
Software Product Line Engineering and
Variability Management: Achievements and Challenges

Andreas Metzger
paluno (The Ruhr Institute for Software Technology)

University of Duisburg-Essen
45127 Essen, Germany

andreas.metzger@paluno.uni-due.de

Klaus Pohl
paluno (The Ruhr Institute for Software Technology)

University of Duisburg-Essen
45127 Essen, Germany

klaus.pohl@paluno.uni-due.de

ABSTRACT
Software product line engineering has proven to empower organi-
zations to develop a diversity of similar software-intensive sys-
tems (applications) at lower cost, in shorter time, and with higher
quality when compared with the development of single systems.
Over the last decade the software product line engineering re-
search community has grown significantly. It has produced im-
pressive research results both in terms of quality as well as quanti-
ty. We identified over 600 relevant research and experience pa-
pers published within the last seven years in established confer-
ences and journals. We briefly summarize the major research
achievements of these past seven years. We structure this research
summary along a standardized software product line framework.
Further, we outline current and future research challenges antici-
pated from major trends in software engineering and technology.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – methodologies; D.2.11
[Software]: Software Architectures – domain-specific architec-

tures; D.2.13 [Software Engineering]: Reusable Software –
domain engineering, reuse models

General Terms
Management, Documentation, Design, Economics, Verification

Keywords
Software product lines, requirements engineering, design, quality
assurance, variability management, variability modeling

1. INTRODUCTION
Many industry sectors are faced with increasing demand to devel-
op individualized software-intensive systems. Software product
line engineering (SPLE) has proven to empower organizations to
develop a diversity of similar systems at lower cost, in shorter
time, and with higher quality when compared with the develop-
ment of single systems [1]. A software product line (also some-
times called software product family) is “a set of software-
intensive systems that share a common, managed set of features
satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets
[artifacts] in a prescribed way” [2].

SPLE exploits the commonalities of the systems that belong to a
product line and systematically handles the variation (i.e., the
differences) among those systems. Commonality is a property
shared by all applications1 of the product line [3]; e.g., all mobile
phones allow users to make calls. Product line variability defines
how the different applications of the product line can vary [4].
Product line applications may differ in terms of features, function-
al and quality requirements they fulfil; e.g., some tablet computers
may include mobile broadband connectivity, others not.

In industry, the SPLE paradigm has a strong track record of suc-
cess. Examples of success stories can be found in textbooks (such
as [1], [2], [5]) or in the product line hall of fame2. The product
line hall of fame has been established as part of the SPLC confer-
ence series and lists 20 success stories from companies including
Boeing, Bosch, HP, Nokia, Philips, Siemens and Toshiba. Report-
ed benefits of SPLE include “improved productivity by as much
as factor 10, increased quality by as much as factor 10, decreased
cost by as much as 60%, decreased labor needs by as much as
87%, decreased time to market (to field, to launch) by as much as
98%, and ability to move into new markets in months, not years”3.

SPLE has attracted significant interest from the research commu-
nity. We have surveyed the literature of the past seven years and
retrieved over 600 relevant papers from established conferences
and journals alone4. A complete summary of all achievements in
the field is obviously impossible in this paper. We thus summarize
highlights of the research achievements in SPLE. Specifically, we
focus on concepts, techniques and methods. In addition, we brief-
ly describe open and upcoming research challenges we anticipate
from major trends in software engineering and technology.

The successful introduction of SPLE in industry requires strong
(high level) management commitment. Moreover, the successful
introduction of SPLE heavily depends on the implementation of
adequate organizational structures and processes (see, for exam-
ple, Chapter 1 in [6]). Moreover, without convincing business
cases which demonstrate the return-on-investment SPLE will
typically not be introduced in an organization. Due to space limi-
tations, those aspects are not within the scope of this paper. Also,
achievements in tool support, both for what concerns commercial
tools and prototypes, are also not within the scope.

1 As in most of the SPLE literature, we use the terms application

and (software-intensive) system synonymously.
2 http://splc.net/fame.html
3 http://www.sei.cmu.edu/productlines/
4 Our paper classification is available online at

http://www.sse.uni-due.de/en/fose14/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses,
contact the Owner/Author. Copyright is held by the owner/author(s).

FOSE '14, May 31 - June 07 2014, Hyderabad, India
ACM 978-1-4503-2865-4/14/05.
http://dx.doi.org/10.1145/2593882.2593888

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).

FOSE’14, May 31 – June 7, 2014, Hyderabad, India
ACM 978-1-4503-2865-4/14/05
http://dx.doi.org/10.1145/2593882.2593888

70

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2593882.2593888&domain=pdf&date_stamp=2014-05-31

To structure the technical SPLE research achievements and chal-
lenges, we use a standardized framework for software product line
engineering briefly described in Section 2. Following this frame-
work, we discuss the achievements and open research challenges
in the area of variability modelling and management in Section 3.
Section 4 summarizes the achievements and open research chal-
lenges in the area of domain engineering. Section 5 describes the
achievements and open research challenges in the area of applica-
tion engineering. Major trends in software engineering and tech-
nology will lead to new research challenges. We elaborate on
those challenges in Section 6.

2. FOUNDATIONS
Figure 1 depicts a well-established SPLE framework, which has
recently been adopted as part of the ISO/IEC standard #26550
(“Software and systems engineering: Reference model for product
line engineering and management”). This framework has been
defined based on the outcomes of the European SPLE research
projects ESAPS, CAFÉ, and FAMILIES. It is described in greater
detail in [1]. We employ this framework in the remainder of the
paper to cluster and summarize the research achievements in the
field. The key elements of the framework are described below.

2.1 Two Product Line Processes
To facilitate the efficient development of a diversity of applica-
tions which share a set of commonalities, SPLE differentiates
between two complementary development processes:

 The domain engineering process (shown in the upper half of
Figure 1) is responsible for defining the commonality and the
variability of the product line, as well as for developing the do-

main artifacts. Domain artifacts “realize” commonality and var-
iability. They include, among others, requirements artifacts
(e.g., use case diagrams, requirements models), architectural

artifacts (e.g., component models, class diagrams) and test arti-
facts (e.g., test cases, test data).

 The application engineering process (shown in the lower half of
Figure 1) is responsible for deriving concrete applications from
the domain artifacts. To this end, application engineering ex-
ploits the variability of the domain artifacts by binding (resolv-
ing) the variability according to the needs and requirements for
a particular application. Domain artifacts are thereby reused in
application engineering to derive a set of product line applica-
tions.

By dividing the overall development process into domain engi-
neering and application engineering, two key concerns are sepa-
rated: (1) to build a robust product line platform, (2) to efficiently
create individual, customer-specific or market-specific applica-
tions based on the product line platform.

The product line platform encompasses all domain artifacts of the
product line.5 Important parts of the product line platform are the
domain requirements and the product line architecture, which is
often called the reference architecture of the product line [1], [5].
The product line architecture provides a common, high-level
structure for all product line applications. The domain require-
ments define the common and variable features, functions and
qualities of the product line.

The activities executed during domain and application engineering
typically do not follow a sequential (“waterfall-like”) order even
though the visualization of the framework depicted in Figure 1

5 The term “platform” has slightly different meanings in other

areas (e.g., see [1]).

Figure 1: SPLE Framework (adapted from [1])

D
o

m
a

in
 E

n
g

in
e

e
ri

n
g

A
p

p
li

c
a

ti
o

n
 E

n
g

in
e

e
ri

n
g

Domain

Requirements

Engineering

Domain

Realization

Domain

Quality

Assurance

Domain

Design

Application

Requirements

Engineering

Application

Realization

Application

Quality

Assurance

Application 1 Artifacts

Test Cases, …Requirements

Product Line Platform (Domain Artifacts)

Product

Management

Application n Artifacts

Application

Design

Requirements Architecture Components Test Cases, …

Domain Variability Model

Application Variability Model

Domain Artefact Definition

Domain Artifact Reuse

Application Derivation

Domain Engineering
Life-cycle

Application Engineering
Life-cycle

Trace Links

Architecture Components

71

might imply so. In general, any type of life-cycle or process model
(e.g., V-model, spiral model, agile models) can be used in a soft-
ware product line setting. The execution order of activities and the
activities themselves therefore depend on the development process
used in an organization. Moreover, like in single systems devel-
opment, quality assurance activities should commence from the
start of development and should accompany all activities in do-
main and application engineering.

Similarly, there is no strict sequence in executing the domain and
the application engineering processes [7], [1]:

 In a proactive or “Big Bang” approach, domain engineering is
performed completely before application engineering starts;

 In a reactive or incremental approach, the most relevant domain
artifacts (typically the common ones) are developed first and
variable ones are developed based on concrete customer de-
mands during application engineering;

 In a reengineering-driven approach, existing individual applica-
tions and systems are “migrated” into a product line.

In most industrial cases, customer-specific applications cannot be
derived entirely from the domain artifacts alone. Therefore, so
called customer-specific extensions have to be implemented dur-
ing application engineering [1], [8], [9].

2.2 Product Line Variability
Product line variability is the key, cross-cutting concern in SPLE
[6], [10], [1], [2]. Product line variability describes the variation
among the applications of a software product line in terms of
properties, such as features that are offered or functional and
quality requirements that are fulfilled. Whether a given property is
to be common or variable across a software product line is deter-
mined by explicit management decisions, typically made by prod-
uct management [4], [1]. Product line variability is documented in
so-called variability models. The SPLE framework in Figure 1
differentiates between two types of variability models: Domain
variability models and application variability models (cf., [1], [8]).

During domain engineering, the variability of the product line is
defined in the domain variability model. In application engineer-
ing, the variability defined in the domain variability model is
bound in order to fulfill the application-specific requirements. The
variability bindings for a specific application are documented in a
respective application variability model.

