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ABSTRACT 
Software product line engineering has proven to empower organi-
zations to develop a diversity of similar software-intensive sys-
tems (applications) at lower cost, in shorter time, and with higher 
quality when compared with the development of single systems. 
Over the last decade the software product line engineering re-
search community has grown significantly. It has produced im-
pressive research results both in terms of quality as well as quanti-
ty. We identified over 600 relevant research and experience pa-
pers published within the last seven years in established confer-
ences and journals. We briefly summarize the major research 
achievements of these past seven years. We structure this research 
summary along a standardized software product line framework. 
Further, we outline current and future research challenges antici-
pated from major trends in software engineering and technology. 

Categories and Subject Descriptors 
D.2.10 [Software Engineering]: Design – methodologies; D.2.11 
[Software]: Software Architectures – domain-specific architec-

tures; D.2.13 [Software Engineering]: Reusable Software – 
domain engineering, reuse models 

General Terms 
Management, Documentation, Design, Economics, Verification 

Keywords 
Software product lines, requirements engineering, design, quality 
assurance, variability management, variability modeling 

1. INTRODUCTION 
Many industry sectors are faced with increasing demand to devel-
op individualized software-intensive systems. Software product 
line engineering (SPLE) has proven to empower organizations to 
develop a diversity of similar systems at lower cost, in shorter 
time, and with higher quality when compared with the develop-
ment of single systems [1]. A software product line (also some-
times called software product family) is “a set of software-
intensive systems that share a common, managed set of features 
satisfying the specific needs of a particular market segment or 
mission and that are developed from a common set of core assets 
[artifacts] in a prescribed way” [2]. 

SPLE exploits the commonalities of the systems that belong to a 
product line and systematically handles the variation (i.e., the 
differences) among those systems. Commonality is a property 
shared by all applications1 of the product line [3]; e.g., all mobile 
phones allow users to make calls. Product line variability defines 
how the different applications of the product line can vary [4]. 
Product line applications may differ in terms of features, function-
al and quality requirements they fulfil; e.g., some tablet computers 
may include mobile broadband connectivity, others not.  

In industry, the SPLE paradigm has a strong track record of suc-
cess. Examples of success stories can be found in textbooks (such 
as [1], [2], [5]) or in the product line hall of fame2. The product 
line hall of fame has been established as part of the SPLC confer-
ence series and lists 20 success stories from companies including 
Boeing, Bosch, HP, Nokia, Philips, Siemens and Toshiba. Report-
ed benefits of SPLE include “improved productivity by as much 
as factor 10, increased quality by as much as factor 10, decreased 
cost by as much as 60%, decreased labor needs by as much as 
87%, decreased time to market (to field, to launch) by as much as 
98%, and ability to move into new markets in months, not years”3. 

SPLE has attracted significant interest from the research commu-
nity. We have surveyed the literature of the past seven years and 
retrieved over 600 relevant papers from established conferences 
and journals alone4. A complete summary of all achievements in 
the field is obviously impossible in this paper. We thus summarize 
highlights of the research achievements in SPLE. Specifically, we 
focus on concepts, techniques and methods. In addition, we brief-
ly describe open and upcoming research challenges we anticipate 
from major trends in software engineering and technology.  

The successful introduction of SPLE in industry requires strong 
(high level) management commitment. Moreover, the successful 
introduction of SPLE heavily depends on the implementation of 
adequate organizational structures and processes (see, for exam-
ple, Chapter 1 in [6]). Moreover, without convincing business 
cases which demonstrate the return-on-investment SPLE will 
typically not be introduced in an organization. Due to space limi-
tations, those aspects are not within the scope of this paper. Also, 
achievements in tool support, both for what concerns commercial 
tools and prototypes, are also not within the scope. 

                                                                 
1  As in most of the SPLE literature, we use the terms application 

and (software-intensive) system synonymously.  
2  http://splc.net/fame.html 
3  http://www.sei.cmu.edu/productlines/ 
4 Our paper classification is available online at 

http://www.sse.uni-due.de/en/fose14/ 
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To structure the technical SPLE research achievements and chal-
lenges, we use a standardized framework for software product line 
engineering briefly described in Section 2. Following this frame-
work, we discuss the achievements and open research challenges 
in the area of variability modelling and management in Section 3. 
Section 4 summarizes the achievements and open research chal-
lenges in the area of domain engineering. Section 5 describes the 
achievements and open research challenges in the area of applica-
tion engineering. Major trends in software engineering and tech-
nology will lead to new research challenges. We elaborate on 
those challenges in Section 6. 

2. FOUNDATIONS 
Figure 1 depicts a well-established SPLE framework, which has 
recently been adopted as part of the ISO/IEC standard #26550 
(“Software and systems engineering: Reference model for product 
line engineering and management”). This framework has been 
defined based on the outcomes of the European SPLE research 
projects ESAPS, CAFÉ, and FAMILIES. It is described in greater 
detail in [1]. We employ this framework in the remainder of the 
paper to cluster and summarize the research achievements in the 
field. The key elements of the framework are described below. 

2.1 Two Product Line Processes 
To facilitate the efficient development of a diversity of applica-
tions which share a set of commonalities, SPLE differentiates 
between two complementary development processes:  

 The domain engineering process (shown in the upper half of 
Figure 1) is responsible for defining the commonality and the 
variability of the product line, as well as for developing the do-

main artifacts. Domain artifacts “realize” commonality and var-
iability. They include, among others, requirements artifacts 
(e.g., use case diagrams, requirements models), architectural 

artifacts (e.g., component models, class diagrams) and test arti-
facts (e.g., test cases, test data).  

 The application engineering process (shown in the lower half of 
Figure 1) is responsible for deriving concrete applications from 
the domain artifacts. To this end, application engineering ex-
ploits the variability of the domain artifacts by binding (resolv-
ing) the variability according to the needs and requirements for 
a particular application. Domain artifacts are thereby reused in 
application engineering to derive a set of product line applica-
tions.  

By dividing the overall development process into domain engi-
neering and application engineering, two key concerns are sepa-
rated: (1) to build a robust product line platform, (2) to efficiently 
create individual, customer-specific or market-specific applica-
tions based on the product line platform. 

The product line platform encompasses all domain artifacts of the 
product line.5 Important parts of the product line platform are the 
domain requirements and the product line architecture, which is 
often called the reference architecture of the product line [1], [5]. 
The product line architecture provides a common, high-level 
structure for all product line applications. The domain require-
ments define the common and variable features, functions and 
qualities of the product line.  

The activities executed during domain and application engineering 
typically do not follow a sequential (“waterfall-like”) order even 
though the visualization of the framework depicted in Figure 1 

                                                                 
5  The term “platform” has slightly different meanings in other 

areas (e.g., see [1]). 

 

Figure 1: SPLE Framework (adapted from [1]) 
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might imply so. In general, any type of life-cycle or process model 
(e.g., V-model, spiral model, agile models) can be used in a soft-
ware product line setting. The execution order of activities and the 
activities themselves therefore depend on the development process 
used in an organization. Moreover, like in single systems devel-
opment, quality assurance activities should commence from the 
start of development and should accompany all activities in do-
main and application engineering. 

