ’ OR 1=1 #, over
regular inputs.

b) Pass as many SQL tokens as possible into the query.
This favors complex SQL inputs, such as the piggybacked
query attack ’; DROP TABLE players #, which deletes
the table from the database.

c) Minimize the difference between the provided input val-
ues and the values that appear in the SQL query. This
bypasses common sanitization techniques: For instance,
if the well known attack ’ OR 1=1 # were sanitized, this
rule may prefer the syntactically different but semanti-
cally equivalent ’ OR COS(0) = SIN(PI()/2) #.

d) Alter the visible output in the web application. This fa-
vors attacks that produce information leaks, such as the
union query attack ’ UNION ALL SELECT * FROM play-
ers #, which retrieves a full list of players and passwords.

BIOFUZZ synthesizes all these types of attacks automatically
from scratch, using only the fitness function as described
above; it thus can detect a large number of vulnerabilities in
Web applications even without any prior knowledge on suc-
cessful attack vectors. The combination of black-box testing
and systematic evolution makes BIOFUZZ both applicable
and effective: In our evaluation, BIOFUZZ detected 37 ex-
ploitable vulnerabilities in six mid-sized Web applications,
performing better than ARDILLA, a state-of-the-art white-
box technique and sqlmap, a state-of-the-art black-box tech-
nique.

6

The remainder of the paper is structured as follows: Sec-
tion 2 explains how BIOFUZZ works, and provides details
on all its major components. Section 3 presents the evalu-
ation results, while Section 4 compares BIOFUZZ with the
related work, and Section 5 presents the conclusions and
future works.

2. THE BIOFUZZ APPROACH
Figure 3 shows the main components of BIOFUZZ. BIO-

FUZZ works in two phases. In the first phase, BIOFUZZ uses
a crawler to navigate through the Web application pages,
and keeps track of all the inputs and events that lead from
the entry URL to other web pages. A HTTP proxy is used
to collect all the GET and POST parameters that client and
server exchange. In the WebChess login page, for instance,
these are the POST parameters username and pwd. By
means of a database logger component, BIOFUZZ identifies
which input parameters are likely to be used in SQL query
statements, and as a consequence it considers these input
parameters as the target of possible SQLI attacks.

During the second phase, BIOFUZZ tries to generate SQLI

attacks for each of the target input parameters that were
identified in the first phase. In order to do that, it replays
all the events and provides all the inputs that were needed
to get from the entry URL to the Web page containing the
target input parameters. Finally, using its input genera-
tor component, it generates input values that are likely to
expose SQLI vulnerabilities. Section 2.1 explains the first
phase, and Section 2.2 the second one.

2.1 Identifying Target Input Parameters
The first essential step to identify SQLI vulnerabilities is

to identify which input parameter values are likely to flow
into SQL query statements, since such input parameters are
the ones that might be vulnerable to SQLI attacks. White-
box techniques can precisely identify which input parameters
are vulnerable thanks to taint analysis [13, 8]. Given a set
of sources, i.e., the input parameters, taint analysis identi-
fies which SQL query statements in the server side code are
potentially influenced by such inputs, and marks them as
potentially dangerous. Black-box techniques, such as BIO-

FUZZ, do not have access to the server side code, and as a
consequence it is harder to identify which input parameters
may be vulnerable to SQLI attacks.

A well known black-box test to identify vulnerable param-
eters is to inject a single quote character (’) as an input to
all the text fields of a Web page. If such an input leads to
error messages from the DBMS, then it means that the in-
put field is exposed to SQLI. This simple trick may work for
several applications, but it does not work for the WebChess
login example presented in the introduction. The reason is
that even if the (’) character raises a DBMS error, the server
side code masks this error, thus preventing it to propagate
to any visible element in the web page. This test may fail
also in presence of partially sanitized inputs. A web devel-
oper, in fact, may realize that some input parameters are
exposed to SQLI attacks, and as a consequence may wisely
decide to escape the single quote character (’) when reading
the username and pwd values. Most black-box techniques
would think that an input field is not vulnerable, since it
ignores the (’) character. However, alternative SQLI attacks
could still be generated. A web application might, for in-
stance, use the addslashes() function to sanitize the input.

Whenever a quote character 0x27 appears in the input, this
function escapes it by putting a backslash character 0x5C

before it, such that 0x27 becomes 0x5C27. However, when
the database uses a Chinese charset, some characters are en-
coded in single bytes and some in double bytes. The char-
acter 0xBF5C is considered as one single character with a
length of two bytes. This fact can be exploited by injecting
the username 0xBF27 OR 1 = 1 #, such that the result of
addslashes($username) would be 0xBF5C27 OR 1 = 1 #.
The database will then treat 0xBF5C and the following 0x27

as separate characters, and consequently the input would
be transformed to ’ OR 1=1 #, and would thus successfully
generate the following tautology attack:
SELECT * FROM players WHERE nick=’ ’ OR 1=1 # AND
password=”

