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Abstract
We introduce equivalence modulo inputs (EMI), a simple, widely
applicable methodology for validating optimizing compilers. Our
key insight is to exploit the close interplay between (1) dynamically
executing a program on some test inputs and (2) statically compiling
the program to work on all possible inputs. Indeed, the test inputs
induce a natural collection of the original program’s EMI variants,
which can help differentially test any compiler and specifically target
the difficult-to-find miscompilations.

To create a practical implementation of EMI for validating C
compilers, we profile a program’s test executions and stochastically
prune its unexecuted code. Our extensive testing in eleven months
has led to 147 confirmed, unique bug reports for GCC and LLVM
alone. The majority of those bugs are miscompilations, and more
than 100 have already been fixed.

Beyond testing compilers, EMI can be adapted to validate
program transformation and analysis systems in general. This work
opens up this exciting, new direction.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; H.3.4 [Programming
Languages]: Processors—compilers

General Terms Algorithms, Languages, Reliability, Verification

Keywords Compiler testing, miscompilation, equivalent program
variants, automated testing

1. Introduction
Compilers are among the most important, widely-used and com-
plex software ever written. Decades of extensive research and de-
velopment have led to much increased compiler performance and
reliability. Perhaps less known to application programmers is that
production compilers do also contain bugs, and in fact quite a few.
However, compiler bugs are hard to recognize from the much more
frequent bugs in applications because often they manifest only in-
directly as application failures. Thus, when compiler bugs occur,
they frustrate programmers and may lead to unintended application
behavior and disasters, especially in safety-critical domains. Com-
piler verification has been an important and fruitful area for the
verification grand challenge in computing research [9].
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Besides traditional manual code review and testing, the main
compiler validation techniques include testing against popular va-
lidation suites (such as Plum Hall [21] and SuperTest [1]), veri-
fication [12, 13], translation validation [20, 22], and random test-
ing [28]. These approaches have complementary benefits. For exam-
ple, CompCert [12, 13] is a formally verified optimizing compiler
for a subset of C, targeting the embedded software domain. It is an
ambitious project, but much work remains to have a fully verified
production compiler that is correct end-to-end. Another good exam-
ple is Csmith [28], a recent work that generates random C programs
to stress-test compilers. To date, it has found a few hundred bugs
in GCC and LLVM, and helped improve the quality of the most
widely-used C compilers. Despite this incredible success, the ma-
jority of the reported bugs were compiler crashes as it is difficult
to steer its random program generation to specifically exercise a
compiler’s most critical components—its optimization phases. We
defer to Section 5 for a detailed survey of related work.

Equivalence Modulo Inputs (EMI) This paper introduces a sim-
ple, broadly applicable concept for validating compilers. Our vision
is to take existing real-world code and transform it in a novel, sys-
tematic way to produce different, but equivalent variants of the
original code. To this end, we introduce equivalence modulo inputs
(EMI) for a practical, concrete realization of the vision.

The key insight behind EMI is to exploit the interplay between
dynamically executing a program P on a subset of inputs and
statically compiling P to work on all inputs. More concretely, given
a program P and a set of input values I from its domain, the input
set I induces a natural collection of programs C such that every
program Q∈C is equivalent to P modulo I: ∀i∈ I,Q(i) = P(i). The
collection C can then be used to perform differential testing [16] of
any compiler Comp: If Comp(P)(i) 6= Comp(Q)(i) for some i ∈ I
and Q ∈ C , Comp has a miscompilation.

Next we provide some high-level intuition behind EMI’s effec-
tiveness (Section 2 illustrates this insight with two concrete, real
examples for Clang and GCC respectively). The EMI variants can
specifically target a compiler’s analysis and optimization phases,
and stress-test them to reveal latent compiler bugs. Indeed, although
an EMI variant Q is only equivalent to P modulo the input set I, the
compiler has to perform all its (static) analysis and optimizations to
produce correct code for Q over all inputs. In addition, P’s EMI vari-
ants, while semantically equivalent w.r.t. I, can have quite different
static data- and control-flow. Since data- and control-flow informa-
tion critically affects which optimizations are enabled and how they
are applied, the EMI variants not only help exercise the optimizer
differently, but also demand the exact same output on I from the
generated code by these different optimization strategies—This is
the very fact that we crucially leverage.