Similarly, there is no strict sequence in executing the domain and 
the application engineering processes [7], [1]:  

 In a proactive or “Big Bang” approach, domain engineering is 
performed completely before application engineering starts;   

 In a reactive or incremental approach, the most relevant domain 
artifacts (typically the common ones) are developed first and 
variable ones are developed based on concrete customer de-
mands during application engineering; 

 In a reengineering-driven approach, existing individual applica-
tions and systems are “migrated” into a product line.  

In most industrial cases, customer-specific applications cannot be 
derived entirely from the domain artifacts alone. Therefore, so 
called customer-specific extensions have to be implemented dur-
ing application engineering [1], [8], [9]. 

2.2 Product Line Variability 
Product line variability is the key, cross-cutting concern in SPLE 
[6], [10], [1], [2]. Product line variability describes the variation 
among the applications of a software product line in terms of 
properties, such as features that are offered or functional and 
quality requirements that are fulfilled. Whether a given property is 
to be common or variable across a software product line is deter-
mined by explicit management decisions, typically made by prod-
uct management [4], [1]. Product line variability is documented in 
so-called variability models. The SPLE framework in Figure 1 
differentiates between two types of variability models: Domain 
variability models and application variability models (cf., [1], [8]). 

During domain engineering, the variability of the product line is 
defined in the domain variability model. In application engineer-
ing, the variability defined in the domain variability model is 
bound in order to fulfill the application-specific requirements. The 
variability bindings for a specific application are documented in a 
respective application variability model.  

Product line variability is pre-planned in order to address the 
variation needed in different applications to fulfil different market 
and stakeholder needs. Still, application engineers may face the 
problem that individual customer- or market-specific needs cannot 
be satisfied completely by reusing common and variable domain 
artifacts. In this case, customer- or market-specific extensions or 
adjustments of the common and variable artifacts are required. 
The required adjustments can be made by either adjusting the 
domain artifacts (e.g., introducing additional product line variabil-
ity) or by adaptations of the application artifacts [8].  

Application-specific adjustments of artifacts should be document-
ed in the application variability model. An application variability 
model thus documents both, the binding of the variability for the 
specific application, as well as the application-specific adapta-
tions. An application variability model thereby establishes tracea-
bility between application and domain artifacts.  

2.3 Product Line Variability vs.  

Software Variability 
Quite often SPLE research contributions do not clearly differenti-
ate between product line variability and software variability.  

Software variability refers to the ability of software systems or 
artifacts to be efficiently extended, changed, customized or con-
figured [11], [12]. Most modelling and programming languages 
provide mechanism for software variability. Examples include 
abstract super-classes allowing different specializations, interfaces 
facilitating different implementations, or conditional compilation 
(e.g., using #ifdefs) facilitating the inclusion of different code 
fragments. A recent, extensive survey on software variability is 
provided in [12].  

Product line variability defines how the applications of a product 
line can differ. Together with the commonalities, product line 
variability defines the scope of a product line (see Section 4.1). 
Like commonalities, product line variability is pre-planned. Defin-
ing whether a given feature, functional or quality requirement is 
product line variability or not requires explicit decisions from 
product management or other stakeholders.   

Software variability can represent both: product line variability as 
well as commonality. As an example for software variability, take 
the abstract super class Communication with two concrete sub-
classes WiFi and MobileBroadband documented in a UML class 
diagram. Clearly, the super-class together with the sub-classes 
documents software variability. In principle, any of the two or 
even both sub-classes could be used in place of the super-class. 

This software variability would represent a commonality of the 
product line, if – for a given product line – the stakeholders had 
decided that all applications must include both sub-classes WiFi 
and MobileBroadband. In other words, the product line applica-
tions cannot differ in terms of the communication classes they use. 
In this case, software variability would clearly represent a com-
monality of the product line (and not product line variability). 

However, the same software variability could also represent prod-
uct line variability. For example, if the stakeholders had decided 
that for each application of the product line the engineer has to 
choose at least one of the two sub-classes, the applications could 
differ in terms of the sub-classes they include for communication. 
In this case, the same software variability would represent a reali-
zation of product line variability.  

Consequently, software variability is not sufficient to determine 
product line variability. In other words, product line variability 
cannot be identified by analyzing software variability documented 
in artifact models or by analyzing the software artifacts them-
selves.6 The definition of product line variability requires explicit 
decisions. Moreover, product line variability has to be explicitly 
defined in addition to software variability.  

3. VARIABILITY MODELING AND 

ANALYSIS 
As sketched in Section 2.3, product line variability differs signifi-
cantly from software variability. In addition to software variabil-

                                                                 
6  Nevertheless, in a re-engineering setting, software variability 

may provide indicators for potential product line variability 
(e.g., see [13], [14]). 
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ity, product line variability needs to be explicitly defined to em-
power and support the communication, discussion, management 
and analysis of product line variability. 

3.1 Modeling Product Line Variability 
There are two principle ways in SPLE research and practice to 
explicitly document product line variability: 

 Integrated Documentation: To support the integrated documen-
tation of product line variability, dedicated or specialized mod-
elling and documentation concepts are introduced into existing 
modelling languages or document templates. An example for 
the integrated documentation of product line variability is de-
picted in Figure 2a. The figure shows a UML class diagram ex-
tended by two stereotypes «VariationPoint» and «Variant». The 
stereotypes are used to explicitly document the product line var-
iability. This example models a product line, in which commu-
nication is defined as product line variability (documented by 
Communication being a variation point and WiFi and Mo-

bileBroadband being variants). 

 Orthogonal Documentation: To support the orthogonal docu-
mentation of product line variability, product line variability is 
documented in a dedicated model. In other words, the documen-
tation of product line variability is separated from the documen-
tation of the software development artifacts. Thereby the varia-
bility of the product line is treated as a first class product line 
artifact. By relating the product line variability defined in the 
orthogonal variability model with the software artifacts defined 
in the artifact models, the realization of product line variability 
within the software artifacts is documented. Figure 2b sketches 
an example of an orthogonal documentation of product line var-
iability and its relation to software development artifacts. As 
depicted in the figure, the documentation of product line varia-
bility is clearly separated from the documentation of other soft-
ware development aspects. Note, that the orthogonal variability 
model only defines product line variability. It does not define 
product line commonalities.  

3.1.1 Integrated Variability Modelling 
Numerous extensions of modeling languages have been proposed 
to facilitate the integrated documentation of product line variabil-
ity, including annotations of uses cases and test models [13], 

stereotypes for UML diagrams (e.g., activity diagrams, state 
charts, or component diagrams [14], [15]), and domain-specific 
languages [16].  

