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ABSTRACT

In our experience at NASA, system engineers generally fol-
low the Twin Peaks approach when developing safety-critical
systems. However, iterations between the peaks require con-
siderable manual, and in some cases duplicate, effort. A
significant part of the manual effort stems from the fact
that requirements are written in English natural language
rather than a formal notation. In this work, we propose an
approach that enables system engineers to leverage formal
requirements and automated test generation to streamline
iterations, effectively “bridging the peaks”. The key to the
approach is a formal language notation that a) system en-
gineers are comfortable with, b) is supported by a family of
automated V&V tools, and c) is semantically rich enough to
describe the requirements of interest. We believe the combi-
nation of formalizing requirements and providing tool sup-
port to automate the iterations will lead to a more efficient
Twin Peaks implementation at NASA.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifica-
tions—languages,tools

General Terms

Algorithms, Languages, Verification
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Requirements, Model-Based Development, Formalization

1. INTRODUCTION

The essence of the Twin Peaks model is concurrent de-
velopment of software requirements and architecture design
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Figure 1: Iterative System Development

in an iterative manner [13,17], interleaving the processes
to achieve architectural stability in the face of inevitable
requirements changes. The original Twin Peaks model pre-
scribes the “what” but provides little guidance on “how” to
achieve this. Many solutions have been designed with soft-
ware engineers in mind, rather than system engineers.

At NASA, the system development process for safety- and
mission-critical systems often proceeds iteratively following
the Twin Peaks model. System engineers start by speci-
fying requirements in English natural language, and then
use the requirements to derive the constraints on the sys-
tem. They design the architecture in parallel by building
the models (e.g., in Simulink), and auto-generating portions
of the code. Each step of the process includes a variety of
verification and validation (V&V) activities at different lev-
els of abstraction. The bridges between the twin peaks are
the constraints derived from the natural language require-
ments and the feedback from the V&V activities as shown
in Fig. 1. Currently, each iteration involves a considerable
amount of manual and duplicated effort in the testing and
verification of the models and the code. For example, tests
are written manually to test the model, and again to test
the code auto-generated from the model with little re-use.
The main reasons for the manual effort stems from the fact
that (i) requirements are written in natural language, rather
than in a formal notation, and (ii) lack of appropriate tool
support for automated testing and verification.

Several papers have proposed formal requirements as a



means to bridge the gap between the twin peaks [6,12].
In the academic literature, several formal notations with
varying degrees of expressiveness have been developed to
facilitate the formalization of requirements, e.g., LTL and
CTL [4], Z [16], and VDM [8]. They are often supported
by techniques that can leverage formalized requirements as
properties and test oracles, e.g., unit-level testing, symbolic
execution [5,10], and model checking [4]. These notations
and tools to formalize requirements and the V&V techniques
that use them were developed for formal methods experts
and, to a lesser extent, software engineers. System engineers,
however, face a steep learning curve with these formalisms
and tools, and struggle to adopt them in practice.

In this paper, we propose a Twin Peaks model for de-
veloping safety and mission-critical systems that is based on
formalized system requirements specified in Simulink—a no-
tation that is semantically rich and currently used by NASA
system engineers. Our approach proposes automated sup-
port for translating existing natural language requirements
into Simulink models, effectively creating a bridge for sys-
tem engineers from the requirements peak to the architec-
ture peak through the properties and test oracles generated
from the requirements as shown in Fig. 1 by the left-to-right
arrows. The generated properties and oracles are then used
as input to V&V tools such as Reactis' and KLEE [3] to au-
tomatically generate tests. The results from the tests, e.g.,
the set of failing test cases, provide a bridge from the archi-
tecture peak back to the requirement peak as shown by the
right-to-left arrows in Fig. 1, and are used by the engineers
to refine the requirements.

2. BACKGROUND

Model-Based Development (MBD) refers to the use of
domain-specific modeling notations that can be analyzed for
desired behavior before a digital or control system is built.
The use of such modeling languages allows a system engineer
to create a model of the desired system early in the lifecycle
that can be executed on the desktop, analyzed for desired
behaviors, and then used to automatically generate code and
test cases. Also known as correct-by-construction develop-
ment, the emphasis in MBD is to focus the engineering ef-
fort on activities scheduled early in the development lifecycle
such as modeling, simulation, and analysis. The goal is to
automate the activities later in the development life-cycle
such as coding and testing. This can reduce development
costs by finding defects early in the lifecycle, avoid costly
fixes when errors are discovered during integration testing,
and automate coding and creation of test cases. In this way,
model-based development significantly reduces costs while
also improving quality. There are several commercial MBD
tools, including SCADE [7], IBM Rhapsody [14] and iLogix
StateMATE [15].

