
Exploring the Twin Peaks using Probabilistic
Verification Techniques∗

Anitha Murugesan†
anitha@cs.umn.edu

Lu Feng∗
lufeng@cis.upenn.edu

Mats P. E. Heimdahl†
heimdahl@cs.umn.edu

Sanjai Rayadurgam†
sanjai@cs.umn.edu

Michael W. Whalen†
whalen@cs.umn.edu

Insup Lee∗
lee@cis.upenn.edu

†Department of Computer Science and Engineering ∗Department of Computer and Information Science
University of Minnesota University of Pennsylvania

200 Union St. S.E., Minneapolis, MN 55455, USA 3330 Walnut St., Philadelphia, PA 19104, USA

ABSTRACT
System requirements and system architecture/design co-
evolve as the understanding of both the problem at hand as
well as the solution to be deployed evolve—the Twin Peaks
concept. Modeling of requirements and solution is a promis-
ing approach for exploring the Twin Peaks. Commonly,
such models are deterministic because of the choice of mod-
eling notation and available analysis tools. Unfortunately,
most systems operate in an uncertain environment and con-
tain physical components whose behaviors are stochastic.
Although much can be learned from modeling and analy-
sis with commonly used tools, e.g., Simulink/Stateflow and
the Simulink Design Verifier, the SCADE toolset, etc., the
results from the exploration of the Twin Peaks will—by
necessity—be inaccurate and can be misleading; inclusion
of the probabilistic behavior of the physical world provides
crucial additional insight into the system’s required behav-
ior, its operational environment, and the solution proposed
for its software. Here, we share our initial experiences with
model-based deterministic and probabilistic verification ap-
proaches while exploring the Twin Peaks. The intent of this
paper is to demonstrate how probabilistic reasoning helps
illuminate weaknesses in system requirements, environmen-
tal assumptions, and the intended software solution, that
could not be identified when using deterministic techniques.
We illustrate our experience through a medical device sub-
system, modeled and analyzed using the Simulink/Stateflow
(deterministic) and PRISM (probabilistic) tools.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking

∗This work has been partially supported by NSF grants
CNS-0931931 and CNS-1035715.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TwinPeaks ’14, June 1, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2848-7/14/06 ...$15.00.

General Terms
Verification

Keywords
Requirements, Architecture, Model based verification.

1. INTRODUCTION
As a development project progresses, is well known that

deepening the understanding of both the problem at hand as
well as the solution to be deployed leads to a co-evolution of
the system requirements and system architecture/design—
an exploration of the Twin Peaks [15].

Model based approaches, e.g., Simulink/Stateflow [8, 10],
Rhapsody [1], or SCADE [3] are commonly used for this
Twin Peaks exploration. Some approaches are supported
by formal verification tools allowing an engineer to ver-
ify whether or not desirable properties (requirements) of a
model are satisfied, e.g., the MathWorks Simulink Design
Verifier (SLDV) [9] or the Gryphon toolsuite [13] developed
at Rockwell Collins. These verification tools are generally
based on some form of model-checking technology [2] and
perform a deterministic determination of whether or not a
property is satisfied by a model; either the property is true
or it is false—there is no notion of the property being true
“most of the time”. Although such analysis can be extraor-
dinarily useful in practice [11, 13], the results from the ex-
ploration of the Twin Peaks using traditional verification
tools will—by necessity—be inaccurate and can be mislead-
ing. For example, we may perform the verification of our
software models under a single-failure assumption for the
various sensors and actuators interacting with our system.
Given this assumption, we may perform a verification of the
software demonstrating that—under this assumption—the
requirements are met. Since we know that this assumption
is wrong—there can be multiple failures, however unlikely—
we do not know for certain how our software will really be-
have in the face of such unlikely events; it is quite possible
that the “verified” software has a low likelihood of meeting
its desired requirements under realistic operating conditions.
Hence, inclusion of the stochastic behavior of the physical
world provides crucial additional insight into the system’s
required behavior, its operational environment, and the so-
lution proposed for its software.