For the integrated documentation of product line variability fea-
ture models are most commonly used (e.g., see [6]). A feature 
model is a tree or a directed acyclic graph of features7. A feature 
model is organized hierarchically. A feature can be decomposed 
into sub-features. A mandatory feature has to be selected if its 
parent feature is mandatory or if its parent feature is optional and 
has been selected. Mandatory features define commonalities. 
Mandatory features have to be selected for all applications of the 
product line. Optional, alternative, and ‘or’ features define varia-
bility in feature models. As a result, a feature model is a compact 
representation of all mandatory and optional features of a software 
product line. Each valid combination of features represents a 
potential product line application.8   

Since the introduction of Feature-Oriented Domain Analysis 
(FODA) by Kang et al. in the 1990ies, over 40 different feature 
model dialects have been proposed [17]. Based on the expressive-
ness of those extensions, they can be grouped into three catego-
ries: basic feature models (offering mandatory, alternative and ‘or’ 
features, as well as ‘requires’ and ‘excludes’ cross-tree con-
straints), cardinality-based feature models (offering, in addition, 
UML-like multiplicities for feature selection [m..n]), and extended 
feature models (adding arbitrary feature attributes; e.g., to express 
variation in quality requirements). The increased expressiveness 
of feature modeling languages, while appearing attractive to prac-
titioners, has negative impact on the analyzability of the models. 

                                                                 
7 According to IEEE Standard 829-1998, a feature is considered 

„a distinguishing characteristic of a software item (e.g., perfor-
mance, portability, or functionality)“. In SPLE features are often 
considered a user-observable characteristic of a software item. 

8  In some cases, feature models are used to only document the 
variability of a product line. Mandatory (common) features are 
not documented. According to our definition, the documentation 
of the variability in such feature model is thus orthogonal. 

 

Figure 2: Illustration of Two Major Approaches for Explicit Variability Modeling 
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Assuring the quality of a variability model thus may become 
difficult. As an example, the analysis of feature models (see Sec-
tion 3.2) becomes more challenging when considering cardinali-
ties [17] or it may even reach analyzability limits when using 
unbounded cardinality constraints or non-Boolean domains for 
feature attributes [18]. 

3.1.2 Orthogonal Variability Modelling 
As introduced above, orthogonal variability models define the 
variability of the product line in a dedicated model. The variability 
defined in the orthogonal variability model is linked to elements 
in the software artifact models that realize product line variability. 
Those software artifact models are called base models in this 
context [1].  

There are only a few modeling constructs used in an orthogonal 
variability model. Moreover, the constructs are simple. A varia-

tion point documents a variable item and thus defines “what can 
vary” (without saying how it can vary). A variant documents a 
concrete variation and is related to a variation point. A variant 
thus defines “how something can vary”. In addition, variability 

constraints can be defined that specify restrictions about the vari-
ability; e.g., to define permissible combinations of variants in an 
application or to define that the selection of one variant requires or 
excludes the selection of another variant. The Common Variability 

Language
9
, a concrete language for orthogonal variability model-

ling, is currently undergoing “standardization” within the OMG.  

Product line variability is also (indirectly) defined in so-called 
decision models [19]. The aim of a decision model is to define 
how the variability of the software product line should be resolved 
during application engineering. We thus discuss decision models 
in Section 5.1. 

3.1.3 Comparing Variability Modelling Approaches 
Integrated variability modeling increases the complexity of the 
software artifact models and documentations due the additional 
documentation of product line variability within those artifacts. 
Moreover, product line variability is redundantly defined in dif-
ferent development artifacts such as requirements models, com-
ponent diagrams, code, or test cases. As a result, understanding 
and tracing product line variability between different artifact 
models becomes difficult. First, different modelling constructs are 
used to represent the variability in the different models. As a 
consequence, product line variability is represented differently in 
the various models. Second, dependencies between the variability 
defined in the different artifact models are typically not docu-
mented explicitly. Third, it is difficult, if not impossible, to keep 
the variability defined in the different models consistent.  

Orthogonal variability modelling avoids those three significant 
drawbacks of integrated variability modeling. In an orthogonal 
variability model only the variability of a product line is defined. 
Commonalities of the product line are only documented in the 
base models – a key difference from “traditional” feature models, 
which define both, commonalities and variability. The explicit 
differentiation between variation point and variant marks a second 
key difference from feature models, which do not provide explicit 
modeling concepts for variation points. As a third key difference, 
the variability definition in an orthogonal variability model is free 
from realization concerns. Therefore, orthogonal variability mod-
els provide a clear separation between product line variability 

                                                                 
9 http://www.omgwiki.org/variability/doku.php 

(documented in an orthogonal variability model) and software 
variability (specified in the base models). When using feature 
models, the separation between product line variability and soft-
ware variability often gets blurred [4]. Defining the variability in a 
dedicated, orthogonal variability model avoids this problem. 

Variability defined in orthogonal variability models, as well as in 
feature models must be interrelated with the software develop-
ment artifacts defined in the base models (e.g., see [20], [1]). 
Establishing and maintaining trace links between variability mod-
els and the base models is not trivial. A solution for the interrela-
tion is to parameterize the base models to indicate which base 
model elements link to which feature [21]. However, this solution 
violates the key principle of keeping product line variability sepa-
rate from base models. More recent solutions argue for dedicated 
mapping specifications, like in the Common Variability Language 
(see Section 3.1.2), which introduces mappings from variation 
points and variants to MOF-compliant base models.  

Orthogonal variability modeling leads to less complex models 
compared to integrated variability modeling. Yet, given the grow-
ing size and complexity of product lines faced in industry, existing 
orthogonal variability modeling languages will reach their limits 
in handling the size and complexity of those product lines. In a 
recent survey, 25% of industry participants reported product lines 
that include more than 10,000 variants or features [22]. Early, but 
limited attempts for handling large-scale variability models in-
clude the use of textual languages [23] and the definition of ab-
straction layers for product line variability [24]. 

Open research challenges in variability modelling include: 

 Understanding tradeoffs between expressiveness and ana-

lyzability: How to facilitate the selection of the variability 
modeling language that fits a given purpose? How to understand 
and capture the tradeoffs between expressive languages and the 
limitations expressiveness imposes on the analyzability and thus 
on the quality of the variability models [18]? The analysis of 
such tradeoffs should be based on realistic industrial examples 
and validated in sound empirical studies. 

 Interrelating variability with base models: The solutions for 
interrelating variability defined in an orthogonal variability 
model with the software artifacts defined in the base models are 
still in their infancy. We need smart approaches for easy to es-
tablish and easy to maintain interrelations between variability 
models and software artifacts. Among others, such approaches 
should support consistency across the different artifacts.  

 Handling large-scale variability models: Handling the com-
plexity of large-scale variability models for complex systems 
such as cars, airplanes or power distribution networks is a key 
challenge in industry. Academic approaches need more industri-
al strength and have to become more practical and scalable. 
There is a wide gulf between what is published and what could 
reasonably be used in an industrial setting. So, how to upscale 
variability modeling techniques for use in industrial settings? 
How to define suitable variability abstraction layers or views? 
How to interlink variability defined in the different abstraction 
layers or views? How to ensure consistency between the varia-
bility defined at the different layers of abstraction, e.g., the 
overall car, the engine and the injection control? How to map 
variability defined in different variability models used in differ-
ent organizations across the supply chain? 
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3.2 Analyzing Variability 
Variability analysis aims to check and ensure whether certain 
properties for a given variability model hold. Examples for prop-
erties to be checked are satisfiability (i.e., whether at least one 
application can be derived from the variability model), member-
ship (i.e., whether a given configuration is consistent with the 
variability model and thus represents a valid application of the 
product line), commonality (i.e., the set of “features” that appear 
in all applications), and “dead” features (i.e., features that cannot 
be selected for any application).  