In this paper, we focus on Simulink [1] and Stateflow [2]
from Mathworks, Inc., as these are the MBD tools most of-
ten used by NASA system engineers at our site. Simulink is
a data flow graphical language as well as a tool for model-
ing and simulating dynamic systems (both the language and
the tool are generally referred to as Simulink). Stateflow is
a state-based notation similar to David Harel’s Statecharts
notation [9] (again, Stateflow also refers to the tool). Both
Simulink and Stateflow are tightly integrated in the MAT-
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LAB environment and can refer to other languages available
in the environment. In Section 5, we present a simple mi-
crowave example with Figures 3 and 4 making use of State-
flow and Simulink notations respectively.

3. MOTIVATION

Successful missions such as LADEE, XSS-10, and XSS-11,
among others, espouse the following principles: (i) design
software in a manner that lends itself to be testable, (ii) use
a model-based development environment that can facilitate
rapid prototyping of algorithms based on the requirements,
(iii) autocode the models to reduce transcription errors, and
(iv) use extensive automation in the V&V processes®. We
believe these principles are consistent with the philosophy
behind the Twin Peaks model.

Several missions at NASA, including LADEE, follow a
model-based development process where the flight software
(FSW), the vehicle, and the environment are modeled in
Simulink. Simulink provides an integrated development en-
vironment with various custom libraries and requisite sup-
port for modeling dynamic control systems. It allows devel-
opers to simulate the model in order to observe its behav-
ior. The code (software) is auto-generated from the Simulink
models and then integrated with legacy code (to facilitate re-
use) and other hand-written code. There are three different
types of tests used to validate the models and code: (i) work-
station simulation, which consists of testing the Simulink
models and occurs early in the development process to fa-
cilitate algorithm development and analysis of the require-
ments, (ii) processor-in-the-loop simulation, which consists
of testing the auto-coded modules on processors that mimic
flight-like processors, and (iii) hardware-in-the-Loop Simu-
lation, which consists of testing the FSW on the actual flight
avionics.

In the LADEE mission the design, requirements, func-
tional tests, and Simulink models were prototyped in par-
allel in the workstation simulation environment. A unit
test suite was manually generated to verify low-level re-
quirements, and integration test suites were used to ver-
ify system/sub-system compliance with the associated re-
quirements. The LADEE engineers manually specified the
test oracles for the unit and system level tests by comput-
ing the expected outcomes for the specified inputs. The
requirements for the guidance, navigation & control module
in LADEE were formalized as assertions and Matlab expres-
sions manually. While the LADEE engineers put in a con-
siderable effort into automating the V&V processes in terms
of executing tests and collecting data, they would like to fur-
ther reduce the manual effort by automatically generating
tests. Note that this is one instance of how V&V activities
are performed missions at NASA; missions may often have
varied V&V processes. This work is a step towards that
goal. In this paper, we describe a process that embodies
some of the practices used by the LADEE engineers in or-
der to define a generic process, based on the Twin Peaks
model, that can be applied across various NASA missions
and other projects that develop safety-critical systems.

2Lunar Atmosphere and Dust Environment Explorer
(LADEE) is a NASA mission orbiting the Moon. Its main
objective is to characterize the atmosphere and lunar dust
environment. Whereas, XSS-10 and XSS-11 are micro-
spacecraft developed by the U.S. Air Force Research Labo-
ratory.
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Figure 2: Overview of our approach

4. APPROACH

In Fig. 2 we present an overview of our Twin Peaks ap-
proach that leverages formalized requirements to facilitate
development of safety-critical software. Fig. 2 describes the
key artifacts and their relationships, and illustrates how for-
malized requirements can assist in bridging the gap between
requirements and architecture. The three main artifacts in
model-based development at NASA are: (a) natural lan-
guage requirements, (b) models, and (¢) code. At the core
of our approach are the formalized requirements that are
used to generate testing artifacts, e.g, monitors for testing
models and oracles for testing code, as shown in Fig. 2. The
results of testing the model and code provide feedback that
is used by the system engineers to refine the requirements,
and the process repeats. In the remainder of this section we
describe the key components of our approach and the tools
we propose to use to automate the various processes.

4.1 Formalizing Requirements

We propose that requirements for safety-critical systems
be formalized using a modeling language such as Simulink.
Since system engineers are often familiar with model-based
development environments, using a language like Simulink
to formalize requirements has the advantage of reducing, or
even eliminating, the need to learn a special purpose prop-
erty specification language, along with the requisite costs in
time and training to become conversant in it.

