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ABSTRACT
The notion of Contextual Requirements refers to the inter-
relation between the requirements of a system, both func-
tional and non-functional (NFRs), and the dynamic environ-
ment in which the system operates. Dependability require-
ments are NFRs which could also be context-dependent.
The meaning and the consequence of faults affecting de-
pendability vary in relation to the context in which a fault
occurs. In this paper, we elaborate on the need to consider
the contextual nature of failures and dependability. Then,
we extend a contextual requirements model, the contextual
goal model, to capture contextual failures and utilize that
to enrich the semantic of dependability requirements. We
provide techniques to analyse and reason about the effects
of contexts on failures and their consequences. This analy-
sis helps evaluate the possible alternative configurations to
reach goals from dependability perspective and, hence, take
adaptation decisions. Finally, we demonstrate the feasibil-
ity and applicability of our approach on a Mobile Personal
Emergency Response system.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specification

General Terms
Design, Reliability

Keywords
Requirements engineering, Dependability, Context

1. INTRODUCTION
Socio-technical systems provide and control a wide range

of daily used services. Often, these systems are responsible
for important and even critical requirements whose failures
would cause undesirable or intolerable consequences. This
requires developers to take dependability into consideration
as a first class requirement which has social and technical
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elements and encompasses several attributes such as relia-
bility, availability, safety, security and maintainability [3].

Stakeholders’ requirements have essential role in adapta-
tion. The ultimate goal of a system and its adaptation is
to enhance the fulfilment of requirements. Non-functional
requirements (NFRs) could act as quality measures for the
different software configurations and alternative solutions to
reach functional requirements. Dependability requirements
is a specific kind of NFRs. A system can adapt in order to
choose a configuration which is unlikely to lead to failure in
meeting the requirements. Both kinds of requirements could
be contextual. Requirements engineering has recently con-
sidered the effect of dynamic context on requirements, e.g.,
[1]. These approaches are not tailored to the peculiarities of
faults and dependability.

Adaptation to maximize dependability traditionally relied
on runtime data to perform adaptation actions capable of
restoring the proper system behaviour when a failure occurs.
An example of that is the notion of Live Goals meant as a
driver for adaptation at runtime. Not meeting these goals
triggers the need for adapting the system. Such failure could
happen due to dynamic QoS of the composing parts of the
system or due to new business needs [4, 6, 5].

Unfortunately, some systems cannot afford to wait for a
failure to occur to perform adaptation as the consequences
could be too severe or catastrophic in certain contexts. Also,
historical data of past operations may not be available for
the system and analysts to learn from. Hence, preventive
and not reactive approaches must take place in order to de-
crease chances of failure to occur. Moreover, a proper bal-
ance between a dependability requirement analysis, which
is based on domain experts, and reactive adaptation mech-
anisms, which are based on information monitored at run-
time, would be needed to improve dependability.

In this paper, we tackle the context effects on systems
dependability within two perspectives. Firstly, we consider
the impact of context on the likelihood of a failure to occur,
as some failures may be more likely to occur in certain con-
texts. These failures are expressed in terms of dependability
attributes according to a failure classification scheme. We
call this cause-effect relation as Contextual Failure Implica-
tions (CFI). Secondly, the consequence of failures may also
be affected by the context. A failure, which is typically mi-
nor, may become a catastrophic failure in a certain context
condition. We refer to this as Contextual Dependability Re-
quirements (CDR).

As a technical contribution, we propose a modelling and
analysis framework for contextual failures and dependable



system requirements. The models offered by Goal-oriented
Requirements Engineering (GORE), e.g., i* [18], Tropos [7]
and KAOS [9], capture the socio-technical structure of a
system and the a space of alternative solutions to reach
stakeholders’ requirements (goals) and their quality (soft-
goals). This makes GORE an ideal family of models to study
dependability which encloses social and technical elements,
and adaptation which requires variability. GORE has been
already used to capture contextual requirements, e.g., the
Contextual Goal Model (CGM) [1]. We extend the CGM by
defining the causal effects among contexts and failures. We
also propose automated analyses which utilize the model to
assess dependability. We demonstrate the feasibility of our
proposal with a case study for a Mobile Personal Emergency
Response system (MPERS).

The paper is structured as follows: Section 2 presents
the baseline and related work; Section 3 describes the pro-
posal model, its formalization and the applicability; Section
4 presents an algorithm to validate the contextual depend-
ability requirements against defined values of dependability
attributes for system goals with underlying tasks in multiple
contexts of operation; Finally, Section 6 concludes the paper
and outlines our future work.

2. BASELINE AND RELATED WORK

2.1 Goal Modelling
Goal modelling is suitable for representing stakeholders

intentions, both strategic and tactical. It allows the analy-
sis of goals to finally achieve alternative sets of executable
processes (tasks or operations) [18, 7, 9]. Some common
concepts of a goal model are actors, goals, softgoals, decom-
positions, tasks and contribution links. Each system actor
has its own interests defined as goals. A goal represents a
partial state of the world an actor wants to reach. Tasks
are the operationalization of actor’s goals and they could
be mapped to the execution of some operation by the cor-
responding system actors. Goals are crispy and they can
be either satisfied or not. Softgoals are qualitative objec-
tives for whose satisfaction there is not clear cut criteria.
Contribution links identify the evaluation of goals and tasks
against softgoals.

