
Software Traceability: Trends and Future Directions

Jane Cleland-Huang
DePaul University

SAREC
Chicago, IL, USA

jhuang@cs.depaul.edu

Olly Gotel
Independent Researcher

New York, NY, USA
olly@gotel.net

Jane Huffman Hayes
Department of Computing

University of Kentucky
Lexington, KY, USA
hayes@cs.uky.edu

Patrick Mäder Andrea Zisman
Technische Universität Ilmenau The Open University

Software Systems Group Department of Computing
Ilmenau, Germany Milton Keyes, UK

patrick.maeder@tu-ilmenau.de andrea.zisman@open.ac.uk

ABSTRACT
Software traceability is a sought-after, yet often elusive qual-
ity in software-intensive systems. Required in safety-critical
systems by many certifying bodies, such as the USA Fed-
eral Aviation Authority, software traceability is an essential
element of the software development process. In practice,
traceability is often conducted in an ad-hoc, after-the-fact
manner and, therefore, its benefits are not always fully real-
ized. Over the past decade, researchers have focused on spe-
cific areas of the traceability problem, developing more so-
phisticated tooling, promoting strategic planning, applying
information retrieval techniques capable of semi-automating
the trace creation and maintenance process, developing new
trace query languages and visualization techniques that use
trace links, and applying traceability in specific domains
such as Model Driven Development, product line systems,
and agile project environments. In this paper, we build upon
a prior body of work to highlight the state-of-the-art in soft-
ware traceability, and to present compelling areas of research
that need to be addressed.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Documentation

Keywords
Software traceability; road map

1. INTRODUCTION
Software traceability has long been recognized as an im-

portant quality of a well-engineered software system [37,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 2014 ACM 978-1-4503-2865-4/14/05 ...$15.00.

78]. Defined by the Center of Excellence for Software and
Systems Traceability (CoEST) as “the ability to interrelate
any uniquely identifiable software engineering artifact to any
other, maintain required links over time, and use the re-
sulting network to answer questions of both the software
product and its development process” [14], traceability is a
required component of the approval and certification process
in most safety-critical systems. For example, the DO-178C
standard [73], which the USA Federal Aviation Administra-
tion (FAA) has established as the means of certifying that
software aspects of airborne systems comply with airworthi-
ness requirements, specifies a very detailed set of traceability
requirements including the need to provide “traceability be-
tween source code and low-level requirements” in order to
“enable verification of the absence of undocumented source
code and verification of the complete implementation of the
low-level requirements.” Similarly, the USA Food and Drug
Administration (FDA) states that traceability analysis must
be used to verify that the software design implements the
specified software requirements, that all aspects of the design
are traceable to software requirements, and that all code is
linked to established specifications and test procedures [30].

Despite its importance, traceability is perhaps one of the
most illusive qualities of the software development process.
The cost, e↵ort, and discipline needed to create and main-
tain trace links in a rapidly evolving software system can
be extremely high. Moreover, its benefits often go unreal-
ized in practice, either due to ill-defined and ad-hoc trace-
ability processes, poor user training, or a lack of e↵ective
tooling [37, 5]. Reflecting this state of practice, the “Crit-
ical Code: Software Producibility for Defense” report com-
missioned by the U.S. Department of Defense identified re-
quirements traceability as one of the seven technology areas
on which research should be targeted in order to assure the
safe and correct operation of current and future software
intensive systems [15].

In this paper, we set out a focused research agenda for
software traceability. We build upon previous work that
first identified the Grand Challenge of Traceability [35] and
then proposed a high-level roadmap in order to achieve it
[34]. Motivated by current practice, this paper draws out
and drills down on the key areas in which research focus
is needed. It details the state of the art in each of these
areas and then focuses attention on specific high priority
research needs. In Section 2, we present three di↵erent per-

patrickr

patrickr
Published in Proceedings of the the 36th International Conference on Software Engineering (ICSE), Hyderabad, India

patrickr
@INPROCEEDINGS{conf/icse/ClelandHunagGHMZ14, author = {Cleland-Huang, Jane and Gotel, Olly and Hayes, Jane Huffman and M{\"a}der, Patrick and Zisman, Andrea}, title = {Software Traceability: Trends and Future Directions}, booktitle = {Proc. of the 36th International Conference on Software Engineering {(ICSE)}, Hyderabad, India}, year = {2014}}

spectives which are used to discuss traceability problems and
to present a research agenda. Sections 3 to 5 use this frame-
work to explain seven broad research areas, and to outline
specific research needed in each of these areas. Section 6
concludes the paper.

2. CURRENT PRACTICE
To assess the current state of the practice, we reviewed

recent literature describing industrial studies of traceability
[63, 75, 71, 9]. We also asked eight seasoned practitioners
from the healthcare, enterprise information systems, mili-
tary, and transportation sectors for their perspectives on
traceability practice and challenges. One of the interesting,
if not entirely surprising, findings is that knowledge and ac-
ceptance of traceability tends to be realized on a spectrum,
from fast-paced agile-like projects and/or business-oriented
applications on one end, to slower-paced, carefully planned,
safety-critical projects on the other.

On the less formal end of the spectrum, the vast majority
of practitioners do not even understand the “traceability”
term. For example, five out of eight IT project managers,
with experience on varying sized banking and administrative
projects at an IT company in the Netherlands, had no un-
derstanding of the concept [8]. There are also non-believers,
i.e. practitioners who understand the idea of traceability,
but simply see it as an unnecessary evil. For example, the
owner of one rapidly expanding IT company in the UK re-
ferred to traceability as a “made up problem.”

In contrast, practitioners working in regulated and/or safety
critical domains on the more formal end of the spectrum,
where traceability is governed by standards, have a far more
comprehensive understanding of what traceability does and
how it should be established. Unfortunately, that does not
mean that they implement it more willingly or more ef-
fectively. A recent analysis of the traceability documents
submitted to the FDA as part of the medical device ap-
proval process revealed numerous problems related to the
overall completeness and correctness of the trace data [64].
Not only was traceability data incomplete, incorrect, and
conflicting in many cases, there were clear indications that
trace links had been created at the very end of the process in
many projects, specifically for certification processes. This
conjecture was confirmed by a serendipitous interview con-
ducted with an employee from a medical device company,
who stated that it was common practice for all traceability
data to be created and documented immediately prior to
certification.

There are however, several examples of traceability being
achieved e↵ectively and as intended in practice. Panis re-
ports how Teradyne successfully integrates tracing into their
development process using the Siemens TeamCenter tool
[75]. His survey showed that 20% of systems engineers, 70%
of subsystems engineers, and 80% of design engineers re-
ported that their traceability e↵orts were worthwhile. They
listed the benefits as reduced e↵ort during change man-
agement, coverage analysis (i.e. assessing missing require-
ments), and CMMI certification achievements. Similarly,
Nistala described Tata Consulting Services’ successful use
of traceability across various phases of the life-cycle [71],
and several of the practitioners we talked with described
somewhat e↵ective, albeit rather narrow, adoption of trace-
ability to support specific tasks such as testing or regulatory
compliance. Synthesizing this background information sug-

gests that traceability is successfully implemented in some
projects within some organizations while the majority of
projects fail to achieve e↵ective traceability or incur exces-
sive costs in so doing.

3. FUTURE VISION
Researchers and practitioners from the CoEST have worked

together since 2005 to establish a vision and subsequent
roadmap for advancing the state of practice in software trace-
ability [35, 34]. Driven by clearly articulated research chal-
lenges, this vision seeks to achieve ubiquitous traceability
that is “always there” and “built into the engineering pro-
cess.” In this vision, the cost and e↵ort of establishing
and maintaining traceability basically disappears as trace
links are generated automatically by tools as a byproduct
of the development process. Benefits are realized across all
projects, not just regulated ones. Traceability information
is made accessible to humans to support the tasks that are
relevant to their project environments, and rendered in ways
that facilitate interaction and decision-making. The project
environment self-adapts as a project evolves and also learns
from human feedback. Ubiquitous traceability is achieved
automatically, as a result of collecting, analyzing, and pro-
cessing every piece of evidence from which trace data can be
inferred and managed.

For example, a new developer joins an agile team and is
assigned a user story to implement. She uses automatically
captured trace information to explore the impact of the new
story on the system. Results are quickly visualized in ways
that help her to understand which parts of the codebase
might need to be changed, potential side e↵ects on existing
user stories and test cases, and a list of fellow team mem-
bers who have previously worked with the code and could be
considered expert consultants. Similarly, in a safety-critical
system, team-members preparing for certification request a
report that returns trace slices for each identified hazard,
showing its contributing faults, related mitigating require-
ments, associated code, test cases and logs, and also sup-
porting rationales explaining how these artifacts mitigate
the hazard in the deployed system. Achieving the vision
will demand many years of research in a number of areas.

We structure our presentation of future research needs
around the three perspectives of goals, process, and techni-
cal infrastructure, each of which has a unique impact upon
traceability. The goal-oriented perspective is inherently vi-
sionary, while the other perspectives address the contexts
in which traceability must be deployed. The need for di↵er-
ent perspectives highlights the complexity of the traceability
problem and the näıvete of approaching traceability research
from a single angle, such as a purely algorithmic one. Solving
traceability problems requires a cross-disciplinary approach
that integrates novel algorithmic solutions with enterprise
and project level planning, process improvement initiatives,
tooling, systems engineering solutions, and human factors.

In the following sub-sections, we briefly describe each per-
spective and examine the distribution of research e↵ort across
these areas in the past decade. Insights gained from this
analysis provide a compelling argument for expanding and
redistributing research e↵orts.