To identify target input fields, BIOFUZZ relies on a crawler,
a HTTP proxy, and a database logger. The crawler allows
BIOFUZZ to explore the Web application, and to this end,
we adopted Crawljax, an open source crawler for Web 2.0 ap-
plications [20]. While crawling a Web application, BIOFUZZ

builds a finite state model similar to the one represented in
Figure 3. DOM trees of visited Web pages represent states
(e.g., S0 represents the WebChess login page, S1 represents
the first page after a successful login, and S2 represents the
web page when a user starts a new game), and transitions
represent the actions (e.g. click on links, form submissions)
required to go from one state to another. Transitions are
annotated with GET and POST parameters that the HTTP

proxy observed during the HTTP requests. Thus, for in-
stance, when crawling the WebChess application, the tran-
sition between the login page (S0), and the main page after
a successful login (S1) would be annotated with the post
parameters username and pwd. At the end of the crawl-
ing phase, we identify which transitions have input param-
eters, and thus should be further explored with BIOFUZZ.
Notice that this step can only identify which input param-
eters a web application has, but what BIOFUZZ needs is a
list of input parameters whose values might flow into query
statements. To identify which inputs may have an effect on
the query statements, BIOFUZZ relies on a database logger,
which logs all the executed SQL queries before executing
them. We used an instrumented version of the php_mysql

module to intercept calls to the database together with their
return codes.4

By providing random values as input, and by checking
if such values appear anywhere in the log file produced by
the database logger, BIOFUZZ has a high confidence that
the provided input flows into query statements in the server
side code. Such input parameters then, become targets for
the second phase, i.e. generation of SQLI attacks.

2.2 Generating SQLI Attacks
In the second phase, BIOFUZZ analyzes the finite state

model produced in the first phase, and looks for all the
transitions that contain at least one likely exploitable in-
put parameter. In the WebChess example of Figure 3, the
transition between the login page (S0) and the page after the
login (S1) would be the only one. By means of the replay
component, BIOFUZZ replays all the events and provides all
the inputs to take the application from the entry URL to the

4The implementation of BIOFUZZ is currently bound to
PHP applications using MySQL as DBMS, but the technique
itself does not have these limitations.

7

state before the considered transition. In this example no
replay is required, since the state preceding the transition
(S0) is the entry point.

2.2.1 Instance Generation
BIOFUZZ generates a set of random values (one for each

parameter contained in the transition), and generates a new
HTTP request providing these values as inputs. It then re-
trieves from the database log the queries that were executed
containing these random values. In the WebChess login page
example, for instance, by providing ’0000’ as a random in-
put value for the username parameter, the database logger
would report the following query:

SELECT * FROM players WHERE nick = ’0000’ AND pass-
word = ”

Using a context-free grammar representing SQL queries,
BIOFUZZ parses the SQL statement up to the point where
the random values appear. This point is what we call the
“prefix barrier”:

SELECT * FROM players WHERE nick = ’
BIOFUZZ then generates a set of individuals, which are

represented as parse trees of the SQL query after the prefix
barrier, and randomly appends new tokens by following the
grammar. Notice that this process does not necessarily pro-
duce complete statements, because only one token is added
at every iteration. The reason for this decision is that by
adding a token per time, and by checking the effects caused
by the newly added token, we can be more accurate in guid-
ing the input generation. BIOFUZZ, then, takes whatever
has been generated after the prefix barrier, and provides it
as a new input via the replay component.

By parsing new queries, BIOFUZZ gathers more infor-
mation about the database schema (i.e, column and table
names). BIOFUZZ extends the initial grammar with this
new information, thus allowing to generate context-sensitive
SQLI attacks. The grammar represents the search space of
possible solutions, i.e., SQLI attacks, and by extending the
grammar with the learned database schema, the search space
grows even more. Given that it is time consuming to eval-
uate a generated input, since BIOFUZZ has to replay all
the events, check the HTTP proxy and the database logger,
BIOFUZZ implements a search-based approach to guide the
input generation, and get to a valid solution (i.e. a valid
SQLI attack) faster.

2.2.2 Fitness Function
In a search-based approach, the fitness function measures

the quality of an individual I within a population P , and
is essential to guide the evolution of individuals towards the
desired solution. In our context, the individuals are the pa-
rameter inputs, and the fitness value of the individuals repre-
sents how close these inputs are from generating a successful
SQLI attack. The fitness function that BIOFUZZ implements
considers the following components:

1. Node Count (NC) The node count is the number of
all newly generated terminals of an individual divided
by the sum of generated terminal within one popu-
lation. If the node count of an individual is high, it
means that BIOFUZZ was able to inject a lot of tokens
as inputs. NC is important to guide the evolution to-

wards more complex SQL injections (e.g., piggybacked
queries).

NC (I) =
#GeneratedTerminals(I)

#GeneratedTerminals(P)

2. Checkpoint Count (CC) Since we want to guide
the token generation towards complete SQL statements
that can be executed on the database without errors,
we count the number of “checkpoints” that an individ-
ual has. We call checkpoints those tokens that mark
the end of valid queries (e.g ’;’). We favor individuals
that have a high number of checkpoints because they
represent longer statements, and are complete (i.e.,
they do not lead to errors due to malformed queries):

CC (I) =
#Checkpoints(I)

#Checkpoints(P)

3. Input Proximity (IP) This value measures how close
the string that has been injected as an input S(I)
is from the string that appears in the database slog .
When this value is less than 1, it means that the input
has been sanitized, and as a consequence, alternative
strings should be generated. We use the Levenshtein
distance ldis(s, t) to measure the distance of the two
strings s and t. We favor those individuals that have
a high IP (i.e. low distance):

IP(I) =
1

1 + ldis(S(I), slog)

4. DOM Distance (DD) It is sometimes the case that
a successful SQL attack leads to visible differences in
the Web page. We favor individuals that can cause
bigger differences in the new DOM tree (domnew) com-
pared to the one observed during the crawling phase
(DOM (I)), since they indicate that the input caused
significant changes to the behavior of the Web applica-
tion. To measure the distance, we use once again the
Levenshtein distance:

DD(I) =
ldis(DOM (I), domnew)

len(longest(DOM (I), domnew))

To weight the influence of each component on the fitness
value of an individual, we use four different weights (s1, s2,
s3, and s4) whose sum must be 1. The overall fitness value
F (I) of an individual I is therefore computed as

F (I) = s1 ×NC (I) + s2 ×CC (I) + s3 × IP(I) + s4 ×DD(I)

The si weights can be configured by the user. According
to our experience, the Checkpoint Count and the DOM Dis-
tance are the most important factors, and should therefore
have higher values. Section 3.1 has details on the values
used in our evaluation setting.

