
Self-Adaptive Applications: On the Development of
Personalized Web-Tasking Systems

Lorena Castañeda*†‡

*University of Victoria, Canada
†IBM Canada Software

Laboratory, CAS Research
Markham, Canada

‡Icesi University, Colombia
lcastane@uvic.ca

Norha M. Villegas‡

‡Icesi University, Colombia
nvillega@icesi.edu.co

Hausi A. Müller*†
*University of Victoria, Canada

†IBM Canada Software
Laboratory, CAS Research

Markham, Canada
hausi@uvic.ca

ABSTRACT
Personalized Web-Tasking (PWT) proposes the automation
of user-centric and repetitive web interactions to assist users
in the fulfilment of personal goals using internet systems.
In PWT, both personal goals and internet systems are af-
fected by unpredictable changes in user preferences, situa-
tions, system infrastructures and environments. Therefore,
self-adaptation enhanced with dynamic context monitoring
is required to guarantee the effectiveness of PWT systems
that, despite context uncertainty, must guarantee the ac-
complishment of personal goals and deliver pleasant user
experiences. This position paper describes our approach
to the development of PWT systems, which relies on self-
adaptation and its enabling technologies. In particular, it
presents our runtime modelling approach that is comprised
of our PWT Ontology and Goal-oriented Context-sensitive
web-tasking (GCT) models, and the way we exploit previous
SEAMS contributions developed in our research group, the
DYNAMICO reference model and the SmarterContext
Monitoring Infrastructure and Reasoning Engine. The main
goal of this paper is to demonstrate how the most crucial chal-
lenges in the engineering of PWT systems can be addressed
by implementing them as self-adaptive software.

Categories and Subject Descriptors
D.2 [Software Engineering]: Design, Software Architec-
tures—Representation, Domain-specific architectures

General Terms
Software Engineering

Keywords
User-Centric, Personalized Web-Tasking, Runtime Models,
Self-Adaptive Systems, Context-Awareness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS ’14, June 2-3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2864-7/14/06 ...$15.00.

1. INTRODUCTION
Users rely on the internet to perform ordinary and repet-

itive tasks, and feel more comfortable when web systems
provide high levels of personalization and automation. De-
spite the existence of applications to automate and person-
alize web interactions, these are insufficient to guarantee
the accomplishment of user goals when changes in relevant
context cannot be fully anticipated at design time. Per-
sonalized Web-Tasking (PWT) is defined as the automation
of repetitive and mundane web interactions that, together
with the exploitation of personal context (e.g., information
from personal profiles, social relationships, and historical web
interactions), seeks to optimize user experiences by assist-
ing people in the fulfilment of personal goals using internet
technologies [3].

Managing web interactions at runtime is a complex task.
A first cause of this complexity is that internet infrastruc-
tures experience frequent and dynamic updates, as well as
additions or removals of numerous devices, applications, com-
munication protocols and services. A second cause is that
the situations and preferences of users may change while
performing web interactions. In regular web interactions,
dealing with this complexity implies for the user to be aware
of changes that may affect the accomplishment of personal
goals to adjust web tasks accordingly. For example, by in-
stalling updates, consuming new services, learning about new
applications, accessing web services from different devices,
or creating multiple profiles. Under these circumstances, the
effectiveness of web interactions to accomplish personal goals
is limited by the level of expertise of the user to interact
with specific technologies, thus compromising not only user
experiences but also the value that businesses can obtain
from internet technologies.

The success of PWT relies on the capability of automating
mundane web-tasks and adapting the infrastructures and
web applications that support such web-tasking in order
to free users from the management of these complexities.
Therefore, PWT software systems must be capable of under-
standing user needs, act upon changes in relevant contexts,
and recognize users as central controllers of web interactions
to assist them in performing web-tasks with a minimum of
effort, while maximizing their satisfaction. For this, PWT
applications must be designed and implemented as software
systems that expose self-* properties [6, 7, 9], and support
situation-awareness [4, 10]. They must be self-configurable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SEAMS’14, June 2–3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2864-7/14/06...$15.00
http://dx.doi.org/10.1145/2593929.2593942

49

for dealing with dynamic context changes by adjusting their
behaviour or structure at runtime. In particular, they must
expose self-healing and self-optimizing capabilities to ensure
the accomplishment of user goals in the presence of sys-
tem failures, and guarantee pleasant user experiences under
changing environments, user goals and situations.