Goal models are commonly used for modelling and guid-
ing systems adaptation. The reason for their popularity in
this domain is mainly due to their ability to capture the dif-
ferent ways to reach the system goals and their ability to
link between the software world (the tasks) and the stake-
holders’ world (their goals and quality requirements). Thus,
they provide a platform to capture the rationale of adapta-
tion by switching between its different tasks configurations
to reach goals. In other words, they provide meaning to
software adaptation from the business perspective.

2.2 Context and Goals
The environment in which a system operates could be dy-

namic. This is particularly true for new computing paradigms
such as pervasive, ubiquitous and mobile computing. Con-
text changes could affect the requirements of a system. Cer-
tain contexts could trigger a requirement and affect the ap-
plicability and the quality of a certain alternative or software
variant designed to reach a requirement. From a GORE per-
spective, contexts can be defined as the partial state of the
world that is relevant to an actor’s goals [1].

The context analysis proposed in [1] provides constructs
to analyse a context described at a high level of abstraction,
e.g., “patient is not feeling well”, to a formula of observable
facts, e.g., ‘temperature is high‘ and ‘sweating‘. Obviously,
a fully-automated monitor will be able to only consider con-
texts which could be refined to a formula of facts and these
facts should be verifiable based on data monitorable by some
automated means like sensors, databases, and video or au-
dio stream analysis. Other contexts could require a human
perception, e.g., a caregiver can report the current status of
a patient if the smart home or the ambulance do not have
the required technology. The decision on the relevant con-
texts in a goal model is part of the requirements analysis
activity. This is carried out in parallel with goal analysis
by asking questions such as ‘when do we need to activate
a goal?’ and ‘when can we adopt a certain alternative to
reach a goal?’. For contextual dependability, we could sim-
ilarly identify relevant contexts by answering questions of
the types ‘when is this fault considered severe or could sig-
nificantly impact system behaviour?’. The rationale here is
similar to the way we analyse goals and decide the space
of alternatives to reach a goal and the contribution to a
softgoal. That is, it requires both expertise of requirements
analysts and stakeholders who know the peculiarities of the
domain.

As an extension to context analysis which considers only
Boolean facts, we also consider fuzzy facts. The later means
that their values vary in different degrees of membership
for their intensity and quantity. Our proposed modelling
of Contextual Dependability Requirements and Contextual
Failure Implications proposed in Section 3.1 is based on con-
textual conditions that are formed by combination of facts
formalized as predicates such as the battery level, the avail-
ability of a power supply and the number of sensors in use
followed by their quantifier level and joined by AND/OR
logical operators.

2.3 Dependability Analysis
The concept of dependability is related to dependence and

trust as well as the ability of a system to avoid failures that
are more frequent and more severe than certain threshold.
Dependability encompasses the following quality attributes
[3]: availability, reliability, integrity, safety and maintain-
ability.

A holistic dependability specification has to include not
only the software operation, but also the requirements for
which that operation is meant. Requirements are an impor-
tant factor to decide the acceptable frequency and severity
of a software failure. Similarly, context is another factor
in that decision. The frequency and the likelihood of fail-
ures are related to the dependability attributes of reliabil-
ity, availability and integrity. Both likelihood and severity
of failures are related to safety, as it defines the absence
of catastrophic consequences on the users and the environ-
ment. In this stage of our work, maintainability is the only
dependability property we have not considered.

At early project phases, hazard resolution may involve
simply getting more information about hazards or generat-
ing alternative design solutions [11]. In our work, we have
used a qualitative means to analyse the dependability to be
delivered by goals of a certain system taking into account
contextual effects. Our approach improves the understand-
ing of systems fault-causality effect and the identification of



best approaches to reduce risk or even determine rates for
safety or system level functional failure. Moreover, depend-
ability requirement analysis cannot be accurately fulfilled
without taking into account the context under which the
system will operate.

Avizienis et al [3] proposed a failure classification tax-
onomy with four viewpoints characterizing failures. In our
approach, we use two categories: domain and consequence.
We use the domain category to distinguish content failures
from timing failures:

• Content failure: When the content of the informa-
tion delivered by a system task deviates from its spec-
ification

• Timing failure: When the time of arrival or the dura-
tion of the information delivered by some system task
deviates from its specification

The consequence of failures enables the definition of fail-
ures’ severity. Two limiting levels are predefined and other
intermediary levels could be defined for each case:

• Minor failure: The harmful consequences of failures
are limited or at most similar to the benefits provided
by the correct operation of the system

• Catastrophic failure: The harmful consequences of
failures are incommensurably higher than the benefits
provided by correct operation of the system

More details on the complete failure classification can be
found in [3]. In our approach, a part of this taxonomy is
used to guide the definition of the classes of failures severities
and therefore the required level of dependability for different
system goals. It also takes part in the identification of which
dependability attribute is related to each contextual failure
occurrence.