2.2.3 Mutation and Crossover
The Genetic Algorithm implemented by BIOFUZZ relies

on mutation and crossover operations to evolve the inputs
across different populations. Mutation means to apply small
changes to an individual, and crossover means to combine
two individuals in an attempt to generate better solutions.
In our context, we defined the following mutation operations:

8

• Case: Changes the case of a string to upper, lower or
mixed case.

• Encoding: Changes the representation of single char-
acters in a string. This can cause, for instance, the
character (’) to be mutated into CHAR(39).

Both mutation operations can be effective to circumvent
some sanitization functions. Crossover operations, instead,
are useful to propagate parts of successful solutions to other
individuals. In this context we implemented crossover by
allowing two individuals to exchange part of their sub-trees.

The process described in this section takes place for every
transition in the Web application model that contains at
least one parameter. In the next section, which presents
the evaluation results, we refer to the process of generating
SQLI attacks for a parameter associated with a transition as
a “BIOFUZZ instance”.

3. EVALUATION
To evaluate BIOFUZZ, we focused on two main research

questions (RQ):

• RQ1: Is BIOFUZZ effective in detecting and exploiting
SQLI vulnerabilities?

With this RQ, we aim to assess whether BIOFUZZ is
useful in exposing SQLI vulnerabilities and in generat-
ing successful SQLI attacks that exploit vulnerabilities
in real applications. To this end, we took six real mid-
sized applications that have known SQLI vulnerabili-
ties, and we checked whether BIOFUZZ could detect
them, and generate valid SQL attacks.

The effectiveness evaluation also aimed to assess whether
the solutions produced by BIOFUZZ were diverse (i.e.,
do not produce the same attack patterns), as an effect
of the search-based nature of BIOFUZZ. Diverse solu-
tions would show that BIOFUZZ is more general and
more powerful than other similar techniques that gen-
erate SQLI attacks on the basis of a set of predefined
patterns.

• RQ2: How does BIOFUZZ compare with other similar
white-box and black-box techniques?

Here, we compare the effectiveness of BIOFUZZ with
other similar techniques; specifically ARDILLA, an ef-
fective white-box technique, and sqlmap, an advanced
black-box tool. To ease the comparison, we evalu-
ated BIOFUZZ on the same subjects that ARDILLA

was evaluated on. These are the first four web appli-
cations listed in Table 1, i.e., WebChess, Schoolmate,
FaqForge and geccBBlite.

The next sections present the evaluation setup and the re-
sults of our evaluation.

3.1 Evaluation Subjects and Setup
Table 1 reports the six Web applications that we con-

sidered in our evaluation. The table reports the name of
the application, the version we considered (“Version”), the
number of lines of code (“LOC”), and the number of states
(“#States”) as well as the number of GET and POST pa-
rameters (“#Pars”) that we observed during the application
crawling.

Table 1: Evaluation Subjects

Version LOC #States #Pars

WebChess 0.9.0 3,376 10 13
Schoolmate 1.5.4 6,923 18 27
FaqForge 1.3.2 512 4 2
geccBBlite 0.2 323 11 5
phpMyAddressbook 8.2.5 47,481 6 9
Elemata RC3.0 3,212 18 6

Our selection of subjects is motivated as follows: The first
four subjects stem from the ARDILLA paper [13], since we
wanted to compare the results of BIOFUZZ with ARDILLA:5

WebChess is an application that allows multiple players to
play online chess games against each other and to keep track
of their results. FaqForge is a simple application to man-
age FAQs and geccBBlite is an online forum. Schoolmate
is meant for course-management and it is targeted towards
schools and teachers.

Since these four web applications are rather old, and some
of them are not maintained anymore, we included two addi-
tional Web applications for which some SQLI vulnerabilities
were recently reported via the Common Vulnerabilities and
Exposures (CVE) Website6: phpMyAddressbook is a Web ap-
plication that allows users to manage contacts, and Elemata
is a simple Content Management System (CMS).

For these six applications, we provided a URL as an entry
point, and we let BIOFUZZ automatically crawl the appli-
cation, identify the vulnerable input fields, and generate an
SQLI attack. In some cases the entry point was the login
page (WebChess, Schoolmate, phpMyAddressbook and El-
emata), and in order to let the crawler work, we manually
provided the login information. During our evaluation we
ran into some limitations of the crawler, reported in Sec-
tion 3.4. We ran our evaluation on a desktop PC with an
Intel Core i5 650 and 4 GB of RAM, and we used the follow-
ing configuration for the evolutionary algorithm:

• Iterations: 20. We gave BIOFUZZ a maximum num-
ber of iterations as a stopping criterion. An iteration
denotes the attempt of improving each individual using
the generation of new tokens/mutation or crossover.
Applications without any input sanitization need few
iterations to generate successful SQLI attacks, but ap-
plications with partial sanitization may require more.
20 as number of iterations is a good compromise be-
tween required time and quality of the SQLI attacks
generated by BIOFUZZ.

• Crossover Cycle: 2. This parameter defines the
crossover frequency. Given a value of 2, BIOFUZZ at-
tempts a crossover operation after every second itera-
tion. A number greater than one gives newly created
individuals the chance to reintegrate and gain a better
fitness value before performing a crossover operation.