Product line variability is pre-planned in order to address the
variation needed in different applications to fulfil different market
and stakeholder needs. Still, application engineers may face the
problem that individual customer- or market-specific needs cannot
be satisfied completely by reusing common and variable domain
artifacts. In this case, customer- or market-specific extensions or
adjustments of the common and variable artifacts are required.
The required adjustments can be made by either adjusting the
domain artifacts (e.g., introducing additional product line variabil-
ity) or by adaptations of the application artifacts [8].

Application-specific adjustments of artifacts should be document-
ed in the application variability model. An application variability
model thus documents both, the binding of the variability for the
specific application, as well as the application-specific adapta-
tions. An application variability model thereby establishes tracea-
bility between application and domain artifacts.

2.3 Product Line Variability vs.

Software Variability
Quite often SPLE research contributions do not clearly differenti-
ate between product line variability and software variability.

Software variability refers to the ability of software systems or
artifacts to be efficiently extended, changed, customized or con-
figured [11], [12]. Most modelling and programming languages
provide mechanism for software variability. Examples include
abstract super-classes allowing different specializations, interfaces
facilitating different implementations, or conditional compilation
(e.g., using #ifdefs) facilitating the inclusion of different code
fragments. A recent, extensive survey on software variability is
provided in [12].

Product line variability defines how the applications of a product
line can differ. Together with the commonalities, product line
variability defines the scope of a product line (see Section 4.1).
Like commonalities, product line variability is pre-planned. Defin-
ing whether a given feature, functional or quality requirement is
product line variability or not requires explicit decisions from
product management or other stakeholders.

Software variability can represent both: product line variability as
well as commonality. As an example for software variability, take
the abstract super class Communication with two concrete sub-
classes WiFi and MobileBroadband documented in a UML class
diagram. Clearly, the super-class together with the sub-classes
documents software variability. In principle, any of the two or
even both sub-classes could be used in place of the super-class.

This software variability would represent a commonality of the
product line, if – for a given product line – the stakeholders had
decided that all applications must include both sub-classes WiFi
and MobileBroadband. In other words, the product line applica-
tions cannot differ in terms of the communication classes they use.
In this case, software variability would clearly represent a com-
monality of the product line (and not product line variability).

However, the same software variability could also represent prod-
uct line variability. For example, if the stakeholders had decided
that for each application of the product line the engineer has to
choose at least one of the two sub-classes, the applications could
differ in terms of the sub-classes they include for communication.
In this case, the same software variability would represent a reali-
zation of product line variability.

Consequently, software variability is not sufficient to determine
product line variability. In other words, product line variability
cannot be identified by analyzing software variability documented
in artifact models or by analyzing the software artifacts them-
selves.6 The definition of product line variability requires explicit
decisions. Moreover, product line variability has to be explicitly
defined in addition to software variability.

3. VARIABILITY MODELING AND

ANALYSIS
As sketched in Section 2.3, product line variability differs signifi-
cantly from software variability. In addition to software variabil-

6 Nevertheless, in a re-engineering setting, software variability

may provide indicators for potential product line variability
(e.g., see [13], [14]).

72

ity, product line variability needs to be explicitly defined to em-
power and support the communication, discussion, management
and analysis of product line variability.

3.1 Modeling Product Line Variability
There are two principle ways in SPLE research and practice to
explicitly document product line variability:

 Integrated Documentation: To support the integrated documen-
tation of product line variability, dedicated or specialized mod-
elling and documentation concepts are introduced into existing
modelling languages or document templates. An example for
the integrated documentation of product line variability is de-
picted in Figure 2a. The figure shows a UML class diagram ex-
tended by two stereotypes «VariationPoint» and «Variant». The
stereotypes are used to explicitly document the product line var-
iability. This example models a product line, in which commu-
nication is defined as product line variability (documented by
Communication being a variation point and WiFi and Mo-

bileBroadband being variants).

 Orthogonal Documentation: To support the orthogonal docu-
mentation of product line variability, product line variability is
documented in a dedicated model. In other words, the documen-
tation of product line variability is separated from the documen-
tation of the software development artifacts. Thereby the varia-
bility of the product line is treated as a first class product line
artifact. By relating the product line variability defined in the
orthogonal variability model with the software artifacts defined
in the artifact models, the realization of product line variability
within the software artifacts is documented. Figure 2b sketches
an example of an orthogonal documentation of product line var-
iability and its relation to software development artifacts. As
depicted in the figure, the documentation of product line varia-
bility is clearly separated from the documentation of other soft-
ware development aspects. Note, that the orthogonal variability
model only defines product line variability. It does not define
product line commonalities.

3.1.1 Integrated Variability Modelling
Numerous extensions of modeling languages have been proposed
to facilitate the integrated documentation of product line variabil-
ity, including annotations of uses cases and test models [13],

stereotypes for UML diagrams (e.g., activity diagrams, state
charts, or component diagrams [14], [15]), and domain-specific
languages [16].

For the integrated documentation of product line variability fea-
ture models are most commonly used (e.g., see [6]). A feature
model is a tree or a directed acyclic graph of features7. A feature
model is organized hierarchically. A feature can be decomposed
into sub-features. A mandatory feature has to be selected if its
parent feature is mandatory or if its parent feature is optional and
has been selected. Mandatory features define commonalities.
Mandatory features have to be selected for all applications of the
product line. Optional, alternative, and ‘or’ features define varia-
bility in feature models. As a result, a feature model is a compact
representation of all mandatory and optional features of a software
product line. Each valid combination of features represents a
potential product line application.8

Since the introduction of Feature-Oriented Domain Analysis
(FODA) by Kang et al. in the 1990ies, over 40 different feature
model dialects have been proposed [17]. Based on the expressive-
ness of those extensions, they can be grouped into three catego-
ries: basic feature models (offering mandatory, alternative and ‘or’
features, as well as ‘requires’ and ‘excludes’ cross-tree con-
straints), cardinality-based feature models (offering, in addition,
UML-like multiplicities for feature selection [m..n]), and extended
feature models (adding arbitrary feature attributes; e.g., to express
variation in quality requirements). The increased expressiveness
of feature modeling languages, while appearing attractive to prac-
titioners, has negative impact on the analyzability of the models.

7 According to IEEE Standard 829-1998, a feature is considered

„a distinguishing characteristic of a software item (e.g., perfor-
mance, portability, or functionality)“. In SPLE features are often
considered a user-observable characteristic of a software item.

8 In some cases, feature models are used to only document the
variability of a product line. Mandatory (common) features are
not documented. According to our definition, the documentation
of the variability in such feature model is thus orthogonal.

Figure 2: Illustration of Two Major Approaches for Explicit Variability Modeling

Class Diagram

«Variant»

WiFi

«Variant»

MobileBroadband

«VariationPoint»

Communication

ShortInteger BigInteger

Integer

Orthogonal

Variability

Model
Communi-

cation

VP1

MobileBroadband

V2

WiFi

V1

1..*

Class Diagram

WiFi MobileBroadband

Communication

ShortInteger BigInteger

Integer

a) Integrated Variability Modelling b) Orthogonal Variability Modelling

Trace

Link

Variation

Point

Variant

Variability

Constraint

73

Assuring the quality of a variability model thus may become
difficult. As an example, the analysis of feature models (see Sec-
tion 3.2) becomes more challenging when considering cardinali-
ties [17] or it may even reach analyzability limits when using
unbounded cardinality constraints or non-Boolean domains for
feature attributes [18].

3.1.2 Orthogonal Variability Modelling
As introduced above, orthogonal variability models define the
variability of the product line in a dedicated model. The variability
defined in the orthogonal variability model is linked to elements
in the software artifact models that realize product line variability.
Those software artifact models are called base models in this
context [1].

There are only a few modeling constructs used in an orthogonal
variability model. Moreover, the constructs are simple. A varia-

tion point documents a variable item and thus defines “what can
vary” (without saying how it can vary). A variant documents a
concrete variation and is related to a variation point. A variant
thus defines “how something can vary”. In addition, variability

constraints can be defined that specify restrictions about the vari-
ability; e.g., to define permissible combinations of variants in an
application or to define that the selection of one variant requires or
excludes the selection of another variant. The Common Variability

Language
9
, a concrete language for orthogonal variability model-

ling, is currently undergoing “standardization” within the OMG.

Product line variability is also (indirectly) defined in so-called
decision models [19]. The aim of a decision model is to define
how the variability of the software product line should be resolved
during application engineering. We thus discuss decision models
in Section 5.1.

3.1.3 Comparing Variability Modelling Approaches
Integrated variability modeling increases the complexity of the
software artifact models and documentations due the additional
documentation of product line variability within those artifacts.
Moreover, product line variability is redundantly defined in dif-
ferent development artifacts such as requirements models, com-
ponent diagrams, code, or test cases. As a result, understanding
and tracing product line variability between different artifact
models becomes difficult. First, different modelling constructs are
used to represent the variability in the different models. As a
consequence, product line variability is represented differently in
the various models. Second, dependencies between the variability
defined in the different artifact models are typically not docu-
mented explicitly. Third, it is difficult, if not impossible, to keep
the variability defined in the different models consistent.

Orthogonal variability modelling avoids those three significant
drawbacks of integrated variability modeling. In an orthogonal
variability model only the variability of a product line is defined.
Commonalities of the product line are only documented in the
base models – a key difference from “traditional” feature models,
which define both, commonalities and variability. The explicit
differentiation between variation point and variant marks a second
key difference from feature models, which do not provide explicit
modeling concepts for variation points. As a third key difference,
the variability definition in an orthogonal variability model is free
from realization concerns. Therefore, orthogonal variability mod-
els provide a clear separation between product line variability

9 http://www.omgwiki.org/variability/doku.php

(documented in an orthogonal variability model) and software
variability (specified in the base models). When using feature
models, the separation between product line variability and soft-
ware variability often gets blurred [4]. Defining the variability in a
dedicated, orthogonal variability model avoids this problem.