To gauge the expressiveness of Simulink as a requirements
formalization notation, we performed an exploratory study
at NASA Ames, in which we analyzed requirements from the
LADEE mission. The goal of our study was to estimate the
percentage of the natural language requirements that could
be formalized using Simulink. The results of our study in-
dicate that approximately 80% of the LADEE requirements
can be formalized using Simulink. The other 20% of the
requirements were either (a) missing some domain informa-
tion in the description of the requirement, or (b) were not
formalizable. Requirements that were not formalizable were
actually high-level goals written as requirements, e.g., the
spacecraft should fly. From this informal study we concluded
that Simulink is sufficiently expressive to encode the kinds
of requirements used in the LADEE project.

Considerable effort is required to transform natural lan-
guage requirements into a formal representation, even with
a formalism that is intuitive for system engineers. The sys-
tem engineers at NASA are often under pressure to meet
deadlines that are driven by launch windows. Adding a
new task to the development process, such as formalizing

the requirements, creates an additional task for the already
time-constrained system engineers. If, however, we can pro-
vide additional tool support that automates part of the te-
dious formalization process, we believe more system engi-
neers would be willing to invest their time in developing for-
mal requirements. Especially since the formalized require-
ments have the potential to conserve resources by reducing
the manual effort necessary to perform the V&V processes.

Recent work in natural language processing of require-
ments (e.g., TRAM [11]) shows promise as a technique to
support automated requirements formalization from natural
language requirements. In our discussions with several en-
gineers working in the domain of safety-critical systems, we
were able to infer that a large number of natural language
requirements for a particular domain or application follow
a small number of patterns specific to the corresponding
domain or application. We see this as an opportunity to
be leveraged by designing templates that can be used by
tools such as TRAM to assist in automatically formalizing
requirements.

4.2 V&V with Formalized Requirements

Once requirements are formalized, they can be used to
reduce the manual effort necessary in the current V&V pro-
cesses. Currently, system engineers manually write each test
as two different parts: (a) the inputs to the system, and (b)
the expected outcome of executing the test on the specified
inputs. The expected outcome of the test is what enables
testers to determine whether the system has any errors or
not. This is a manual and tedious process which takes a
considerable amount of time and resources.

Automated test case generation techniques, e.g., random
test generation or test case generation using symbolic execu-
tion, only provide the first part of the test cases: the inputs
to the system. The user is generally required to reason about
the expected outcome of the tests. This is an especially chal-
lenging task when the automated test case generation tool
generates hundreds or thousands of test cases—which often
occurs in practice. Formalized requirements can be used in
conjunction with the automated test case generation tech-
niques to overcome this challenge.

We have experimented with two different test case gener-
ation technologies combined with formalized requirements.
The first one is Reactis, a tool for generating test cases on
Simulink models using a directed random search. The for-
malized requirements are used as runtime monitors in Re-
actis, which attempts to find tests for the various “paths”
through the requirements. The runtime monitors report a
failure if an observed behavior violates the condition in the
requirements. Another tool, KLEE [3], uses symbolic ex-
ecution to generate test cases for C code. The formalized
requirements are specified in Simulink, from which the test
oracles are generated by auto-generating C code from the
Simulink models.

Formalized requirements provide system engineers a straight-

forward way to measure coverage of requirements. Many
safety-critical domains, such as aerospace applications, have
certification demands, e.g., that each requirement is covered
by at least one test. Automated test cases and formalized
requirements can be used to determine which requirements
are covered by the generated tests. The information about
failing requirements can be used by developers to refine the
model or the requirement.
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Figure 3: Simple microwave mode controller

S. EXAMPLE APPLICATION

In this section we present a microwave oven controller as
a proof-of-concept for our proposed approach. Note that
in the example we manually create the formalized require-
ments; developing techniques to automate formalized re-
quirements generation is ongoing work.

The controller consists of two parts: a mode controller,
which controls the cooking element of the microwave, and a
display panel controller, which manages the display. We de-
scribe our approach on the mode controller, shown in Fig. 3,
using the Stateflow notation. Stateflow consists of state ma-
chines that can be organized hierachically and in parallel.
The example in Fig. 3 demonstrates hierarchical compo-
sition: the COOKING and SUSPENDED states are con-
tained within the RUNNING state. Transitions between
states have Boolean guards that describe the conditions un-
der which a transition can occur (indicated by expressions
inside of braces: []) as well as actions that describe changes
to variables that occur when the transition occurs. Tran-
sitions have priorities: if multiple transitions could cause a
state transition from the currently occupied state, the en-
abled transition with the lowest priority number (e.g., the
1’s and 2’s on Fig. 3) is chosen.