In this paper, we share our inial experiences with model-
based deterministic and probabilistic verification approaches
while exploring the Twin Peaks. We illustrate our experi-
ences using a Generic Patient Controlled Analgesic (GPCA)
infusion pump’s empty reservoir alarm system, modeled and
analysed using the Simulink/Stateflow [8, 10] (deterministic)
and PRISM [7] (probabilistic) modeling and verification ap-
proaches. The function of the sub-system considered in this
paper is to raise an alarm if the remaining volume of drug
in the reservoir is below a certain threshold. The possibility
of sensor failures allows us to design multiple simple sensor
filtering algorithms to reduce the false alarm rate (raising
an alarm while there is still drug remaining in the reservoir)
while maintaining the capability to detect and rase an alarm
when the drug is running low. As will be shown, approaches
that are seemingly sensible and can be verified to be correct
using a traditional model checker may indeed have surpris-
ing behaviors when evaluated in a stochastic environment.
Although we use a highly simplified version of the medical
device subsystem, we show how exploration through tradi-
tional verification can give misleading results (or no useful
results at all) and incorporating probabilistic reasoning can
help illuminate weaknesses in system requirements, environ-
mental assumptions, and the intended software solution.

We provide an overview of the case example in Section 2,
followed by a brief description of the deterministic modeling
and verification using Simulink/Stateflow tools in Section 3.
In Section 4 we outline the probabilistic reasoning over the
system using PRISM. We discuss our our findings and con-
clude in Section 5.

2. CASE EXAMPLE—THE GPCA
Infusion pumps are medical cyber physical systems used

for controlled delivery of liquid drugs into a patient’s body
according to a physician’s prescription (the set of instruc-
tions that governs infusion rates for a medication). In
an typical infusion system, the patient receives the drug
through a intravenous needle inserted into the patient’s body
and a clinician operates the device. Unfortunately, infusion
pumps have been involved in numerous incidents [4] and
hence there has been initiatives to improve their safety. To
reduce the occurrence of critical accidents such as over- or
under-infusion, modern infusion pumps are equipped with
various kinds of sensors to detect and notify the clinician
when hazards occur.

Patient Clinician

Notification data

Infusion Instructions

Infusion Pump

Data Flow
Physical connection

ReservoirBuzzer Light Sensor

Drug Flow

Figure 1: Infusion System Overview

Figure 1 shows a Generic Patient Controlled Analgesia
(GPCA) infusion pump device in a typical usage environ-
ment, a hospital. In this paper we focus on the infusion
pump’s reservoir sensor sub-system. The infusion pump has

a drug reservoir that stores liquid drug to be delivered to
the patient. The pump is equipped with a reservoir sensor
that senses the drug volume in the reservoir and reports if
the volume is below a certain threshold. Based on the sen-
sor report, the system’s software commands aural and/or
visual alarms to notify the clinician. The rationale for this
sub-system is to avoid the hazard caused to a patient when
the reservoir becomes empty while infusing a drug.

3. SIMULINK/STATEFLOW MODELING
As a part of a large ongoing initiative to analyse the com-

plete infusion system[14], we modeled the system to better
understand the requirements and verify that the require-
ments are met by our model. Our choice of modeling no-
tation and tools was MathWork’s Simulink/Stateflow, that
allows graphical modeling and simulation of dynamic sys-
tems. The reason for our choice of Simulink/Stateflow tool
is manyfold. First, its a widely used tool for modeling cyber-
physical systems and since our effort was focused on provid-
ing a reference artifact that demonstrates effective modeling
and verification for the infusion system as a whole, we choose
a tool that is widely used. Second, the graphical modeling
and expressibility provided by the notation is well suited
to capture, analyse, and evaluate discrete and continuous
control system behaviors. Finally, the tools provide a rich
ecosystem of related tools, such as code generators, formal
verification tools, test generators.