2.4 Fuzzy Logic
The fuzziness of requirements has been discussed in the

literature of requirements engineering for adaptive systems
[12, 4, 6, 11]. Fuzzy words are considered to be closer to the
natural language and mind-set of the stakeholders, includ-
ing domain experts and analysts, involved at early stage of
requirements elicitation and analysis [11]. This also applies
to how we define contexts, failures and dependability.

The fuzziness consists of a range of values to be consid-
ered as ‘around’ a desired value. In other words, it allows a
fuzzy description of what should be considered as a low bat-
tery, a high temperature, a strong signal, a reliable solution,
etc. Also, as some context facts like the battery level, the
temperature and the signal level of a cellphone are usually
available as numeric values, membership functions are used
to map these quantitative levels to the corresponding qual-
itative words, as presented in Figure 1. This step is part of
fuzzy logic and is called fuzzification.

Fuzzy logic is suitable to express the causal relation of con-
texts and dependability attributes defined by fuzzy words,
as it has a well established formalism and structure that
includes the fuzzification and defuzzification through mem-
bership functions, logical operations able to combine inputs
and rules used to define a crispy output given some fuzzy in-
puts [14]. When more than one rule is activated at the same
time, the aggregation step will produce an output weighted

Figure 1: Fuzzification of the GPS signal level

by the resulting membership degree of each used input com-
bination.

In our approach, fuzzy logic is used to tackle the fuzziness
of the context facts and their effect on both dependability
requirements and failures. Membership functions must be
defined according to stakeholders preferences and the knowl-
edge of domain experts and reliability engineers. Their defi-
nition will impact on the activation of rules used to evaluate
a crispy output in terms of dependability that could finally
be used as input to be validated against CDRs. Thus, ap-
propriate effort should take place at this stage in order to
improve the quality of the CFIs.

Other reasoning mechanisms rather than fuzzy logic could
be applied to our framework. Nonetheless, we consider it
suitable for representing the fuzziness of context facts and
their relation to dependability attributes though its mech-
anism of rules activation and aggregation. Imprecisions in
the definition of membership functions and rules could also
exist on different approaches to correlate contexts conditions
to a system failure. Therefore, fuzzy logic is a good option
to utilize in the context of this work.

2.5 Mobile Personal Emergency Response
To demonstrate our approach, we take a Personal Emer-

gency Response System (MPERS) scenario which is used via
mobile devices (smartphones) and includes a network of sen-
sors communicating through wireless technology [13]. Bat-
tery is a major restriction for this architecture, as patients
may need the service anywhere, including areas without a
power supply. Depending on the health condition of the pa-
tient, it could be essential to keep the system running with-
out interruptions, i.e., the system availability must be high.
Considering the existence of different alternatives for goals
of the system, like the goal of identifying patients’ location,
the proper choice of which alternative to use must respect
the balance among the different dependability attributes.

Figure 2 presents a full Contextual Goal Model (CGM)
for the above scenario. The quality of several tasks in this
system varies according to the context condition. Let us
take as example the different ways of identifying patients’
location; through cellphone towers triangulation, GPS or by
direct voice call to the patient. According to the context,
triangulation may be unreliable due to imprecision, a GPS
could become unavailable inside uncovered areas and the
voice call may not work if patient is in the middle of a heart
attack. Ignoring the context effect on the dependability of
these alternative solutions can result in an unsafe system,
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Figure 2: The Contextual Goal Model for MPERS

i.e., a system that will put patient’s life at risk by sending a
response team to the wrong location.

2.6 Related Work
Many state of the art contributions which involves Goal

modeling for requirement analysis are present in the liter-
ature. Mylopoulos et al. [16] address the monitoring and
diagnosis of requirements specified using goal models. Their
framework is based on a runtime monitoring to identify and
diagnose requirements violations. Our framework, differ-
ently, relies on domain knowledge to provide information
about the system failures in different contexts of opera-
tions. Thus, it can be used to assess decision making of
self-adaptation mechanisms without operational data, which
can be considered a preventive plan to keep dependability.

Regarding the combination of goal modeling to fuzzy logic,
Baresi et al. proposed adaptable Live goals that can be ei-
ther crispy or fuzzy, i.e., whose satisfaction can be expressed
by different degrees and not just true of false [4, 6, 5]. In
contrast, our framework is based on crispy CDRs and the
fuzziness is applied not to goals, but to the context facts
whose intensity or quantity are better translated by fuzzy
qualitative terms. In addition to that, fuzzy logic rules are
used to create implications among context conditions and
dependability levels of goals. Live goals allow the adap-
tation of the goal model itself. Our framework assesses the
decision of which alternative solution to be used to fulfil sys-
tem goals considering the actual context of operation and its
impact on the dependability of different system tasks.