To implement PWT applications as self-adaptive software
(SAS) systems we propose a set of runtime models that allow
us to represent user goals, system concepts and context enti-
ties as artefacts that maintain a causal connection and that
can be manipulated while the system is running. To design
and implement the PWT system presented in this paper, we
used the DYNAMICO reference model proposed by Villegas
et al. [11]. DYNAMICO supports the implementation of
SAS systems that are highly affected by changes in goals and
context situations at runtime. SAS systems derived from DY-
NAMICO implement three subsystems that might be in turn
self-adaptive: (i) the control objectives subsystem maintains
the relevance of the PWT system with respect to changes
in the user’s personal goals; (ii) the adaptation mechanism
allows the system to act upon changes that occur either in
the context or in the requirements of the system; (iii) the
monitoring infrastructure keeps track of context events that
are relevant to the execution of task sequences.

Monitoring mechanisms in our PWT system are provided
by the SmarterContext monitoring infrastructure [12] and
its ontologies, which we extended with our PWT ontology.
Indeed, our extension instruments the SmarterContext
Reasoning Engine (SCoRE) with basic capabilities required
to infer, from personal context information, knowledge valu-
able to optimize future PWT executions. For example, by
recommending other web services or a different web task
sequence based on the similarity of the user with others (e.g.,
taking into account the user’s gender, age, location, and
preferences).

The contributions of this paper include our vision on the
implementation of PWT systems as SAS systems. Our design
is based in the DYNAMICO reference model, and also uses
the SmarterContext infrastructure. Additionally, the
self-adaptive capabilities of our PWT implementation are
supported by our two runtime models presented in this paper:
(1) our personalized web-tasking (PWT) model, an ontology
that defines the concepts and artefacts of personalized web
tasking; and (2) our goal-oriented context-sensitive web-
tasking (GCT) model, a representation of the evolving web-
tasking goals and web interactions of a user, as well as the
relevant context that may affect the successful execution of
the tasks.

The remaining sections of this paper are organized as
follows: Section 2 describes an online grocery shopping ap-
plication scenario that we use to illustrate the PWT domain.
Section 3 presents our runtime models and the implemen-
tation of our PWT system. Finally, Section 4 discusses
challenges, and Section 5 concludes the paper.

2. AN ONLINE GROCERY SHOPPING
SCENARIO

We selected online grocery shopping as the personal goal for
our case study because its activities are repetitive, performed
periodically, and can involve social interactions (e.g., relatives,
friends, and other users). Moreover, the fulfilment of grocery

shopping goals requires a variety of services and different
internet data sources.

In regular grocery shopping scenarios (i.e., those not sup-
ported by PWT systems), we identify four main web interac-
tions that are manually executed by the user:
(1) The user gets the shopping list which implies to log into

her preferred grocery list service using a web browser or
a mobile application.

(2) The user locates the proper stores using geo-localization
services to find nearby grocery stores that she will filter
manually according to her preferences that are already
available in her social network.

(3) The user creates independent shopping lists by matching
both items and stores according to different criteria. For
instance, the category best deals of the season, which
implies to compare prices manually to select the best
offer according to her budget, or best reviews for both
products and stores.

(4) The user proceeds with the purchase selecting one of two
possible ways: if the store provides an online purchase
service the user can proceed with the payment and sched-
ule the delivery; otherwise she will have to manually plan
the grocery shopping visit while taking into account dif-
ferent conditions that can affect the pick-up process such
as time, traffic, and the store’s shopping hours.

Online grocery shopping requires PWT systems for opti-
mizing user experience and increasing revenue generation.
This is because shopping web-tasking is exposed to uncer-
tainty generated by the interoperation among different web
services (e.g., changes in service compositions, incompati-
bility of data), and the changes in the user’s context (e.g.,
location, preferences, special events, or her behavior when
browsing the internet). Online grocery shopping activities
are also affected by social context, that is, the information
gathered from other people within the user’s social sphere
(e.g., friends, relatives, and colleagues). By effectively com-
bining these context dimensions, it is possible to adjust the
PWT sequence with the goal of achieving the goal according
to the actual user situation or concerns. For example, a
birthday party event in the user’s calendar will update the
shopping list with new items that are required only for this
particular event, and might also imply the rescheduling of
task’s execution time. Similarly, based on the rankings that
other users provide to services, the PWT system may suggest
for example a better service to obtain discount coupons. The
user could decide to include this new service into her task
sequence to optimize the accomplishment of her shopping
goal.