Figure 2: System Architecture in Simulink

As mentioned earlier, we in this paper include a small
(and highly simplified) subset of the GPCA behaviors—the
empty reservoir alarm sub-system. The simple sub-system
architecture with three components: a Reservoir, a sensor
and the alarm software, is shown in Figure 2. Each com-
ponent is modeled as a Simulink block that has a state ma-
chine describing its functions. The high level description of
the components are:

Reservoir: The reservoir holds the drug. The initial vol-
ume of the drug in the reservoir is set to some initial
volume and the drug volume is then modeled as a non-
increasing function with a floor of zero. In our simple
model, there is no provision for refilling the reservoir.

Sensor: The sensor monitors the drug volume in the reser-
voir. When the volume drops below a certain thresh-
old1, the sensor outputs a boolean value: true rep-
resenting that the volume is below the threshold and
false otherwise. In our initial model, we assumed a
perfect sensor with no failures.

1
To avoid hazard of reservoir volume becoming zero before an alarm

is raised—considering the delays of the hardware and software—the
threshold value is set slightly above zero.

Table 1: Deterministic Modeling and Analysis

Case Component Behavior Requirement Results

1
Sensor: Perfect. .
Software: Raise alarm on first “empty”
reading.

vol <= threshold ⇒ Alarm Both Satisfied

vol > threshold ⇒ No Alarm

2
Sensor: Single bit upset. .
Software: Raise alarm on two consecu-
tive “empty” reading.

vol <= threshold ⇒ Alarm in next steps
Neither Satisfied. .
Counter example: Sensor fails
every other reading.

vol > threshold ⇒ No Alarm

3
Sensor : Random failures. .
Software : Raise alarm on two consecu-
tive “empty” reading.

vol <= threshold ⇒ Alarm in next steps
Neither Satisfied. .
Counter example: Sensor out-
puts always incorrect

vol > threshold ⇒ No Alarm

Software: The software issues an alarm based on the sen-
sor output. For the initial system—since we assume a
perfect sensor—the software issues an alarm command
if the sensor output is true. Again, in this simplified
model there is no provision to reset the alarm. The
clinician is expected to refill the drug and restart the
system and that will clear the alarm.

In our work with the full GPCA models, we verified nu-
merous required properties (formalized requirements) using
MathWorks’ Simulink Design Verifier [9]. Two system re-
quirements of interest in this paper are:

Req 1 If there is insufficient drug in the reservoir (drug
volume <= ”threshold”), the alarm shall be raised. and

Req 2 If there is sufficient drug in the reservoir (drug vol-
ume > ”threshold”) the alarm shall not be raised.

In short, raise the alarm when needed and do not provide
nuisance alarms. Although the properties verified trivially
for the (extremely) simple initial model, it is quite obvious
that the model is an oversimplification of the actual behav-
iors of the system. In reality, the sensors have failures.

Let us consider two simple failure models for the sensor:
(1) a single bit upset were the sensor might report empty
when the reservoir in fact is not, but the next reading will
always be correct, and (2) arbitrary failures of the sensor, it
can report an erroneous value any time and as many times
as it pleases. Since the verification was done in SLDV, there
was no provision to model the failure in probabilistic terms,
it was simply modeled as an arbitrary choice—fail or do not
fail. Given sensor failures, simply raising an alarm as soon
as the sensor reports “empty” is no longer feasible, we may
miss situation where we should raise an alarm and/or the
false alarm rate may be unacceptable. The various cases we
investigated with SLDV are summarized in Table 1. Case 1
is the simplistic case discussed above.

In Case 2, we introduce a sensor that can exhibit a sin-
gle bit (and single step) fault. We also refine the software
detection algorithm to require two consecutive readings of
“empty” to raise the alarm. This change in our assumption
about the sensors necessitates a change in the required be-
havior of the system; we can no longer require that an alarm
be raised when the volume becomes too low, we must allow
for a small delay to accommodate our simple sensor filtering
algorithm. Thus, the required behavior (after appropriate
negotiation with the stakeholder of course) is modified to re-

quire that the alarm shall be raised within two time steps af-
ter the volume drops below the threshold. With this change,
we eliminate any false positives. Unfortunately, there is a
possibility for a false negative - if the sensor fails in every
other step after the volume has dropped below the threshold.