• Crossover Offset: 5. The crossover offset defines
the number of iterations after which BIOFUZZ should

5ARDILLA has been evaluated on another web application,
eve, but unfortunately this application seems to be no longer
available, so we could not include it in our evaluation sub-
jects.
6http://cve.mitre.org

9

Table 2: Effectiveness Results
#Vulnerable Parameters #Vulnerabilities Avg. Fitness #Instances #Individuals Run time (s)

WebChess 4/13 13 0.25932 8(3) 304 596
Schoolmate 4/27 6 0.25561 21(5) 534 1,687
FaqForge 1/2 1 0.27520 2(1) 20 32
geccBBlite 3/5 4 0.25988 8(6) 300 656
phpMyAddressbook 4/9 10 0.18531 17(9) 510 2,672
Elemata 1/6 3 0.34008 13(6) 270 191

start to perform crossover. At the beginning, an indi-
vidual I does not have any tokens, and the crossover
operation does not work in absence of tokens. As a
consequence, it is necessary to wait few iterations be-
fore allowing good individuals to propagate subtrees
thanks to crossover.

As mentioned when introducing the fitness function in
Section 2.2.3, we weighted the fitness elements as follows:
Node count (NC): s1 = 0.125, Checkpoint Count (CC):
s2 = 0.375, Input Proximity (IP): s3 = 0.25, and DOM
Distance (DD): s4 = 0.25.

3.2 RQ1: Effectiveness
The first and most important research question is about

the effectiveness of the BIOFUZZ approach. Given that BIO-

FUZZ aims to identify vulnerable input parameters, and
aims to generate SQLI attacks for such vulnerabilities, we
were interested in measuring how many of the known vul-
nerabilities BIOFUZZ could be able to exploit.

3.2.1 Vulnerabilities Found
Table 2 reports the results of this experiment. For each

application, we report the number of vulnerable parame-
ters (“# Vulnerable Parameters”) out of the total number
of parameters. A parameter is considered vulnerable if it is
possible to inject SQL statements that may lead to successful
SQLI attacks.

The next column (“#Vulnerabilities”) reports the num-
ber of vulnerabilities that BIOFUZZ could exploit for each
web application. The number of vulnerabilities represents
the unique pairs of input parameters and query statements
that BIOFUZZ could successfully exploit with SQLI attacks.
Thus, for instance, if a single parameter (e.g. username)
can flow into two different SQL statements (e.g. SELECT *
FROM players WHERE nick=’username’, and UPDATE play-
ers SET pwd=’newpwd ’ WHERE nick=’username’), and BIO-

FUZZ can successfully inject SQL via the username parame-
ter, and successfully generate attacks using both SQL state-
ments, then we consider these as two vulnerabilities.

BIOFUZZ could successfully find and exploit all the vul-
nerabilities that we were aware of except one. By manually
checking the source code of the applications, we later tried to
identify additional exploitable vulnerabilities, but we could
not identify more.

In the evaluation subjects, BIOFUZZ could successfully
identify 37 out of 38 known SQLI vulnerabilities.

3.2.2 Evolutionary Progress
Table 2 also reports some data about the evolutionary al-

gorithm. The column “#Individuals” reports the number
of individuals that were generated during the search, and

the column “#Instances” reports the number of BIOFUZZ

instances that were created. The number of BIOFUZZ in-
stances represents the number of transitions that contain
at least one parameter that is likely to be vulnerable. The
number in brackets is the number of instances that could
generate at least one successful SQLI attack. The number
of individuals is also correlated with the number of param-
eters. The more parameters there are, the more individuals
BIOFUZZ generates in total.

Column “Avg. Fitness” reports the average fitness value
computed over all the population. The lower this number is,
the worse the quality of solutions were in average according
to our fitness function. In the case of Elemata, for instance,
the average fitness is pretty high because the vulnerabilities
were quite easy to exploit from the first few iterations. As a
consequence, the individuals in the first few iterations had
already a good fitness value, and the following generations
could improve on already good ancestors. Another reason
for the higher fitness value in Elemata is that successful
attacks lead to completely different DOM trees in the HTTP

response, and as a consequence the DOM distance value of
the fitness function has a high impact.

Such high fitness values do not occur in other cases. For
instance, phpMyAddressbook shows a warning message from
the database, but the rest of the Web page stays the same,
and as a consequence, the DOM distance is minimal. The
main reason for the low fitness value of phpMyAddressbook ,
though, is that some individuals tried to generate attacks
for a sanitized parameter without success, and thus had fi-
nal low fitness values. The PHP code reads the GET param-
eter, and, by means of the isNumeric() function, it checks
whether the value of the parameter is a number. In the case
it is not, it discards the value, thus preventing SQL injection.
Since BIOFUZZ realized during the first phase that some ran-
dom numeric inputs could flow into some query statements,
it considered this a likely vulnerable parameter, and thus it
kept generating, mutating and crossing over individuals in
an attempt to workaround the sanitization. Unfortunately,
without success. When we later manually analyzed this case,
we could not come up with a valid attack ourself.

Sanitized parameters have negative impact on the fitness
value, and the search in this cases has no guidance.

3.2.3 Efficiency
Table 2 reports also the run time in seconds that BIOFUZZ

needed to analyze the whole application and exploit all the
vulnerabilities. Overall, we can say that BIOFUZZ can effi-
ciently analyze entire Web applications to expose SQLI vul-
nerabilities, as in the worst case (i.e., phpMyAddressbook) it
needed less than 45 minutes to expose 10 vulnerabilities.

BIOFUZZ converges quickly on vulnerabilities.