The Awareness Requirements (AwReq) defined by Souza
et al. [15] can drive adaptation to maintain an acceptable

achievement levels of goals through runtime system moni-
toring. In comparison to our approach, AwReq also pro-
vides criteria for self-adaptation and applies to dependabil-
ity requirements. Our novelty is to provide means to the
specification of the contextual dimension of requirements
for dependability and to allow the specification of context
impacts on goal dependability levels. AwReq use an itera-
tive approach to define the success levels of requirements. It
starts with high level qualitative words and ends with quan-
titative values. Their framework extrapolated the concept of
softgoals by using measurable quality constraints (QC) in a
goal model. Following this approach, dependability require-
ments are also defined as measurable QCs in the model. We
would also add that these QCs could be context-dependent.
This means that the required level of quality may vary ac-
cording to the context of operation. This relation becomes
more visible when the criticality of systems features is it-
self context-dependent. Thus, the degree of dependability
of these features is also dependent on the context. Finally,
another effort in this area is the specification language tar-
geting self-adaptation which was proposed by Whittle et al.
[17].

3. PROPOSAL

3.1 Model Description
The proposed approach is divided in three phases. First,

the CDR is defined based on a context analysis and a fail-
ure classification that identifies, for each critical system goal
and meaningful context of operation, the dependability at-
tributes which are affected by contextual time and/or do-



main failures and their consequence for the system and en-
vironment if they occur. This information is used to define
the contextual dependability requirements of different leaf
goals in a goal model.

Second, the effect of contexts on the likelihood of fail-
ures (CFI) is modelled using fuzzy logic IF-THEN rules.
Each rule addresses a single dependability attribute previ-
ously identified by failure classification for the CDR phase.
These rules associate contexts conditions (IF) to the depend-
ability of system tasks (THEN), as described in the diagram
of Figure 3. Membership functions are required for the fuzzi-
fication of inputs (facts) and the deffuzification of outputs
(dependability attributes).

Finally, the third phase defines two possible validation ap-
proaches for the existing CDRs. Firstly, static validation can
be performed for all possible meaningful context variations
formed by the space of context facts. This validation could
indicate in which context conditions each goal would not be
satisfied in terms of contextual dependability requirements.
Secondly, a runtime adaptation loop mechanism could mon-
itor the current context of operation and rely on CFIs to
choose the most dependable solution among alternatives in
the CGM.

3.2 Formalization
Our approach relies on the modelling and analysis of con-

textual failures in a CGM. We extend this conceptual model
with new cause-effect relations. The class diagram in Fig-
ure 3 illustrates the extension which consists of a many-to-
many association between contextual effect rules and the
consequent level of dependability attributes of system tasks,
i.e., the CFI. The many-to-one association between CDR
and goals is also illustrated.

Figure 3: The metamodel of CGM Extension

Each task CFI is represented by a context condition, its ef-
fect in terms of magnitude and the dependability attributes
affected. These last two are linked by a rule entity in the
model. The CDRs are associated to zero or one context
condition and linked to one specific goal. Goals are decom-
posed into tasks according to CGM’s possible decomposi-
tions (AND, Means-End).

Fuzzy logic is also used to formalize the cause-effect re-
lations between the fuzzy facts defining a context and the
dependability attributes. Figure 4 illustrates the fuzzy in-
ference with the elements of our approach.

Different rules may shape the effects of context on a single
quality from different viewpoints. Each rule will be weighted

by the membership degree of its input(s). If there are more
than one fuzzy input for a rule, logical operators such as
OR and AND will define the resulting membership degree
to be used as a weight for this rule. Finally, all the active
and weighed rules are aggregated following a predefined ap-
proach like the center of gravity (COG). The output is then
calculated using the membership function for the defuzzifi-
cation of the output [14].

The quality result is therefore based on the output of the
fuzzy inference process. Deffuzification of the output allows
a more precise comparison of the alternative ways to reach
goals in terms of quality (dependability in our case) using
numeric values. Nonetheless, the rules defined during the
analysis phase are all based on the fuzzy or boolean levels
of the facts describing a context.

Figure 4: Fuzzy inference

Finally, the whole process of our approach, including both
contextual dependability requirements elicitation and the
contextual failure implication modelling, is illustrated by
the diagram presented in Figure 5. We further elaborate
on each activity of the proposal activities in their referred
sections in Figure 5 as follows.
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(Sec. 3.3.1)

Failure 
Classification
(Sec. 3.3.2)

Definition of 
CDRs

(Sec. 3.3.3)

Definition of 
CFIs

(Sec. 3.3.4)

CDRs
Validation

(Sec. 4)

Proposal

Outcome

CGM
(Sec. 2.5)

Input

Figure 5: Proposal activities

3.3 Applicability
In this section, we use the MPERS system modelled via

the CGM presented in Figure 2 to demonstrate the appli-
cability of our approach. We exemplify the process of mod-
elling and analysing contextual failures for an important fea-
ture of the MPERS system: the ability to identify a patient’s
location (G1) in order to send that patient an assistance if
an emergency is detected. The tasks involved in this goal
are T1.1, T1.2 and T1.3. These alternatives represent dif-
ferent ways of achieving G1: by voice call, triangulation or
GPS.