Manual analysis of variability models is error-prone and infeasible 
when facing large-scale variability models. A broad spectrum of 
automated variability analysis techniques has thus been proposed. 
They can be categorized in three main classes [25], [17]: proposi-
tional-logics-based (using SAT or BDD solvers), constraint-
programming-based (using CSP solvers) and description-logics-
based (using DL reasoners). In general, variability model analyses 
exhibit an exponential worst-case execution time. Yet, research 
results indicate that in most cases variability model analysis can 
be mastered quite successfully using powerful solvers [26].   

Over the last years, the SPLE community has collected a large set 
of variability models. These models are publically available and 
may be used for empirical studies and as benchmark for variabil-
ity analysis. For example, the SPLOT10 repository contains over 
400 feature models from both industry and academia. 

Open research challenges in variability analysis include: 

 Metrics for performance prediction: How to predict the actual 
performance of analysis techniques for a given variability mod-
el? What are appropriate metrics to measure the structural com-
plexity or size of variability models? Can empirical relations – 
based on such metrics – be established between the structure of 
the variability model and the resources required by a solver? 
How to leverage performance prediction to select the best solver 
for analyzing certain characteristics for a given variability mod-
el? How to develop SPLE-specific heuristics for further improv-
ing analysis performance?  

 Large-scale, realistic variability models: Very few large-scale 
variability models from industrial practice are publically availa-
ble, even though many such models exist [22]. Most of the 
large-scale variability models available (e.g., in the SPLOT re-
pository) have been generated randomly or by mimicking prop-
erties of realistic but rather small models found in the literature 
[17]. Using further real-world variability models as benchmarks 
(even in an anonymized form) is essential for establishing em-
pirical evidence (in addition to theoretical) for variability mod-
eling and analysis techniques. Making large-scale, real-world 
variability models available is thus still an open issue. 

4. DOMAIN ENGINEERING 

4.1 Product Management 
The main task of product management in SPLE is product line 
scoping [27]. One facet of product line scoping is the definition of 
the product portfolio, i.e., the set of applications offered for a 
certain market segment by a particular business unit or company. 
Further facets commonly include the definition of which set of 
features, as well as which set of domain artifacts can be economi-

                                                                 
10 http://www.splot-research.org/ 

cally reused [28], [29]. If the scope of a software product line is 
defined too broadly, domain artifacts may become too generic and 
the effort of realizing them may become too high. As a conse-
quence, the product line may not be economically viable. On the 
other hand, if the scope is defined too narrow required features, 
functional and quality requirements of many customers may not 
be covered and thus only very few application might be derivable 
from the product line. Also in this case, the product line may not 
be economically viable. Therefore, scoping techniques need to 
include techniques for estimating costs and benefits, thereby 
enabling the optimization of the product portfolio. Scoping activi-
ties need to involve business as well as technical experts. 

In many organizations multiple product lines with shared and 
individual properties exist. For example, within Phillips product-
lines are structured according to divisions, business units, and 
business lines [30]. Automotive manufacturers structure their 
product lines according to lines, body types and countries [31]. 
Some initial approaches have been proposed for coordinating 
multi-level product lines with regard to their commonalities and 
variability [24], [32].  

Software ecosystems constitute a recent development to general-
ize the notion of multi-software product lines. Software ecosys-
tems open up software product lines to external developers to 
extend and use the product line platform or even extend the appli-
cations released by the product line owner [33], [6]. 

Open research challenges in product management include: 

 Scope optimization: How to optimize the scope of a product 
line with regard to features and domain artifacts [29]? Besides 
considering economic and market aspects, scoping has to con-
sider technical aspects like the life-cycle management of fea-
tures and their realization in domain artifacts (including archi-
tectural complexity) and has to take the economic viability of 
the whole product line and its artifacts into account. 

 Artifact-interrelations in multi-level product lines: How to 
establish trace links across multi-level product line hierarchies 
and their artifacts? Existing solutions have addressed individual 
artifact types, such as requirements or components. How to 
manage trace links across all product line artifacts in a hierar-
chical product line setting? How to bi-directionally synchronize 
those trace links and the artifacts, e.g., in case of changes and 
evolution of artifacts in a sub-line? How to propagate variability 
constraints, which arise in a sub-product line, to a higher level 
product line? How to align the product lines of suppliers and 
vendors? How to leverage management techniques for multi-
level product lines to handle software ecosystems? 

4.2 Domain Requirements Engineering 
Domain requirements engineering encompasses all activities for 
eliciting, negotiating, documenting, validating, and managing the 
common and variable requirements for the product portfolio envi-
sioned by product management. To identify all relevant common 
and variable requirements, product line requirements engineers 
have to involve a larger number of stakeholders than for single 
systems and have to consider additional requirements sources and 
constraints [1]. For example, a product line may address multiple 
customer groups and thus requirements engineers need to involve 
representatives of those groups. Support for the elicitation and 
documentation of common and variable requirements has thus 
been a focus of past research [34], [35].  
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The amount of commonality and variability defined in domain 
requirements engineering has a huge impact on all other product 
line engineering activities, both in domain and application engi-
neering. A high percentage of common features and common 
domain requirements in a product line typically require lower 
effort for designing and realizing the product line. Moreover, 
common requirements and domain artifacts are essential to engi-
neering a product line platform that is stable yet flexible enough. 
On the other hand, the extent of variable requirements determines 
the potential number of different applications that can be derived 
from the product line and thus has significant impact on whether 
all goals and needs of the envisioned customers and/or market 
segments may be satisfied [1]. If a set of differing but related 
requirements is identified, two principle ways to treat those re-
quirements exist. Those requirements may be defined as variable 
in the domain requirements. Or, those requirements may be har-
monized or generalized and thereby defined as a common domain 
requirement. Determining how to treat those requirements is 
clearly a tradeoff decision that has to be made in concert with 
product management and scoping. 

Like in single system development, the requirements of software 
product lines tend to change frequently. Surprisingly, research in 
product line evolution has mainly focused on the evolution of 
variability models, as well as design and realization artifacts, yet 
has mostly neglected changes in requirements [36], [37], [38].  

Open research challenges in domain requirements engineering 
include: 

 Interrelation between scoping and requirements engineer-

ing: How to facilitate continuous interactions between domain 
requirements engineering and product management? For exam-
ple, additional common or variable requirements elicited during 
domain requirements engineering could lead to different scop-
ing decisions. Or, as a result of requirements validation, scoping 
decisions could be questioned. More generally, how is scoping 
and requirements engineering aligned to support a smooth defi-
nition of an optimal set of common and variable requirements 
[1], [29]?   

 Interrelation between requirements engineering and other 

development activities: In single system development, the def-
inition of the requirements and the definition of the software 
architecture are tightly intertwined (e.g., see [39]). Require-
ments serve as the basis for the design of the system architec-
ture. Conversely, findings made during architectural design also 
influence the definition of the requirements. How to handle the 
intertwining of requirements engineering and design in software 
product line engineering?  

 Impact of requirements changes: How to assess the impact of 
requirements changes on the commonality and variability of the 
product line? When and how to evolve domain design and reali-
zation artifacts as a result of requirements changes? How to 
evolve a common requirement into a set of variable ones and 
how to propagate this change to design, realization, test, etc.? If 
we are able to handle the evolution of requirements well, we 
might have an easier job with the evolution of other develop-
ment artifacts. Can well-documented requirements changes 
guide and structure the changes for other domain and applica-
tion artifacts?  