10

3.2.4 Diversity of Solutions
An effective technique that aims to expose SQLI vulner-

abilities should be able to generate solutions with diverse
SQLI attacks. Diverse solutions show the generality of the
technique in identifying different types of attacks, and show
that a technique is likely to be more effective in reporting
vulnerabilities that can be exploited with non trivial attacks,
in contrast to techniques that use a set of predefined attack
patterns. To evaluate the diversity of the solutions that BIO-

FUZZ produces, we manually analyzed the top three individ-
uals in each population according to their fitness value, and
among these we could find examples of tautologies, union
query attacks, and attacks to retrieve sensitive information.

BIOFUZZ could also generate several attacks involving
piggybacked queries. However, none of these have high fit-
ness values in our evaluation. The reason is that the PHP

code of our evaluation subjects always use the mysql_query()
function, which considers a unique query and simply ignores
any appended query. To inject piggybacked queries, the PHP

code should have used the mysql_multi_query() function,
instead, which can execute multiple queries in sequence.
Since all the appended queries were ignored, the checkpoint
count value of these individuals was low, and were conse-
quently rarely propagated to following generations.

Beside the diversity of solutions, which can be considered
a by-product of the search-based nature of BIOFUZZ, we
manually looked at the generated individuals to estimate the
impact of mutation and crossover. In geccBBlite, we man-
ually included a partial sanitization that allowed to ignore
HTML and SQL special characters (including AND and OR
in uppercase characters). Thanks to mutation operations,
BIOFUZZ could generate the input 383549 or 2 in (NOW()),
which results in a successful SQLI attack.
SELECT id, rispostadel FROM forum WHERE id = 383549 or
2 in (NOW())

In general, mutation has proved to be essential in presence
of partially sanitized parameters. Crossover, instead, proved
to improve individuals in several conditions. One situation
we frequently observed in our evaluation, and clearly shows
the importance of crossover, is when two individuals used
different terminals for column names or values. Crossover al-
lows to generate individuals that have more knowledge of the
database structure, and as a consequence they have higher
chances to successfully generate context-dependent attacks.

Similarly, crossover proves to be useful when one individ-
ual identifies tokens that can be successfully injected, and as
a consequence to share this solution with worse individuals.
Figure 4 illustrates the crossover operation on two individ-

UPDATE schoolinfo SET schoolname =
"School Name", address='1,Street',
phonenumber = '52365895', sitetext=' ',
sitemessage='Message', numsemesters = '
0 ' , numperiods = ' 0 ' , apoint = ' 0.0 ',
bpoint = '185176 ' , fpoint = NULL

UPDATE schoolinfo SET schoolname =
 " 539682 CONCAT(CHAR(34)) LIMIT 4135

UPDATE schoolinfo SET schoolname =
"School Name", address='1,Street',
phonenumber = '52365895', sitetext=' ',
sitemessage='Message', numsemesters = '
0 ' , numperiods = ' 0 ' , apoint = ' 0.0 ',
bpoint = '185176 ' , fpoint =
 " 539682 CONCAT(CHAR(34)) LIMIT 4135

(a) low fitness individual (b) high fitness individual

(c) crossover result

Figure 4: Crossover operation on SQL statements in
Schoolmate

Table 3: Vulnerabilities found by different tools

BIOFUZZ ARDILLA sqlmap
#Par #Vul #Par #Vul #Par

WebChess 4 13 4 12 4
Schoolmate 4 6 4 6 2
FaqForge 1 1 1 1 1
geccBBlite 3 4 3 2 3
phpMyAddressbook 4 10 – 1
Elemata 1 3 – 1

uals a and b in Schoolmate. The individual b was able to
successfully inject a database function. By crossing over el-
ements with the worse individual a, BIOFUZZ would allow
the generation of a new individual c, combining features of
both parents.

Mutation can be helpful in circumventing partially
sanitized inputs, and crossover helps sharing partially

successful attacks with other individuals.

3.3 RQ2: Comparison against Other Tools
We compared BIOFUZZ with two other state of the art

tools that also detect SQLI vulnerabilities: ARDILLA, a white-
box approach, and sqlmap, a black-box approach.

3.3.1 White-box Approach—ARDILLA
ARDILLA is a white-box approach that relies on taint

analysis to identify likely vulnerable parameters, and gen-
erates SQLI attacks based on a set of predefined attack pat-
terns. Since ARDILLA is not publicly available, to compare
it with BIOFUZZ we had to consider the same case studies,
for which the authors publicly released the results. This,
however, leads us to have incomplete results, since we could
not evaluate ARDILLA on the two new case studies.

Table 3 shows the results of our comparison. As in Table 2,
we list the number of vulnerable POST and GET parameters
(“#Par”) and different vulnerabilities (“#Vul”) detected.

BIOFUZZ could identify all the vulnerabilities that ARDILLA

could identify, and in the case of geccBBlite and WebChess it
reported additional ones. These are additional cases of data
manipulation (INSERT and UPDATE) vulnerabilities that
were not reported by ARDILLA. Although it is not clearly
explained in the paper, it might be that ARDILLA does not
report injections that alter the database by adding or chang-
ing some values unless they can be exploited later on in the
code. In other words, it might be that one can inject a quote
character into an insert statement that leads to a malformed
query, but as long as it is not possible to change sensitive
data, this is not considered as a SQLI by ARDILLA. How-
ever, in our opinion it is reasonable to consider these cases
as SQLI vulnerabilities, mainly because they show that it is
likely that the application is exposed to second-order SQLI

attacks. Moreover, even if these were not exploitable vul-
nerabilities, they are for sure a deviation from the intended
behavior of the Web application, and should therefore be
reported.

BIOFUZZ detected all the vulnerabilities reported by
ARDILLA, a white-box technique, and could report

additional ones.