Variability defined in orthogonal variability models, as well as in
feature models must be interrelated with the software develop-
ment artifacts defined in the base models (e.g., see [20], [1]).
Establishing and maintaining trace links between variability mod-
els and the base models is not trivial. A solution for the interrela-
tion is to parameterize the base models to indicate which base
model elements link to which feature [21]. However, this solution
violates the key principle of keeping product line variability sepa-
rate from base models. More recent solutions argue for dedicated
mapping specifications, like in the Common Variability Language
(see Section 3.1.2), which introduces mappings from variation
points and variants to MOF-compliant base models.

Orthogonal variability modeling leads to less complex models
compared to integrated variability modeling. Yet, given the grow-
ing size and complexity of product lines faced in industry, existing
orthogonal variability modeling languages will reach their limits
in handling the size and complexity of those product lines. In a
recent survey, 25% of industry participants reported product lines
that include more than 10,000 variants or features [22]. Early, but
limited attempts for handling large-scale variability models in-
clude the use of textual languages [23] and the definition of ab-
straction layers for product line variability [24].

Open research challenges in variability modelling include:

 Understanding tradeoffs between expressiveness and ana-

lyzability: How to facilitate the selection of the variability
modeling language that fits a given purpose? How to understand
and capture the tradeoffs between expressive languages and the
limitations expressiveness imposes on the analyzability and thus
on the quality of the variability models [18]? The analysis of
such tradeoffs should be based on realistic industrial examples
and validated in sound empirical studies.

 Interrelating variability with base models: The solutions for
interrelating variability defined in an orthogonal variability
model with the software artifacts defined in the base models are
still in their infancy. We need smart approaches for easy to es-
tablish and easy to maintain interrelations between variability
models and software artifacts. Among others, such approaches
should support consistency across the different artifacts.

 Handling large-scale variability models: Handling the com-
plexity of large-scale variability models for complex systems
such as cars, airplanes or power distribution networks is a key
challenge in industry. Academic approaches need more industri-
al strength and have to become more practical and scalable.
There is a wide gulf between what is published and what could
reasonably be used in an industrial setting. So, how to upscale
variability modeling techniques for use in industrial settings?
How to define suitable variability abstraction layers or views?
How to interlink variability defined in the different abstraction
layers or views? How to ensure consistency between the varia-
bility defined at the different layers of abstraction, e.g., the
overall car, the engine and the injection control? How to map
variability defined in different variability models used in differ-
ent organizations across the supply chain?

74

3.2 Analyzing Variability
Variability analysis aims to check and ensure whether certain
properties for a given variability model hold. Examples for prop-
erties to be checked are satisfiability (i.e., whether at least one
application can be derived from the variability model), member-
ship (i.e., whether a given configuration is consistent with the
variability model and thus represents a valid application of the
product line), commonality (i.e., the set of “features” that appear
in all applications), and “dead” features (i.e., features that cannot
be selected for any application).

Manual analysis of variability models is error-prone and infeasible
when facing large-scale variability models. A broad spectrum of
automated variability analysis techniques has thus been proposed.
They can be categorized in three main classes [25], [17]: proposi-
tional-logics-based (using SAT or BDD solvers), constraint-
programming-based (using CSP solvers) and description-logics-
based (using DL reasoners). In general, variability model analyses
exhibit an exponential worst-case execution time. Yet, research
results indicate that in most cases variability model analysis can
be mastered quite successfully using powerful solvers [26].

Over the last years, the SPLE community has collected a large set
of variability models. These models are publically available and
may be used for empirical studies and as benchmark for variabil-
ity analysis. For example, the SPLOT10 repository contains over
400 feature models from both industry and academia.

Open research challenges in variability analysis include:

 Metrics for performance prediction: How to predict the actual
performance of analysis techniques for a given variability mod-
el? What are appropriate metrics to measure the structural com-
plexity or size of variability models? Can empirical relations –
based on such metrics – be established between the structure of
the variability model and the resources required by a solver?
How to leverage performance prediction to select the best solver
for analyzing certain characteristics for a given variability mod-
el? How to develop SPLE-specific heuristics for further improv-
ing analysis performance?

 Large-scale, realistic variability models: Very few large-scale
variability models from industrial practice are publically availa-
ble, even though many such models exist [22]. Most of the
large-scale variability models available (e.g., in the SPLOT re-
pository) have been generated randomly or by mimicking prop-
erties of realistic but rather small models found in the literature
[17]. Using further real-world variability models as benchmarks
(even in an anonymized form) is essential for establishing em-
pirical evidence (in addition to theoretical) for variability mod-
eling and analysis techniques. Making large-scale, real-world
variability models available is thus still an open issue.

4. DOMAIN ENGINEERING

4.1 Product Management
The main task of product management in SPLE is product line
scoping [27]. One facet of product line scoping is the definition of
the product portfolio, i.e., the set of applications offered for a
certain market segment by a particular business unit or company.
Further facets commonly include the definition of which set of
features, as well as which set of domain artifacts can be economi-

10 http://www.splot-research.org/

cally reused [28], [29]. If the scope of a software product line is
defined too broadly, domain artifacts may become too generic and
the effort of realizing them may become too high. As a conse-
quence, the product line may not be economically viable. On the
other hand, if the scope is defined too narrow required features,
functional and quality requirements of many customers may not
be covered and thus only very few application might be derivable
from the product line. Also in this case, the product line may not
be economically viable. Therefore, scoping techniques need to
include techniques for estimating costs and benefits, thereby
enabling the optimization of the product portfolio. Scoping activi-
ties need to involve business as well as technical experts.

In many organizations multiple product lines with shared and
individual properties exist. For example, within Phillips product-
lines are structured according to divisions, business units, and
business lines [30]. Automotive manufacturers structure their
product lines according to lines, body types and countries [31].
Some initial approaches have been proposed for coordinating
multi-level product lines with regard to their commonalities and
variability [24], [32].

Software ecosystems constitute a recent development to general-
ize the notion of multi-software product lines. Software ecosys-
tems open up software product lines to external developers to
extend and use the product line platform or even extend the appli-
cations released by the product line owner [33], [6].

Open research challenges in product management include:

 Scope optimization: How to optimize the scope of a product
line with regard to features and domain artifacts [29]? Besides
considering economic and market aspects, scoping has to con-
sider technical aspects like the life-cycle management of fea-
tures and their realization in domain artifacts (including archi-
tectural complexity) and has to take the economic viability of
the whole product line and its artifacts into account.

 Artifact-interrelations in multi-level product lines: How to
establish trace links across multi-level product line hierarchies
and their artifacts? Existing solutions have addressed individual
artifact types, such as requirements or components. How to
manage trace links across all product line artifacts in a hierar-
chical product line setting? How to bi-directionally synchronize
those trace links and the artifacts, e.g., in case of changes and
evolution of artifacts in a sub-line? How to propagate variability
constraints, which arise in a sub-product line, to a higher level
product line? How to align the product lines of suppliers and
vendors? How to leverage management techniques for multi-
level product lines to handle software ecosystems?

4.2 Domain Requirements Engineering
Domain requirements engineering encompasses all activities for
eliciting, negotiating, documenting, validating, and managing the
common and variable requirements for the product portfolio envi-
sioned by product management. To identify all relevant common
and variable requirements, product line requirements engineers
have to involve a larger number of stakeholders than for single
systems and have to consider additional requirements sources and
constraints [1]. For example, a product line may address multiple
customer groups and thus requirements engineers need to involve
representatives of those groups. Support for the elicitation and
documentation of common and variable requirements has thus
been a focus of past research [34], [35].

75

The amount of commonality and variability defined in domain
requirements engineering has a huge impact on all other product
line engineering activities, both in domain and application engi-
neering. A high percentage of common features and common
domain requirements in a product line typically require lower
effort for designing and realizing the product line. Moreover,
common requirements and domain artifacts are essential to engi-
neering a product line platform that is stable yet flexible enough.
On the other hand, the extent of variable requirements determines
the potential number of different applications that can be derived
from the product line and thus has significant impact on whether
all goals and needs of the envisioned customers and/or market
segments may be satisfied [1]. If a set of differing but related
requirements is identified, two principle ways to treat those re-
quirements exist. Those requirements may be defined as variable
in the domain requirements. Or, those requirements may be har-
monized or generalized and thereby defined as a common domain
requirement. Determining how to treat those requirements is
clearly a tradeoff decision that has to be made in concert with
product management and scoping.

Like in single system development, the requirements of software
product lines tend to change frequently. Surprisingly, research in
product line evolution has mainly focused on the evolution of
variability models, as well as design and realization artifacts, yet
has mostly neglected changes in requirements [36], [37], [38].

Open research challenges in domain requirements engineering
include:

 Interrelation between scoping and requirements engineer-

ing: How to facilitate continuous interactions between domain
requirements engineering and product management? For exam-
ple, additional common or variable requirements elicited during
domain requirements engineering could lead to different scop-
ing decisions. Or, as a result of requirements validation, scoping
decisions could be questioned. More generally, how is scoping
and requirements engineering aligned to support a smooth defi-
nition of an optimal set of common and variable requirements
[1], [29]?

 Interrelation between requirements engineering and other

development activities: In single system development, the def-
inition of the requirements and the definition of the software
architecture are tightly intertwined (e.g., see [39]). Require-
ments serve as the basis for the design of the system architec-
ture. Conversely, findings made during architectural design also
influence the definition of the requirements. How to handle the
intertwining of requirements engineering and design in software
product line engineering?

 Impact of requirements changes: How to assess the impact of
requirements changes on the commonality and variability of the
product line? When and how to evolve domain design and reali-
zation artifacts as a result of requirements changes? How to
evolve a common requirement into a set of variable ones and
how to propagate this change to design, realization, test, etc.? If
we are able to handle the evolution of requirements well, we
might have an easier job with the evolution of other develop-
ment artifacts. Can well-documented requirements changes
guide and structure the changes for other domain and applica-
tion artifacts?