3.3.1 Context Analysis
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Figure 6: Identify patient’s location goal and alter-
native tasks

Following the context analysis technique proposed in [1],
context could be ultimately expressed as a formula of ob-
servable (monitorable) pieces of information, called Facts.
In the original proposal, facts were treated as boolean vari-
ables and there was no consideration for facts representing
variable levels of existence of a system resource or an envi-
ronment state. In this paper, we consider not only the simple
boolean facts, but also those associated with multiple lev-
els of value. Moreover, we do not rely on crispy definitions
for each of these levels, but rather on fuzzy ones that allow
a flexible association of system resources and environment
states to qualitative words such as low, average and high
battery level.

By analysing the MPERS model from dependability per-
spective, a list of hazards were elicited. Their interpretation
led to boolean and fuzzy facts that could potentially affect
the behaviour of different tasks, i.e., they affect the likeli-
hood and consequence of failures. Potential hazards and the
contextual facts related to MPERS are listed in Tables 1 and
2, respectively.

Table 1: List of Potential Hazards
Potential Hazards
Mobile is out of battery
Sensors are out of battery
Central is not aware of emergency
Central is not aware of patient’s location
Emergency is not detected through vital signs

Table 2: List of Facts which form context conditions
Fact Type Belongs Description
1 Fuzzy Mobile Battery level
2 Fuzzy Mobile Voice/sms signal level
3 Boolean Mobile Data signal availability
4 Fuzzy Mobile Wi-Fi signal level
5 Fuzzy Mobile GPS signal level
6 Fuzzy Mobile Bluetooth signal level
7 Fuzzy Mobile Memory availability
8 Boolean Mobile Power source availabil-

ity
9 Fuzzy User Health criticality
10 Fuzzy Environment Temperature
11 Fuzzy Sensors Battery level
12 Fuzzy Sensors Active amount

3.3.2 Failure Classification
To classify failures, each task failure related to meaning-

ful hazards should be analysed in terms of the domain and
consequence level. As stated before, the consequence level
of failures may variate according to the context of operation
(from minor to critical). Thus, the failure classification must
associate this information to one or more contexts.

Following the consequence level definition, the correspond-
ing dependability attributes affected by failures are identi-
fied based on both domain and consequence level. Table 3
presents the resulting classification for G1.

Table 3: Failure classification for goal G1
Domain Consequence Attribute
Time If location data is not fresh

then consequence is minor
availability

Time If location data is fresh then
consequence is catastrophic

availability,
safety

Data Always catastrophic reliability,
safety

Regarding failure classification, if , for example, the sys-
tem requests a method which turns out to be unavailable,
this will trigger a time failure. The consequence level of time
failures depends on the freshness of last location data as the
system should collect patient’s location periodically. A data
domain failure is related to the precision of the patient’s lo-
cation data delivered by each method. In case of imprecise
or erratic data, emergence response team may be unable to
send assistance to patient’s location, therefore a data failure
is related to the reliability of these methods.

In contrast, safety attribute is contextually related to both
time and data failures. The unavailability of any method
to identify a patient’s location would have a catastrophic
consequence only in the context where no fresh data has
been collected before. On the other hand, the imprecision
in location data is severe even if fresh data is available once
it could lead the medical assistance to the wrong location (as
if patient have moved since last received data). Accordingly,
in this example safety attribute is only contextually related
to time failures and is always related to data failures.

3.3.3 Contextual Dependability Requirements
Following the failure classification, the contextual depend-

ability requirements for G1 were defined. The consequence
of failures and other factors may influence on the required
levels of dependability attributes for system goals. As most
features in an emergency response system are critical, con-
textual dependability requirements may vary from high level
to at least average level in certain contexts like ‘location data
is fresh’. In Table 4 both CDRs and softgoals related to this
goal are listed.

3.3.4 Contextual Failure Implication
In a mobile system environment, the resources needed by

each of the methods for identifying patient’s location are not
static. Mobile signal used for voice calls and SMS can be
attenuated or not available in remote regions, affecting the
reliability or even the availability of the tower triangulation
method. GPS signal can be blocked by buildings walls and
even the patient’s ability to answer a voice call may not exist
due to some debilitation caused by an emergency situation.



Table 4: Non-functional requirements for goal G1
Type Description/Constraint
CDR If location data is not fresh then availability

must be >= average
CDR If location data is fresh then availability must

be high
CDR Reliability must be high
Softgoal Patient’s location precision
Softgoal Low mobile power consumption

In order to select the alternative with more chances of
successfully achieving its goals, context-aware systems must
count on the information about when it is more appropriate
or valid to use each method. Table 5 and Table 6 present a
list of IF-THEN rules describing context effects on the qual-
ities of alternative tasks involved in identifying a patient’s
location.