EMI has several unique advantages:

• It is general and easily applicable to finding bugs in compilers,
analysis and transformation tools for any language.



struct tiny { char c; char d; char e; };
f(int n, struct tiny x, struct tiny y, struct tiny z,

long l) {
if (x.c != 10) abort();
if (x.d != 20) abort();
if (x.e != 30) abort();
if (y.c != 11) abort();
if (y.d != 21) abort();
if (y.e != 31) abort();
if (z.c != 12) abort();
if (z.d != 22) abort();
if (z.e != 32) abort();
if (l != 123) abort();

}
main() {
struct tiny x[3];
x[0].c = 10;
x[1].c = 11;
x[2].c = 12;
x[0].d = 20;
x[1].d = 21;
x[2].d = 22;
x[0].e = 30;
x[1].e = 31;
x[2].e = 32;
f(3, x[0], x[1], x[2], (long)123);
exit(0);

}

(a) Test 931004-11.c from the GCC test suite; it compiles correctly by all
compilers tested.

struct tiny { char c; char d; char e; };
f(int n, struct tiny x, struct tiny y, struct tiny z,

long l) {
if (x.c != 10) /* deleted */;
if (x.d != 20) abort();
if (x.e != 30) /* deleted */;
if (y.c != 11) abort();
if (y.d != 21) abort();
if (y.e != 31) /* deleted */;
if (z.c != 12) abort();
if (z.d != 22) /* deleted */;
if (z.e != 32) abort();
if (l != 123) /* deleted */;

}
main() {

struct tiny x[3];
x[0].c = 10;
x[1].c = 11;
x[2].c = 12;
x[0].d = 20;
x[1].d = 21;
x[2].d = 22;
x[0].e = 30;
x[1].e = 31;
x[2].e = 32;
f(3, x[0], x[1], x[2], (long)123);
exit(0);

}

(b) Test case produced by Orion by transforming the program in Figure 1a,
triggering a bug in Clang.

Figure 1: Orion transforms Figure 1a to Figure 1b and uncovers a miscompilation in Clang. Note that the test cases have been reformatted for
presentation. In the actual code, each “abort();” is on a separate line (see Section 3.2.1).

• It can directly target miscompilations and stress-test critical,
complex compiler components.

• It can generate and explore test cases based on real-world code
that developers actually write. This means that any detected
errors are more likely to manifest in real-world code, and thus
more directly impact software vendors and users.

Indeed, we believe that the EMI concept is simple and can
be adapted to validate compilers, program analysis, and program
transformation systems in general. Potential applications include,
for example, (1) testing and validating production compilers and
software analysis tools; (2) generating realistic, comprehensive test
suites for validation and certification; and (3) helping software
vendors detect potential compiler-induced errors in their software,
which can be very desirable for safety- and mission-critical domains.

Compiler Bug Hunter: Orion Given a program P and an input
set I, the space of P’s EMI variants w.r.t. I is vast, and difficult or
impossible to compute. Thus, for realistic use, we need a practical
instantiation of EMI. We propose a “profile and mutate” strategy
to systematically generate a subset of a program’s EMI variants. In
particular, given a program P and input set I, we profile executions
of program P over the input set I, and derive (a subset of) P’s EMI
variants (w.r.t. I) by stochastically pruning, inserting, or modifying
P’s unexecuted code on I. These variants should clearly behave
exactly the same on the same input set I as the original program P
(assuming that P is deterministic). We then feed these variants to
any given compiler. Any detected deviant behavior on I indicates a
bug in the compiler.