4.3 Domain Design
Domain design encompasses all activities for defining the refer-
ence architecture of the product line. Numerous SPLE design

methods have been advocated in the past [40]. The focus of re-
search has recently shifted from design methods to techniques for
modelling variability in the architecture (see Section 3.1).

Traditionally, product line architecture approaches have been
component-based. In such a setting, variability is realized as
component compositions [41] and/or by introducing variation
points into the components themselves [42].

More recently, aspect-oriented architectures have been proposed
to better address cross-cutting features. Cross-cutting features are
encapsulated into modular units, the aspects, and composed by
means of aspect-oriented mechanisms such as advices, join-points
and point-cuts [43]. Traditional aspect-oriented modelling and
programming concepts may cause problems during software
product line evolution. Anything could be an aspect, and an aspect
could address any kind of modification of a model or program.
Thus, the traditional aspect-oriented modelling concepts are too
generic in a product line setting. To address this problem, re-
searchers have started investigating the use of emerging aspect-
oriented mechanisms, such as XPIs [44].

Most recently, service-oriented architectures have been consid-
ered by the SPLE community. In contrast to a component, which
represents a comprehensive piece of software that is part of the
software product line, a service represents functionality with
associated quality characteristics (typically defined in a service-
level agreement) offered by a service provider via a service inter-
face [45]. The service itself or the service provider can change as
long as the functionality and the service-level agreement remain
the same. Key research results for service-oriented product line
architectures include feature-model-based approaches for service
variability modelling [46] and approaches for reusing and combin-
ing services into service-oriented product line applications [47].

Quality attributes (such as performance, availability, security or
safety) have been considered during variability modelling, e.g.,
using extended feature models [48]. Although variation in quality
requirements has been addressed in domain requirements models,
quality attributes in domain design models have rarely been con-
sidered. An exception is the consideration of performance and
availability in domain design [12].

Open research challenges in domain design include:

 Building resilient service-oriented product lines: How to
design service-oriented reference architectures that are resilient
to dynamic changes in services provided by third parties [49],
[45]? Third party services are typically provided on a contractu-
al basis (e.g., expressed in terms of service level agreements).
Even though contract violation may imply penalties for the ser-
vice provider, this does not guarantee that the functionality and
quality will be delivered. As a consequence, product line engi-
neers have only limited control over changes of provisioned
services in terms of their functionality or quality, as well as their
complete failure or even discontinuation – a key difference to
the use of components [45]. How can adaptation mechanisms
from single system engineering be adapted to a product line set-
ting? How to build variable architectures that can cope with
changes in service availabilities during runtime?

 Delayed design decision and variability: Decisions about
product line variability, i.e., decisions made by product man-
agement, and architectural decisions, i.e., fundamental decisions
made during the design of the reference architecture often over-
lap or influence each other [50]. During domain design, archi-
tects may decide to delay design decisions to application engi-

76

neering. For each delayed design decision they define a varia-
tion point and a set of design alternatives (variants). How to
manage the interaction between such delayed design decisions
and product line variability in the product line architecture?

 SPLE and cloud computing: What are the consequences of
cloud computing on SPLE? How can SPLE architectures be
made cloud-aware? Can we build on research results from sin-
gle system development to deal with cloud-awareness in an
SPLE setting?

 Variability in quality attributes: Introducing variability in
quality attributes on top of functional variability has a signifi-
cant impact on the product line architecture, especially since
quality attributes are typically the key driver for architectural
decisions. How to handle variability in quality attributes during
domain design? How to take tradeoff decisions between varia-
bility in functionality and in quality attributes when designing
the software product line architecture?

4.4 Domain Realization
Domain realization deals with the detailed design and the imple-
mentation of the domain artifacts, for example, as reusable com-
ponents or services. Variability can be realized using the capabili-
ties of existing programming languages, compilers, and linkers
[6]. Approaches include the use of inheritance (e.g., implementing
alternative sub-classes for an abstract super-class), aspect-oriented
programming (e.g., the weaving of alternative code), conditional
compilation (e.g., using preprocessor directives such as #ifdef),
and binary replacement (e.g., providing the linker with alternative
implementations of libraries). Among those approaches, condi-
tional compilation has received significant attention with research
outcomes addressing type-safe feature modularity [51] and the
treatment of feature dependencies [52].

To explicitly handle feature modularity and feature dependencies
(or interactions) at the language level, new types of programming
languages have been proposed that consider features and variabil-
ity as first-class concepts. Feature-oriented programming (FOP)
is one example. FOP supports the flexible and modular composi-
tion of systems from individual features. In FOP, “a feature mod-
ule encapsulates changes that are made to a program in order to
add a new capability or functionality” [53]. In delta-oriented

programming, a compositional programming language, a product
line is realized by a core module and a set of delta modules. The
core module implements a valid application developed with single
system development techniques. Delta modules specify changes to
be applied to the core module to implement additional applica-
tions. Changes to the core model include the adding of additional
code (as in FOP), but also removing and even the modification of
code [54].

The fact that variability often cross-cuts the decomposition struc-
ture of the code is a shared concern in domain realization, inde-
pendent of the programming language used [51], [53]. Cross-
cutting variability is addressed by introducing additional composi-
tion operations on top of sequential composition [53] or by treat-
ing features as aspects [55].

Open research challenges in domain realization include:

 Mapping of product line variability and software variabil-

ity: The realization of product line variability often affects more
than one code fragment and thus cross-cuts realization artifacts.
Conversely, a realization artifact can (in parts) implement more
than one product line variability. Thus, the realization of varia-

bility typically results in an m:n mapping of variability and code
fragments. How to handle this m:n mapping? How to support
the step-wise refinement of product line variability to software
variability? Can scripting languages be extended to manage the
step-wise refinement and the m:n mapping between product line
variability and software variability?

4.5 Domain Quality Assurance
Quality assurance of domain artifacts is essential for successful
product line engineering. A fault in a domain artifact may affect
all applications of the product line in which this artifact is reused.
Quality assurance techniques from single-system engineering
cannot be directly applied to domain artifacts. As an example, a
domain requirements specification can define a variable require-
ment r, that is related to variant v1, and a variable requirement r
related to variant v2. Performing a consistency check of the do-
main requirements specification R = {r, r} using quality assur-
ance techniques from single system development would identify a
contradiction between r and r. Yet, if the variants v1 and v2 are
defined to be mutually exclusive, the contradicting requirements
can never be implemented together in the same application. Thus,
the two requirements will never cause an inconsistency. A central
challenge for quality assurance techniques in domain engineering
is thus the consideration of product line variability [1], [56].

A vast amount of research has focused on strategies and tech-
niques for quality assurance in the presence of variability, includ-
ing formal verification, static analysis, and (dynamic) testing. The
consistency of the variability model is a prerequisite for most
domain quality assurance techniques and is established using
variability analysis techniques as discussed in Section 3.2.

4.5.1 Formal Verification
Formal verification of product line artifacts has been the focus of
numerous research contributions. Prominent verification tech-
niques from single systems engineering have been adapted to the
software product line setting [57], including type checking, model
checking, and theorem proving. To handle variability during
verification, various strategies have been followed, such as check-
ing representative applications, checking features in isolation, or
aiming to check all potential applications of the product line [56].

Even though existing product line verification techniques may
indicate why they determined an inconsistency, these techniques
typically do not provide support for identifying the root cause for
a given inconsistency. For example, a model checker can provide
an execution trace for an observed violation but does not point out
which part of the specification actually led to the invalid trace. Or,
a theorem prover can indicate the part of the specification (formu-
la) that could not be proven, while the reason for that may lie
elsewhere. It thus can become very challenging for product line
engineers to locate and identify a defect in the commonality or
variability, especially given the size of product lines in industry.

Moreover, inconsistencies not only occur within an individual
artifact model but also between models. Product line verification
has started addressing inter-model inconsistencies. However, so
far only a limited set of modelling views has been considered,
such as use cases, activity diagrams, and scenarios [58].

4.5.2 Domain Testing
As in the development of single systems, the aim of testing in
SPLE is to execute the software to uncover the evidence of de-
fects. Research on domain testing has delivered techniques for
developing reusable test cases in domain engineering, and reusing

77

and executing these test cases in application engineering (see
Section 5.4). Key results include techniques for defining test cases
for different types of tests, including system, integration, and
performance tests [59], [60].

In addition, domain testing aims to uncover evidence of defects in
domain artifacts before these artifacts are reused in application
engineering. Due to the variability defined in the domain artifacts,
testing all potential product line applications (i.e., all potential
combination of the common and variable artifacts) during domain
engineering is impossible [61]. Typical domain testing strategies
thus reduce the number of artifact combinations by using pair-
wise [62] or t-wise testing strategies [63] or by focusing on im-
portant features and feature combinations [64].

Open research challenges in domain quality assurance include:

 Causes for failures: Initial progress has been made to identify
the root causes for inconsistencies in variability models [65].
How to extend such approaches to surface root causes for faults
and failures in other domain artifacts such as requirements, de-
sign artifacts, and code (cf., [66])?

 Inter-model verification: Current product line verification
techniques mainly focus on single artifact models. How to veri-
fy inter-model consistency during domain engineering?

 Empirical evidence: Controlled experimentation is an estab-
lished research methodology to evaluate testing techniques in
single system development. With a few exceptions, product line
testing research has not yet provided reproducible empirical re-
sults [59]. How to establish empirical evidence of the efficiency
and effectiveness of domain testing techniques?