Case 3 introduces a sensor that can fail in any arbitrary
step and none of our properties can be made to hold with just
one sensor. To address this failure mode, we would have to
introduce several redundant sensors and make assumptions
on common model failures; a proposition our stakeholder are
not too keen on since it would drive up the cost of our de-
vice and make maintenance more difficult. At this point, the
benefits of formal verification are limited; we know we can-
not prove that our requirements will hold under any realistic
failure model (sensors will fail, but the really damaging com-
binations of failures may be exceedingly rare), but we would
still like to determine if our system, e.g., the system with
the two consecutive sensor inputs filtering algorithm, is good
enough to be fielded. Talking to our imaginary stakeholder,
a reliability rate in the high 90% seems acceptable. Since
there are several viable sensors on the market and some of
them seem to acceptable failure behaviors, we would like to
explore if we can achieve this performance without excessive
increases in the cost of our device. To perform this explo-
ration, we must move away from the “traditional” verifica-
tion techniques such as model-checking and theorem proving
and continue our exploration using probabilistic techniques.

4. PROBABILISTIC ANALYSIS
Probabilistic model checking is a formal verification tech-

nique used for modelling and analysing systems that exhibit
probabilistic behavior.

We use PRISM [7], the currently leading software tool
in the area of probabilistic model checking, to continue
our exploration and analysis of the reservoir sensor sys-
tem. PRISM is a free and open-source probabilistic model
checker developed at the University of Birmingham and
the University of Oxford. Several types of probabilistic
models including discrete-time Markov chains (DTMCs),
continuous-time Markov chains (CTMCs), Markov decision
processes (MDPs), probabilistic automata (PAs) and prob-
abilistic timed automata (PTAs) can be built and analysed
using PRISM. All of these models are specified using the
PRISM modeling language, a simple high-level language for
model description based on a guarded command notation.
We model the reservoir sensor system as a DTMC.

The move from Simulink/Stateflow to PRISM was in this
initial study done manually. Given our experience with ex-
traction of models from Simulink and Stateflow, automating
this process would be relatively straight forward (but quite
time consuming and labor intensive). When we transfer to
a probabilistic modeling tool, we have more freedom in how
we model the various components of the system. For ex-
ample, where we previously modeled the reservoir as a non-
increasing function, we can now model it as a non-increasing
function with a probability of 0.95 that the volume decreases
(there is an infusion in progress) and a probability of 0.05
that the volume stays the same (the infusion is paused for
some reason)2. Similarly, we can model the failure behavior
of the sensor with more fidelity. In this case, we can assign a
probability of x that the sensor will signal “empty” when, in
fact, the reservoir is not empty, and a probability of y that
it will signal “not empty” when the drug volume is, in fact,
below the threshold. The question now, of course, is what
effect does this kind of probabilistic behavior have on the
satisfaction of the system level requirements given a specific
sensor filtering algorithm.

const double pr =0.99; // prob. that we will infuse
const double pe =0.99; // prob. of true positive ‘‘empty’’
const double pne =0.95; // prob. of true negative ‘‘not empty’’

module reservoir
vol: [0..inVol] init inVol;
//The infusion can progress (or pause) until volume is 0
[a] (vol>0) -> pr:(vol’=vol-drip) + (1-pr):(vol’=vol);
[a] (vol<=0) -> (vol’=0);

endmodule

module sensor
sensor_out: bool init false;
[a] (vol<=empty)-> pe:(sensor_out’=true)

+ (1-pe):(sensor_out’=false);
[a] (vol>empty) -> pne:(sensor_out’=false)