Having no PWT support to cope with these changes that
might affect the achievement of personal goals, the user must
adapt the set of required web interactions manually thus
hampering the quality of the user’s experience.

3. OUR PWT SOFTWARE SYSTEM
In the vision of creating personalized web-tasking applica-

tions, the user’s identity, interactions, personal goals, prefer-
ences, and context, determine the decisions and the behaviour
of the web interactions of the user. For this purpose, these
applications must translate the user’s goal into a sequence
of web tasks that can be executed automatically in behalf of
the user to provide a better user experience.

The realization of PWT requires the implementation of
SAS systems to support as much automation and personaliza-

50

tion as possible in all aspects of the user’s web-tasking. We
posit that the design and implementation of PWT systems
must be driven by the following requirements, according to
our conceptual representation as depicted in Figure 1:
(1) Personal goal identification: The system must under-

stand the user’s personal goal in machine readable lan-
guage that can be processed at runtime.

(2) Web-task sequencing: The system must define ordered
sequences of web-subtasks required to achieve a personal
goal, including the specification of dependencies, services,
inputs and outputs.

(3) Web-task personalization: The system must exploit con-
text information to define the web-task sequence to be
executed. This context information can be a user’s per-
sonal context [12], historical web-interactions, other users
in her social network, and all relevant context from the
environment.

(4) Web-task execution: The system must execute the se-
lected web-task sequence while performing management
activities such as life cycle control, conflict resolution,
and fault recovery.

(5) Context-awareness and self-adaptive support: The system
must act upon unexpected context changes by adapting
itself at runtime, when applicable.

(2)
Web-task

sequencing

(1)
Personal goal
identification

(5) Context-Awareness and Self-Adaptation support

Figure 1: Personalized Web-Tasking conceptual ele-
ments

3.1 Runtime Models for Realizing PWT
To guarantee dynamism and flexibility in PWT, we require

models that can be manipulated and adapted during the ex-
ecution of the system [1, 8]. We have categorized modelling
requirements for PWT systems into three concerns: user
personal goals, web-task sequences, and context. Moreover,
we surveyed different modelling approaches, in particular
goal-oriented models [2], and ontologies, with the purpose
of identifying the most appropriate models for our prob-
lem. As a result of this comparative study, we proposed two
approaches that cover all the modelling requirements we iden-
tified for PWT systems: (1) Our personalized web-tasking
(PWT) model, and (2) our goal-oriented context-sensitive
web-tasking (GCT) model.

The PWT ontology model depicted in Figure 2, is the
base model and an ontology that defines the concepts of
personalized web tasking: personal goal, web-task sequence,
execution plan, activities, information resources, inputs, con-
ditions, and satisfaction properties. Our PWT ontology is
available as a runtime model in the form of an OWL2/RDF
file.1 Moreover, our ontology is applicable in different do-
mains (i.e., tasking supported by stand-alone software sys-
tems), and can be extended according to the evolution of the
web.

Our GCT model is an extension and redefinition of the
iStar Framework [5]. This model supports the specification
of evolving web-tasking goals, personal web interactions,

1
http://www.rigiresearch.com/research/pwt/pwtOntology.owl

and the relevant contexts. In particular, we extended the
iStar atomic notions of actor, goals, task and resources, to
support the specification of web-tasking goals, task sequences,
tasks and subtasks, as well as the relationships among tasks,
subtasks and resources. Figure 3 depicts an example of the
GCT model for our online grocery shopping scenario.