 Empowering additional quality assurance techniques during

domain engineering: So far, research for domain quality assur-
ance has focused on formal verification and testing. Almost no
research contributions exist to tailor or extend other successful
quality assurance techniques from single software development
to the product line setting such as reviews, walkthroughs, or
perspective-based reading. This is surprising, since such tech-
niques have proven to be very effective in single system devel-
opment. So, can reviews, walkthroughs and perspective-based
reading techniques be applied in a software product line setting?
Is an adaptation of those techniques needed? How to facilitate
the validation of variability and commonality and the associated
trade-off decisions? Can we gather empirical evidence of the
effectiveness of those quality assurance techniques in an SPLE
setting?

5. APPLICATION ENGINEERING

5.1 Application Requirements Engineering
During application requirements engineering, the requirements for
a specific application are defined. In general, customer- and appli-
cation-specific requirements should be satisfied by reusing the
domain requirements and exploiting the variability defined for the
software product line. To this end, the variability is bound to
application-specific features (or variants) to satisfy the applica-
tion-specific requirements. Application variability models have
been proposed for documenting the application-specific binding of
the product line variability [1], [8].

Many publications in the field convey the impression that a con-
crete application of the product line can be completely derived
from the domain artifacts and thus reduce the application deriva-
tion process to a feature selection process. For example, decision

models define the decisions to be taken to derive an application of
the product line [19]. To this end, a decision model documents the
possible decisions, their impacts as well as their ordering and,
possibly, their pre-conditions. Variability is indirectly modelled in
a decision model through the decisions that need to be taken to
resolve variability. To guide users during these decision process-
es, tools have been suggested [67]. In the extreme, fully automat-
ed approaches have been devised that aim at optimal feature selec-
tion; e.g., using search-based techniques [68].

In practice, individual applications often cannot be fully realized
by reusing domain artifacts alone [8], [9]. Quite often, there are
some application-specific requirements that cannot be satisfied by
reusing domain requirements and thus have to be realized during
application engineering. The handling of application-specific
deviations from product line requirements has received very little
attention despite its frequent occurrence in practice. A potential
solution is to define such application-specific deviations as appli-
cation-specific variation and document this variation, in addition
to the variability bindings, in the application variability model [8].

Open challenges in application requirements engineering are:

 Eliciting application-specific requirements: Some early re-
search contributions exist that support the elicitation of applica-
tion-specific requirements. The mere selection of pre-defined
features is certainly not a satisfying answer. So how to make use
of variability during requirements elicitation? How to enrich or
adapt traditional elicitation approaches to leverage product line
variability? How to extend decision-model-based approaches to
include application-specific deviations from domain require-
ments?

 Handling application-specific deviations: Customer-specific

requirements that cannot be fulfilled by the commonality or the
variability defined in the product line (i.e., which cannot be
mapped to domain artifacts) have to be documented and man-
aged in an appropriate way. How to document application-
specific extensions to requirements? How to check their impact
on the defined domain requirements? How to map application-
specific deviations back to the domain requirements without
impeding the efficiency of reusing product line artifacts? How
to evaluate and predict the consequences of application-specific
requirements deviations early enough? How to evaluate poten-
tial alternatives with regard to the domain requirements and the
variability of the product line? How to evaluate the impact of
application-specific deviations on later application engineering
phases like design, testing and maintenance?

5.2 Application Design
Based on the application requirements, an application-specific
architecture is derived from the domain architecture. The applica-
tion architecture is typically a specialization of the reference
architecture of the product line [1].

During application design, the design alternatives that have been
identified during domain design and that have been documented
as variability in the product line platform are evaluated with re-
gard to the application requirements. The alternatives that fit best
are chosen accordingly. Yet, in the case of application-specific
deviations (see above), additional design decisions may have to be
taken in order to derive an architecture that satisfies the applica-
tion-specific requirements, or, the architecture might even have to
be extended or adjusted accordingly. Even an evolution of the
product line reference architecture might be triggered.

78

Open research challenges in application design include:

 Documentation of application design alternatives: Applica-
tion-specific design decisions and the chosen design alternatives
are documented using the variation points defined in the refer-
ence architecture. If application-specific design alternatives
caused by application-specific deviations are required, can those
also be documented by variation points [69]? If not, should new,
application-specific architectural variation points be introduced
and related to the application variability model to make the ex-
tensions visible and traceable?

 Impact of application-specific extensions: How to evaluate
potential application-specific architectural adaptations? How to
manage such adaptations in application engineering but also
during product line evolution? How to evaluate the effect of
such adaptation on domain realization and testing? How to
choose adaptations with minimal impact?

5.3 Application Realization
During application realization, code artifacts are derived and
adjusted based on the application architecture and the application-
specific requirements. For example, software configuration tech-
niques are employed to facilitate the parameterization and the
composition of the reusable code modules.

Research in application realization delivered techniques for creat-
ing consistent configurations of code modules considering various
types of configuration files, distributed configuration knowledge
[70] and technical configuration constraints [71]. An alternative
approach to software configuration is code generation [72]. Code
generation techniques for product line applications have mainly
adapted techniques from model-driven development and domain-
specific languages [16].

Configurable or generative software product lines, a subclass of
software product lines, support the derivation of individual appli-
cations without programming glue code or modifying the domain
components [70]. As mentioned already several times, such an
ideal approach is often not possible in practice. In other words,
application-specific coding and adjustments are usually required.

Open research challenges in application realization include:

 Framing application-specific programming: The derivation
of application code from reusable software artifacts in a soft-
ware product line setting is often still a time-consuming and ex-
pensive activity in industry, because it usually requires addi-
tional, application-specific programming [73]. How can such
application-specific programming be framed to avoid undesired
side effects? What is a good modular detailed design for appli-
cation-specific extensions? How to provide programmers with
the relevant software product line design information in order to
foster product line compliant extensions?

 Extended configuration mechanism: Can existing product line
configuration approaches be extended to handle application-
specific code fragments without changing the underlying do-
main artifacts? How should such extensions be documented?
How to assess the side effects of such extensions on the config-
urations? Do extensions lead to an inconsistency in a configura-
tion, or may they even neglect a configuration?

 Product line development environments: Besides the indus-
trial importance and the very positive experience of applying
software product lines in industry, there are almost no product
line specific development environments (e.g., IDEs). How to

extend commercial IDEs to enable their smooth usage in prod-
uct line settings? How to support the programmers in making
informed trade-off-decisions between application-specific ex-
tensions and the principles and guidelines defined for the prod-
uct line platform during domain engineering?

5.4 Application Quality Assurance
Research for application quality assurance in SPLE has focused
on application testing. In general, product line testing techniques
advocate the early testing during domain engineering (see Section
4.5). Domain testing can uncover the evidence for critical faults,
such that these faults can be corrected before they affect several
applications of the product line [61]. However, domain testing is
not sufficient. Due to the variability of the reusable artifacts, it is
impossible – except for trivial product lines – to comprehensively
test all potential applications during domain engineering. Moreo-
ver, if specific variants are developed based on concrete customer
demands (e.g., see the discussion in Section 4.2) such variants and
their potential side effects can only be tested during application
engineering.

Research on application testing has mainly delivered techniques
for deriving test cases from reusable test artifacts developed in
domain engineering [59], [60]. Some application testing tech-
niques aim at testing application-specific adaptations of domain
artifacts. In addition, they aim to minimize the retesting of parts
that have already been tested for another application of the prod-
uct line, thereby representing a special case of regression testing
[74], [59]. However, those techniques do not consider what has
already been tested during domain engineering.

Open research challenges in application testing include:

 Minimizing test redundancy: Test artifacts and results ob-
tained in domain engineering should be considered in applica-
tion testing to avoid the replication of test executions which are
not really required. However, systematic approaches for consid-
ering test results from domain engineering during application
engineering are rare. Extensions for testing techniques which
avoid unnecessary redundancy between domain and application
engineering tests are still missing. Similar, how to consider tests
already executed for other applications during application engi-
neering? How to formally assess side effects of application-
specific bindings and extensions to determine unrequired as well
as required test re-executions for a given application?

 Correct variability bindings: The variants bound for a specific
application have to conform to the definition in the application
variability model. There are several reasons for checking the
correct binding of the variability. For example, correct binding
avoids delivering features in an application the customer hasn’t
paid for. Thus, evidence should be established that the derived
application includes all features defined in the application varia-
bility model, but not more [13], [59]. Or, the incorporation of
non-required features may increase the vulnerability for attacks.
For security reasons, there should not be any non-required fea-
tures (and thus non-required code) in a product line application.
So, how to ensure that only selected variants are bound in an
application? And, how to formally prove that the variability
bindings are correct? How to consider the different binding
times during such proves, e.g., during development, compila-
tion, linking and run-time?

 Empowering additional quality assurance techniques: So far,
research for application quality assurance has mainly focused on
testing. As for domain engineering, in application engineering

79

almost no research contribution exist which lifts other quality
assurance techniques from single software development to ap-
plication engineering. How to deliver effective and efficient ap-
plication quality assurance techniques, such as reviews,
walkthroughs or perspective-based reading techniques, while
making use of domain quality assurance results? How to con-
sider application-specific variability bindings as well as applica-
tion-specific extensions during application quality assurance?

 Empirical evidence: Empirical results on efficiency and effec-
tiveness of application testing techniques and other quality as-
surance techniques are missing. Thus, the challenges sketched
for domain quality assurance techniques in Section 4.5 also ap-
ply for application quality assurance techniques.

6. EMERGING RESEARCH

CHALLENGES
SPLE research has produced very impressive results over the past
seven years. Some research areas, like variability modelling and
formal verification, have attracted many researchers to tackle
actual challenges. Other research areas of high practical relevance,
like product line quality assurance techniques, scoping, domain
design, application requirements engineering, or application de-
sign and realization have largely been neglected. In the previous
sections we summarized the major research achievements and
sketched open research issues and challenges in variability model-
ing and analysis, domain engineering and application engineering.

In addition to those challenges, major trends in software engineer-
ing and technology lead to new research challenges. We elaborate
on those challenges in this section.