+ (1-pne):(sensor_out’=true);
endmodule

module software
alarm: bool init false;
[a] true -> (alarm’=sensor_out | alarm);

endmodule

Figure 3: PRISM model for Case 4 in Table 2

An example of our model in PRISM is shown in Figure
3. At the top we define the probabilities used in the model:
the probability that we will infuse in a specific time-step(pr),
the probability of a true positive reading of the sensor (pe,
the probability of reservoir below the threshold and the sen-
sor reports it), and the probability of a true negative (pne,
the probability of reservoir not empty and sensor reports it).
Note that the probabilities of the sensor providing false neg-
ative as opposed to a false positive are different; this allows
us to provide a far more accurate model of the environment
than what is possible in our Simulink/Stateflow models.

Our PRISM model has the same components as discussed
previously. The reservoir contains an initial volume of
drug. If the volume of remaining drug is larger than zero,
the volume will be decreased by one with probability pr

and remain the same (infusion is paused) with probability
(1-pr). The sensor will sense the reservoir and if the re-

2
Note here that all numbers are entirely fictional and are included

for discussion purposes only.

maining drug volume is less than or equal to the threshold,
the sensor will accurately report that the tank is “empty”
with a probability of pe and provide a false negative with
probability (1-pe). Similarly, the sensor may report a false
positive if the reservoir is not empty. The software will, in
our simplest model, simply latch the alarm to true when an
empty reservoir is detected.

Given the sensor model that has a uniform probability of
failure in every step, the probability of a false alarm will be
predicated on the length of the infusion interval. For exam-
ple, if the infusion interval is long, the sensor will be given
many opportunities to provide two consecutive false positive
readings leading to a violation of our “no false positives” re-
quirement. Of course, the likelihood of a long infusion is
dependent on both the rate of infusion, the initial volume in
the reservoir, and the probability that the infusion is paused,
all of which will affect the probably that our requirements
are actually met.

When running our analysis in PRISM, we will use a sensor
model that allows arbitrary failures as in Case 3 in Section 3;
the case where none of our requirements could be verified
to always hold in our system. Given the new probabilistic
behavior of the sensors and the reservoir, however, there
is a chance that our requirements are met even with the
simplistic software defined in Figure 3. Case 4 in Table 2
shows the results over our simplest model. In this analysis,
we assume the initial drug volume in the reservoir to be 20
units and the infusion rate to be one unit per step (drip=1 in
the model) when the pump is infusing. Further, we assume
that the pump is paused 5% of the time, the probability of
a false positive sensor reading is 0.05, and a false negative
reading is 0.01.

As can be seen, our requirements may not hold all the
time (as proved in the previous section), but we have a rea-
sonable probability that the requirement will actually hold
during operation (if our assumptions about the failure rates
and infusion rates are reasonable). Given our assumptions
on the environment, if the reservoir is empty, there will be
an alarm with a probability of 95% and we will not raise a
false alarm with a probability of 85%. This behavior, unfor-
tunately, is deemed unacceptable and we need to improve
our solution. Thus, we again explore various solutions (and
relaxed requirements) as discussed in Section 3. The results
of our probabilistic analysis can be seen in Cases 4-6 in Ta-
ble 2 (we will discuss Case 6 shortly). All results in Table 2
use the probabilities discussed above.

To decrease the probability of false positives, we move to
our solution of using two consecutive readings of “empty” to
raise the alarm (Case 5). Again, we need to relax our re-
quirements to allow for a slight delay in rasing the alarm af-
ter the remaining volume becomes too low. As can be seen,
we now reduce the false alarm rate to an acceptable level
(4% chance of a false alarm) while boosting the probability
of meeting our requirement to 98%. Of course, a direct com-
parison in performance with Case 4 cannot be made since we
there used a different requirement (immediate action when
the drug level is low). If we use our relaxed requirement and
our Case 4 software, we increase the probability of correctly
raising an alarm when the drug volume is low to 99%, but
the false positive rate is still too high since this requirement
did not change (see the two last rows for Case 4). Thus,
we consult our stakeholder and the performance is deemed
acceptable.