PersonalGoal

WebTask
Sequence

WebSubtask

ObservableResult

Satisfaction
Property

Input

Information
Resource

Activity

PlanItem

int

orderNo

hasWebTask [1]

definedBy [1…*]

measuredBy [1…*]

achievedThrough [1]

executionPlan [1…*]

hasPredecessor [0…*]

hasResult [1…*]

connectsTo [1…*]

performs [1…*]

hasParameters [0…*]

obtained [1]

Condition

constrains [0…*]

executionPolicies [0…*]

Output

is-a

Figure 2: Simplified view of our PWT ontology
model

GS-PWT
System

Empty
GS list

Keep
budget

Query user’s
GS list items

Find proper
stores

Purchase
items

Connect
GS list app

GS List
App

GS Store
App

Online
Payments

App

WebService
information

WebService
information

WebService
informationConnect GS

store app

Connect
OP app

List
Items

Update
List

Store
Catalogue

Credit Card
Charges

Match list with
catalogue

Create GS sublists
per Store

Proceed with
checkout

Store Shopping
Cart

PWT Grocery
Shopping

Purchase items
per store

Asses credit
card charges

t1

t2

t3

t4

t5

t6

t8

t9

t11

t12

t7

t10

Actor

Goal

Task

#

Resource

PWT System, External Application (web services)

Conventions: i* to PWT

User’s personal goal, observable results

Web-subtasks

Web-task sequence number

Information Resources

Figure 3: Goal-oriented Context-sensitive web-
tasking (GCT) model expressed using the i* Frame-
work [5].

To demonstrate the practical feasibility of our modelling
approach, we implemented a prototype of our PWT runtime

51

models for the grocery shopping scenario. We used Apache
JENA—an open source Java framework for building semantic
web and linked data applications,2 to create the runtime
models required in our online grocery shopping scenario.3

Each RDF graph constitutes a runtime instantiation of a
user’s web-tasking. These graphs are processed by our PWT
System to execute the web-tasking on behalf of the user.

3.2 Components of our PWT System
Our PWT system comprises the following main software

modules:
(1) Web-Tasking Knowledge Infrastructure: provides the in-

strumentation to express personal user goals (i.e., the
control objectives of the PWT system—the upper layer
in DYNAMICO) in the form of a GCT model. The
components in this module perform two main activities:
(i) record information from a user’s web interactions,
and (ii) represent this information in the form of a GCT
model instance (cf. Figure 3). To record a user’s web in-
teractions we need to identify, interpret and characterize
web actions (e.g., click, selection, or inputs) and data,
which implies instrumenting the browser, devices and
web sites to extract this information. Finally, the system
translates the information gathered from the user’s web
interactions into a GCT model.

(2) PWT Model Processor: processes our PWT models to
generate the corresponding RDF graphs (GCT models)
that specify all the information about the user web-
tasking, which includes web-task sequences, web services,
inputs, and satisfaction metrics. The PWT Model Pro-
cessor might determine that for one personal goal there
are several RDF graph candidates based on the user’s
historical behaviour. In this case, these candidates are
sent to the next module of the system; the Personaliza-
tion Engine will select the proper web-task sequence to
be executed.

(3) Personalization Engine: selects the proper RDF graph
based on personal context information provided by the
SmarterContext Reasoning Engine [12]. This context
information is relevant for its particular goal, and can
be either static (e.g., age or gender) or dynamic (e.g.,
location, preferences, or social information). The result
is one single RDF graph.

(4) Web-Tasking Effector: executes a sequence of web in-
teractions on behalf of the user, and at the same time
acts as a controller of the system by preforming the fol-
lowing activities: web-task life cycle control (i.e., the
start and end of the web-task), web services invocation
(i.e., communication protocol and data exchange), user
interaction requests (i.e., tasks that can not be fully au-
tomated), conflict resolution (e.g., service unavailability,
or data type incompatibility), and a final assessment
to guarantee the fulfilment of the personal goal. Addi-
tionally, it supports three levels of automation: manual
(i.e., the user explicitly specifies which web interactions
correspond to a particular personal goal), assisted by
recommendations (i.e., the system suggests web interac-
tions to the user), and fully automated (i.e., the system
executes web interactions on behalf of the user).

2
http://jena.apache.org/

3
http://www.rigiresearch.com/research/pwt/GroceryShopping.rdf

3.3 Realizing Self-Adaptation in our
PWT System

As a reference model, DYNAMICO provides software engi-
neers with a characterization of the structure and behaviour
of the minimal set of components required to implement
context-driven SAS systems. This model defines three feed-
back loop subsystems causally connected as depicted in Fig-
ure 4: control objectives manager (CO-FL), adaptation con-
troller mechanism (A-FL), and monitoring infrastructure
(M-FL). We designed our PWT system using the DYNAM-
ICO reference model.