6.1 Variability Management in Non-Product-

Line Settings
In contrast to “opportunistic” and “ad-hoc” software reuse ap-
proaches, SPLE follows a proactive, strategy-driven reuse ap-
proach for software artifacts. Reuse is planned at all levels of the
organization and throughout all phases of domain and application
engineering. However, there are cases in which a strategic and
planned definition of a product line is not economically viable or
not even possible. Beyond the investment in technical design and
development of domain artifacts, the introduction of SPLE usually
requires a change in the processes and the organization structure
(see Section Fehler! Verweisquelle konnte nicht gefunden

werden.). This typically requires significant investments. Creating
convincing business cases which demonstrate that the introduction
of a SPLE approach will lead to the expected return-on-
investment is often not easy, especially since lower maintenance
costs are hard to predict. Therefore, and for many other reasons,
instead of following an SPLE approach, software systems are
quite often created by “cloning” existing ones, i.e., by copying
and modifying requirements, architecture and code of preceding
systems. We strongly believe that in the future, the number of
cases in which the “copy-and-modify” (aka. “clone-and-own”)
approach is used will even increase. Among others, reasons for
this are more frequent demand changes, the need to adapt the
applications to new technology and service offerings at run-time,
or the rapid changes of the system context and the system re-
quirements. All of those will make a prediction of the scope of a
potential product line much harder if not impossible.

So, how to systematically manage the variability of related, single
applications in a non-product line setting? How to systematically
identify and manage the commonalities, variability and applica-
tion-specific artifacts? The principles of product line variability

management can also be applied in such settings and can improve
current industrial practice significantly. For example, software
configuration management tools may be extended with explicit
variability management facilities (e.g., see [75]). So, how to facili-
tate the identification and management of variability in a non-
product line setting? For instance, how to derive variability infor-
mation based on “copy-and-modify” activities executed by the
engineers?

6.2 Leveraging Instantaneous Feedback
Cloud computing aims to provide seamless adaptations of the
infrastructure in real-time and facilitates measuring infrastructure
usage and system execution parameters in real-time. When com-
bined with the Internet of Things [76], system execution data can
be enriched with data about the system context obtained by thou-
sands of sensors. Big data analytics facilitates turning all this data
into potential actionable insights with very low latency.

Together these emerging technologies empower software devel-
opers and operators to continuously adjust the system based on
instantaneous feedback obtained from system execution and the
system context [77]. As a consequence, the tension between up-
front investment and planning of a software product line and the
increased agility fostered by instantaneous feedback and continu-
ous deployment must be reconciled.

Early experience indicates that for a reactive product line setting
combining agile techniques and SPLE works well [78] and that
agile principles can be applied during application engineering
[79]. How to leverage this experience in order to master the dy-
namicity resulting from big data analytics and cloud technology?
Can SPLE principles be applied in such highly dynamic settings?
Can changes of product line variability and commonalities be
automatically inferred from analyzing operational and contextual
data? And if so, how to adjust the overall product line engineering
setting to master such highly frequent changes?

6.3 Open World Assumption
Driven by the Internet of Services, the Internet of Things, and the
emergence of new highly distributed systems, such as cyber-
physical systems and ultra-large-scale systems [80], the need for
software to live in an open and highly dynamic world is becoming
mandatory. Traditionally, software development was based on the
closed world assumption, which means that the boundary between
the system and its context is known during design-time and that
the context does not change while the system is executing [81]. In
contrast, open world systems cannot be specified completely
during design-time due to incomplete knowledge about, for in-
stance, services and their actual quality provided during run-time,
sensors available during system operation to obtain environment
information, the availability of other systems to interact and coop-
erate with, as well as the amount and quality of data obtained. The
development of future systems thus has to live with uncertainty in
the specifications. During operation, such systems must frequently
adapt to the dynamic changes faced during run-time [82], [45].

Dynamic software product lines (DSPLs) aim to address context
changes during system execution by postponing variability bind-
ing to run-time. An application is empowered to dynamically
reconfigure itself by choosing at run-time an appropriate binding
predefined in the product line variability. Research in dynamic
software product lines has focused on employing variability mod-
els to define the configuration space of a product line application,
thereby describing possible and permissible run-time adaptations
[83]. DSPLs are applicable if future context conditions are known

80

during design-time [84], [85]. Unfortunately, for cyber-physical
and ultra-large-scale systems foreseeing future context conditions
and defining appropriate adaptation options during design-time is
often not possible.

For addressing the open world assumption in SPLE major re-
search challenges have to be mastered, including:

 Exploration of autonomic computing principles: Autonomic
computing provides fundamental models, algorithms and tech-
niques to adjust systems to known and unknown situations dur-
ing their execution. Can such approaches be used in a software
product line setting? What kinds of adaptations are required to
make them fit for an SPLE setting? For example, learning and
reasoning techniques are applied in control loops of adaptive
systems to deal with unknown situations (e.g., [86], [87]). Can
such principles be applied in SPLE settings, e.g., to update vari-
ability models and product line artifacts to unknown situations
in a similar way? Or, can improved evolution techniques for
software ecosystems handle such situations [88]?

 Reasoning in the presence of variability and uncertainty: To
deal with gaps in the specification and architecture during de-
sign-time, formal reasoning mechanisms and the underlying
models have to be extended to deal with uncertainty and varia-
bility at the same time. Such extended modelling and reasoning
approaches could certainly contribute partial solutions for well-
defined cases, but will hardly scale to solve all the problems as-
sociated with the openness of cyber-physical and ultra-large-
scale systems.

 Human-in-the-loop adaptations: In cockpits and control tow-
ers, humans (e.g., the operators) are involved to interpret data,
to judge the criticality of a given situation and to decide during
run-time about the adaption of an application as a reaction to
foreseeable and unforeseeable changes and exceptions. Can we
learn from such principles to develop solutions which can adjust
product line applications during run-time to unforeseeable situa-
tions? Do such principles provide a path for developing system
adaptations in which the closed world assumption does not hold
anymore?

 Run-time quality assurance: Adaptations, especially in an
open setting, are prone to specific failures that do not occur in
closed settings. For example, run-time decisions and adaptations
may lead to conflicting, faulty or even inconsistent configura-
tions. To address (context) situations unknown during design-
time, quality can only be assured partially and under certain as-
sumptions. How to model such assumptions? How to check if
the assumptions hold in the actual situation? Or, even more gen-
erally, how to ensure the quality of an application during run-
time if not all potential adaptations of the application are known
and predefined? Can run-time quality assurance techniques from
service engineering be adjusted to such settings?

7. CONCLUSIONS
We surveyed over 600 relevant papers published in established
conferences and journals over the past seven years. Overall, the
research progress achieved is impressive! For example, significant
contributions have been established in the areas of variability
modelling and in formally verifying product line artifacts. Even
so, many research challenges remain. We summarized the re-
search achievements and the open challenges using a standardized
framework for software product line engineering.

Many of the open research challenges have existed for already
quite some time and are highly relevant for industry. It is thus a
bit surprising that they have not attracted more research efforts.
Examples of such challenges include product line quality assur-
ance techniques, scoping, domain design, application require-
ments engineering, as well as application design and realization.

In addition, we highlighted three trends that will have an impact
on SPLE research in the next decade: (1) managing variability in
non-product-line settings, (2) leveraging instantaneous feedback
from big data and cloud computing during SPLE, (3) addressing
the open world assumption in software product line settings.
Those trends clearly indicate that research opportunities arise at
the intersection between software product line engineering and
service-oriented computing, cloud computing, big data analytics,
autonomic computing and adaptive systems, to name the most
important ones. This in turn requires closer cooperation between
the currently often separated research communities. We should
thus stimulate multi-disciplinary forums (such as workshops and
conferences) and joint research projects as key instruments for
fostering the exchange and the cooperation between the different
research communities.

8. ACKNOWLEDGMENTS
Reflecting on the achievements and open research challenges in
the very active field of software product line engineering and
variability management has been an inspiring endeavor. This
paper greatly benefited from the very constructive and valuable
feedback received from David Garlan, Linda Northrop, Klaus
Schmid and Frank van der Linden on an earlier version of the
paper. Thanks a million to all of you! We also like to thank the
members of our research group for the support provided, especial-
ly André Heuer, Richard Pohl and Vanessa Stricker.

This work has been partially supported by the DFG (German
Research Foundation) under grant PO 607/4-1 (KOPI).

9. REFERENCES

[1] K. Pohl, G. Böckle and F. van der Linden, Software Product
Line Engineering: Foundations, Principles, and Techniques,
Berlin, Heidelberg, New York: Springer, 2005.

[2] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, Reading, USA: Addison-Wesley,
2001.

[3] J. Coplien, D. Hoffmann and D. Weiss, "Commonality and
Variability in Software Engineering," IEEE Software, vol.
15, no. 6, pp. 37-45, 1998.

[4] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens and G.
Saval, "Disambiguating the Documentation of Variability in
Software Product Lines: A Separation of Concerns,
Formalization and Automated Analysis," in 15th Int'l

Requirements Engineering Conference (RE 2007), New
Delhi, India, 2007.

[5] F. van der Linden, K. Schmid and E. Rommes, Software
Product Lines in Action, Berlin, Heidelberg, New York:
Springer, 2007.

[6] R. Capilla, J. Bosch and K.-C. Kang, Systems and Software
Variability Management, Heidelberg, New York: Springer,
2013.

[7] K. Schmid and M. Verlage, "The Economic Impact of

81

Product Line Adoption and Evolution," IEEE Software, vol.
19, no. 6, pp. 50-57, 2002.

[8] G. Halmans, K. Pohl and E. Sikora, "Documenting
Application-Specific Adaptations in Software Product Line
Engineering," in 20th Int'l Conference on Advanced

Information Systems Engineering (CAiSE 2008), Montpellier,
France, 2008.