Table 2: Probabilistic Modeling and Analysis

Case Component Behavior Requirement Results

4
Software: Raise alarm on first “empty”
reading.

vol <= threshold ⇒ Alarm Satisfied with P= 0.95

volume > empty ⇒ No Alarm Satisfied with P=0.85

vol <= threshold ⇒ Alarm in next step Satisfied with P= 0.99

volume > empty ⇒ No Alarm Satisfied with P=0.85

5
Software: Raise alarm on two consecu-
tive “empty” reading.

vol <= threshold ⇒ Alarm in next step Satisfied with P= 0.98

vol > empty ⇒ No Alarm Satisfied with P= 0.96

6
Sensors: Three redundant .
Software: Raise alarm when two out of
three sensors indicate “empty”.

vol <= threshold ⇒ Alarm Satisfied with P= 0.99

vol > threshold ⇒ No Alarm Satisfied with P=0.89

At this point, the exploration of possible solutions and
acceptable requirement could be over; one declares victory
and moves on. Luckily, stakeholders and engineers closely
inspect all assumptions made in the analysis and discover
that the initial drug volume of 20 units is unrealistically
low (infusion time is generally quite long) and the probabil-
ity that the pump is paused is far more likely than the 5%
we used in our analysis. To see if this had any impact on
our analysis, we modify the initial conditions for our analy-
sis and run our analysis with an initial drug volume of 100
units and a probability of the pump being paused at 50%.
We are happy to see that under these environmental as-
sumptions, the probability of meeting our “raise the alarm“
requirement goes to 99%—we have the performance we seek.
Unfortunately, given the long infusion time enabled by the
larger drug volume and extensive pausing of the infusion,
the probability of nuisance alarms goes from 4% per infu-
sion session to 37%—there is simply more time for sensor
failures to manifest themselves. In fact, the increase in the
probability of having an alarm raised when the volume be-
come too low is entirely caused by the increase in the false
positive rate (if we erroneously raise an alarm and leave it
on, it will still be on when the reservoir goes empty).

Table 3: Probabilistic analysis with varying initial
conditions for Case 5

Parameters Verification Results
Initial

Volume
Infusion

Probability
Requirement 1
(True Positive)

Requirement 2
(True Negative)

20 0.95 0.98 0.96
100 0.95 0.98 0.78
100 0.50 0.98 0.63
1000 0.95 0.99 0.08
1000 0.50 0.99 0.008

Table 3 contains the results for various initial conditions.
In the case of very long infusions (1000 units initial drug vol-
ume and a 50% chance of a paused infusion), we are more or
less certain of getting a false alarm during every infusion (the
probably of meeting our “no false alarms” requirement goes
to zero as infusion time increases). Thus, our exploration of
the Twin Peaks must continue.

At this point, more radical changes to our proposed so-
lution may be warranted. For example, one could consider
an alternate system architecture with three redundant sen-
sors and simple majority voting (two out of three raises the
alarm). The performance of such an architecture and voting
mechanism is included as Case 6 in Table 2. Unfortunately,
the false positive rate is not acceptable and our exploration
must continue. Combinations of triple redundance and sen-
sor filtering may yield the performance we seek with the ex-
isting sensors. Possibly, we may need to rethink our choice
of sensor and aim for something far more reliable.

5. DISCUSSION AND CONCLUSION
The process of discovering and refining requirements, and

exploring the architecture, design, and behavior of a system
is an iterative, interactive, and highly non-trivial task. In
this paper we illustrated how model based developments and
verification techniques can help (and hinder) in this explo-
ration.