3.1 A Goal-Oriented Perspective
An earlier roadmap [34], produced by researchers in the

traceability community, identified a number of challenges

Table 1: A Goal-Oriented Perspective

Goal 1:
Purposed

Traceability is fit-for-purpose and
supports stakeholder needs (i.e.,
traceability is requirements-driven).
Prototypical stakeholder requirements for
traceability need to be clearly defined and
measurable for specific software and systems
engineering tasks.

Goal 2:
Cost-
e↵ective

The return on investment (ROI) from
using traceability is adequate in relation
to the outlay of establishing it. Develop
techniques for computing the ROI of
traceability in a project, understanding the
impact of various traceability decisions at
various stages of the life-cycle upon both the
cost and benefits of the traceability process.

Goal 3:
Configur-
able

Traceability is established as specified,
moment-to-moment, and accommodates
changing stakeholder needs. Develop
techniques for dynamically generating and
maintaining accurate and semantically rich
trace links that are configured according to
the current needs of the project.

Goal 4:
Trusted

All stakeholders have full confidence in
the traceability, as it is created and
maintained in the face of inconsistency,
omissions and change; all stakeholders
can and do depend upon the
traceability provided. Develop techniques
for assessing and communicating the current
state of traceability in a project, and develop
self-adapting techniques so that quality is
preserved in the face of change.

Goal 5:
Scalable

Varying types of artifact can be traced,
at variable levels of granularity and in
quantity, as the traceability extends
through-life and across organizational
and business boundaries. Develop
techniques for scaling up traceability
techniques, and for supporting multi-grained
traceability across a variety of artifact types
and organizational boundaries.

Goal 6:
Portable

Traceability is exchanged, merged and
reused across projects, organizations,
domains, product lines and supporting
tools. Develop policies, standards, and
formats for exchanging and integrating
traceability information across projects and
organizations.

Goal 7:
Valued

Traceability is a strategic priority
valued by all; every stakeholder has a
role to play and actively discharges his
or her responsibilities. Develop supporting
techniques that cross the technical and
business domains of a project so that the
benefits of traceability are visible and
accessible to all stakeholders.

Grand
Chal-
lenge:
Ubiquitous

Traceability is always there, without
ever having to think about getting it
there, as it is built into the engineering
process; traceability has e↵ectively
“disappeared without a trace.” Achieved
only when traceability is established and
sustained with near zero e↵ort.

for traceability, including the Grand Challenge to achieve
Ubiquitous Traceability. These challenges are reproduced
as goals in Table 1. Each goal represents a desired quality of

Planning and Managing
Traceability Strategy

Creating Using

Maintaining

Trace created
[elements
change]

Trace created
[use requested]

Requirements for
traceability
changed

Trace
creation planned
[create directed]

Creation
feedback

Use
feedback

Trace maintenance
planned

Trace maintenance required
[elements change]

Trace retired

Traceability
required

Project
archived

Trace envisaged

Maintenance
feedback

Trace maintained
[use requested]

Figure 1: The Process Perspective

traceability, and is refined into a set of research topics and
practices (described in detail in [35]). For example, research
topics to achieve the purposed goal include (Purposed.RT1)
developing prototypical stakeholder requirements for trace-
ability, including scenarios of use, and (Purposed.RT6) per-
forming empirical studies to determine whether traceability
is fit for purpose. In other words, to achieve purposed trace-
ability, we need to better understand the tasks that trace-
ability is needed for, and evaluate how well any instance of
traceability supports them. Only then can we develop ap-
propriate techniques, tools and processes to put the required
traceability in place to support these tasks. Additional fo-
cus is on the delivery of cost-e↵ective, configurable, trusted,
scalable, portable, and valued traceability.

3.2 A Process-Oriented Perspective
The process-oriented perspective, depicted in Figure 1, fo-

cuses upon the primary areas associated with the traceabil-
ity life-cycle: planning and managing a traceability strategy,
and creating, maintaining, and using traceability [36]. At
the start of a project, the traceability strategy is planned,
and the project environment is instrumented accordingly.
The project’s traceability is then implemented and managed
as the project proceeds. Trace links are created, used, and
maintained according to the strategic plan.

3.3 A Technical-Infrastructure Perspective
The significant practical challenges associated with instru-

menting a project environment for traceability are high-
lighted by this perspective. A tracing context must mini-
mally include functions for storing and retrieving physical
data; supporting strategic planning; physically creating and
maintaining trace links; executing trace queries; and inter-
acting with the trace user. This is depicted in Figure 2.
Complexities are introduced by the fact that trace links must
be created and maintained across heterogeneous artifacts
(e.g. requirements, code, and test cases), that may reside
in a variety of third party tools, and often across organiza-
tional boundaries. Infrastructure and supporting algorithms
must therefore be developed to support cross-organizational
traceability and data integration across a wide variety of
tools and data formats. If such issues are not addressed, it

queries

uses

Safety
analyses

Trace Query Layer

Artifacts

Traceability Information Model

Core

assets

Create, delete, and
modify artifacts

Safety

Hazard

FTA

Min cut set

System

Requirement

Software

Requirement

Hazard faultSet id
description

Trace retrieval and
capture engines

data

Modify TIM (define
artifact and link types)

Trace engine

updates

data updates

Workflows

Artifact and trace access layer or repository

Variabilities

User Interactions

Trace

Matrices

DO-178B

IS026262

Guideline-level TIM
Safety-critical
standards Product/Productline TIMs

ISO26262

DO-178B

2 1

3

4 56

Figure 2: The Technical Perspective

is unlikely that advances in traceability research will be able
to make a significant impact on industrial practice.

3.4 Integrating Perspectives
These three perspectives are interdependent. Take the

scalable goal as an example. A scalable tracing solution
seeks levels of abstraction and granularity in traceability
techniques, methods and tools, facilitated by improved trace
visualizations, to handle large datasets and the longevity of
these data [34]. At the process level, this means solutions
that help stakeholders to determine the right level of granu-
larity and to facilitate tracing at that level. In large and/or
complex systems, with potentially hundreds of thousands
of trace links, algorithms need to be fine-tuned to return
accurate and timely results, and visualizations need to be
scaled to present information in consumable pieces. The in-
frastructure needed to support this functionality needs to
be embedded across multiple tools and environments. An
emphasis on how the stakeholder interacts with and handles
issues of scale is a given.

A DBLP search of selected publications from 2003-2013
(IEEE Transactions on Software Engineering, ASE, ICSE,
RE, ASE, Software, and ICSM) was carried out using the
search term Trace. Filtering out papers not directly related
to software traceability returned 72 papers. Each paper was
then classified according to elements of the goal, process, and
technical perspectives and results are reported in Figure 3.

From the goal-oriented perspective, over 50% of the pa-
pers were only mappable to the overarching goal of “ubiqui-
tous” traceability and could not be easily classified against
any of the supporting ones specifically. 26% of the papers
were classified as purposed, primarily because they addressed
specific uses of traceability. However, there were no papers
which directly addressed the meta-problem of purposeful
traceability. 11% of papers addressed problems of human
evaluation and were mapped to the Trusted category. All
other goals had 5% or less of the associated papers.

From the process perspective, 10% of papers mapped to

planning topics, 44% mapped to creating, 15% to maintain-
ing, and 31% to usage. Of the usage related papers, 53%
focused on using traceability to support general SE tasks,
30% focused on human interactions, and 17% on tool sup-
port. Similarly, in the technical perspective the lion’s share
of papers, i.e. 54%, were associated with trace algorithms,
28% with user interactions, and 5% or less with each of the
other areas.

Despite these numbers it would be a mistake to correlate
research e↵ort with criticality (or priority) of the addressed
problem. Researchers may choose to focus on specific prob-
lems for a number of reasons including (1) importance of
the problem, (2) availability of data, (3) interests of the re-
search group, and (4) perceived ability to publish results.
Factors 2-4 all serve to inhibit researchers from address-
ing certain types of pressing research challenges. For ex-
ample, researchers have demonstrated a propensity to favor
the trace creation process area as it is intellectually stimu-
lating, datasets are readily available, and research questions
can be easily formulated and experimentally evaluated. In
contrast other equally critical research problems, such as
those related to processes for traceability strategizing, tend
to attract less research attention.

Furthermore, the research emphasis only partially aligns
with the concerns of industrial practitioners. In a survey
of 56 traceability-applying practitioners [9], participants re-
ported that their primary uses of traceability centered around
requirements engineering and management, project manage-
ment, and compliance demonstration and that they were less
likely to use traceability to support design, implementation,
and maintenance activities. Additional feedback from sur-
vey respondents also suggested that the lack of customizable
tools hindered their use of traceability. This suggests that
the academic interest in algorithm development needs to be
more clearly contextualized to support the management and
compliance concerns of practitioners, and that we need to
continue e↵orts to support technology transfer through de-
veloping prototypical industry-ready tools.

0%

10%

20%

30%

40%

50%

60%

Unas
sig

ned

Purp
ose

d

Cost-
Effe

cti
ve

Config
urab

le

Tru
ste

d

Sca
lab

le

Porta
ble

Valu
ed

Goal Perspective

(a) Goal perspective

0%

10%

20%

30%

40%

50%

60%

P
la

n
n
in

g
 a

n
d

M
a
n
a
g
in

g

C
re

a
ti
n
g

M
a
in

ta
in

in
g

U
s
in

g

General

Human

Tool

Process Perspective

(b) Process perspective

0%

10%

20%

30%

40%

50%

60%

Plan
ning

Unas
sig

ned

Storag
e

Workf
lows

Queri
es

Tra
ce

Algorit
hms

Usa
ge

Technical Perspective

(c) Technical perspective

Figure 3: Traceability Research by Perspective over the past decade (2003-2013)

3.5 Research Focus Areas
Based on these findings, we set out to identify compelling

areas of traceability need. As a result, we have identified 7
specific areas for research in this paper. We describe these
in the context of the process-oriented perspective and make
connections to the other two perspectives.