4.3 Domain Design 
Domain design encompasses all activities for defining the refer-
ence architecture of the product line. Numerous SPLE design 

methods have been advocated in the past [40]. The focus of re-
search has recently shifted from design methods to techniques for 
modelling variability in the architecture (see Section 3.1). 

Traditionally, product line architecture approaches have been 
component-based. In such a setting, variability is realized as 
component compositions [41] and/or by introducing variation 
points into the components themselves [42].  

More recently, aspect-oriented architectures have been proposed 
to better address cross-cutting features. Cross-cutting features are 
encapsulated into modular units, the aspects, and composed by 
means of aspect-oriented mechanisms such as advices, join-points 
and point-cuts [43]. Traditional aspect-oriented modelling and 
programming concepts may cause problems during software 
product line evolution. Anything could be an aspect, and an aspect 
could address any kind of modification of a model or program. 
Thus, the traditional aspect-oriented modelling concepts are too 
generic in a product line setting. To address this problem, re-
searchers have started investigating the use of emerging aspect-
oriented mechanisms, such as XPIs [44]. 

Most recently, service-oriented architectures have been consid-
ered by the SPLE community. In contrast to a component, which 
represents a comprehensive piece of software that is part of the 
software product line, a service represents functionality with 
associated quality characteristics (typically defined in a service-
level agreement) offered by a service provider via a service inter-
face [45]. The service itself or the service provider can change as 
long as the functionality and the service-level agreement remain 
the same. Key research results for service-oriented product line 
architectures include feature-model-based approaches for service 
variability modelling [46] and approaches for reusing and combin-
ing services into service-oriented product line applications [47].  

Quality attributes (such as performance, availability, security or 
safety) have been considered during variability modelling, e.g., 
using extended feature models [48]. Although variation in quality 
requirements has been addressed in domain requirements models, 
quality attributes in domain design models have rarely been con-
sidered. An exception is the consideration of performance and 
availability in domain design [12].  

Open research challenges in domain design include: 

 Building resilient service-oriented product lines: How to 
design service-oriented reference architectures that are resilient 
to dynamic changes in services provided by third parties [49], 
[45]? Third party services are typically provided on a contractu-
al basis (e.g., expressed in terms of service level agreements). 
Even though contract violation may imply penalties for the ser-
vice provider, this does not guarantee that the functionality and 
quality will be delivered. As a consequence, product line engi-
neers have only limited control over changes of provisioned 
services in terms of their functionality or quality, as well as their 
complete failure or even discontinuation – a key difference to 
the use of components [45]. How can adaptation mechanisms 
from single system engineering be adapted to a product line set-
ting? How to build variable architectures that can cope with 
changes in service availabilities during runtime?  

 Delayed design decision and variability: Decisions about 
product line variability, i.e., decisions made by product man-
agement, and architectural decisions, i.e., fundamental decisions 
made during the design of the reference architecture often over-
lap or influence each other [50]. During domain design, archi-
tects may decide to delay design decisions to application engi-
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neering. For each delayed design decision they define a varia-
tion point and a set of design alternatives (variants). How to 
manage the interaction between such delayed design decisions 
and product line variability in the product line architecture?  

 SPLE and cloud computing: What are the consequences of 
cloud computing on SPLE? How can SPLE architectures be 
made cloud-aware? Can we build on research results from sin-
gle system development to deal with cloud-awareness in an 
SPLE setting? 

 Variability in quality attributes: Introducing variability in 
quality attributes on top of functional variability has a signifi-
cant impact on the product line architecture, especially since 
quality attributes are typically the key driver for architectural 
decisions. How to handle variability in quality attributes during 
domain design? How to take tradeoff decisions between varia-
bility in functionality and in quality attributes when designing 
the software product line architecture?  

4.4 Domain Realization  
Domain realization deals with the detailed design and the imple-
mentation of the domain artifacts, for example, as reusable com-
ponents or services. Variability can be realized using the capabili-
ties of existing programming languages, compilers, and linkers 
[6]. Approaches include the use of inheritance (e.g., implementing 
alternative sub-classes for an abstract super-class), aspect-oriented 
programming (e.g., the weaving of alternative code), conditional 
compilation (e.g., using preprocessor directives such as #ifdef), 
and binary replacement (e.g., providing the linker with alternative 
implementations of libraries). Among those approaches, condi-
tional compilation has received significant attention with research 
outcomes addressing type-safe feature modularity [51] and the 
treatment of feature dependencies [52]. 

To explicitly handle feature modularity and feature dependencies 
(or interactions) at the language level, new types of programming 
languages have been proposed that consider features and variabil-
ity as first-class concepts. Feature-oriented programming (FOP) 
is one example. FOP supports the flexible and modular composi-
tion of systems from individual features. In FOP, “a feature mod-
ule encapsulates changes that are made to a program in order to 
add a new capability or functionality” [53]. In delta-oriented 

programming, a compositional programming language, a product 
line is realized by a core module and a set of delta modules. The 
core module implements a valid application developed with single 
system development techniques. Delta modules specify changes to 
be applied to the core module to implement additional applica-
tions. Changes to the core model include the adding of additional 
code (as in FOP), but also removing and even the modification of 
code [54]. 

The fact that variability often cross-cuts the decomposition struc-
ture of the code is a shared concern in domain realization, inde-
pendent of the programming language used [51], [53]. Cross-
cutting variability is addressed by introducing additional composi-
tion operations on top of sequential composition [53] or by treat-
ing features as aspects [55].  

Open research challenges in domain realization include: 

 Mapping of product line variability and software variabil-

ity: The realization of product line variability often affects more 
than one code fragment and thus cross-cuts realization artifacts. 
Conversely, a realization artifact can (in parts) implement more 
than one product line variability. Thus, the realization of varia-

bility typically results in an m:n mapping of variability and code 
fragments. How to handle this m:n mapping? How to support 
the step-wise refinement of product line variability to software 
variability? Can scripting languages be extended to manage the 
step-wise refinement and the m:n mapping between product line 
variability and software variability? 

4.5 Domain Quality Assurance  
Quality assurance of domain artifacts is essential for successful 
product line engineering. A fault in a domain artifact may affect 
all applications of the product line in which this artifact is reused. 
Quality assurance techniques from single-system engineering 
cannot be directly applied to domain artifacts. As an example, a 
domain requirements specification can define a variable require-
ment r, that is related to variant v1, and a variable requirement r 
related to variant v2. Performing a consistency check of the do-
main requirements specification R = {r,  r} using quality assur-
ance techniques from single system development would identify a 
contradiction between r and r. Yet, if the variants v1 and v2 are 
defined to be mutually exclusive, the contradicting requirements 
can never be implemented together in the same application. Thus, 
the two requirements will never cause an inconsistency. A central 
challenge for quality assurance techniques in domain engineering 
is thus the consideration of product line variability [1], [56].  

A vast amount of research has focused on strategies and tech-
niques for quality assurance in the presence of variability, includ-
ing formal verification, static analysis, and (dynamic) testing. The 
consistency of the variability model is a prerequisite for most 
domain quality assurance techniques and is established using 
variability analysis techniques as discussed in Section 3.2. 