We have implemented our “profile and mutate” strategy for C
compilers and focused on pruning unexecuted code. We have ex-
tensively evaluated our tool, Orion1, in testing three widely-used C

1 Orion was a giant huntsman in Greek mythology.

compilers—namely GCC, LLVM, and ICC—with extremely posi-
tive results (Section 4). We have used Orion to generate variants for
real-world projects, existing compiler test suites, and much more ex-
tensively for test cases generated by Csmith [28]. In eleven months,
we have reported, for GCC and LLVM alone, 147 confirmed, unique
bugs. More than 100 have already been fixed, and more importantly,
the majority of the bugs were miscompilations (rather than com-
piler crashes), clearly demonstrating the ability of EMI—offered by
Orion—to stress-test a compiler’s optimizer. We have also found
and reported numerous bugs in ICC initially, but later we only fo-
cused on the two open-source compilers, GCC and LLVM, as both
use open, transparent bug-tracking systems.

We have also done less, but still considerable testing of Comp-
Cert [12, 13]. Besides a few confirmed front-end issues we found
and reported, we have yet to encounter a bug in CompCert’s verified
components. This fact gives strong evidence of the promise and
quality of verified compilers, although it is true that CompCert still
supports only a subset of C and fewer optimizations than production
compilers, such as GCC and LLVM.

Contributions We make the following main contributions:

• We introduce the novel, general concept of equivalence modulo
inputs (EMI) for systematic compiler validation.

• We introduce the “profile and mutate” strategy to realize Orion,
a practical implementation of EMI for testing C compilers.

• We report our extensive evaluation of Orion in finding numerous
bugs (147 unique bugs) in GCC and LLVM.

Paper Organization The rest of the paper is structured as follows.
Section 2 shows a few examples to illustrate the EMI methodology
and the “profile and mutate” strategy. Section 3 formalizes EMI
and describes our realization of Orion. Next, we describe our
extensive evaluation and discuss our experience in using Orion



to find compiler bugs (Section 4). Finally, we survey related work
(Section 5) and conclude (Section 6).

2. Illustrative Examples
This section uses two concrete examples to motivate and illustrate
our work: one for LLVM, and one for GCC.

In general, compiler bugs are of two main types, and they vary in
severity. Some merely result in a compiler crash, causing minor nui-
sances and portability problems at times. Others, however, can cause
compilers to silently miscompile a program and produce wrong code,
subverting the programmer’s intent. Miscompilations are daunting,
and the following characteristics make them distinctive:

Lead to bugs in other programs: Normally, a bug in a program
only affects itself. Compilers generating wrong code can ef-
fectively inject bugs to programs they compile.

Hard to notice: If a miscompilation only affects a less traversed
code path or certain optimization flags, it might go unnoticed
during program development and only trigger in specific circum-
stances. Note that a rarely occurring bug can still be a severe
issue. This can be especially troublesome for compilers targeting
embedded platforms and micro-controllers.

Hard to track down to the compiler: Popular mainstream compil-
ers are generally considered very reliable (indeed they are), mak-
ing them often the least to suspect when client code misbehaves.

Weaken source-level analysis and verification: Correctness gua-
rantees at the source code level may be invalidated due to a
compiler bug that leads to buggy binaries, thus hindering overall
system reliability.

Impact the reliability of safety-critical systems: A seemingly un-
important miscompilation bug can potentially result in a critical
flaw in a safety-critical system, thus making compiler reliability
critically important.

These characteristics of compiler miscompilations make their
effects more similar to bugs in hardware — and in the case of popular
compilers, like bugs in widely-deployed hardware — than bugs in
most other programs. EMI is a powerful technique for detecting
various kinds of compiler bugs, but its power is most notable in
discovering miscompilations.