Under the umbrella of traceability planning and manage-
ment (Section 3), we focus upon (1) understanding stake-
holder needs, driven by their roles and tasks, and (2) de-
veloping techniques to support traceability strategizing, so
that we can deliver useful, value-filled tracing solutions that
are customized to the specific needs of a project. Under the
umbrella of creating and maintaining traces (Section 4), we
explore (3) trace creation, (4) trace maintenance, and (5)
trace integrity, so that accurate and trusted trace links can
be created and maintained throughout a project. Under the
umbrella of using traces (Section 5), we discuss (6) access-
ing and querying trace data, and (7) making sense of trace
results, through visualization.

The approach taken in this paper builds upon our ear-
lier road-mapping initiative [34], but di↵ers in two impor-
tant ways. First, in the structure: it uses the traceability
process as a framework to highlight current research trends
and future directions. Second, in the content: it prioritizes
concrete research that needs to be undertaken to support
advances in the process areas. The resulting research direc-
tions form an actionable research agenda. They are mapped
back to research topics identified in the Grand Challenge of
Traceability report where appropriate [35]. Taking this al-
ternative approach has not only highlighted which areas of
the earlier roadmap are the most significant to work toward,
it has also pointed to a number of research gaps.

Figure 4 maps each of the research directions onto their
relevant process and technical areas. It also highlights the
quality goals they address. For some of these goals we pro-
vide explicit mappings throughout the remainder of the pa-
per, while others represent more general relationships and
are shown only in the diagram.

4. PLANNING AND MANAGING
There is no “one-size-fits-all” approach to software trace-

ability. Projects of di↵erent types, sizes, and criticality lev-
els all have their own reasons for requiring traceability and
their own unique constraints that influence its implementa-
tion. Traceability planning and managing involves determin-
ing the stakeholder and system requirements for traceability

on a project, and designing a suitable traceability strategy
to enable them to be satisfied [36]. These are the first two
focal areas in which research is needed.

4.1 Understanding Stakeholder Needs
Traceability research must be driven by the needs of its

stakeholders, who ultimately adopt tracing solutions to sup-
port activities such as requirements satisfaction assessment,
impact analysis, compliance verification, or testing e↵ort es-
timation. These tasks are performed by a variety of stake-
holders including requirements analysts, safety analysts, cer-
tifiers, reverse engineers, developers, architects, maintainers,
and Verification and Validation (V&V) analysts (possibly
Independent). Unfortunately, there is little prior work that
examines the specific needs of the stakeholder in the trace-
ability process and, as a result, academic researchers are left
making assumptions about industry needs.

4.1.1 Motivating Example
An IV&V analyst or an external certifier for a safety-

critical system must ensure that the right system has been
built (validated) using the proper processes (verification).
At each phase of the life-cycle, the current artifact must be
examined to ensure that it “satisfies” the artifact from the
prior life-cycle phase. For example, the requirements spec-
ification, originating from the requirements phase, must be
fully satisfied by the design specification(s) developed during
the design phase. A stakeholder is responsible for creating
a mapping from design elements to requirements and docu-
menting it in a requirements traceability matrix (RTM).

To perform satisfaction assessment, the IV&V analyst needs
to consider the requirement elements at a fine-grained level.
For example, a requirement R001 The system shall enable
users to process 500 connections at any given time. Each
connection may have up to 10 users. will be broken down
into two sub-requirements such as R001a: The system shall
enable users to process five hundred connections at any given
time, and R001b: Each connection may have up to 10 users.
The IV&V analyst must then read each sub-requirement,
and decide if it has been satisfied, partially satisfied, or
not satisfied by the collection of design elements that are
mapped to it within the RTM. The analyst may use a num-
ber of heuristics to perform this work, such as looking for
synonyms in phrases, or looking up the meaning of acronyms
used in phrases. This is a time consuming, error prone task
that requires examining the semantics of each element. Even
if the tasks are semi-automated, the results must be vetted

Maintain-

ing

trace links

Artifacts Trace Queries Workflows Trace Engine

Creating

trace links

Using

trace links

Planning

and

managing

 3.1 Intelligent Sol.

3.2 Trace Capture

3.3 Self-Adapting

4.2 Link Evolution

4.3 Integrate Link Capture & Evolution

4.2 Link Evolution

1.2 Task specific needs

4.4 Traceability support for product line evolution

TIM

 2.1 Success Practices

2.2 Standard TIMs

2.3 Enterprise policy

User Interactions

3.2 Trace Capture

5.1 Link Vetting

5.2 Trace Evaluation

5.3 Dashboards

6.2 Intuitive Query Mechanisms

7.1 Visualization tax..

7.2 Eval. Visualization

7.3 Trace usage study

Cost-

effective

Purposed

C

E

Trusted

Configur-

able

S

T

Portable

Scalable

V

O

Ubiquitous

Valued

P

U

P

P C

C

V

T

T

T

S

S

P

P

U

T

P

C

U T

V

Goals

U

U

 6.2 Query Mechanisms S

E

E

E

1.1 Stakeholder Requirements P

6.1 Tool Integration to support traceability C S O

E

E

E

E

E

4.1 Change Patterns

4.3 Integrate Link Capture & Evolution

C

U

U

E

Figure 4: Research Directions mapped to the Three Perspectives

by an IV&V analyst, as only the human analyst can make
the final decision on whether a requirement has been fully
satisfied. As depicted in Table 2, each of these tasks can be
supported, at least partially, by automation.

4.1.2 Task-Driven Traceability
Unfortunately, the traceability community has not invested

much e↵ort to understand tracing tasks at the level of detail
shown in this example. Some exceptions include the work
by Ramesh and Jarke [78] who conducted an extensive in-
dustrial study and developed several traceability reference
models that captured artifact types and the links needed to
support specific tasks such as requirements to design allo-
cation. However, their study did not investigate how these
links were used to support higher level software engineering
tasks. Other researchers have investigated the use of trace-
ability within specific contexts. For example, Von Knethen
[89] and Conte de Leon [18] both described techniques for
using trace links to support impact analysis, while Mäder
et al. [60] and Poshyvanyk et al. [77] explored its use for
supporting software maintenance and for bug fixing [60].

4.1.3 Research Directions
This area of research is driven by the goal for traceability

to be purposed. From the process perspective, planning and
managing is at the heart of and influences all other areas of
the traceability life-cycle. It impacts the user interactions
layer of the technical infrastructure. We believe the greatest
gains in the area of traceability planning and management
can be achieved if we focus e↵orts on the following research.
(Note that we provide a cross reference (in italics) back to
research topics listed in the Grand Challenge of Traceability
report where appropriate [35].)

• RD-1.1 Develop prototypical stakeholder require-
ments for traceability, including scenarios of use (Purposed.
RT1).
•RD-1.2 Empirically validate task-specific traceabil-
ity techniques as applied by stakeholders (Purposed.RT6).

4.2 Traceability Strategizing
Without an upfront tracing strategy, projects tend to pro-

duce ad-hoc, inconsistent, incomplete, conflicting trace links,

even in many safety-critical projects [64]. Furthermore, given
the cost-benefit debate surrounding traceability [5, 46], the
natural tendency is to put only absolute essential traceabil-
ity in place to address the immediate concerns and visible
needs of a project. For example, as previously mentioned,
traceability may be established immediately prior to the ex-
ternal certification or approval process in a safety-critical
project, instead of systematically throughout the entire de-
velopment process.

4.2.1 Traceability Guidelines
While practitioner-oriented bodies of knowledge, hand-

books, and process improvement frameworks describe the
need for traceability in general terms (e.g. the BABOK,
CMMI, INCOSE Systems Engineering Handbook, IREB,
PMBOK, SPICE, SWEBOK, etc.), and while international
standards routinely demand traceability (e.g. IEEE-STD-
830-1998, IEEE-STD-1220-2005, IEEE-STD-15288-2008, ISO-
29148-2011, etc.), explicit guidance and assessment on par-
ticular practices for setting up traceability is scarce.

The landscape is better in the safety-critical domain, where
standards such as the FAA’s DO-178c [29] provide detailed
traceability guidelines for various levels of system critical-
ity. For example, DO-178c explicitly states that in high-
criticality systems, traceability must be provided between
“source code and low-level requirements” in order to verify
“the absence of undocumented source code.” Such guidelines
often specify traceability paths (i.e. that trace links must be
established between particular types of source artifacts and
target artifacts), and they often also specify the purpose of
establishing the link [80]. What they fail to do is to specify
the granularity of the links and the optimal trace path (i.e.
the path through the graph from source to target artifacts).
For example, at the source code level, it is unclear whether
trace links should be established at the method, class, file,
or module level, and the benefits of specific trace paths (i.e.
linking source code directly to requirements versus linking
to requirements via design) are also not well understood or
documented. Furthermore, we have observed that in prac-
tice, requirements, even for safety-critical systems, are often
not primitive, not unambiguous, not assigned unique IDs,
etc., and therefore are often di�cult to trace [64].

Table 2: Requirements Satisfaction Tasks

Task Performed using

Issue a (reusable) trace
query to perform
Satisfaction Assessment

Trace queries e.g., SQL,
VTML, TQL

Build RTM between
artifact pair

Trace engine e.g., using
LSA, VSM, plus
supporting features

Browse/Search/Eval. links Filterer/Visualizer

Determine level of
satisfaction

Decision support tool
(uses thesaurus,
heuristics etc.)