[9] S. Adam and K. Schmid, "Effective Requirements Elicitation
in Product Line Application Engineering: An Experiment," in
19th Int'l Working Conference on Requirements

Engineering: Foundation for Software Quality (REFSQ

2013), Essen, Germany, 2013.

[10] K. Schmid and E. Santana de Almeida, "Product Line
Engineering," IEEE Software, vol. 30, no. 4, pp. 24-30, 2013.

[11] M. Svahnberg, J. van Gurp and J. Bosch, "A Taxonomy of
Variability Realization Techniques," Software: Practice and

Experience, vol. 35, no. 8, pp. 705-754, 2005.

[12] M. Galster, D. Weyns, D. Tofan, B. Michalek and P.
Avgeriou, "Variability in Software Systems: A Systematic
Literature Review," IEEE Trans. Softw. Eng., available
online 2013.

[13] A. Reuys, S. Reis, E. Kamsties and K. Pohl, "The ScenTED
Method for Testing Software Product Lines," in Software

Product Lines: Research Issues in Engineering and

Management, Berlin, Heidelberg, Springer, 2006, pp. 479-
520.

[14] H. Heuer, V. Stricker, C. Budnik, S. Konrad, K. Lauenroth
and K. Pohl, "Defining Variability in Activity Diagrams and
Petri Nets," Sci. Comput. Program., vol. 78, no. 12, pp.
2414-2432, 2013.

[15] P. Shaker, J. Atlee and S. Wang, "A Feature-oriented
Requirements Modelling Language," in 20th Int'l

Requirements Engineering Conference (RE 2012), Chicago,
USA, 2012.

[16] M. Völter and E. Visser, "Product Line Engineering Using
Domain-Specific Languages," in 15th Int'l Software Product

Line Conference (SPLC 2011), Munich, Germany, 2011.

[17] D. Benavides, S. Segura and A. Ruiz-Cortés, "Automated
Analysis of Feature Models 20 Years Later: A Literature
Review," Inform. Sys., vol. 35, no. 6, pp. 615-636, 2010.

[18] H. Eichelberger, C. Kröher and K. Schmid, "An Analysis of
Variability Modeling Concepts: Expressiveness vs.
Analyzability," in 13th Int'l Conference on Software Reuse

(ICSR 2013), Pisa, Italy, 2013.

[19] D. Dhungana, P. Grünbacher and R. Rabiser, "The DOPLER
Meta-Tool for Decision-oriented Variability Modeling: A
Multiple Case Study," Autom. Softw. Eng., vol. 18, no. 1, pp.
77-114, 2011.

[20] F. Heidenreich, P. Sanchez, J. Santos and others, "Relating
Feature Models to Other Models of a Software Product
Line," in Transactions on Aspect-Oriented Software

Development VII, Heidelberg, Springer, 2010, pp. 69-114.

[21] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A.
Legay and J.-F. Raskin, "Featured Transition Systems:
Foundations for Verifying Variability-Intensive Systems and

Their Application to LTL Model Checking," IEEE Trans.

Softw. Eng., vol. 39, no. 8, pp. 1069-1089, 2013.

[22] T. Berger, R. Rublack, D. Nair, J. Atlee, M. Becker, K.
Czarnecki and A. Wasowski, "A Survey of Variability
Modeling in Industrial Practice," in 7th Int'l Workshop on

Variability Modelling of Software-intensive Systems (VaMoS

2013), Pisa, Italy, 2013.

[23] H. Eichelberger and K. Schmid, "A Systematic Analysis of
Textual Variability Modeling Languages," in 17th Int'l

Software Product Line Conference (SPLC 2013), Tokyo,
Japan, 2013.

[24] M. Bittner, M.-O. Reiser and M. Weber, "A Case Study on
Tool-Supported Multi-level Requirements Management in
Complex Product Families," in 16th Int'l Working

Conference Requirements Engineering: Foundation for

Software Quality (REfSQ 2010), Essen, Germany, 2010.

[25] D. Benavides, A. Felfernig, J. Galindo and F. Reinfrank,
"Automated Analysis in Feature Modelling and Product
Configuration," in 13th Int'l Conference on Software Reuse

(ICSR 2013), Pisa, Italy, 2013.

[26] R. Pohl, V. Stricker and K. Pohl, "Measuring the Structural
Complexity of Feature Models," in 28th Int'l Conference on

Automated Software Engineering (ASE 2013), Palo Alto,
USA, 2013.

[27] A. Helferich, K. Schmid and G. Herzwurm, "Product
Management for Software Product Lines: An Unsolved
Problem?," Commun. ACM, vol. 49, no. 12, pp. 66-67, 2006.

[28] I. John and M. Eisenbarth, "A Decade of Scoping: A
Survey," in 13th Int'l Software Product Line Conference

(SPLC 2009), San Francisco, USA, 2009.

[29] J. Gillain, S. Faulkner, P. Heymans, I. Jureta and M. Snoeck,
"Product Portfolio Scope Optimization based on Features and
Goals," in 16th Int'l Software Product Line Conference

(SPLC 2012), Salvador, Brazil, 2012.

[30] R. van Ommering and J. Bosch, "Widening the Scope of
Software Product Lines: From Variation to Composition," in
2nd Int'l Software Product Line Conference (SPLC), San
Diego, USA, 2002.

[31] S. Bühne, K. Lauenroth, K. Pohl and M. Weber, "Modelling
Features for Multi-Criteria Product-Lines in the Automotive
Industry," in ICSE Workshop on Software Engineering for

Automotive Systems (SEAS 2004), Edinburgh, UK, 2004.

[32] G. Holl, P. Grünbacher and R. Rabiser, "A Systematic
Review and an Expert Survey on Capabilities Supporting
Multi Product Lines," Information and Software Technology,

vol. 54, no. 8, pp. 828-852, 2012.

[33] J. Bosch and P. Bosch-Sijtsema, "From Integration to
Composition: On the Impact of Software Product Lines,
Global Development and Ecosystems," Journal of Systems

and Software, vol. 83, no. 1, pp. 67-76, 2010.

[34] N. Niu and S. Easterbrook, "Extracting and Modeling
Product Line Functional Requirements," in 16th Int'l

Requirements Engineering Conference (RE 2008),
Barcelona, Spain, 2008.

[35] E. Bagheri, F. Ensan and D. Gasevic, "Decision Support for

82

the Software Product Line Domain Engineering Lifecycle,"
Automated Software Engineering, vol. 19, no. 3, pp. 335-377,
2012.

[36] C. Seidl, F. Heidenreich and U. Aßmann, "Co-evolution of
Models and Feature Mapping in Software Product Lines," in
16th Int'l Software Product Line Conference (SPLC 2012),
Salvador, Brazil, 2012.

[37] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa and P.
Borba, "Investigating the Safe Evolution of Software Product
Lines," in 10th Int'l Conference on Generative Progr. and

Component Eng. (GPCE 2011), Portland, USA, 2011.

[38] X. Peng, Y. Yu and W. Zhao, "Analyzing Evolution of
Variability in a Software Product Line: From Contexts and
Requirements to Features," Information and Software

Technology, vol. 53, no. 7, pp. 707-721, 2011.

[39] K. Pohl, Requirements Engineering: Fundamentals,
Principles, and Techniques, Heidelberg: Springer, 2010.

[40] M. Matinlassi, "Comparison of Software Product Line
Architecture Design Methods: COPA, FAST, FORM, KobrA
and QADA," in 26th Int'l Conference on Software

Engineering (ICSE 2004), Edinburgh, UK, 2004.

[41] M. Janota and G. Botterweck, "Formal Approach to
Integrating Feature and Architecture Models," in 11th Int'l

Conference on Fundamental Approaches to Software

Engineering (FASE 2008), Budapest, Hungary, 2008.

[42] A. Haber, H. Rendel, B. Rumpe, I. Schaefer and F. van der
Linden, "Hierarchical Variability Modeling for Software
Architectures," in 15th Int'l Software Product Line

Conference (SPLC 2011), Munich, Germany, 2011.

[43] E. Figueiredo, N. Cacho, C. Sant'Anna and others, "Evolving
Software Product Lines with Aspects: An Empirical Study on
Design Stability," in 30th Int'l Conference on Software

Engineering (ICSE 2008), Leipzig, Germany, 2008.

[44] M. Dias, L. Tizzei, C. F. Rubira, A. Garcia and J. Lee,
"Leveraging Aspect-Connectors to Improve Stability of
Product-Line Variabilities," in 4th Int'l Workshop on

Variability Modelling of Software-Intensive Systems (VaMoS

2010), Linz, Austria, 2010.

[45] E. Di Nitto, C. Ghezzi, A. Metzger, M. P. Papazoglou and K.
Pohl, "A Journey to Highly Dynamic, Self-adaptive Service-
based Applications," Autom. Softw. Eng., vol. 15, no. 3-4, pp.
313-341, 2008.

[46] B. Mohabbati, M. Asadi, D. Gasevic, M. Hatala and H.
Müller, "Combining Service-orientation and Software
Product Line Engineering: A Systematic Mapping Study,"
Information and Software Technology, vol. 55, no. 11, pp.
1845-1859, 2013.

[47] J. Lee, D. Muthig and M. Naab, "A Feature-oriented
Approach for Developing Reusable Product Line Assets of
Service-based Systems," Journal of Systems and Software,

vol. 83, no. 7, pp. 1123-1136, 2010.

[48] V. Myllärniemi, M. Raatikainen and T. Männistö, "A
Systematically Conducted Literature Review: Quality
Attribute Variability in Software Product Lines," in 16th Int'l

Software Product Line Conference (SPC 2012), Salvador,
Brazil, 2012.

[49] J. Camara, R. de Lemos, C. Ghezzi and A. Lopes,
Assurances for Self-Adaptive Systems, Heidelberg: Springer,
2013.