Reference Control

Objectives (e.g., SLAs)

(D)

Sensed

Context

Information

Objectives Feedback Loop

Adaptation Feedback Loop

 Monitoring Feedback Loop

(A)(B) (C)

Control/data !ow

Legend:

Feedback loop abstractionCO-FL

A-FL

M-FL

Figure 4: DYNAMICO reference model for context-
driven self-adaptive software systems [11]

Figure 5 presents our runtime models and PWT system’s
modules mapped onto the DYNAMICO layers. The upper
level corresponds to the Web-Tasking Knowledge Infrastruc-
ture that receives the user’s personal goals, the control ob-
jectives of DYNAMICO. This level keeps track of changes in
the user’s goals to trigger the adaptation of the PWT system
(second level) and/or the monitoring infrastructure (third
level). The main objective of the Web-Tasking Knowledge
Infrastructure is to guarantee that the PWT system is really
the one that will allow the user to accomplish her personal
goals. The middle level comprises the adaptation mechanism
and the target system. The latter corresponds to our PWT
Model Processor, Personalization Engine, and Web-tasking
Effector. Our PWT system exposes behavioral and struc-
tural adaptation. With respect to behavioral adaptation, our
system supports the modification of existing algorithms or
the injection of a new algorithm to process newer versions
of the GCT model. Regarding structural adaptation, our
system supports the reconfiguration of its architecture ac-
cording to different grid-computing topologies, in particular
to optimize the execution of parallel web-tasks. The lower
level of DYNAMICO corresponds to the SmarterContext
infrastructure, which enables our PWT system with dynamic
context-aware capabilities. Finally, our runtime models are
required across all the DYNAMICO levels of our PWT sys-
tem. This is expected since the system must maintain a
causal connection not only between these models, but also
between them and the system implementation.

3.3.1 Context-Awareness Support
By extending the SmarterContext ontology to be used

in the Personalized Web-Tasking domain, we instrumented
the SmarterContext monitoring infrastructure to identify
and understand relevant context that is required during

52

Adaptation Mechanism

Control Objectives Manager

Target System

Web-tasking Knowledge Infrastructure

PWT Model
Processor

Personalization
Engine

Web-Tasking
Effector

1

2 3 4

Monitoring Infrastructure

Personal goals

SmarterContext Monitoring Infrastructure

R
u

n
tim

e m
o

d
els

Figure 5: Mapping our runtime models and system
modules onto the DYNAMICO reference model.

the execution of our PWT system. Instances of context
entities and information relevant to PWT systems include:
(i) external context such as other systems that interact with
the PWT system during the web-tasking execution. For
example, in our shopping scenario, external context can be
the grocery store web services used to retrieve information
from product catalogues; (ii) internal context that includes all
the elements within the system, the communication channels
among them and any information about the execution of the
system. For instance, the information exchanged between two
web-tasks that are sequenced, and the life cycle controller;
(iii) domain-related context that affects the way users interact
with the web to achieve a personal goal. For example, web
technologies and devices, correlation among web applications;
finally, (iv) user context, that includes not only personal
information (e.g., location), but also social information (e.g.,
food preferences of the family members that live with the
user). Personal context includes also the web behaviour of the
user, for example, the way of interacting with a new service,
the frequent addition or removal of steps (web interactions) to
standard executions, or the modification of input information.

3.3.2 Levels of Self-Adaptation
In our PWT system, self-adaptation occurs at two levels:

(1) the runtime models, and (2) the PWT system compo-
nents. Adaptation in the runtime models are triggered by
changes in the PWT problem domain that affect the user’s
web-tasking behaviour (e.g., technologies used to execute gro-
cery shopping). The second level corresponds to behavioural
or structural adaptations in the PWT system triggered by
context changes. Certainly, the modifications in the run-
time models (first level) necessarily imply adaptations in the
PWT system (second level) required for it to understand,
instantiate, and execute the PWT models properly.