Visualize satisfaction results Visualization alg/tools

Provide feedback on results User

4.2.2 Reference Models
To date, the most significant and almost exclusive contri-

bution of the research community to traceability strategizing
has been on reference traceability for standard projects. A
traceability reference model specifies the permissible artifact
types and permissible link types that can form a trace on a
project, and is derived from an analysis of the queries that
the resulting traceability is intended to answer [78]. Despite
several proposed traceability reference models, and high in-
terest in them from the research community, there is none
that is universally accepted or widely used in industry, nei-
ther generic nor domain-specific. An exception to this could
become the work of Katta [48], which defines a detailed ref-
erence model for use in the highly-regulated nuclear domain.
The model consists of over 100 di↵erent artifact types and
relating link types needed to support the construction of a
safety case. The fact that the definition of the model was
driven by the industry itself could benefit its acceptance.

4.2.3 Traceability Information Models
More recently, attention has been directed toward defin-

ing and using project-specific meta-models for traceability
strategizing [62]. The resulting traceability information model
(TIM) is e↵ectively an abstract expression of the intended
traceability for a project [36]. Work on how TIMs can be
designed, adapted and employed as part of an end-to-end
traceability process is now emerging. This focus of the re-
search community has undoubtedly centered attention on
the goal-directed and query-oriented nature of traceability
(See 5.1.2), contributed to a deeper understanding of the
semantics of trace artifacts and links [84], and made the
planning of rich and intelligent forms of traceability feasible
[45].

However, this is insu�cient. Important value decisions
need to drive discussions about trace artifacts, links, and
capture mechanisms. Parallel research has therefore focused
on those issues that frame the initial planning and manage-
ment of traceability. Promising examples include a value-
based approach to determine what traces to capture, and
adaptive strategies to e↵ectively migrate between simple and
more detailed forms of traceability as needs evolve [26]. Case
study reports provide mature insights into industrial prac-
tices for planning and managing traceability [51, 79, 78, 75,
71, 38], suggesting that the potential for researchers and

practitioners to work together to synthesize lessons and in-
form practice is now mature.

Trace strategies in the form of reusable TIMs, templates,
economic models, and industry guidance, can be reused across
projects. From the infrastructure perspective, all of the
layers shown in Figure 2, including the TIM, Trace Query
Layer, Workflows, Trace engine, and User interactions are
technically reusable [12], although there are no published
studies on their reuse in industry.

4.2.4 Strategy Customization
Because systems evolve over time, and because perfect

traceability cannot be one hundred percent planned for up-
front, self-managing traceability systems will need to con-
figure, grow and repair organically to address changing con-
texts and needs. Traceability strategizing will be intrinsic
to project management practices, facilitated by intelligent
toolkits that help to devise just the right traceability strat-
egy based on an assessment of evolving needs and available
resources. Strategies will be designed dynamically to meet
the traceability needs and economic pressures of any partic-
ular project’s context.

Our current ideas of traceability are going to be stretched
by demands to scale in many dimensions, with constant de-
mands to improve reliability and performance, all in the ab-
sence of perfect trace data. Traceability will have to be
planned for and managed in significantly new ways to ac-
count for uncertain environments and partners, di↵erent de-
velopment and documentation practices, and to extend be-
yond the realm of software assets.

4.2.5 Research Directions
Traceability strategizing is primarily related to the Cost-

e↵ective goal which states that the “The return on invest-
ment from using traceability is adequate in relation to the
outlay of establishing it.” It anchors planning and manage-
ment processes and is supported primarily in the Traceability
Information Model layer of the technical infrastructure. We
define important research in the area as follows.

• RD-2.1 Identify ingredients for through-life trace-
ability success in di↵erent contexts, from a thorough un-
derstanding of industry best and worst practice, and then
use this knowledge to establish a process framework to guide
practitioners, develop standards, inform tools, and enable
training. (Purposed.{RT4,RT7}; Configurable.RT1)
• RD-2.2 Prepare a family of standardized TIMs
and usage guidance. Adaptable and extensible meta-models
need to provide the capability for a project or organization
to grow its traceability competence via well-defined paths.
(Configurable.RT3)

• RD-2.3 Develop policies and protocols that enable
the traceability of any desired corporate asset to be planned
for and established across the enterprise. These clarify how
the data is to be exchanged and trusted, but permit auton-
omy of implementation. (Portable.RT3)

5. CREATING & MAINTAINING TRACES
The Grand Challenge of Traceability report [35] lists one

of the research tasks for achieving ubiquitous traceability as
“total automation of high-quality trace creation and mainte-
nance” (Ubiquitous.RT2). The quest to achieve this goal has
attracted significant levels of interest in the research commu-

nity. As previously discussed, over 50% of the traceability-
related research papers that we evaluated have focused on
the automated creation and/or maintenance of trace links.
In this section, we describe the three essential research areas
of (3) trace creation, (4) trace maintenance, and (5) trace
integrity, all of which must work synergistically in order to
automate the trace creation process and work toward the
goal of completely eradicating manual traceabilty e↵ort. Re-
alistically, the state-of-the art provides only semi-automated
support for tracing and it is unlikely (and possibly undesir-
able) for the human to be entirely eliminated from the loop.
We therefore also point to the research needed to facilitate
and integrate the human seamlessly.

5.1 Trace Creation
Current work in the area of trace creation primarily falls

under the two distinct categories of (1) trace retrieval, and
(2) prospective trace capture. We discuss each of these.

5.1.1 Trace Retrieval
The idea behind trace retrieval is to dynamically generate

trace links between source and target artifacts. For example,
to retrieve all relevant Java classes for a given requirement,
or retrieve all requirements that demonstrate compliance to
a specific regulatory code.

The current approaches build upon seminal work of Anto-
niol et al. [3], who used a probabilistic approach to retrieve
trace links between code and documentation. The underly-
ing concept was that information retrieval (IR) algorithms
could be used to estimate the similarity between two docu-
ments. Building on this concept of developing a corpus of
all terms in an artifact pair, and then representing each ele-
ment based on these terms, researchers in the software main-
tenance, requirements engineering, and reverse engineering
communities have examined numerous algorithms and their
combinations. For example, Hayes et al. used the Vector
Space Model (VSM) IR algorithm in conjunction with a the-
saurus to esablish trace links [44]. Results from this, and
other related studies, showed that while the majority of rel-
evant artifacts were correctly retrieved, the techniques also
returned too many false positives. This lead to an emphasis
on precision, with many ensuing ideas on how to increase it.
Latent Semantic Indexing [19] and Latent Dirichlet Alloca-
tion (LDA) [22, 6] were applied in an attempt to understand
the semantics context of elements in the artifacts, thus lead-
ing to higher quality links. Some researchers examined the
idea of enhancing accuracy by merging results from indi-
vidual algorithms [22, 32]. Less traditional approaches to
improved trace quality have included AI swarm techniques
[85] and techniques which combine heuristic rules with trace
retrieval techniques [84, 41].

Unfortunately, improvements results seem to have plateaued
with new techniques returning only minor increases in re-
call and precision. The problem is primarily caused by
term mismatches across documents to be traced. Look-
ing ahead, we therefore need to explore alternate trace cre-
ation techniques that circumvent limitations of term mis-
matches. Three promising approaches include incorporation
of (1) runtime trace information, (2) general and domain-
specific ontologies, and (3) special case strategies. A fourth
area related to user feedback is discussed in Section 5.3.1.

In the closely related field of feature location, researchers
have explored the integration of runtime traces with

static trace recovery techniques [25]. This approach comes
with the price of instrumenting the runtime environment,
and is limited to tracing artifacts such as code which can be
executed either actually or symbolically.

Ontology and project glossaries have also been used to
address the term-mismatch problem by connecting related
concepts. Several researchers have explored this notion [41,
43] and have developed various approaches for using con-
cepts in the ontology to connect otherwise dissimilar terms.
Humans performing tracing tasks implicitly make these con-
nections. Future automated trace retrieval techniques need
to similarly understand the concepts of the domain and be
able to connect terms via a mental concept map.

One other interesting direction borrows a page from in-
dustrial search engines, such as Google, which include nu-
merous special case algorithms. For tracing purposes, if
researchers can identify hundreds, or even thousands, of spe-
cial cases, and can apply them systematically and reliably,
then when combined together, we can expect significant im-
provements in the overall quality of generated trace links.

5.1.2 Prospective Trace Capture
Another orthogonal approach to trace creation sets out to

capture and infer trace links from the project environment
and from the actions of the project stakeholders. This ap-
proach is appealing because trace links can be inferred as a
natural byproduct of software engineering activities. Work
in this area is divided between techniques which instrument
the general project environment to monitor the actions of
developers [6] and those which infer trace links from tagged
items in the logs of version control systems and other kinds
of repositories [40, 23]. Asuncion et al. pioneered the work in
prospective trace capture through developing plugins to in-
strument a project environment and track artifacts accessed
in close succession by project stakeholders. From this infor-
mation, they were able to infer trace links [6].

While prospective link capture is appealing, the challenge
of instrumenting an environment by building and evolving
plugins for many di↵erent versions of di↵erent tools, dis-
tributed across potentially di↵erent networks, is quite chal-
lenging. Such approaches require researchers to address sys-
tems and software engineering issues that go far beyond algo-
rithmic solutions and reach into the technical infrastructure
of the project, particularly into the user interaction layer
where plugins reside, the repository layer where data are
stored, and the trace engine layer which needs to implement
algorithms that make sense of the captured data.

5.1.3 Self Adaptation
Self-aware systems are able to modify their own behav-

ior in an attempt to optimize performance. Such systems
can self-diagnose, self-repair, adapt, add or remove software
components dynamically, etc. [88]. Initial work has inves-
tigated adaptation in traceability environments. For exam-
ple, Poshyvanyk et al. used a Genetic Algorithm (GA) to
discover the best way to parameterize Latent Semantic In-
dexing (LSI) [74]. Falessi et al. [28] used regression analysis
to discover the right combination of techniques for a given
dataset. Finally, Lohar et al. [58] modeled available fea-
tures of the trace engine (e.g. stoppers, stemmers, VSM,
LSI, LDA, voters, etc.) in a feature model, and used a ge-
netic algorithm to search for the ideal configuration. They
showed, on several large industrial datasets, that incremen-

tal customization can lead to significant improvements in
the quality of generated trace links, sometimes as much as
100% over a more standard VSM configuration.