Table 5: Set of rules defining context effects on the
availability of alternative G1 tasks

Rule Task Context Effect
1 T1.1 If situation is not emergency then avail-

ability is none
2 T1.1 If situation is emergency then availabil-

ity is high
3 T1.1 If mobile voice/sms signal is weak then

availability is low
4 T1.1 If mobile voice/sms signal is not weak

then availability is average
5 T1.2 If mobile voice/sms signal is weak then

availability is none
6 T1.2 If mobile voice/sms signal is not weak

then availability is average
7 T1.3 If GPS signal is not strong then avail-

ability is low
8 T1.3 If GPS signal is strong then availability

is high

Following these analysis, different outcomes for the ap-
proach may take place. In the next section, we briefly dis-
cuss the runtime alternative selection and present a tool for
static CDRs validation.

4. REASONING WITH CONTEXTUAL DE-
PENDABILITY

4.1 Runtime Alternative Selection
To illustrate, we consider two runtime scenarios with dif-

ferent context conditions as described bellow:

• First Scenario

– situation is emergency

– patient health is stable

– mobile voice signal is 80%

– GPS signal level is 30%

• Second scenario

– situation is emergency

Table 6: Set of rules defining context effects on the
reliability of alternative G1 tasks

Rule Task Context Effect
9 T1.1 If Patient’s health is critical then relia-

bility is low
10 T1.1 If Patient’s health is not critical then re-

liability is average
11 T1.1 If Mobile voice/sms signal is weak then

reliability is average
12 T1.1 If Mobile voice/sms signal is not weak

then reliability is high
13 T1.2 If Mobile voice/sms signal is weak then

reliability is none
14 T1.2 If Mobile voice/sms signal is average

then reliability is low
15 T1.2 If Mobile voice/sms signal is strong then

reliability is average
16 T1.3 If GPS signal is weak then reliability is

average
17 T1.3 If GPS signal is not weak then reliability

is high

– patient health is critical

– mobile voice signal is 75%

– GPS signal level is 90%

We do not extend this example to the runtime acquisition
of the patient health condition as stable or critical. This
could be achieved through the definition of rules to deter-
mine the current health condition based on vital signs col-
lected by sensors. The other two inputs are fuzzified using
corresponding membership functions. Also, a open source
fuzzy logic tool was used to reason the membership func-
tions for each context fact and dependability attribute and
also the IF-THEN rules used for implication [8]. This tool
was able to process the fuzzy inference steps and produce
information about the membership degree of each input, ac-
tivated rules and the numeric output for each dependability
attribute after deffuzification.

The resulting fuzzy input levels and their membership de-
grees for each considered scenario are described bellow. Here
and throughout the remaining of this paper we use the no-
tation qualitative word(MD) to describe the pair of quali-
tative word representing a fuzzy fact or a CDR and their
corresponding membership degree (MD).

• First Scenario

– patient health: stable(1.0)

– mobile voice signal: strong(1.0)

– GPS signal level: weak(1.0)

• Second Scenario

– patient health: critical(1.0)

– mobile voice signal: weak(0.5), strong(0.5)

– GPS signal level: strong(1.0)

In terms of availability, rules 2 and 4 were activated for
task T1.1 (by voice call), rule 6 was activated for task T1.2
(by triangulation) and 7 for task T1.3 (by GPS). The second



context scenario also activated rules 2 and 4 for task T1.1.
Only rule 8 was activated for task T1.3. For each analysed
task/quality pair the aggregation of activated rules generates
the output in terms of a fuzzy qualitative level.

In terms of reliability, rules 10 and 12 are activated for task
T1.1, 15 for task T1.2 and 16 for task T1.3. The second con-
text scenario activated the same rules, except for Task 1.3
that activated rule 17. The aggregation of activated rules
produces numeric output values of each attribute following
the definition of the membership functions for deffuzification
of each attribute. In this example, numeric quality values
ranges from 0 (none) to 10 (max) for all dependability at-
tributes.

According to the automated fuzzy inference process, the
resulting attributes for each task are summarized bellow:

• First scenario:

– T1.1: 6.00 availability, 7.22 reliability

– T1.2: 6.00 availability, 6.00 reliability

– T1.3: 3.00 availability, 7.12 reliability

• Second scenario:

– T1.1: 4.25 availability, 5.60 reliability

– T1.2: 6.00 availability, 4.50 reliability

– T1.3: 8.73 availability, 8.73 reliability

The predicted quality of the goal ‘identify patient’s lo-
cation’ depends on the quality of the selected alternative
task. The decision on which alternative to use is therefore
based on the dependability requirements associated to this
goal and also to the softgoals affected by each task. This
decision may follow different approaches for multi-objective
optimization, for instance attending all the related CDR and
then considering the softgoals.