11

3.3.2 Black-box Approach—SQLMAP
sqlmap7 is the most advanced black-box tool we are aware

of. Despite using a set of predefined attack patterns, and a
set of heuristics to identify vulnerable parameters, it is quite
effective.

We ran sqlmap on all the case studies that we analyzed.
Similarly to BIOFUZZ, this tool has crawling capabilities,
and can automatically detect parameters to exploit with
SQLI attacks. sqlmap, though, has major issues with the
crawling component: For almost all the vulnerabilities we
had to manually provide the URL. Moreover, while sqlmap
was usually quite good at identifying GET parameters au-
tomatically, we had to manually specify POST parameters
most of the times.

Apart from the crawling problems, sqlmap performed quite
well. As Table 3 shows8, sqlmap could identify and exploit
all the vulnerable parameters that BIOFUZZ could exploit
in all the evaluation subjects, except for two of them. In
Schoolmate it misses two vulnerable input parameters, i.e.,
username and schoolname. sqlmap missed a vulnerable pa-
rameter in phpMyAddressbook , as well. Overall, BIOFUZZ

outperformed sqlmap, as it found more vulnerable parame-
ters; this result is the most remarkable since, unlike sqlmap,
BIOFUZZ does not come with a fixed set of known attack
patterns. However, sqlmap also found one vulnerability that
BIOFUZZ did not detect: In phpMyAddressbook , sqlmap gen-
erated a successful attack by exploiting the HTTP-Header
field User-Agent, a feature not present in BIOFUZZ.

BIOFUZZ also outperformed sqlmap, a black-box testing
technique using predefined patterns.

3.4 Limitations
During our evaluation, we ran into some known limitations

of Crawljax that could consequently limit the effectiveness
of BIOFUZZ. Some states of a Web application can only be
reached if the crawler provides specific inputs, and if the
database contains some data. This is the case, for instance,
of all the web applications that have a login page as the only
entry point. Without valid inputs, the crawler would not
be able to explore pages beyond the login page. Moreover,
some applications such as Schoolmate provide different roles
(e.g. teacher, student, admin), and in order to explore some
states it is required that these roles interact. All these are
known problems of crawlers, and while some of these prob-
lems could have been avoided by using alternative crawlers
that support multiple roles [24], others can be circumvented
with little manual efforts.

BIOFUZZ was able to find all vulnerabilities for FaqForge,
Elemata and geccBBlite without any manual work. For
WebChess, Schoolmate and Elemata, we had to manually
create some elements (i.e. new games, new courses, and
new posts), such that Crawljax could detect some clickable
elements that would have not been visible otherwise. For
phpMyAddressbook, we had to create the test cases manu-
ally, since Crawljax was not able to detect the main menu
and therefore could not detect the main states of the appli-
cation. For this evaluation subject we defined 14 test-cases,
one for each of the main functionality phpMyAddressbook

7http://sqlmap.org
8sqlmap only detects vulnerable parameters, not vulnerabil-
ities as such.

provides. Since Crawljax does not support different roles, we
had to define 4 additional test-cases (login as student, pick
a course as student, update course information as teacher,
update school information as admin) for Schoolmate as well.
For WebChess, we had to define 1 additional test-case (con-
tinue a chess game for two players on the same PC), since
Crawljax could not detect it automatically.

In essence, the ability of BIOFUZZ to automatically find
all the vulnerabilities in a Web application highly depends
on the ability of the crawler to explore the Web application.
In absence of a good crawler, BIOFUZZ requires a good set
of test cases, which can be easily created with Selenium9 or
similar frameworks, to exercise as many interactions between
client and server as possible.

The effectiveness of BIOFUZZ depends on the quality of
the model produced by the crawler or by a test suite.

3.5 Threats to Validity
As any empirical study, our evaluation is subject to threats

to validity. The most important is threats to external valid-
ity: As every tester knows, results from a finite sample do
not necessarily generalize towards the entire range of pos-
sibilities. Hence, the results we obtained from our six Web
applications do not necessarily generalize towards all Web
applications. Specifically, if a SQLI attack leveraged very
specific knowledge about the application to be attacked, a
white-box approach such as ARDILLA has better chances to
detect the attack; and if the attack is already known, an ap-
proach using predefined attack patterns such as sqlmap also
has an advantage. Furthermore, if SQLI testing tools are
widely deployed, the remaining vulnerabilities will be hard
to find by construction.

4. RELATED WORK
Most related to our work is the large body of techniques

that focus on detecting or preventing SQL injections, and
the search-based security testing techniques.

4.1 Detection or Prevention of SQL injections.
Several techniques have been proposed to either prevent or

detect SQLI vulnerabilities in Web applications. Techniques
to prevent these kind of vulnerabilities typically resort to
sanitize user inputs (i.e., escape special characters such as
quotes) before passing them to query statements. Since it is
easy to miss unsanitized inputs, some techniques automati-
cally support developers in this task. However, they either
statically analyze and change the server side code before de-
ployment [27, 19, 18, 3], or they monitor and sanitize queries
at runtime on the deployed system [8, 7, 10, 21, 22, 28]. The
first ones require access to the server side code, which is not
always available, and are bound to specific programming
languages. The second ones, instead, have the disadvantage
of incurring overhead, and since they filter queries on the
basis of either a set of predefined rules, or on models that
were built on observed valid queries, or thanks to machine
learning techniques, they may also incur into false positives.