5.1.4 Research Directions
To work toward achieving automated trace creation, we

propose the following priority research.

• RD-3.1 Develop intelligent tracing solutions which
are not constrained by the terms in source and target arti-
facts, but which understand domain-specific concepts, and
can reason intelligently about relationships between arti-
facts. (Trusted.RT3; Ubiquitous.RT2)

• RD-3.2 Deliver prospective trace capture solutions
that are capable of monitoring development environments,
including artifacts and human activities, to infer trace links.
(Ubiquitous.{RT1,RT2,RT3})
•RD-3.3 Adopt self-adapting solutions which are aware
of the current project state and reconfigure accordingly in
order to optimize the quality of trace links. (Trusted.RT9)

5.2 Trace Maintenance
One of the greatest challenges of traceability in practice

is that of maintaining trace links as a system evolves. Trace
maintenance is essential regardless of whether trace links
have been created manually or with tool support. However,
while traceability is touted for its ability to support change,
the overhead of maintaining trace links can also impede
change. Trace Links become stale when source and/or tar-
get artifacts are modified without updating impacted trace
links. Most industrial requirements management tools ad-
dress this problem by simply marking the link as suspect
and, as a result, it is not uncommon to see an industrial
trace matrix populated with a high percentage of suspect
links.

5.2.1 Evolving Links
The challenge is therefore to evolve trace links automati-

cally as related artifacts change. As shown in our literature
study, this area of research has garnered less than one third
of the e↵ort ascribed to trace creation problems. One reason
for this is the lack of datasets capturing the evolution of real
trace links in a project across multiple artifact types (i.e. re-
quirements, design, code, test cases etc.). Without realistic
datasets, it is hard for researchers to tackle the problem in
a meaningful way.
Prior work in this area has focused on the use of heuris-

tic approaches and trace retrieval methods. Mäder et al.
explored the use of heuristic techniques that recognize spe-
cific development activities, such as changes applied to a
UML model [61], and then evolve trace links according to
a set of heuristics. Similar approaches have been explored
for changes in requirements [11], and between architectures
defined using xADL and source code [70]. Researchers have
also developed trace retrieval approaches which attempt to
identify deltas between the artifacts retrieved over consecu-
tive traces [92].
One special case of link evolution occurs in product lines

which provide a scalable framework for the structured reuse
of a wide range of software artifacts, including requirements,
architecture, design, code, and test cases [13]. It is poten-
tially cost-e↵ective to reuse trace links across product lines.
Several authors have explored the use of traceability to sup-

port product line evolution [1], generate trace links across
artifacts in a product line [47, 2], and to connect features to
artifacts [69]. Given the rapid adoption of product lines in
industry, it is essential to investigate and mature this work.

5.2.2 Research Directions
The following research directions address the challenges

of link evolution.

•RD-4.1 Understand patterns of change across various
artifacts including requirements, design, and code. (None)

• RD-4.2 Develop heuristics and probabilistic ap-
proaches for evolving trace links as artifacts change. (Con-
figurable.RT2)

• RD-4.3 Integrate prospective capture with link
evolution techniques. (None)

• RD-4.4 Develop traceability structures to support
the evolution of products across a product line. (None)

5.3 Trace Integrity
Trace integrity is concerned with validating the correct-

ness of trace links that have been created and maintained,
and/or communicating the quality of an existing set of links.
Trace quality is likely to be less than perfect, regardless of
whether the trace links have been created by human analysts
or by (semi)automated means. It is therefore important for
stakeholders to be able to understand the correctness and
completeness of the available traceability to assess whether
it can be trusted for performing specific tasks.

There are three primary techniques related to trace val-
idation at present (1) eliciting feedback from human ana-
lysts, (2) exploiting the semantics and context of each trace
link, and (3) computing metrics which serve as indicators of
quality. Each of these areas provides potential support for
improving and understanding the integrity of trace links,
but each also presents its own research challenges.

5.3.1 Improving Integrity through Human Feedback
For many tasks, analysts need to evaluate the generated

trace links. Several studies have shown that human feedback
is incorrect approximately 25% of the time, which can neg-
atively impact the quality of the generated trace links [53].
Furthermore, the higher the quality of the starting trace
matrix, the worse the decisions the analyst makes (and vice
versa) [21, 17]). Studies have also shown that humans use
di↵erent strategies when examining trace links, such as ac-
cepting the first good link they find without looking further
in the list. Some strategies require high e↵ort while resulting
in low accuracy [53].

A limited number of state-of-the-art tracing tools inte-
grate user feedback. The ADAMS [20], POIROT [57], and
RETRO [44] research tools collect relevance feedback (i.e.
correct or incorrect) on trace links that have been generated
automatically using information retrieval techniques. The
most common form of feedback uses a standard information
technique known as Rocchio which increases or decreases
term weightings used to compute similarity scores according
to whether a term occurs in a rejected or confirmed trace link
[81, 44]. Users may also directly modify the trace query by
adding and/or removing terms and the ‘before’ and ‘after’
queries can be used to learn a set of query transformation
rules which can be used to improve future queries [81, 24].

Progress has been made toward retrieving feedback from

human analysts without deliberate actions on their part
[68]. In the traceability domain, researchers have used eye-
trackers to explore how analysts verify trace links from re-
quirements to source code. They have also studied the
‘delta’ tracing process in which prior feedback is assumed
to be correct, and only new or modified links are presented
to the user. These studies have shown that, while this prac-
tice reduces human e↵ort, it negatively impacts the quality
of the trace links [92].

Studying the role of the human is important because in
many domains, especially safety- and mission-critical ones,
results from automated techniques cannot be used unless
inspected by a human. We therefore need to gain a better
understanding of the process human analysts go through to
vet and approve a generated trace link, and to understand
which sequences of actions are more or less likely to lead to
correct decisions. Furthermore, with the increasing adoption
of social collaboration tools, it is interesting to explore the
impact of collaborative decision making on the correctness
of trace links.

5.3.2 Toward Automating Link Evaluation
Given the potentially large number of trace links in a

project, and the cost and e↵ort of validation, it is appeal-
ing to consider techniques for assigning confidence scores to
each link or to a specified set of links. We see three main
areas of work in this area.

First, the semantics of a trace can be analyzed to under-
stand the rationale of the link. Early work in this area has fo-
cused on requirements satisfaction [86] and the use of ontol-
ogy to support the tracing process [41]. Second, the relation
between a traced artifact and other artifacts of the same type
can be analyzed in order to draw conclusions about the con-
sistency and conclusiveness of existing and missing traces.
This compounding evidence can increase confidence in the
correctness of a trace link. For example Ghabi and Egyed
[33] explored calling dependencies between methods in or-
der to identify regions in the source code that implement a
given requirement and found that related requirements were
implemented in connected areas of the source code. Kuang
et al. [55] extended this idea by demonstrating this type of
relationship across both call- and data-dependencies. Third,
we need to develop an understanding of how much trust is
required based on the intended use of a trace so that the
quality of the link can be evaluated within a meaningful
context.

5.3.3 Determining and Communicating Confidence
While striving for perfect traceability, it is pragmatic to

recognize that as we cannot guarantee complete and ac-
curate traceability, we should devise techniques for clearly
communicating confidence levels to the stakeholders. An-
other interesting research area therefore involves the cre-
ation of metrics to evaluate the overall quality of a collec-
tion of trace links. Recent work by Rempel et al. generated
a TIM from traceability data in a number of safety-critical
projects and used formal logic to compare it to the TIM
prescribed by relevant process guidelines. They formally
defined a number of potential inconsistency and compliance
problems and identified the occurrence of such problems in
each of the evaluated projects [80]. However, other metrics
could be designed to measure factors such as completeness,
quality, and/or coverage of existing trace links.

5.3.4 Research Directions
The following research would serve to improve a stake-

holders’s ability to assess trace integrity.

• RD-5.1 Develop human-centric tools to support
link vetting. There are many research avenues for sup-
porting the humans in the loop, such as developing ex-
pert systems to detect and learn human motion and asso-
ciated actions/events, customized to each person, or devel-
oping recommender and decision support systems (poten-
tially with avatar support) to help human analysts perform
vetting and other tracing tasks. (Trusted.{RT3,RT4,RT6};
Valued.RT1)

• RD-5.2 Develop algorithms and supporting tools
for automatically evaluating the correctness of existing
trace links, whether created manually or with tool-support.
(Trusted.RT2)

• RD-5.3 Create visual dashboards to visualize the
traceability quality of a project. (Trusted.{RT5,RT8})

6. USING TRACES
Trace links are created to empower trace users to perform

various software engineering tasks more e↵ectively. As such
trace usage particularly impacts the goal for traceability to
be purposed, i.e. to support stakeholder needs and to be
driven by their requirements. From the technical perspec-
tive the user interaction layer must provide tools and in-
frastructure to leverage available traces, and enable project
stakeholders to realize the full benefits of available trace
data. In this section, we explore research that focuses on
enabling stakeholders to (6) access and query trace data,
and on (7) presenting trace results for decision-making pur-
poses, through targeted visualizations.