As an illustration, let us assume that the user scans with
her mobile phone a QR code found in the product labels.
These labels contain detailed information such as type of
producer (e.g., organic, industrial, artisan, or imported), and
transportation (e.g., type of vehicle, transport conditions,
or original and passing locations). Figure 6 (upper figure)
shows a sequence diagram of the PWT system activities to
perform self-adaptation as follows: (1) By scanning the QR
code in the products, the user notifies the system that a

RMAMMI COC

(1) (2) (3)

(4)
(5) (6)

(7)

TS

RMAMMI COC

(1) (2) (3)

TS

Figure 6: Self-adaptation sequence diagrams for a
change in the context. Legend: C: Context, MI:
Monitoring Infrastructure, AM: Adaptation Mech-
anism, RM: Runtime Models, CO: Control Objec-
tives, and TS: Target system.

change in the context domain had occurred (i.e., a new user
interaction). This event is sensed by the MI and it is clas-
sified as relevant, given that the interactions with products
is a concern in the grocery shopping personal goal of the
user. (2) The MI reports the relevant event to the AM which
recognizes that the current representation of the domain (cf.
Figure 3) does not include information to understand and
process those QR codes. (3) As a result, the AM effects
the corresponding adaptations over the RM to update the
PWT models with this new source of information relevant
for the web-tasking of the user. (4) Moreover, the MI notices
a new version in the runtime models that jeopardizes the
proper execution of the PWT System. Naturally, (5) the
MI reports the event to the AM, who in response adapts
both (6) the CO (specifically the Web-Tasking Knowledge
Infrastructure) to understand this new information and gen-
erate the proper GCT model realizations (RDF Graph), and
(7) the TS to process, personalize, and execute the RDF
Graph accordingly.

It is worth mentioning that not all the adaptations in
the second level (i.e., the PWT system components) are
generated by changes in the runtime models. In our approach
the MI is aware of all the relevant contexts. For example,
let us assume that the user travels to another city for two
months. Figure 6 (lower figure) depicts the following sequence
of activities: (1) The MI realizes that the user has changed
her location and (2) reports the event to the AM. In response,
the AM (3) effects the corresponding adaptations in the TS,
more specifically in the Personalization Engine to include
the new location of the user as an important element for
personalizing the web-tasking. In this case, the adaptation
was not triggered by changes in the models or the control
objectives.

The separation of concerns introduced by DYNAMICO
allows us to address the variety of design and implementa-
tion concerns inherent in PWT applications. In particular,
it facilitates the management of the dynamic nature of goals,
models, and systems separately, while maintaining the re-
quired causal connections among them.

4. DISCUSSION
We presented our approach to the realization of PWT ap-

plications as SAS systems. First, we presented our runtime
modelling approaches (i.e., PWT Ontology and GCT models),
which support the implementation of dynamic, flexible and
self-adaptive PWT systems. In addition, we demonstrated
its practical feasibility by implementing RDF graphs to make

53

our GCT models available at runtime, and by describing
the software modules of our PWT system. Our approach to
implement PWT systems as adaptive software exploits pre-
vious SEAMS contributions, in particular the DYNAMICO
reference model [11], and the SmarterContext monitoring
infrastructure and reasoning engine [12].

Finally, we discuss two challenges that are crucial for the
improvement of self-adaptive capabilities in PWT systems:
(1) web instrumentation and (2) social context.

Web Instrumentation. Current web applications are not
fully instrumented to be recorded, characterized, and mod-
elled by third party applications as required by PWT systems.
There are some approaches to record and replay web inter-
actions (e.g., ClickTale,4 Selenium,5 Solex,6 or Mouseflow7).
However, they are mostly limited to register user actions
(i.e., click, selection, and browsing) and inputs (e.g., the aut-
ofill mode of the browsers). Moreover, these approaches are
not designed to respond to unpredictable context changes,
nor to understand how a user’s changing personal goals af-
fect web interactions. We posit that the implementation
of dynamic web environments (i.e., applications, browsers,
and devices) that enable PWT systems to acquire contex-
tual details from the user’s web experience, and to adapt
web interactions accordingly, is a major web instrumentation
challenge in the self-adaptation realm. Web instrumentation
implies the development of self-adaptation middlewares to
address the complexity raised by the dynamic nature of user
web interactions.