Techniques that detect SQLI vulnerabilities, instead, can
be broadly divided into white-box and black-box techniques.
White-box techniques usually resort to taint-analyses to iden-
tify which user inputs can flow into query statements [13, 12,

9http://docs.seleniumhq.org

12

6, 1, 25, 16, 17]. The main limitations of these techniques
are that they require access to the server side code, and
are also bound to specific programming languages. Black-
box techniques such as BIOFUZZ, instead, are less invasive
since they do not require access to the server side code, and
also work independently from programming languages and
DBMSs [11, 14]. However, these techniques can usually de-
tect only the most simple attacks, since they test Web appli-
cations using typical attack patterns. Moreover, since they
usually rely on simple heuristics to understand whether an
input field is vulnerable to SQLI attacks, they often do not
detect vulnerabilities when the code uses basic sanitization
techniques. Finally, even when they can successfully gener-
ate SQLI attacks to expose vulnerabilities, they sometimes
may not realize that the attack has been successful, since
they rely on other simple heuristics. Bau et al. [2] analyzed
several black-box scanners for web applications. They con-
ducted their study based on a testset containing XSS as well
as SQL type I and SQL type II vulnerabilities. The average
scanner vulnerability detection rate for SQL type I attacks
was 21.4%, whereas none of the scanners was able to detect
SQL II attacks. This shows that other black-box techniques
are significantly less effective than BIOFUZZ.

4.2 Search-based Security Testing
The only other technique we are aware of that makes use of

genetic algorithms in the context of SQL injections is by Liu
et al. [15]. Their approach is quite different from BIOFUZZ,
though, since they aim to prevent SQL injections, and they
adopt search-based techniques only to validate user inputs.

Other techniques rely on genetic programming to address
different types of vulnerabilities. Rawat et al. and use search-
based techniques to find buffer overflows in C programs [23,
5]. They combine static analysis and mutation-based evolu-
tionary strategies. The core idea is to use taint analysis to
determine the vulnerable endpoints (e.g. unsafe functions
such as sprintf()), and then generate inputs that follow
the identified path, and observe if the inputs have any nega-
tive impact on the program behavior. Similarly, Del Grosso
et al. combine static and synamic analysis with evosution-
ary algorithms to detect buffer overflows. Sparks et al. [26]
proposed a vulnerability detection technique that uses a ge-
netic algorithm based on a Dynamic Markov Model fitness
heuristic. This technique, although more general than the
previous one, also mainly targets buffer overflows.

5. CONCLUSION AND FUTURE WORK
We have presented BIOFUZZ, a search-based black-box

security tester for Web applications. To the best of our
knowledge, this is the first time evolutionary testing has
been used to detect SQL injections. Using black-box test-
ing, BIOFUZZ is easily applicable, as it requires no analysis
or instrumentation of server code. By systematically evolv-
ing form inputs based on SQL query feedback, BIOFUZZ is
highly effective: In our evaluation, it detected more vul-
nerabilities than ARDILLA, the state of the art white-box
analysis tool.

The significance of these results is that evolutionary algo-
rithms clearly belong into the portfolio of security research
techniques: Practitioners in security analysis now have an-
other resort in case symbolic or dynamic analysis techniques
are not applicable, available, or yield insufficient results.
Furthermore, the current state of security is not a question

of which single technique to choose, but rather of maximiz-
ing the numbers of techniques to apply and intertwine. This
spirit of integration is also what will determine our future
work:

• Better crawlers. BIOFUZZ inherits all limitations of
the underlying Web crawler. We are currently inves-
tigating alternative crawlers such as Procrawl, which
supports multiple user roles [24], or Webmate, which
has extensive support for exploring Web 2.0 applica-
tions [4].

• Symbolic analysis. If symbolic analysis of server
code or some components is available, we can evolve
inputs to specifically cover the resulting constraints.
The result would be a precise concrete exploit rather
than a set of abstract warnings, which would be of
great use to developers.

• Dynamic analysis. Standard approaches to search-
based testing aim for increasing coverage by measuring
how close the input gets to flip a branch condition.
We can apply similar techniques to specifically search
for inputs that flip conditions in sanitizers and input
checks—and thus explore boundaries, which are known
to be specifically error-prone.

• Known attacks. At this point, all our inputs are
produced from a SQL grammar, starting with seeded
random inputs. As an alternative, we could also start
with known inputs for vulnerabilities, and mutating
these instead. Such a strategy has shown particularly
successful for testing JavaScript interpreters [9].

More information in BIOFUZZ is available at

http://www.st.cs.uni-saarland.de/testing/

Acknowledgments. This work was funded by an Eu-
ropean Research Council (ERC) Advanced Grant “SPEC-

MATE – Specification Mining and Testing”.

6. REFERENCES
[1] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,

E. Kirda, C. Kruegel, and G. Vigna. Saner:
Composing static and dynamic analysis to validate
sanitization in web applications. In Proceedings of the
2008 IEEE Symposium on Security and Privacy (SP),
pages 387–401, Washington, DC, USA, 2008. IEEE
Computer Society.

[2] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State
of the art: Automated black-box web application
vulnerability testing. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy (SP), pages
332–345, Washington, DC, USA, 2010. IEEE
Computer Society.

[3] W. R. Cook and S. Rai. Safe query objects: statically
typed objects as remotely executable queries. In
ACM/IEEE International Conference on Software
Engineering (ICSE), pages 97–106, New York, NY,
USA, 2005. ACM.

[4] V. Dallmeier, M. Burger, T. Orth, and A. Zeller.
Webmate: Generating test cases for web 2.0. In
D. Winkler, S. Biffl, and J. Bergsmann, editors,
SWQD, volume 133 of Lecture Notes in Business
Information Processing, pages 55–69. Springer, 2013.

13

[5] C. Del Grosso, G. Antoniol, E. Merlo, and P. Galinier.
Detecting buffer overflow via automatic test input
data generation. Journal Computers and Operations
Research, 35(10):3125–3143, Oct. 2008.