6.1 Accessing and Querying Trace Data
Requirements management tools often provide support for

tracing requirements to other artifacts in the software devel-
opment life-cycle. For example, IBM’s RequisitePro allows
developers to relate requirements kept within the tool to
other tools within the product suite, such as Rational Soft-
ware Modeler. An all-lifecycle-management (ALM) tool or
platform would be an ideal project backbone for through-
life traceability, from an academic perspective, as a single
repository would keep all the artifact types and link data.
However, an industry study showed that many organizations
and users prefer chains of task-specific tools to suit their de-
velopment preferences [9], not necessarily the ones that are
part of an ALM solution. Furthermore, organizations are
hesitant to be largely dependent upon a single tool ven-
dor by buying into a complete ALM solution. This means
that artifacts tend to get scattered across di↵erent tools and
their individual repositories. This situation makes end-to-
end traceability across a development project very di�cult
to achieve, especially in large projects which span organiza-
tional boundaries and have no centralized decision making
model. Projects therefore tend to adopt a wide variety of
CASE tools across di↵erent organizations.

6.1.1 Support for Heterogenity
The ability to access and query heterogeneous trace data

is a cross-cutting and enabling requirement for applying end-
to-end traceability in real world development contexts. As
such, it forms a basis for all seven goals that support the

Traceability Grand Challenge (see Table 1). It is also a pre-
requisite for making proper use of traceability from a process
perspective (see Figure 1). In the technical infrastructure,
it impacts the TIM layer (where tracing is planned and sup-
ported), the Trace Query Layer (where traces are executed),
and the Trace Engine layer (if the decision is made to dis-
tribute this across the organization).

The European Computer Manufacturers Association pro-
poses both centralized and distributed reference models for
frameworks of software engineering environments [27]. In
the centralized model, all artifacts are stored in a common
meta-data repository. This is highly attractive in terms of
ease of implementation, performance, and security; how-
ever, it requires tight integration and coupling between ALM
tools. In the less radical distributed model, artifacts re-
side within their own tool repositories while only meta-data
is replicated in a central repository. Several authors have
provided prototypical implementations [31, 54]. Kolovos et
al. [52] and Barbero et al. [7] describe approaches that
merge models on-demand and so propose to create the repli-
cated trace data only when required. A concrete instanti-
ation of the replication approach is proposed by Smith et
al. [83]. The authors developed the OPHELIA platform
for distributed development tools, which integrates tools by
a set of middleware interfaces. Based on this integration
layer, the authors propose a generic layer with common ser-
vices such as notification, knowledge management, metrics
calculation, and trace management.

6.1.2 Creating and Reusing Trace Queries
One of the greatest inhibitors of trace usage is the chal-

lenge of formulating complex trace queries. Many useful
trace queries are quite complex and are not supported by
requirements management tools. As a result, users are of-
ten required to formulate complicated queries using SQL or
other similar languages. This situation inhibits users from
using constructed trace links to support tracing tasks [59].
To address these problems, several researchers have explored
alternate query languages and query reuse mechanisms. For
example, Maletic and Collard [65] describe a Trace Query
Language (TQL) which can be used to write trace queries as
XPath expressions for artifacts represented in XML format.
Mäder et al. propose a visual traceability query notation
(VTML) [59] which allows stakeholders of a development
project to retrieve relevant traces and the artifacts they are
related to more e�ciently than standard query notations
like SQL. Stakeholders are also enabled to write queries that
support their development tasks.

6.1.3 Research Directions
Research here is needed in a couple of directions.

• RD-6.1 Integrate existing development tools and
other relevant data that is created as part of a develop-
ment project. The technology should allow flexibility in the
ways that tools and data sources can be adapted, includ-
ing for example, event-driven tool integration, multi-tool
repository access, and support for alternative data stores
for tools with few interface capabilities. (Configurable.RT1,
Scalable.{RT8,RT10}, Portable.RT3)
• RD-6.2 Provide intuitive forms of query mecha-
nism that do not require specialized training. These may
include simpler techniques for formulating new queries or
retrieving existing, reusable, trace queries. (Scalable.RT2)

6.2 Visualizing Trace Data
Traceability is put in place to establish useful links be-

tween the artifacts of a development process, so that the
eventual traversal of these links can support various engi-
neering tasks. At present, trace information can be dif-
ficult for developers to use, since little research attention
has been directed toward its presentation and eventual end-
use. The most common way to enter and show traceabil-
ity information in practice remains the trace matrix [56], a
two-dimensional view on to a multidimensional information
space, despite the well-known di�culties associated with its
scalability. Reasons for the persistence of trace matrices are
clear: they are simple to create and use when kept to a man-
ageable size and when used to associate two types of artifact;
they can be constructed manually or using general purpose
tools such as spreadsheets; they are intuitive for non experts
to create and understand; and they remain the dominant
representation provided for traceability in most commer-
cial tools. More generally, linear, tabular, hierarchical, and
graph-based representations are the most prevalent forms of
visualization used to depict traceability information in com-
mercial tool support, and hyper-links (cross-references) are
routinely used to associate artifacts and traverse the links
interactively.

6.2.1 Trace Visualization
Enormous advances have been made in popular techniques

and tools for information and knowledge visualization [42].
Visual analytics are now a common form of support for
decision-making activities in many fields of endeavor [87]
and advice on selecting suitable visualization techniques is
readily available [50, 82, 76]. Despite some pockets of re-
search, our field has been slow to keep pace, and now needs
to re-examine its information-seeking needs and mechanisms
more systematically. As projects continue to grow in size,
duration and complexity, researchers have strived to tackle
the dimensions of scale and address its resulting visual clut-
ter through augmenting and combining well-known visual-
ization techniques, and developing new ones. Tackling scale
head-on, Chen et al. [10] propose combining treemap and
hierarchical tree visualization techniques to show both the
global structure of traces and a detailed overview of each
trace. Merten et al. [67] propose interactive Sunburst and
Netmap visualizations as a way to achieve similar goals. Ad-
dressing other dimensions of scale, three-dimensional visual-
izations have been developed to depict temporal traceability
information [4], and to convey traceability across modelling
abstraction levels [90]. However, for the fruits of this, and
other related research, to move from prototypes to commer-
cial tools, evidence of e↵ectiveness in practice is now needed.

6.2.2 Selecting Trace Visualizations
Concurrent with the development and evolution of tech-

niques, traceability researchers have emphasized the need to
better understand the users, tasks, and project constraints
that drive the development and selection of suitable visu-
alizations for traceability purposes [66, 39, 91, 16]. Future
tools will no doubt need to provide a collection of visualiza-
tions to support di↵erent users and tasks, and these will need
to span all areas of an end-to-end traceability process. To
this end, visualization is now finding its way into traceabil-
ity strategizing tasks, where a visual language is proposed
for defining the traceability strategy on a project [59].

A recent empirical study examined four common visual-
izations used to present traceability information (matrices,
graphs, lists, and hyperlinks), to investigate which ones were
better suited to which tasks [56]. It found that matrices and
graphs were preferred to support management tasks, while
hyperlinks were preferred to support implementation and
testing tasks. Matrices were found appropriate to gain an
overview of the traceability, while graphs were found suited
to navigating the resulting traces.

Such studies bring an important focus to task-driven vi-
sualization, the longer-term objective of this research being
to suggest the most appropriate traceability visualization(s)
for any task at hand. To achieve this goal, Niu et al. [72]
developed a framework for assessing the e↵ectiveness of vi-
sualizations for supporting decision-making activities, based
upon how users interact with the visualization to augment
their knowledge, and then used the framework to critique
existing visualizations and propose the principled develop-
ment of new ones.

6.2.3 Research Directions
We envisage a future in which there are better visual ways

to interactively define, create, maintain, analyze, and use
traceability information e↵ectively. Necessary research com-
prises three directions.

• RD-7.1 Construct a taxonomy of available visual-
izations and fundamental traceability tasks. Bridge
these by exploring the basic visualization principles that
they either provide or demand. (Scalable.RT2)

•RD-7.2 Gather and share user-based empirical data
to evaluate trace visualizations and direct the formulation
of novel ones. (Purposed.RT6)

• RD-7.3 Perform in-situ user studies to evaluate
and understand task-specific needs for trace infor-
mation and develop novel ways to provide the needed in-
formation to stakeholders. (Purposed.RT1)

7. CONCLUSIONS
In this paper, we have identified seven research areas and

their associated“research directions”which must be addressed
in order to achieve the grand challenge of ubiquitous trace-
ability. Each of these research directions is fully actionable
and will help our community to work collaboratively towards
advancing the state-of-the-art and state of practice in trace-
ability.

The identified research directions are quite varied in na-
ture. Some focus on algorithmic solutions, others on pro-
cess improvement, and still others on technical infrastruc-
ture needs. This suggests that advancing the state-of-the-
art in software traceability will require the cooperation of re-
searchers with di↵erent skill-sets from areas as diverse as in-
formation systems, data mining, visualization, and systems
engineering. Furthermore, traceability research addresses a
current and pressing need in industry, and therefore also re-
quires the engagement of industry practitioners. Case stud-
ies exploring successes and failures in software traceability
practice keep researchers focused on the real problems to
be addressed, while academic-industry collaborations pro-
vide invaluable opportunities for exploring the application
of mature research in an industrial context.

Roadmap-style papers have traditionally provided direc-
tions for future research while social computing infrastruc-

tures provide a more interactive framework for supporting
research collaborations and ongoing discussions. To this end,
we have established an online Research Directions forum at
CoEST.org.

Finally, wherever appropriate, we also provide download-
able, executable, baselined experiments, developed in Trace-
Lab [49]. TraceLab is an innovative experimental environ-
ment which allows researchers to reuse, reproduce, and/or
modify previous experiments, compose new experiments from
a combination of existing and user-defined components, use
publicly available datasets, exchange components, and com-
paratively evaluate results against previous benchmarks. We
provide links to these experiments from the Research Di-
rections forum to encourage comparative envaluation and
reproducibility of experimental results.

We encourage researchers to actively engage in the ongo-
ing discussion, to keep the community informed of impor-
tant advances and new challenges as they emerge, and where
possible to use existing experimental baselines or create new
ones for others to use. Our hope is that we can engage in
a lively, ongoing, and interactive discussion centered around
the identified research directions and work together towards
achieving our goal of ubiquitous traceability.