Our tool, Orion, detects compiler bugs by applying EMI on
source programs. For instance, we took the test program in Figure 1a
from the GCC test suite. It compiles and runs correctly on all
compilers that we tested. We subsequently apply Orion on the test
program. Clearly, none of the abort calls in the function f should
execute when the program runs, and the coverage data confirms
this. This allows Orion to freely alter the body of the if statements
in the function f or remove them entirely without changing this
program’s behavior. By doing so, Orion transforms the program and
produces many new test cases. One of these transformations, shown
in Figure 1b, is miscompiled by Clang on the 32-bit x86 architecture
when optimizations are enabled. Figure 2 shows its reduced version
that we used to report the bug.

A bug in the LLVM optimizer causes this miscompilation.
The developers believe that the Global Value Numbering (GVN)
optimization turns the struct initialization into a single 32-bit
load. Subsequently, the Scalar Replacement of Aggregates (SRoA)
optimization decides that the 32-bit load is undefined behavior, as it
reads past the end of the struct, and thus does not emit the correct
instructions to initialize the struct. The developer who fixed the issue
characterized it as

“... very, very concerning when I got to the root cause, and
very annoying to fix.”

struct tiny { char c; char d; char e; };
void foo(struct tiny x) {
if (x.c != 1) abort();
if (x.e != 1) abort();

}
int main() {
struct tiny s;
s.c = 1; s.d = 1; s.e = 1;
foo(s);
return 0;

}

Figure 2: Reduced version of the code in Figure 1b for bug reporting.
(http://llvm.org/bugs/show_bug.cgi?id=14972)

int a, b, c, d, e;
int main() {
for (b = 4; b > -30; b--)
for (; c;)
for (;;) {

e = a > 2147483647 - b;
if (d) break;

}
return 0;

}

Figure 3: GCC miscompiles this program to an infinite loop instead
of immediately terminating with no output.
(http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58731)

The original program did not expose the bug because Clang
decided not to inline the function f due to its size. In contrast, the
pruned function f in the EMI variant became small enough that the
Clang optimizer at -Os (and above) — when the inliner is enabled —
decided to inline it. Once f was inlined, the incompatibility between
GVN and SRoA led to the miscompilation. Indeed, using an explicit
“inline” attribute on f in the original program also exposes this bug.

In another case, Orion derives the code in Figure 3 from a
program generated by Csmith [28], which was miscompiled by
GCC 4.8 and the latest trunk revision at the time when optimizations
were enabled in both 32-bit and 64-bit modes. The correct execution
of this program will terminate immediately, as the continuation
condition of the second for loop will always be false2, never letting
its loop body execute. GCC with optimizations enabled miscompiles
this program to an infinite loop. Interestingly, it does issue a bogus
warning under -O2, but not -O3, which hints at the root cause of the
miscompilation:

“cc1: warning: iteration 5u invokes undefined behavior
[-Waggressive-loop-optimizations].”

The warning implies that the sixth iteration of the outermost loop
(when b = -1) triggers undefined behavior (i.e. signed integer
overflow). In fact, there is no undefined behavior in this program,
as the innermost loop is dead code and never executes, thus never
triggering signed integer overflow at run time.

Partial Redundancy Elimination (PRE) detects the expression
“e2147483647 - b” as loop invariant. Loop Invariant Motion (LIM)
tries to move it up from the innermost loop to the body of the
outermost loop. Unfortunately, this optimization is problematic, as
GCC then detects a signed overflow in the program’s optimized
version and this (incorrect) belief of the existence of undefined
behavior causes the compiler to generate non-terminating code (and
the bogus warning at -O2).

The original program did not trigger the bug because there were
other statements in the innermost loop that mutated the variable

2 The variable c and other global variables are initialized to 0 in C.
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b (for instance, increasing b before the assignment to e). The
expression “2147483647 - b” was thus determined not to be a
loop invariant and was not hoisted outside the inner loops. The
program ran as expected. On the other hand, since the innermost loop
was not executed, Orion could freely modify its body. It generated
some variants in which all statements mutating b were removed.
As explained earlier, in these variants, the expression became loop
invariant, and thus was hoisted out of the loop, which effectively
triggered the bug. The original program is quite complex, having
2,985 LOC; the EMI variant that exposed the bug has 2,015 LOC.