Social context. Social context comprises all the information
gathered from the social relationships (whether virtual or
real) of the user that is relevant to a personal web-tasking
situation. Context sources of this type include the user’s
social sphere (e.g., friends, relatives, or coworkers), people
in the same event as the user (e.g., birthday, graduation, or
holidays), or other PWT system users that are similar. A big
challenge is that the availability of this context information
is limited to certain public sources (e.g., social networks),
which are insufficient to optimize user experiences in PWT
systems. In order to exploit this type of context effectively,
we require software systems to discover, monitor, manage,
and process context sources different from the traditional
ones. Thus, SAS systems must be able to cope with the
challenges posed by the dynamic nature of the user’s so-
cial persona (i.e., how, where, when, and with whom the
user relates), and the hardware and software technologies
that support social interactions (e.g., social networks, col-
laborative applications, or communication devices). Indeed,
managing social context in PWT systems requires significant
self-adaptive instrumentation.

5. CONCLUSIONS
In summary, we showed how to use self-adaptive systems

technology to solve challenges in the realization of PWT
applications. Moreover, we demonstrated how PWT systems
can be designed and implemented on top of existing SEAMS
technologies. Indeed, PWT is an attractive application to
leverage the advantages of self-adaptive systems. Finally, we
identified two challenges that we are addressing in our ongo-

4http://www.clicktale.com/
5http://docs.seleniumhq.org/
6http://solex.sourceforge.net/
7http://mouseflow.com/

ing research: the need to (1) develop web instrumentation
to enable web interactions with dynamic capabilities, and
(2) to exploit self-adaptation to gather relevant context from
non-traditional context sources, that not only can appear at
runtime but also cannot be fully specified at design time.

6. REFERENCES
[1] G. Blair, N. Bencomo, and R. France. Models@

run.time. Computer, 42(10):22–27, 2009.

[2] D. Bolchini and J. Mylopoulos. From task-oriented to
goal-oriented web requirements analysis. In Proceedings
4th International Conference on Web Information
Systems Engineering, pages 166–175. IEEE, 2003.

[3] L. Castañeda, N. M. Villegas, and H. A. Müller.
Towards personalized web-tasking: Task simplification
challenges. In Proceedings 1st Workshop on
Personalized Web-Tasking (PWT 2013) at Ninth IEEE
World Congress on Services (SERVICES 2013), pages
147–153, 2013.

[4] M. R. Endsley. Toward a theory of situation awareness
in dynamic systems: Situation awareness. Human
factors, 37(1):32–64, 1995.

[5] J. Horkoff, E. Yu and G. Grau. iStart Guide. Online:
http://istar.rwth-aachen.de/tiki-index.php?page=
istarQuickGuide. Oct. 2013.

[6] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[7] Lemos et al. Software engineering for self-adaptive
systems: A second research roadmap. In Software
Engineering for Self-Adaptive Systems II, volume 7475
of Lecture Notes in Computer Science, pages 1–32.
Springer Berlin Heidelberg, 2013.

[8] B. Morin, O. Barais, J. Jezequel, F. Fleurey, and
A. Solberg. Models@ run.time to support dynamic
adaptation. Computer, 42(10):44–51, 2009.

[9] H. Müller, M. Pezzè, and M. Shaw. Visibility of control
in adaptive systems. In Proceedings of the 2nd
international workshop on Ultra-large-scale
software-intensive systems (ULSSIS 2008), pages 23–26,
2008.

[10] V. E. Silva Souza, A. Lapouchnian, W. N. Robinson,
and J. Mylopoulos. Awareness requirements. In
Software Engineering for Self-Adaptive Systems II,
volume 7475 of Lecture Notes in Computer Science,
pages 133–161. Springer Berlin Heidelberg, 2013.

[11] N. Villegas, G. Tamura, H. Müller, L. Duchien, and
R. Casallas. DYNAMICO: A Reference Model for
Governing Control Objectives and Context Relevance
in Self-Adaptive Software Systems. In Software
Engineering for Self-Adaptive Systems II, volume 7475
of Lecture Notes in Computer Science, pages 265–293,
2013.

[12] N. M. Villegas. Context Management and
Self-Adaptivity for Situation-Aware Smart Software
Systems. PhD thesis, University of Victoria, Canada,
February 2013.

54