Acknowledgments
Work on this paper was partially funded by NSF Grants
CCF-1319680 (Huang), CNS-0959924 (Hayes,Huang), and
the German BMBF grant 16V0116 (Mäder).

8. REFERENCES
[1] S. Ajila and A. B. Kaba. Using traceability

mechanisms to support software product line
evolution. In IEEE International Conference on
Information Reuse and Integration (IRI), pages
157–162, 2004.

[2] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira,
J.-C. Royer, A. Rummler, and A. Sousa. A
model-driven traceability framework for software
product lines. Software and System Modeling,
9(4):427–451, 2010.

[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,
and E. Merlo. Recovering traceability links between
code and documentation. IEEE Transactions on
Software Engineering, 28(10):970–983, 2002.

[4] G. Antoniol, E. Merlo, Y.-G. Guéhéneuc, and
H. Sahraoui. On feature traceability in object oriented
programs. In 3rd International Workshop on
Traceability in Emerging Forms of Software
Engineering (TEFSE), pages 73–78, 2005.

[5] P. Arkley and S. Riddle. Overcoming the traceability
benefit problem. In 13th IEEE International
Requirements Engineering Conference (RE), pages
385–389, 2005.

[6] H. U. Asuncion, A. Asuncion, and R. N. Taylor.
Software traceability with topic modeling. In 32nd
ACM/IEEE International Conference on Software
Engineering (ICSE), pages 95–104, 2010.

[7] M. Barbero, M. Didonet, D. Fabro, and J. Bézivin.
Traceability and provenance issues in global model
management. In 3rd ECMDA-Traceability Workshop
(ECMDA-TW), 2007.

[8] F. Blaauboer, K. Sikkel, and M. N. Aydin. Deciding to
adopt requirements traceability in practice. In 19th
International Conference on Advanced Information
Systems Engineering (CAiSE), pages 294–308, 2007.

[9] E. Bouillon, P. Mäder, and I. Philippow. A survey on
usage scenarios for requirements traceability in
practice. In 19th International Working Conference on
Requirements Engineering: Foundation for Software
Quality (REFSQ), volume 7830 of LNCS, pages
158–173, 2013.

[10] X. Chen, J. G. Hosking, and J. Grundy. Visualizing
traceability links between source code and
documentation. In IEEE Symposium on Visual
Languages and Human-Centric Computing
(VL/HCC), pages 119–126, 2012.

[11] J. Cleland-Huang, C. K. Chang, and Y. Ge.
Supporting event based traceability through high-level
recognition of change events. In 26th International
Computer Software and Applications Conference
(COMPSAC), pages 595–602, 2002.

[12] J. Cleland-Huang, M. Heimdahl, J. Hu↵man Hayes,
R. Lutz, and P. Mäder. Trace queries for safety
requirements in high assurance systems. In 18th
International Working Conference on Requirements
Engineering: Foundation for Software Quality
(REFSQ), volume 7195 of LNCS, pages 179–193, 2012.

[13] P. C. Clements and L. Northrop. Software Product
Lines: Practices and Patterns. SEI Series in Software
Engineering. Addison-Wesley, 2001.

[14] CoEST: Center of excellence for software traceability,
http://www.CoEST.org.

[15] Committee for Advancing Software Intensive Systems
Producibility. Critical Code: Software Producibility for
Defense. The National Academies Press, 2011.

[16] J. R. Cooper, S.-W. Lee, R. A. Gandhi, and O. Gotel.
Requirements engineering visualization: A survey on
the state-of-the-art. In 4th International Workshop on
Requirements Engineering Visualization (REV), pages
46–55, 2009.

[17] D. Cuddeback, A. Dekhtyar, J. Hu↵man Hayes,
J. Holden, and W.-K. Kong. Towards overcoming
human analyst fallibility in the requirements tracing
process: Nier track. In 33rd International Conference
on Software Engineering (ICSE), pages 860–863, 2011.

[18] D. C. de Leon and J. Alves-Foss. Experiments on
processing and linking semantically augmented
requirement specifications. In 37th Hawaii
International Conference on System Sciences
(HICSS), 2004.

[19] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora.
Enhancing an artefact management system with
traceability recovery features. In 20th IEEE
International Conference on Software Maintenance
(ICSM), pages 306–315, 2004.

[20] A. De Lucia, R. Oliveto, and G. Tortora. Adams
re-trace. In 35th International Conference on Software
Engineering (ICSE), pages 839–842, 2008.

[21] A. Dekhtyar, O. Dekhtyar, J. Holden,
J. Hu↵man Hayes, D. Cuddeback, and W.-K. Kong.
On human analyst performance in assisted
requirements tracing: Statistical analysis. In 19th
IEEE International Requirements Engineering

Conference (RE), pages 111–120, 2011.
[22] A. Dekhtyar, J. Hu↵man Hayes, S. K. Sundaram,

E. A. Holbrook, and O. Dekhtyar. Technique
integration for requirements assessment. In 15th IEEE
International Requirements Engineering Conference
(RE), pages 141–150, 2007.

[23] A. Delater and B. Paech. Analyzing the tracing of
requirements and source code during software
development - a research preview. In 19th
International Working Conference on Requirements
Engineering: Foundation for Software Quality
(REFSQ), volume 7830 of LNCS, pages 308–314, 2013.

[24] T. Dietrich, J. Cleland-Huang, and Y. Shin. Learning
e↵ective query transformations for enhanced
requirements trace retrieval. In 28th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 586–591, 2013.

[25] B. Dit, M. Revelle, and D. Poshyvanyk. Integrating
information retrieval, execution and link analysis
analysis algorithms to improve feature location in
software. Empirical Software Engineering,
18(2):277–309, 2013.

[26] A. Egyed, P. Grünbacher, M. Heindl, and S. Bi✏.
Value-based requirements traceability: Lessons
learned. In 15th IEEE International Requirements
Engineering Conference (RE), pages 115–118, 2007.

[27] European Computer Manufacturers Association.
Reference model for frameworks of software
engineering environments. Technical Report TR/55,
NIST Special Publication 500–211, ECMA, Geneva,
Switzerland, June 1993.

[28] D. Falessi, G. Cantone, and G. Canfora. Empirical
principles and an industrial case study in retrieving
equivalent requirements via natural language
processing techniques. IEEE Transactions on Software
Engineering, 39(1):18–44, 2013.

[29] Federal Aviation Authority (FAA). DO-178B:
Software Considerations in Airborne Systems and
Equipment Certification, faa’s advisory circular
ac20-115b edition.

[30] Food and Drug Administration. Guidance for the
Content of Premarket Submissions for Software
Contained in Medical Devices, 2005.

[31] R. Freude and A. Königs. Tool integration with
consistency relations and their visualization. In
ESEC/FSE Workshop on Tool Integration in System
Development, pages 6–10, 2003.

[32] M. Gethers, R. Oliveto, D. Poshyvanyk, and
A. De Lucia. On integrating orthogonal information
retrieval methods to improve traceability link
recovery. In 27th IEEE International Conference on
Software Maintenance (ICSM), pages 133–142, 2011.

[33] A. Ghabi and A. Egyed. Code patterns for
automatically validating requirements-to-code traces.
In 27th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages
200–209, 2012.

[34] O. Gotel, J. Cleland-Huang, J. Hu↵man Hayes,
A. Zisman, A. Egyed, P. Grünbacher, and
G. Antoniol. The quest for ubiquity: A roadmap for
software and systems traceability research. In 21st
IEEE International Requirements Engineering

Conference (RE), pages 71–80, 2012.
[35] O. Gotel, J. Cleland-Huang, J. Hu↵man Hayes,

A. Zisman, A. Egyed, P. Grünbacher, A. Dekhtyar,
G. Antoniol, and J. Maletic. The grand challenge of
traceability (v1.0). In J. Cleland-Huang, O. Gotel, and
A. Zisman, editors, Software and Systems Traceability,
pages 343–409. Springer, 2012.

[36] O. Gotel, J. Cleland-Huang, J. Hu↵man Hayes,
A. Zisman, A. Egyed, P. Grünbacher, A. Dekhtyar,
G. Antoniol, J. Maletic, and P. Mäder. Traceability
fundamentals. In J. Cleland-Huang, O. Gotel, and
A. Zisman, editors, Software and Systems Traceability,
pages 3–22. Springer, 2012.
10.1007/978-1-4471-2239-51.

[37] O. Gotel and A. Finkelstein. An analysis of the
requirements traceability problem. In 1st IEEE
International Conference on Requirements
Engineering (ICRE), pages 94–101, 1994.

[38] O. Gotel and A. Finkelstein. Contribution structures
[requirements artifacts]. In 2nd IEEE International
Symposium on Requirements Engineering (RE), pages
100–107, 1995.

[39] O. Gotel, F. T. Marchese, and S. J. Morris. On
requirements visualization. In 2nd International
Workshop on Requirements Engineering Visualization
(REV), page 11, 2007.

[40] S. Guckenheimer and J. Perez. Software Engineering
with Microsoft Visual Studio Team System. Addison
Wesley, 2006.

[41] J. Guo, J. Cleland-Huang, and B. Berenbach.
Foundations for an expert system in domain-specific
traceability. In 21st IEEE International Requirements
Engineering Conference (RE), pages 42–51, 2013.

[42] J. Heer, M. Bostock, and V. Ogievetsky. A tour
through the visualization zoo. Commun. ACM,
53(6):59–67, June 2010.

[43] E. A. Holbrook, J. Hu↵man Hayes, A. Dekhtyar, and
W. Li. A study of methods for textual satisfaction
assessment. Empirical Software Engineering,
18(1):139–176, 2013.