The controller in Fig. 3 starts in the SETUP mode, and
transitions to the RUNNING mode when the start but-
ton is pressed (if the seconds_to_cook parameter is > 0).
In the RUNNING mode, the microwave can either be in
COOKING or in SUSPENDED mode. If the microwave
door is opened when in RUNNING mode, or the clear but-
ton is pressed, then the microwave mode switches to SUS-
PENDED, where the user can either press the start button
to go back to COOKING, or press the clear button again to
go back to SETUP.

The microwave has a number of safety and functional
requirements expressed in English. One of the safety re-
quirements is: When the microwave is COOKING, the door

Safety S1. When the microwave is COOKING, the door must be closed.
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Figure 4: A safety requirement formalized in Simulink.

must be closed. This requirement can be formalized as a
Simulink diagram, as shown Fig. 4. The output is a sin-
gle Boolean value that indicates whether the requirement
is satisfied. Another functional requirement is: While in
SUSPENDED mode, the microwave shall enter COOKING
mode if the start key is pressed.

The testing tool Reactis accepts Simulink diagrams as test
oracles in addition to more traditional assertions written
as logical expressions. The requirement in Fig. 4 can also
be thought of as a runtime monitor, signaling a property
violation if the requirement is not satisfied. The user selects
the values to pass to the model in Fig. 4 as inputs during
testing. During test case generation, if any output is 0 or
false, the assertion is reported as failed.

KLEE can also use the same formalized requirements.
KLEE is used to generate symbolic inputs for the C code
auto-generated from the Simulink models. Similarly we can
use the code generator on the formalized requirements and
synthesize assertions from the auto-generated code. We then
instrument the code from the original model with the asser-
tions. If a requirement is violated, KLEE reports an asser-
tion violation and provides the failing test case.

Using these tools, one can quickly get feedback on prob-
lems in either the model or the requirements. Careful analy-
sis of the mode controller in Fig. 3 reveals that the transition
for decrementing the timer while COOKING has a higher
priority than the one for moving to SUSPENDED, resulting
in the safety property being violated when the door opens
while cooking. Fixing the priority and re-running the analy-
sis will show that the requirement is no longer violated. The
functional requirement of While in SUSPENDED mode, the
microwave shall enter COOKING mode if the start key is
pressed is also violated. The failing test case characterizes
the behavior of pressing both the start and clear keys simul-
taneously, and the clear key is taking precedence. This time,
it is decided that the model is correct and the requirement is
incomplete, and by adding a clause regarding the clear key
to both the English requirement and the Simulink model the
problem is fixed. This demonstrates an example where the
feedback from the V&V processes can be used in refining
the requirements.

6. DISCUSSION & CONCLUSION

In this paper we propose Simulink as a requirements for-
malization since several missions at NASA use the Simulink/-
Matlab development environment. The same principles, how-
ever, can be applied to other modeling formalizations used
by system engineers, e.g., LabVIEW or Scada. We believe it
is best to represent requirements in a language that the engi-
neers are already familiar with rather than impose a formal



methods or software engineering notation on them.

When evaluating our approach using Reactis and KLEE
on certain LADEE modules, we encountered several chal-
lenges. First, it is not easy for system engineers to install
and run program analysis tools; this required someone with
software engineering expertise. Secondly, it is not easy for
system engineers to make sense of the output produced by
these tools. For example, Reactis reports coverage results
at the Simulink block level while KLEE reports coverage at
the object-code level (LLVM bitcode). More specifically, it is
not clear how to compare the coverage results computed on
different structures. Finally, there are fundamental technical
limitations to the tools as well. Reactis considers Simulink
blocks that contain embedded MatLab as black boxes and
does not attempt to cover the paths in those blocks. In
KLEE, the underlying constraint solver cannot analyze code
containing floating point operations and non-linear arith-
metic. To solve the first two limitations, we believe it is
important to build a common interface to a suite of tools so
that the system engineers can leverage various tools with-
out learning the nuances of each tool. We also need an ad-
ditional meta-tool that can normalize the results from the
various tools. To solve the technical limitations, we need
to direct software engineering research to (a) develop better
tools to target specific parts of the system based on their
strengths, and (b) compose results from different tools.

Based on our experiences at NASA, there are many oppor-
tunities to transfer or adapt software engineering solutions
for system engineers, however, there are several serious bar-
riers to adoption. For mission-critical systems, the V&V
processes are not as stringent as those for safety-critical sys-
tems. There are, however, tight bugdet restrictions and time
schedules based on launch windows. If the deadlines are not
met, these missions often run the risk of being cancelled.
Anecdotal evidence suggests that the projects where the
bridges between the Twin Peaks are shaky, often go over
budget and end up getting cancelled. From talking to en-
gineers who work on missions, we hypothesize that if there
was a viable implementation of the approach proposed in
this work, we could make inroads into helping system en-
gineers take a more systematic approach based on software
engineering principles.
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