4.5.1 Formal Verification  
Formal verification of product line artifacts has been the focus of 
numerous research contributions. Prominent verification tech-
niques from single systems engineering have been adapted to the 
software product line setting [57], including type checking, model 
checking, and theorem proving. To handle variability during 
verification, various strategies have been followed, such as check-
ing representative applications, checking features in isolation, or 
aiming to check all potential applications of the product line [56].  

Even though existing product line verification techniques may 
indicate why they determined an inconsistency, these techniques 
typically do not provide support for identifying the root cause for 
a given inconsistency. For example, a model checker can provide 
an execution trace for an observed violation but does not point out 
which part of the specification actually led to the invalid trace. Or, 
a theorem prover can indicate the part of the specification (formu-
la) that could not be proven, while the reason for that may lie 
elsewhere. It thus can become very challenging for product line 
engineers to locate and identify a defect in the commonality or 
variability, especially given the size of product lines in industry.  

Moreover, inconsistencies not only occur within an individual 
artifact model but also between models. Product line verification 
has started addressing inter-model inconsistencies. However, so 
far only a limited set of modelling views has been considered, 
such as use cases, activity diagrams, and scenarios [58].  

4.5.2 Domain Testing  
As in the development of single systems, the aim of testing in 
SPLE is to execute the software to uncover the evidence of de-
fects. Research on domain testing has delivered techniques for 
developing reusable test cases in domain engineering, and reusing 
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and executing these test cases in application engineering (see 
Section 5.4). Key results include techniques for defining test cases 
for different types of tests, including system, integration, and 
performance tests [59], [60].  

In addition, domain testing aims to uncover evidence of defects in 
domain artifacts before these artifacts are reused in application 
engineering. Due to the variability defined in the domain artifacts, 
testing all potential product line applications (i.e., all potential 
combination of the common and variable artifacts) during domain 
engineering is impossible [61]. Typical domain testing strategies 
thus reduce the number of artifact combinations by using pair-
wise [62] or t-wise testing strategies [63] or by focusing on im-
portant features and feature combinations [64].  

Open research challenges in domain quality assurance include: 

 Causes for failures: Initial progress has been made to identify 
the root causes for inconsistencies in variability models [65]. 
How to extend such approaches to surface root causes for faults 
and failures in other domain artifacts such as requirements, de-
sign artifacts, and code (cf., [66])?  

 Inter-model verification: Current product line verification 
techniques mainly focus on single artifact models. How to veri-
fy inter-model consistency during domain engineering? 

 Empirical evidence: Controlled experimentation is an estab-
lished research methodology to evaluate testing techniques in 
single system development. With a few exceptions, product line 
testing research has not yet provided reproducible empirical re-
sults [59]. How to establish empirical evidence of the efficiency 
and effectiveness of domain testing techniques? 

 Empowering additional quality assurance techniques during 

domain engineering: So far, research for domain quality assur-
ance has focused on formal verification and testing. Almost no 
research contributions exist to tailor or extend other successful 
quality assurance techniques from single software development 
to the product line setting such as reviews, walkthroughs, or 
perspective-based reading. This is surprising, since such tech-
niques have proven to be very effective in single system devel-
opment. So, can reviews, walkthroughs and perspective-based 
reading techniques be applied in a software product line setting? 
Is an adaptation of those techniques needed? How to facilitate 
the validation of variability and commonality and the associated 
trade-off decisions? Can we gather empirical evidence of the 
effectiveness of those quality assurance techniques in an SPLE 
setting? 

5. APPLICATION ENGINEERING 

5.1 Application Requirements Engineering 
During application requirements engineering, the requirements for 
a specific application are defined. In general, customer- and appli-
cation-specific requirements should be satisfied by reusing the 
domain requirements and exploiting the variability defined for the 
software product line. To this end, the variability is bound to 
application-specific features (or variants) to satisfy the applica-
tion-specific requirements. Application variability models have 
been proposed for documenting the application-specific binding of 
the product line variability [1], [8]. 

Many publications in the field convey the impression that a con-
crete application of the product line can be completely derived 
from the domain artifacts and thus reduce the application deriva-
tion process to a feature selection process. For example, decision 

models define the decisions to be taken to derive an application of 
the product line [19]. To this end, a decision model documents the 
possible decisions, their impacts as well as their ordering and, 
possibly, their pre-conditions. Variability is indirectly modelled in 
a decision model through the decisions that need to be taken to 
resolve variability. To guide users during these decision process-
es, tools have been suggested [67]. In the extreme, fully automat-
ed approaches have been devised that aim at optimal feature selec-
tion; e.g., using search-based techniques [68].  

In practice, individual applications often cannot be fully realized 
by reusing domain artifacts alone [8], [9]. Quite often, there are 
some application-specific requirements that cannot be satisfied by 
reusing domain requirements and thus have to be realized during 
application engineering. The handling of application-specific 
deviations from product line requirements has received very little 
attention despite its frequent occurrence in practice. A potential 
solution is to define such application-specific deviations as appli-
cation-specific variation and document this variation, in addition 
to the variability bindings, in the application variability model [8].  

Open challenges in application requirements engineering are: 

 Eliciting application-specific requirements: Some early re-
search contributions exist that support the elicitation of applica-
tion-specific requirements. The mere selection of pre-defined 
features is certainly not a satisfying answer. So how to make use 
of variability during requirements elicitation? How to enrich or 
adapt traditional elicitation approaches to leverage product line 
variability? How to extend decision-model-based approaches to 
include application-specific deviations from domain require-
ments? 

 Handling application-specific deviations: Customer-specific 

requirements that cannot be fulfilled by the commonality or the 
variability defined in the product line (i.e., which cannot be 
mapped to domain artifacts) have to be documented and man-
aged in an appropriate way. How to document application-
specific extensions to requirements? How to check their impact 
on the defined domain requirements? How to map application-
specific deviations back to the domain requirements without 
impeding the efficiency of reusing product line artifacts? How 
to evaluate and predict the consequences of application-specific 
requirements deviations early enough? How to evaluate poten-
tial alternatives with regard to the domain requirements and the 
variability of the product line? How to evaluate the impact of 
application-specific deviations on later application engineering 
phases like design, testing and maintenance? 

5.2 Application Design  
Based on the application requirements, an application-specific 
architecture is derived from the domain architecture. The applica-
tion architecture is typically a specialization of the reference 
architecture of the product line [1].  

During application design, the design alternatives that have been 
identified during domain design and that have been documented 
as variability in the product line platform are evaluated with re-
gard to the application requirements. The alternatives that fit best 
are chosen accordingly. Yet, in the case of application-specific 
deviations (see above), additional design decisions may have to be 
taken in order to derive an architecture that satisfies the applica-
tion-specific requirements, or, the architecture might even have to 
be extended or adjusted accordingly. Even an evolution of the 
product line reference architecture might be triggered.  
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Open research challenges in application design include: 

 Documentation of application design alternatives: Applica-
tion-specific design decisions and the chosen design alternatives 
are documented using the variation points defined in the refer-
ence architecture. If application-specific design alternatives 
caused by application-specific deviations are required, can those 
also be documented by variation points [69]? If not, should new, 
application-specific architectural variation points be introduced 
and related to the application variability model to make the ex-
tensions visible and traceable? 