[44] J. Hu↵man Hayes, A. Dekhtyar, and S. K. Sundaram.
Advancing candidate link generation for requirements
tracing: The study of methods. IEEE Transactions on
Software Engineering, 32(1):4–19, 2006.

[45] E. Hull, K. Jackson, and J. Dick. Requirements
Engineering. Springer, 2002.

[46] C. Ingram and S. Riddle. Cost-benefits of traceability.
In Software and Systems Traceability, pages 23–42.
Springer, 2012.

[47] W. Jirapanthong and A. Zisman. Xtraque:
traceability for product line systems. Software and
System Modeling, 8(1):117–144, 2009.

[48] V. Katta and T. Stälhane. Traceability of safety
systems: approach, meta-model and tool support,.
Tech. report hwr-1053, oecd halden reactor project,
Institute for Energy Technology Note: Available upon
request., 2012.

[49] E. Keenan, A. Czauderna, G. Leach,
J. Cleland-Huang, Y. Shin, E. Moritz, M. Gethers,
D. Poshyvanyk, J. Maletic, J. Hu↵man Hayes,
A. Dekhtyar, D. Manukian, S. Hossein, and D. Hearn.
Tracelab: An experimental workbench for equipping

researchers to innovate, synthesize, and comparatively
evaluate traceability solutions. In Tool Demo, 34th
International Conference on Software Engineering
(ICSE), pages 1375–1378, 2012.

[50] P. R. Keller and M. M. Keller. Visual Cues: Practical
Data Visualization. IEEE Computer Society Press,
1994.

[51] V. Kirova, N. Kirby, D. Kothari, and G. Childress.
E↵ective requirements traceability: Models, tools, and
practices. Bell Labs Technical Journal, 12(4):143–157,
2008.

[52] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. C.:
On-demand merging of traceability links with models.
3 rd ecmda traceability workshop, 2006.

[53] W.-K. Kong, J. Hu↵man Hayes, A. Dekhtyar, and
O. Dekhtyar. Process improvement for traceability: A
study of human fallibility. In 20th IEEE International
Requirements Engineering Conference (RE), pages
31–40, 2012.

[54] A. Königs and A. Schürr. Mdi: A rule-based
multi-document and tool integration approach.
Software and System Modeling, 5(4):349–368, 2006.

[55] H. Kuang, P. Mäder, H. Hu, A. Ghabi, L. Huang,
J. Lv, and A. Egyed. Do data dependencies in source
code complement call dependencies for understanding
requirements traceability? In 28th IEEE International
Conference on Software Maintenance (ICSM), pages
181–190, 2012.

[56] Y. Li and W. Maalej. Which traceability visualization
is suitable in this context? a comparative study. In
18th International Conference on Requirements
Engineering: Foundation for Software Quality
(REFSQ), pages 194–210, 2012.

[57] J. Lin, C. C. Lin, J. Cleland-Huang, R. Settimi,
J. Amaya, G. Bedford, B. Berenbach, O. Ben Khadra,
C. Duan, and X. Zou. Poirot: A distributed tool
supporting enterprise-wide automated traceability. In
14th IEEE International Requirements Engineering
Conference (RE), pages 356–357, 2006.

[58] S. Lohar, S. Amornborvornwong, A. Zisman, and
J. Cleland-Huang. Improving trace accuracy through
data-driven configuration and composition of tracing
features. In 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), pages 378–388,
2013.

[59] P. Mäder and J. Cleland-Huang. A visual language for
modeling and executing traceability queries. Software
and System Modeling, 12(3):537–553, 2013.

[60] P. Mäder and A. Egyed. Assessing the e↵ect of
requirements traceability for software maintenance. In
28th IEEE International Conference on Software
Maintenance (ICSM), pages 171–180, 2012.

[61] P. Mäder and O. Gotel. Towards automated
traceability maintenance. Journal of Systems and
Software, 85(10):2205–2227, 2012.

[62] P. Mäder, O. Gotel, and I. Philippow. Getting back to
basics: Promoting the use of a traceability information
model in practice. In 5th Workshop on Traceability in
Emerging Forms of Software Engineering (TEFSE),
2009.

[63] P. Mäder, O. Gotel, and I. Philippow. Motivation
matters in the traceability trenches. In 17th IEEE

International Requirements Engineering Conference
(RE), pages 143–148, 2009.

[64] P. Mäder, P. L. Jones, Y. Zhang, and
J. Cleland-Huang. Strategic traceability for
safety-critical projects. IEEE Software, 30(3):58–66,
2013.

[65] J. I. Maletic and M. L. Collard. Tql: A query
language to support traceability. In 5th Workshop on
Traceability in Emerging Forms of Software
Engineering (TEFSE), pages 16–20, 2009.

[66] A. Marcus, X. Xie, and D. Poshyvanyk. When and
how to visualize traceability links? In 3rd
International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE), pages
56–61, 2005.

[67] T. Merten, D. Juppner, and A. Delater. Improved
representation of traceability links in requirements
engineering knowledge using sunburst and netmap
visualizations. In 4th Workshop Managing
Requirements Knowledge (MARK), pages 17–21, 2011.

[68] T. Miller and S. Agne. Attention-based information
retrieval using eye tracker data. In 3rd International
Conference on Knowledge Capture (K-CAP), pages
209–210, 2005.

[69] R. Mitschke and M. Eichberg. Supporting the
evolution of software product lines. In 4th
ECMDA-Traceability Workshop (ECMDA-TW), pages
87–96, 2008.

[70] L. G. P. Murta, A. van der Hoek, and C. M. L.
Werner. Archtrace: Policy-based support for managing
evolving architecture-to-implementation traceability
links. In 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages
135–144, 2006.

[71] P. Nistala and P. Kumari. Establishing content
traceability for software applications: An approach
based on structuring and tracking of configuration
elements. In 7th Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE), 2013.

[72] N. Niu, S. Reddivari, and Z. Chen. Keeping
requirements on track via visual analytics. In 21st
IEEE International Requirements Engineering
Conference (RE), pages 205–214, 2013.

[73] S. C. of RTCA. DO-178C, software considerations in
airborne systems and equipment certification, 2011.

[74] A. Panichella, B. Dit, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia. How to e↵ectively
use topic models for software engineering tasks? an
approach based on genetic algorithms. In 35th
International Conference on Software Engineering
(ICSE), pages 522–531, 2013.

[75] M. Panis. Successful deployment of requirements
traceability in a commercial engineering
organization...really. In 18th IEEE International
Requirements Engineering Conference (RE), pages
303–307, 2010.

[76] D. Pfitzner, V. Hobbs, and D. Powers. A unified
taxonomic framework for information visualization. In
Asia-Pacific Symposium on Information Visualisation
(APVis), pages 57–66, 2003.

[77] D. Poshyvanyk. Using information retrieval to support
software maintenance tasks. In 25th IEEE

International Conference on Software Maintenance
(ICSM), pages 453–456, 2009.

[78] B. Ramesh and M. Jarke. Toward reference models of
requirements traceability. IEEE Transactions on
Software Engineering, 27(1):58–93, 2001.

[79] P. Rempel, P. Mäder, and T. Kuschke. An empirical
study on project-specific traceability strategies. In
21st IEEE International Requirements Engineering
Conference (RE), pages 195–204, 2013.

[80] P. Rempel, P. Mäder, T. Kuschke, and
J. Cleland-Huang. Mind the gap: Assessing the
conformance of software traceability to relevant
guidelines. In 36th International Conference on
Software Engineering (ICSE), 2014.

[81] Y. Shin and J. Cleland-Huang. A comparative
evaluation of two user feedback techniques for
requirements trace retrieval. In 27th Annual ACM
Symposium on Applied Computing (SAC), pages
1069–1074, 2012.

[82] B. Shneiderman. The eyes have it: A task by data
type taxonomy for information visualizations. In IEEE
Symposium on Visual Languages (VL), pages 336–343,
1996.

[83] M. Smith, D. Weiss, P. Wilcox, and R. Dewar. The
ophelia traceability layer. In F. Angeli, editor,
Cooperative Methods and tools for distributed software
processes, volume 380.222 of RCOST/SOFTWARE
TECHNOLOGY, pages 88–464, 2003.

[84] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and
P. Krause. Rule-based generation of requirements
traceability relations. Journal of Systems and
Software, 72(2):105–127, 2004.

[85] H. Sultanov, J. Hu↵man Hayes, and W.-K. Kong.
Application of swarm techniques to requirements
tracing. Requirements Engineering, 16(3):209–226,
2011.

[86] S. K. Sundaram, J. H. Hayes, A. Dekhtyar, and E. A.
Holbrook. Assessing traceability of software
engineering artifacts. Requirements Engineering,
15(3):313–335, 2010.

[87] J. J. Thomas and K. A. Cook. A visual analytics
agenda. IEEE Computer Graphics and Applications,
26(1):10–13, 2006.

[88] E. Vassev and M. Hinchey. Autonomy requirements
engineering. IEEE Computer, 46(8):82–84, 2013.

[89] A. von Knethen. Change-oriented requirements
traceability: Support for evolution of embedded
systems. In 18th IEEE International Conference on
Software Maintenance (ICSM), pages 482–485, 2002.

[90] J. von Pilgrim, B. Vanhoo↵, I. Schulz-Gerlach, and
Y. Berbers. Constructing and visualizing
transformation chains. In 4th European Conference on
Model Driven Architecture – Foundations and
Applications (ECMDA-FA), pages 17–32, 2008.

[91] S. Winkler. On usability in requirements trace
visualizations. In 3rd International Workshop on
Requirements Engineering Visualization (REV), pages
56–60, 2008.

[92] S. Winkler. Trace retrieval for evolving artifacts. In
5th Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE), pages 49–56, 2009.