Regarding the dependability attributes involved in this
analysis, reliability is described by the continuity of cor-
rect service, e.g., the precision of the location data. Hence,
this is the first and foremost dependability attribute to be
considered as satisfaction criteria to the selection of the al-
ternative method to identify patient’s location at runtime.

According to Table 4, the CDRs activated by each context
are:

• First scenario:

– CDR: reliability must be >= average(1.0)

• Second scenario:

– CDR: reliability must be high(1.0)

The membership function of each attribute defines the
range of values accepted as low, average and high. As these
are fuzzy and not crispy sets, the membership degree of the
CDRs must also be defined. To keep the definition of these
constraints in terms of high level qualitative words used by
the analysts and domain experts, we assume here that the
membership degree of the CDRs are 1.0 if not explicitly
defined, meaning that a high reliability will be parsed as
high(1.0). The acquisition of a quantitative value compara-
ble to the output of the CFI we make use of the membership
function for deffuzification of each attribute.

We assume here the lower limit of the range of numeric
values where the membership degree is 1.0. More granular
definitions for the CDRs could be achieved using explicit
definitions for the membership degree. The corresponding
numeric CDRs and valid alternative tasks are:

• First scenario:

– Numeric CDR: reliability must be >= 5.00

– Valid tasks: T1.1, T1.2 and T1.3

• Second scenario:

– Numeric CDR: reliability must be >= 8.00

– Valid tasks: T1.3

In the first scenario, alternative T1.1 has a higher relia-
bility and therefore should be used. In the second scenario,
only alternative T1.3 is valid for identifying patient’s loca-
tion. This allows a proactive planning of the system config-
uration to be used at runtime through mechanisms of self-
adaptation. Further description of this coupling between our
proposal and mechanisms for self-adaptation is part of our
future work.

4.2 Static CDRs Validation Tool
In contrast to reliability, availability is related to the readi-

ness of correct service. In this example, readiness of each al-
ternative method should be verifiable at runtime. Thus, its
value defined by the implication of contexts in our approach
(CFI) is more suitable to be validated against the CDR at
early requirements analysis. This information could be used
to verify the CGM against the CDRs for all contexts condi-
tions stated in the rules. This pre-processing should be ac-
complished by an automated tool capable of parsing the re-
lated contexts in the rules and evaluating the CFIs for these
contexts. Finally, this reasoning should compare the result-
ing dependability attribute levels for each context against
the corresponding CDR for that same context condition.

To put that in a more precise form and show it utilizes
our model, we define a formal Reasoning with Contextual
Dependability presented in Algorithms 1, 2 and 3. Also,
an online Java implementation of our tool is available for
verification 1. An open source Java library of fuzzy logic
was used to accomplish the step of fuzzy inference in CFI
reasoning.

The purpose of these algorithm is to identify contextual
violations of dependability in terms of all or some of its at-
tributes. For instance, the MPERS model could be validated
for the availability of its leaf goals. Consequently, goals that
violates the availability defined by CDRs should be identified
with the corresponding violating contexts. This information
would be of great value for the analysts and stakeholders as
it may determine if the CGM should be re-factored before
moving to next phases of system design and implementation.
It also enables analysts to get a richer picture of an anomaly
in the model from the dependability perspective by answer-
ing questions related to the goal affected and the context of
use and the severity degree.

The logic behind these algorithms is simple. First, all
the leaf goals of the CGM are identified and listed. Second,
all valid and possible contexts formed by the combination

1https://github.com/danilomendonca/CDRTool

https://github.com/danilomendonca/CDRTool


Algorithm 1: reasonCDRs(CGM cgm, List [] CDRs,
List [] CFIs)

Input: CGM, list of context facts, list of CDRs, list of
CFIs

Result: List of violating contexts with corresponding
goals and violated CDRs

Goals leafGoals ← getLeafGoals(cgm);1

List [] invalids = new List;2

foreach Goal goal in leafGoals do3

List [] goalCDRs ← getAssoficatedCDRs(goal, cdrs);4

CFI goalCFI ← getAssociatedCFI(goal, cfis);5

List [] contexts ← contextsInCFI(goalCFI);6

foreach Context context in contexts do7

if !verifyCDR(goal, context, goalCDRs, goalCFI)8

then
invalids.append(new Array[goal, context,9

cdr]);
end10

return invalids11

end12

of facts and their variable levels are then listed. For each
leaf goal, we iterate over contexts used as input by the rules
of the corresponding CFI. For each of these contexts, the
corresponding CDRs of dependability attributes are listed.
Finally, these CDRs are validated against the correspond-
ing attribute values obtained by applying the CFI in each
goal’s task using the same context of the CDRs. If one of
the alternative tasks is valid for all the required dependabil-
ity attributes, then this leaf goal is valid for that context
of operation, i.e., at least one alternative task satisfies all
activated CDRs in that context. Otherwise, the goal should
be appended to the list of invalid goal-context pairs. There-
fore, this algorithm validates all the leaf goals of the CGM
to corresponding CDR for each valid context of operation
associated to CFI rules.