[6] W. G. J. Halfond, S. R. Choudhary, and A. Orso.
Penetration testing with improved input vector
identification. In IEEE International Conference on
Software Testing, Verification and Validation (ICST),
pages 346–355. IEEE Computer Society, 2009.

[7] W. G. J. Halfond and A. Orso. Amnesia: analysis and
monitoring for neutralizing SQL-injection attacks. In
IEEE/ACM Int. Conference on Automated Software
Engineering (ASE), pages 174–183. ACM, 2005.

[8] W. G. J. Halfond, A. Orso, and P. Manolios. Using
positive tainting and syntax-aware evaluation to
counter SQL injection attacks. In ACM Symposium on
the Foundations of Software Engineering (FSE), pages
175–185, New York, NY, USA, 2006. ACM.

[9] C. Holler, K. Herzig, and A. Zeller. Fuzzing with code
fragments. In Proceedings of the 21st USENIX
conference on Security symposium, Security’12, pages
38–38, Berkeley, CA, USA, 2012. USENIX
Association.

[10] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai.
Web application security assessment by fault injection
and behavior monitoring. In International World
Wide Web Conference (WWW), pages 148–159, New
York, NY, USA, 2003. ACM.

[11] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic.
Secubat: a web vulnerability scanner. In International
World Wide Web Conference (WWW), pages
247–256, New York, NY, USA, 2006. ACM.

[12] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and
M. D. Ernst. HAMPI: a solver for string constraints.
In ACM International Symposium on Software Testing
and Analysis (ISSTA), pages 105–116, New York, NY,
USA, 2009. ACM.

[13] A. Kiezun, P. J. Guo, K. Jayaraman, and M. D. Ernst.
Automatic creation of SQL injection and cross-site
scripting attacks. In ACM/IEEE International
Conference on Software Engineering (ICSE), pages
199–209. IEEE, 2009.

[14] Y. Kosuga, K. Kono, M. Hanaoka, M. Hishiyama, and
Y. Takahama. Sania: Syntactic and semantic analysis
for automated testing against SQL injection.
Computer Security Applications Conference, Annual,
0:107–117, 2007.

[15] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou.
Sqlprob: a proxy-based architecture towards
preventing SQL injection attacks. In Proceedings of the
2009 ACM symposium on Applied Computing (SAC),
pages 2054–2061, New York, NY, USA, 2009. ACM.

[16] V. B. Livshits and M. S. Lam. Finding security
vulnerabilities in java applications with static analysis.
In Proceedings of the 14th conference on USENIX
Security Symposium, pages 18–18, Berkeley, CA, USA,
2005. USENIX Association.

[17] M. Martin and M. S. Lam. Automatic generation of
XSS and SQL injection attacks with goal-directed
model checking. In Proceedings of the 17th conference
on Security symposium (SS), pages 31–43, Berkeley,
CA, USA, 2008. USENIX Association.

[18] R. A. McClure and I. H. Krüger. SQL DOM: compile
time checking of dynamic SQL statements. In
ACM/IEEE International Conference on Software
Engineering (ICSE), pages 88–96, New York, NY,
USA, 2005. ACM.

[19] E. Merlo, D. Letarte, and G. Antoniol. Automated
protection of php applications against SQL-injection
attacks. In Proceedings of the 11th European
Conference on Software Maintenance and
Reengineering (CSRM), pages 191–202, Washington,
DC, USA, 2007. IEEE Computer Society.

[20] A. Mesbah, A. van Deursen, and S. Lenselink.
Crawling Ajax-based web applications through
dynamic analysis of user interface state changes. ACM
Transactions on the Web (TWEB), 6(1):3:1–3:30,
2012.

[21] A. Nguyen-tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. In In 20th IFIP
International Information Security Conference, pages
372–382, 2005.

[22] T. Pietraszek and C. V. Berghe. Defending against
injection attacks through context-sensitive string
evaluation. In Proceedings of the international
conference on Recent Advances in Intrusion Detection
(RAID), pages 124–145, Berlin, Heidelberg, 2005.
Springer-Verlag.

[23] S. Rawat and L. Mounier. Offset-aware mutation
based fuzzing for buffer overflow vulnerabilities: Few
preliminary results. In Proceedings of the 2011 IEEE
Fourth International Conference on Software Testing,
Verification and Validation Workshops, ICSTW ’11,
pages 531–533, Washington, DC, USA, 2011. IEEE
Computer Society.

[24] M. Schur, A. Roth, and A. Zeller. Mining behavior
models from enterprise web applications. In European
Software Engineering Conference held jointly with
ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE),
pages 422–432. ACM, 2013.

[25] Y. Shin, L. Williams, and T. Xie. Sqlunitgen: SQL
injection testing using static and dynamic analysis. In
The 17th IEEE International Symposium on Software
Reliability Engineering (ISSRE 2006), 2006.

[26] S. Sparks, S. Embleton, R. Cunningham, and C. Zou.
Automated Vulnerability Analysis: Leveraging Control
Flow for Evolutionary Input Crafting. In Computer
Security Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, pages 477–486, 2007.

[27] S. Thomas, L. Williams, and T. Xie. On automated
prepared statement generation to remove SQL
injection vulnerabilities. Journal of Information and
Software Technology, 51(3):589–598, Mar. 2009.

[28] F. Valeur, D. Mutz, and G. Vigna. A learning-based
approach to the detection of SQL attacks. In
Proceedings of the Second international conference on
Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 123–140, Berlin,
Heidelberg, 2005. Springer-Verlag.

[29] Webchess web application, visited in October 2013.
http://sourceforge.net/projects/webchess.

14