 Impact of application-specific extensions: How to evaluate 
potential application-specific architectural adaptations? How to 
manage such adaptations in application engineering but also 
during product line evolution? How to evaluate the effect of 
such adaptation on domain realization and testing? How to 
choose adaptations with minimal impact?  

5.3 Application Realization 
During application realization, code artifacts are derived and 
adjusted based on the application architecture and the application-
specific requirements. For example, software configuration tech-
niques are employed to facilitate the parameterization and the 
composition of the reusable code modules.  

Research in application realization delivered techniques for creat-
ing consistent configurations of code modules considering various 
types of configuration files, distributed configuration knowledge 
[70] and technical configuration constraints [71]. An alternative 
approach to software configuration is code generation [72]. Code 
generation techniques for product line applications have mainly 
adapted techniques from model-driven development and domain-
specific languages [16].  

Configurable or generative software product lines, a subclass of 
software product lines, support the derivation of individual appli-
cations without programming glue code or modifying the domain 
components [70]. As mentioned already several times, such an 
ideal approach is often not possible in practice. In other words, 
application-specific coding and adjustments are usually required.  

Open research challenges in application realization include: 

 Framing application-specific programming: The derivation 
of application code from reusable software artifacts in a soft-
ware product line setting is often still a time-consuming and ex-
pensive activity in industry, because it usually requires addi-
tional, application-specific programming [73]. How can such 
application-specific programming be framed to avoid undesired 
side effects? What is a good modular detailed design for appli-
cation-specific extensions? How to provide programmers with 
the relevant software product line design information in order to 
foster product line compliant extensions? 

 Extended configuration mechanism: Can existing product line 
configuration approaches be extended to handle application-
specific code fragments without changing the underlying do-
main artifacts? How should such extensions be documented? 
How to assess the side effects of such extensions on the config-
urations? Do extensions lead to an inconsistency in a configura-
tion, or may they even neglect a configuration? 

 Product line development environments: Besides the indus-
trial importance and the very positive experience of applying 
software product lines in industry, there are almost no product 
line specific development environments (e.g., IDEs). How to 

extend commercial IDEs to enable their smooth usage in prod-
uct line settings? How to support the programmers in making 
informed trade-off-decisions between application-specific ex-
tensions and the principles and guidelines defined for the prod-
uct line platform during domain engineering? 

5.4 Application Quality Assurance  
Research for application quality assurance in SPLE has focused 
on application testing. In general, product line testing techniques 
advocate the early testing during domain engineering (see Section 
4.5). Domain testing can uncover the evidence for critical faults, 
such that these faults can be corrected before they affect several 
applications of the product line [61]. However, domain testing is 
not sufficient. Due to the variability of the reusable artifacts, it is 
impossible – except for trivial product lines – to comprehensively 
test all potential applications during domain engineering. Moreo-
ver, if specific variants are developed based on concrete customer 
demands (e.g., see the discussion in Section 4.2) such variants and 
their potential side effects can only be tested during application 
engineering.  

Research on application testing has mainly delivered techniques 
for deriving test cases from reusable test artifacts developed in 
domain engineering [59], [60]. Some application testing tech-
niques aim at testing application-specific adaptations of domain 
artifacts. In addition, they aim to minimize the retesting of parts 
that have already been tested for another application of the prod-
uct line, thereby representing a special case of regression testing 
[74], [59]. However, those techniques do not consider what has 
already been tested during domain engineering.  

Open research challenges in application testing include: 

 Minimizing test redundancy: Test artifacts and results ob-
tained in domain engineering should be considered in applica-
tion testing to avoid the replication of test executions which are 
not really required. However, systematic approaches for consid-
ering test results from domain engineering during application 
engineering are rare. Extensions for testing techniques which 
avoid unnecessary redundancy between domain and application 
engineering tests are still missing. Similar, how to consider tests 
already executed for other applications during application engi-
neering? How to formally assess side effects of application-
specific bindings and extensions to determine unrequired as well 
as required test re-executions for a given application?  

 Correct variability bindings: The variants bound for a specific 
application have to conform to the definition in the application 
variability model. There are several reasons for checking the 
correct binding of the variability. For example, correct binding 
avoids delivering features in an application the customer hasn’t 
paid for. Thus, evidence should be established that the derived 
application includes all features defined in the application varia-
bility model, but not more [13], [59]. Or, the incorporation of 
non-required features may increase the vulnerability for attacks. 
For security reasons, there should not be any non-required fea-
tures (and thus non-required code) in a product line application.  
So, how to ensure that only selected variants are bound in an 
application? And, how to formally prove that the variability 
bindings are correct? How to consider the different binding 
times during such proves, e.g., during development, compila-
tion, linking and run-time?  

 Empowering additional quality assurance techniques: So far, 
research for application quality assurance has mainly focused on 
testing. As for domain engineering, in application engineering 
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almost no research contribution exist which lifts other quality 
assurance techniques from single software development to ap-
plication engineering. How to deliver effective and efficient ap-
plication quality assurance techniques, such as reviews, 
walkthroughs or perspective-based reading techniques, while 
making use of domain quality assurance results? How to con-
sider application-specific variability bindings as well as applica-
tion-specific extensions during application quality assurance?   

 Empirical evidence: Empirical results on efficiency and effec-
tiveness of application testing techniques and other quality as-
surance techniques are missing. Thus, the challenges sketched 
for domain quality assurance techniques in Section 4.5 also ap-
ply for application quality assurance techniques.  

6. EMERGING RESEARCH  

CHALLENGES 
SPLE research has produced very impressive results over the past 
seven years. Some research areas, like variability modelling and 
formal verification, have attracted many researchers to tackle 
actual challenges. Other research areas of high practical relevance, 
like product line quality assurance techniques, scoping, domain 
design, application requirements engineering, or application de-
sign and realization have largely been neglected. In the previous 
sections we summarized the major research achievements and 
sketched open research issues and challenges in variability model-
ing and analysis, domain engineering and application engineering.  

In addition to those challenges, major trends in software engineer-
ing and technology lead to new research challenges. We elaborate 
on those challenges in this section.  

6.1 Variability Management in Non-Product-

Line Settings 
In contrast to “opportunistic” and “ad-hoc” software reuse ap-
proaches, SPLE follows a proactive, strategy-driven reuse ap-
proach for software artifacts. Reuse is planned at all levels of the 
organization and throughout all phases of domain and application 
engineering. However, there are cases in which a strategic and 
planned definition of a product line is not economically viable or 
not even possible. Beyond the investment in technical design and 
development of domain artifacts, the introduction of SPLE usually 
requires a change in the processes and the organization structure 
(see Section Fehler! Verweisquelle konnte nicht gefunden 

werden.). This typically requires significant investments. Creating 
convincing business cases which demonstrate that the introduction 
of a SPLE approach will lead to the expected return-on-
investment is often not easy, especially since lower maintenance 
costs are hard to predict. Therefore, and for many other reasons, 
instead of following an SPLE approach, software systems are 
quite often created by “cloning” existing ones, i.e., by copying 
and modifying requirements, architecture and code of preceding 
systems. We strongly believe that in the future, the number of 
cases in which the “copy-and-modify” (aka. “clone-and-own”) 
approach is used will even increase. Among others, reasons for 
this are more frequent demand changes, the need to adapt the 
applications to new technology and service offerings at run-time, 
or the rapid changes of the system context and the system re-
quirements. All of those will make a prediction of the scope of a 
potential product line much harder if not impossible. 