[50] I. Lytra, H. Eichelberger, H. Tran, G. Leyh, K. Schmid and
U. Zdun, "On the Interdependence and Integration of
Variability and Architectural Decisions," in 8th Int'l

Workshop on Variability Modelling of Software-intensive

Systems (VaMoS 2014), Sophia Antipolis, France, 2014.

[51] C. Kästner, K. Ostermann and S. Erdweg, "A Variability-
aware Module System," in Int'l Conference on Object

Oriented Programming Systems Languages and Applications

(OOPSLA 2012), Tucson, USA, 2012.

[52] M. Ribeiro, F. Queiroz, P. Borba, T. Toledo, C. Brabrand and
S. Soares, "On the Impact of Feature Dependencies when
Maintaining Preprocessor-based Software Product Lines," in
10th Int'l Conference on Generative Progr. and Component

Eng. (GPCE 2012), Portland, USA, 2012.

[53] D. Batory, P. Höfner and J. Kim, "Feature Interactions,
Products, and Composition," in 10th Int'l Conference on

Generative Progr. and Component Eng. (GPCE 2011),
Portland, USA, 2011.

[54] A. Haber, K. Hölldobler, C. Kolassa, M. Look, B. Rumpe, K.
Müller and I. Schaefer, "Engineering Delta Modeling
Languages," in 17th Int'l Software Product Line Conference

(SPLC 2013), Tokyo, Japan, 2013.

[55] H. Cho, K. Lee and K. Kang, "Feature Relation and
Dependency Management: An Aspect-Oriented Approach,"
in 12th Int'l Software Product Line Conference (SPLC 2008),
Limerick, Ireland, 2008.

[56] K. Lauenroth, A. Metzger and K. Pohl, "Quality Assurance
in the Presence of Variability," in Intentional Perspectives on

Information Systems Engineering, Heidelberg, Springer,
2010, pp. 319-334.

[57] S. Apel, A. von Rhein, P. Wendler, A. Größlinger and D.
Beyer, "Strategies for product-line verification: case studies
and experiments," in 35th Int'l Conference on Software

Engineering (ICSE '13), San Francisco, USA, 2013.

[58] J. Greenyer, A. Molzam Sharifloo, M. Cordy and P.
Heymans, "Features Meet Scenarios: Modeling and
Consistency-Checking Scenario-based Product Line
Specifications," Requirements Engineering Journal, vol. 18,
no. 2, pp. 175-198, 2013.

[59] J. Lee, S. Kang and D. Lee, "A Survey on Software Product
Line Testing," in 16th Int'l Software Product Line

Conference (SPLC 2012), Salvador, Brazil, 2012.

[60] E. Engström and P. Runeson, "Software Product Line
Testing: A Systematic Mapping Study," Information and

Software Technology, vol. 53, no. 1, pp. 2-13, 2011.

[61] K. Pohl and A. Metzger, "Software Product Line Testing,"
Commun. ACM, vol. 49, no. 12, pp. 78-81, 2006.

[62] M. Cohen, M. B. Dwyer and J. Shi, "Constructing Interaction
Test Suites for Highly-Configurable Systems in the Presence
of Constraints: A Greedy Approach.," IEEE Trans. Soft.

Eng., vol. 34, no. 5, pp. 633-650, 5 34 2008.

[63] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry and Y. Le

83

Traon, "Pairwise Testing for Software Product Lines:
Comparison of Two Approaches," Software Quality Journal,

vol. 20, no. (3-4), pp. 605-643, 2012.

[64] M. F. Johansen, Ø. Haugen, F. Fleurey, A. G. Eldegard and
T. Syversen, "Generating Better Partial Covering Arrays by
Modeling Weights on Sub-product Lines," in 15th Int'l

Conference on Model Driven Engineering Languages and

Systems (MODELS 2012), Innsbruck, Austria, 2012.

[65] J. White, D. Benavides, D. Schmidt, P. Trinidad, B.
Dougherty and A. Ruiz-Cortes, "Automated Diagnosis of
Feature Model Configurations," Journal of Systems and

Software, vol. 83, no. 7, pp. 1094-1107, 2010.

[66] R. Lopez-Herrejon and A. Egyed, "Towards Fixing
Inconsistencies in Models with Variability," in 6th Int'l

Workshop on Variability Modeling of Software-Intensive

Systems (VaMoS 2012), Leipzig, Germany, 2012.

[67] R. Rabiser, P. Grünbacher and M. Lehofer, "A Qualitative
Study on User Guidance Capabilities in Product
Configuration Tools," in 27th Int'l Conference on Automated

Software Engineering (ASE 2012), Essen, Germany, 2012.

[68] A. Sayyad, T. Menzies and H. Ammar, "On the Value of
User Preferences in Search-based Software Engineering: A
Case Study in Software Product Lines," in 35th Int'l

Conference on Software Engineering (ICSE 2013), San
Francisco, USA, 2013.

[69] M. Galster, P. Avgeriou, D. Weyns and T. Männistö,
"Variability in Software Architecture: Current Practice and
Challenges," ACM SIGSOFT Software Engineering Notes,

vol. 36, no. 5, pp. 30-32, 2011.

[70] E. Cirilo, U. Kulesza, A. Garcia, D. Cowan, P. Alencar and
C. Lucena, "Configurable Software Product Lines:
Supporting Heterogeneous Configuration Knowledge," in
13th Int'l Conference on Software Reuse (ICSR 2013), Pisa,
Italy, 2013.

[71] C. Elsner, P. Ulbrich, D. Lohmann and W. Schröder-
Preikschat, "Consistent Product Line Configuration across
File Type and Product Line Boundaries," in 14th Int'l

Software Product Line Conference (SPLC 2010), Jeju Island,
South Korea, 2010.

[72] G. Perrouin, J. Klein, N. Guelfi and J.-M. Jezequel,
"Reconciling Automation and Flexibility in Product
Derivation," in 12th Int'l Software Product Line Conference

(SPLC 2008), Limerick, Ireland, 2008.

[73] R. Rabiser, P. O’Leary and I. Richardson, "Key Activities for
Product Derivation in Software Product Lines," Journal of

Systems and Software, vol. 84, no. 2, pp. 285-300, 2011.

[74] V. Stricker, A. Metzger and K. Pohl, "Avoiding Redundant
Testing in Application Engineering," in 14th Int'l Software

Product Line Conference (SPLC 2010), Jeju Island, South
Korea, 2010.

[75] J. Rubin, A. Kirshin, G. Botterweck and M. Chechik,
"Managing Forked Product Variants," in 16th Int'l Software

Product Line Conference (SPLC 2012), Salvador, Brazil,
2012.

[76] L. Atzori, A. Iera and G. Morabito, "The Internet of Things:
A Survey," Computer Networks, vol. 54, no. 15, pp. 2787-

2805, 2010.

[77] J. Bosch, "Building Products as Innovation Experiment
Systems," in 3rd Int'l Conference on Software Business

(ICSOB 2012), Cambridge, USA, 2012.

[78] K. Cooper and X. Franch, "Editorial," Journal of Systems

and Software, vol. 81, no. 6, pp. 841-842, 2008.

[79] J. Díaz, J. Pérez, P. P. Alarcón and J. Garbajosa, "Agile
Product Line Engineering: A Systematic Literature Review,"
Software: Practice and Experience, vol. 41, no. 8, pp. 921-
941, 2011.

[80] L. Northrop, "Does Scale Really Matter? Ultra-large-scale
Systems Seven Years After the Study (Keynote)," in 35th

Int'l Conference on Software Engineering (ICSE 2013), San
Francisco, USA, 2013.

[81] L. Baresi, E. Di Nitto and C. Ghezzi, "Toward Open-World
Software: Issues and Challenges," Computer, vol. 39, no. 10,
pp. 36-43, 2006.

[82] J. Kramer and J. Magee, "Self-Managed Systems: an
Architectural Challenge," in ICSE 2007 Workshop on the

Future of Software Engineering (FOSE 2007), Minneapolis,
USA, 2007.

[83] M. Hinchey, S. Park and K. Schmid, "Building Dynamic
Software Product Lines," IEEE Computer, vol. 45, no. 10,
pp. 22-26, 2012.

[84] P. Sawyer, N. Bencomo, J. Whittle, E. Letier and A.
Finkelstein, "Requirements-Aware Systems: A Research
Agenda for RE for Self-adaptive Systems," in 18th Int'l

Requirements Engineering Conference (RE 2010), Sydney,
Australia, 2010.

[85] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi and D. Hughes,
"Using Constraint Programming to Manage Configurations
in Self-Adaptive Systems," IEEE Computer, vol. 45, no. 10,
pp. 56-63, 2012.

[86] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo and K.
Inoue, "Learning Revised Models for Planning in Adaptive
Systems," in 35th Int'l Conference on Software Engineering

(ICSE 2013), San Francisco, USA, 2013.

[87] G. Perrouin, B. Morin, F. Chauvel, F. Fleurey, J. Klein, Y.
Le-Traon, O. Barais and J.-M. Jezequel, "Towards Flexible
Evolution of Dynamically Adaptive Systems," in 34th Int'l

Conference on Software Engineering (ICSE 2012), Zurich,
Switzerland, 2012.

[88] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés and M.
Hinchey, "An Overview of Dynamic Software Product Line
Architectures and Techniques," Journal of Systems and

Software, vol. 91, pp. 3-23, May 2014.

[89] J. Rubin and M. Chechik, "Combining Related Products into
Product Lines," in 15th Int'l Conference on Fundamental

Approaches to Software Engineering (FASE 2012), Tallinn,
Estonia, 2012.

[90] S. She, R. Lotufo, T. Berger, A. Wasowski and K. Czarnecki,
"Reverse Engineering Feature Models," in 33rd Int'l

Conference on Software Engineering (ICSE 2011), Waikiki,
USA, 2011.

84