In case no rule is activated or defined for some specific
goal-context pair and still a corresponding CDR exists, then
no validation is performed, as no information about the de-
pendability attribute for that goal and context is available.
In the same way, if no CDR is defined for a CFI context, then
the goal is considered to be valid in that context condition.

Regarding the sort of tasks decomposition (AND, Means-
End), the method revaquiredAttributeLevel should use two
approaches for the aggregation of the attribute value of the
related leaf goal being validated. That is, if underlying tasks
are defined by Means-End Decomposition, any alternative
is sufficient to achieve the goal, thus the dependability at-
tribute level of the goal equals the maximum attribute value
of the related tasks. If tasks are defined by AND Decompo-
sition, then the resulting dependability attribute level equals
the minimum attribute level verified for the tasks.

5. LIMITATIONS
Our approach to the modelling and analysis of contextual

failures has two main limitations:

• The number of rules formalizing a context effect is pro-
portional to the amount of contexts that are meaning-
ful for the system and that are going to be part of
the analysis. As we consider not only boolean facts,

the possible facts combination forming context condi-
tions may grow beyond the reasonable and available
effort for requirements analysis. In order to reduce the
amount of possible contexts conditions, a proper fail-
ure classification must identify system goals and fea-
tures whose high criticality justifies the analysis cost.

• The quality of the inferences and domain information
used to define both membership functions and IF-THEN
rules is paramount to the effectiveness of the approach.
Hence, and especially for critical systems, it is always
a target to increase the precision of information about
the consequence of failures to system users and envi-
ronment and also to the likelihood of failures to oc-
cur given the set of context conditions. Imprecision
should be mitigated with proper effort of analysts and
domain experts. More validation and refinement are
still needed to consolidate our approach in such terms.

Algorithm 2: verifyCDRs(Goal goal, List [] CDRs, CFI
cfi)

Input: Goal, Context, list of goal’s CDRs, goal’s CFI
Result: True or False according to the validity of the

goal for all attributes in CDRs
List [] contextCDRs ← getContextCDRs(context);1

List [] dependabilityAttributes ← getAttributes(cdrs);2

foreach DependabilityAttribute attribute in3

dependabilityAttributes do
boolean validTask ← false;4

CDR cdr ← getAttributeCDR(attribute, cdrs);5

List [] goalTasks ← goal.getTasks();6

foreach Task task in goalTasks do7

if getAttributeLevel(context, cfi, task, attribute)8

>= requiredAttributeLevel(context, cdr, goal,
attribute) then

validTask ← true;9

breakfor;10

end11

if !validTask then12

return false;13

end14

return true;15

Algorithm 3: getAttributeLevel(Context context, CFI
cfi, Task task, DependabilityAttribute attribute)

Input: A Context, a goal’s CFI, a goal’s task, a
dependability attribute

Result: Corresponding attribute level of the goal’s
task for some context

List [] rules ← getTaskRules(cfi, task, attribute);1

List [] facts ← context.getFacts();2

List [] attributeLevels ← callFuzzyInference(facts, rules,3

tasks, attribute);
if goal.getDecomposition() == “AND” then4

return MAX(attributeLevels);5

else6

return MIN(attributeLevels);7

end8



6. CONCLUSION AND FUTURE WORK
In this work, we presented a framework for Contextual

Dependability Requirements. We aligned concepts of de-
pendability and failure classification to the requirements of
a Contextual Goal Model (CGM). Moreover, our framework
allowed the definition of contextual failure implications that
can be checked against the contextual dependability require-
ments. We used a Mobile Personal Emergency Response
System to demonstrate the feasibility of our approach. The
proper elicitation of CDRs and CFIs allows a more depend-
able requirements analysis whose outcome may follow com-
plementary paths. First, the verification for multiple con-
texts of operation can identify if dependable requirements
are met or violated. This allows an early identification of
risks before systems are designed and implemented. An algo-
rithm demonstrating this outcome was proposed in Section
4. Second, run time self-adaptation can benefit of the infor-
mation concerning the dependability of different alternative
solutions given some context of operation and attributes.
Thus, this approach has a significant value for the improve-
ment of dependability of systems both at the time of require-
ments elicitation and also at runtime.

In our future work, we intend to explore further the re-
lation of context to failures and their definition. Once op-
eration data is available, context failure implications may
be refined in order to improve its accuracy. Also, the use
of temporal logic may improve the definition of contextual
dependability requirements and lead to more sophisticated
verification. Mechanisms of self-adaptation may be coupled
to this approach and use dependability criteria for adapta-
tion decisions. Also, in our current approach we are heavily
reliant on the analysts to provide the specification. For com-
plex and evolving systems, this might be a hard task which
requires much resources and big teams which could be un-
available especially for small and medium enterprises. We
will investigate approaches of Crowdsourcing [10] used in
the context of obtaining software-related knowledge [2] to
involve users and clients in contributing knowledge about
failures and the context of use and how that context affects
the meaning and consequence of a failure.
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