As Miller et al. have pointed out, the process of discovering
and refining models and requirement in tandem is a power-
ful process for improving both [12]. Nevertheless, the tools
used in traditional verification approaches rely on“yes”–“no”
answers; either a requirement is met or it is not. Since all
systems really on some level of cooperation from their envi-
ronment to operate as intended [5, 6], assumptions regarding
how this environment operates are crucial in the verification
and exploration of the system requirements and the sys-
tem architecture, design, and behavior. When exploring a
systems architecture containing both logical (software) and
physical (electrical or mechanical) components where the
system requirement—as they should [5]— are expressed in
terms of the physical system, not the software, capturing
assumptions about the environment and the various com-
ponents involved becomes a challenge. By their nature, all
physical components will experience failures in various forms
and modeling and analyzing these failure modes using tra-
ditional verification techniques such as model checking and
theorem is difficult; either we make unrealistic assumptions
about the environment and physical components (e.g., one
failure assumption) and succeed in our verification, or we
make realistic assumptions (e.g., unlimited Byzantine fail-
ures) and fail in our verification.

By moving to a verification framework where we can
model the stochastic nature of many system components,
we believe we will be able to more effectively perform the
requirement-solution exploration needed to devise an effec-
tive engineered system meeting realistic requirement. Note
here that we are not advocating abandoning traditional ver-
ification; such verification is invaluable when establishing
desirable properties of many classes of models. We are advo-
cating the inclusion of probabilistic reasoning in the process
as a complement to better understand the tradeoffs involved.

The intent of this paper is to demonstrate the use of prob-
abilistic verification techniques as a Twin Peaks exploration
tool. Although the case example used was exceedingly sim-
ple and the choice of values used for analysis was random,
it helps to illuminate the impact of stochastic sensor and
environment behavior on the architectural choices and pos-
sibility of satisfying requirements. Our goal was to discuss
the possibilities and set the stage for a broader initiative ap-
plying these stochastic techniques to explore and assess the
requirements and solution spaces for Cyber Physical Sys-
tems.

6. REFERENCES
[1] IBM Rational Rhapsody.

http://www.ibm.com/developerworks/rational/
products/rhapsody/, 2014.

[2] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[3] Esterel-Technologies. SCADE Suite product
description. http://www.esterel-technologies.com/v2/
scadeSuiteForSafetyCriticalSoftwareDevelop-
ment/index.html,
2004.

[4] U. Food and D. Administration. White Paper:
Infusion Pump Improvement Initiative. April 2010.

[5] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave.

A reference model for requirements and specifications.
IEEE Software, 17(3):37–43, May/June 2000.

[6] J. Hammond, R. Rawlings, and A. Hall. Will it work?
[requirements engineering]. In Requirements
Engineering, 2001. Proceedings. Fifth IEEE
International Symposium on, pages 102 –109, 2001.

[7] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: Verification of probabilistic real-time systems. In
G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd
International Conference on Computer Aided
Verification (CAV’11), volume 6806 of LNCS, pages
585–591. Springer, 2011.

[8] MathWorks Inc. Simulink.
http://www.mathworks.com/products/simulink.

[9] MathWorks Inc. Simulink Design Verifier.
http://www.mathworks.com/products/sldesignverifier.

[10] MathWorks Inc. Stateflow.
http://www.mathworks.com/stateflow.

[11] S. P. Miller, M. P. Heimdahl, and A. Tribble. Proving
the shalls. In Proceedings of FM 2003: the 12th
International FME Symposium, September 2003.

[12] S. P. Miller, A. C. Tribble, M. W. Whalen, and
M. P. E. Heimdahl. Proving the shalls: Early
validation of requirements through formal methods.
Int. J. Softw. Tools Technol. Transf., 8(4):303–319,
2006.

[13] S. P. Miller, M. W. Whalen, and D. D. Cofer.
Software model checking takes off. Commun. ACM,
53(2):58–64, 2010.

[14] A. Murugesan, S. Rayadurgam, and M. Heimdahl.
Using models to address challenges in specifying
requirements for medical cyber-physical systems. In
Fourth workshop on Medical Cyber-Physical Systems,
Apr. 2013.

[15] B. Nuseibeh. Weaving together requirements and
architectures. Computer, 34:115–117, 2001.