So, how to systematically manage the variability of related, single 
applications in a non-product line setting? How to systematically 
identify and manage the commonalities, variability and applica-
tion-specific artifacts? The principles of product line variability 

management can also be applied in such settings and can improve 
current industrial practice significantly. For example, software 
configuration management tools may be extended with explicit 
variability management facilities (e.g., see [75]). So, how to facili-
tate the identification and management of variability in a non-
product line setting? For instance, how to derive variability infor-
mation based on “copy-and-modify” activities executed by the 
engineers? 

6.2 Leveraging Instantaneous Feedback 
Cloud computing aims to provide seamless adaptations of the 
infrastructure in real-time and facilitates measuring infrastructure 
usage and system execution parameters in real-time. When com-
bined with the Internet of Things [76], system execution data can 
be enriched with data about the system context obtained by thou-
sands of sensors. Big data analytics facilitates turning all this data 
into potential actionable insights with very low latency.  

Together these emerging technologies empower software devel-
opers and operators to continuously adjust the system based on 
instantaneous feedback obtained from system execution and the 
system context [77]. As a consequence, the tension between up-
front investment and planning of a software product line and the 
increased agility fostered by instantaneous feedback and continu-
ous deployment must be reconciled.  

Early experience indicates that for a reactive product line setting 
combining agile techniques and SPLE works well [78] and that 
agile principles can be applied during application engineering 
[79]. How to leverage this experience in order to master the dy-
namicity resulting from big data analytics and cloud technology? 
Can SPLE principles be applied in such highly dynamic settings? 
Can changes of product line variability and commonalities be 
automatically inferred from analyzing operational and contextual 
data? And if so, how to adjust the overall product line engineering 
setting to master such highly frequent changes? 

6.3 Open World Assumption 
Driven by the Internet of Services, the Internet of Things, and the 
emergence of new highly distributed systems, such as cyber-
physical systems and ultra-large-scale systems [80], the need for 
software to live in an open and highly dynamic world is becoming 
mandatory. Traditionally, software development was based on the 
closed world assumption, which means that the boundary between 
the system and its context is known during design-time and that 
the context does not change while the system is executing [81]. In 
contrast, open world systems cannot be specified completely 
during design-time due to incomplete knowledge about, for in-
stance, services and their actual quality provided during run-time, 
sensors available during system operation to obtain environment 
information, the availability of other systems to interact and coop-
erate with, as well as the amount and quality of data obtained. The 
development of future systems thus has to live with uncertainty in 
the specifications. During operation, such systems must frequently 
adapt to the dynamic changes faced during run-time [82], [45].  

Dynamic software product lines (DSPLs) aim to address context 
changes during system execution by postponing variability bind-
ing to run-time. An application is empowered to dynamically 
reconfigure itself by choosing at run-time an appropriate binding 
predefined in the product line variability. Research in dynamic 
software product lines has focused on employing variability mod-
els to define the configuration space of a product line application, 
thereby describing possible and permissible run-time adaptations 
[83]. DSPLs are applicable if future context conditions are known 
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during design-time [84], [85]. Unfortunately, for cyber-physical 
and ultra-large-scale systems foreseeing future context conditions 
and defining appropriate adaptation options during design-time is 
often not possible. 

For addressing the open world assumption in SPLE major re-
search challenges have to be mastered, including: 

 Exploration of autonomic computing principles: Autonomic 
computing provides fundamental models, algorithms and tech-
niques to adjust systems to known and unknown situations dur-
ing their execution. Can such approaches be used in a software 
product line setting? What kinds of adaptations are required to 
make them fit for an SPLE setting? For example, learning and 
reasoning techniques are applied in control loops of adaptive 
systems to deal with unknown situations (e.g., [86], [87]). Can 
such principles be applied in SPLE settings, e.g., to update vari-
ability models and product line artifacts to unknown situations 
in a similar way? Or, can improved evolution techniques for 
software ecosystems handle such situations [88]? 

 Reasoning in the presence of variability and uncertainty: To 
deal with gaps in the specification and architecture during de-
sign-time, formal reasoning mechanisms and the underlying 
models have to be extended to deal with uncertainty and varia-
bility at the same time. Such extended modelling and reasoning 
approaches could certainly contribute partial solutions for well-
defined cases, but will hardly scale to solve all the problems as-
sociated with the openness of cyber-physical and ultra-large-
scale systems. 

 Human-in-the-loop adaptations: In cockpits and control tow-
ers, humans (e.g., the operators) are involved to interpret data, 
to judge the criticality of a given situation and to decide during 
run-time about the adaption of an application as a reaction to 
foreseeable and unforeseeable changes and exceptions. Can we 
learn from such principles to develop solutions which can adjust 
product line applications during run-time to unforeseeable situa-
tions? Do such principles provide a path for developing system 
adaptations in which the closed world assumption does not hold 
anymore? 

 Run-time quality assurance: Adaptations, especially in an 
open setting, are prone to specific failures that do not occur in 
closed settings. For example, run-time decisions and adaptations 
may lead to conflicting, faulty or even inconsistent configura-
tions. To address (context) situations unknown during design-
time, quality can only be assured partially and under certain as-
sumptions. How to model such assumptions? How to check if 
the assumptions hold in the actual situation? Or, even more gen-
erally, how to ensure the quality of an application during run-
time if not all potential adaptations of the application are known 
and predefined? Can run-time quality assurance techniques from 
service engineering be adjusted to such settings? 

7. CONCLUSIONS  
We surveyed over 600 relevant papers published in established 
conferences and journals over the past seven years. Overall, the 
research progress achieved is impressive! For example, significant 
contributions have been established in the areas of variability 
modelling and in formally verifying product line artifacts. Even 
so, many research challenges remain. We summarized the re-
search achievements and the open challenges using a standardized 
framework for software product line engineering. 

Many of the open research challenges have existed for already 
quite some time and are highly relevant for industry. It is thus a 
bit surprising that they have not attracted more research efforts. 
Examples of such challenges include product line quality assur-
ance techniques, scoping, domain design, application require-
ments engineering, as well as application design and realization. 

In addition, we highlighted three trends that will have an impact 
on SPLE research in the next decade: (1) managing variability in 
non-product-line settings, (2) leveraging instantaneous feedback 
from big data and cloud computing during SPLE, (3) addressing 
the open world assumption in software product line settings. 
Those trends clearly indicate that research opportunities arise at 
the intersection between software product line engineering and 
service-oriented computing, cloud computing, big data analytics, 
autonomic computing and adaptive systems, to name the most 
important ones. This in turn requires closer cooperation between 
the currently often separated research communities. We should 
thus stimulate multi-disciplinary forums (such as workshops and 
conferences) and joint research projects as key instruments for 
fostering the exchange and the cooperation between the different 
research communities. 
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