The two examples demonstrate that bugs can appear in both
small, and large, complex code bases, potentially resulting in hard-
to-detect errors, crashes, or security exploits, even in entirely cor-
rect, even verified, programs. They also highlight the difficulty of
correctly optimizing code. Not only each optimization pass can
introduce bugs directly, the interactions among different optimiza-
tions can also lead to latent bugs. EMI, being an end-to-end testing
methodology, detects bugs that occur across optimization passes, as
well as those that occur within an individual pass.

3. EMI and Orion’s Implementation
This section introduces equivalence modulo inputs (EMI) and
describes our realization of Orion.

3.1 Definitions and High-Level Approach
The concept of equivalence modulo inputs (EMI) that we have
outlined in Section 1 is simple and intuitive. The main goal of this
subsection is to provide more detailed and precise definitions.

Rather than formalizing EMI for a concrete programming lan-
guage, we operate on a generic programming language L with
deterministic3 semantics J·K, i.e., repeated executions of a program
P ∈L on the same input i always yield the same result JPK(i).

3.1.1 Equivalence Modulo Inputs
Two programs P,Q ∈L are equivalent modulo inputs (EMI) w.r.t.
an input set I common to P and Q (i.e., I ⊆ dom(P)∩dom(Q)) iff

∀i ∈ I JPK(i) = JQK(i).

We use JPK =I JQK to denote that P and Q are EMI w.r.t. input set I.
For the degenerate case where P and Q do not take inputs (i.e.,

they are closed programs), EMI reduces to semantic equivalence:

JPK = JQK.

Or more precisely, P and Q are EMI w.r.t. the input set {void},
where void denotes the usual “no argument”:

JPK(void) = JQK(void).

For example, the GCC test 931004-11.c and the output code from
Orion shown respectively in Figures 1a and 1b are EMI (w.r.t.
I = {void}).

Given a program P ∈ L , any input set I ⊆ dom(P) naturally
induces a collection of programs Q ∈L that are EMI (w.r.t. I) to P.
We call this collection P’s EMI variants.

Definition 3.1 (EMI Variants). A program P’s EMI variants w.r.t.
an input set I is given by:

{Q ∈L | JPK =I JQK}.

It is clear that EMI is a relaxed notion of semantic equivalence:

JPK = JQK =⇒ JPK =I JQK.

3 Note that we may also force a non-deterministic language to assume
deterministic behavior.

3.1.2 Differential Testing with EMI Variants
At this point, it may not be clear yet what benefits our relaxed notion
of equivalence can provide, which we explain next.

Differential Testing: An Alternative View Our goal is to differen-
tially test [16] compilers. The traditional view of differential testing
is simple: If two programs (in our setting, compilers or compiler
versions) “act differently” on some input (i.e. source programs),
we have found a bug in one of the compilers (maybe also in both).
This is, for example, the view taken by Csmith [28] (assuming that
the input programs are well-behaving, e.g., they do not exhibit any
undefined behavior).

We adopt an alternative view: If an oracle can generate a program
P’s semantic equivalent variants, these variants can stress-test any
compiler Comp by checking whether Comp produces equivalent
code for these variants. This view is attractive because we can (1)
operate on existing code (or randomly generated, but valid code),
and (2) check a single compiler in isolation (e.g. where competing
compilers do not exist). However, we face two difficult challenges:
(1) How to generate semantic equivalent variants? and (2) How
to check equivalence of the produced code? Both have been long-
standing challenges in software analysis and verification.

The “Profile and Mutate” Strategy Our key insight is that EMI
provides a practical mechanism to realize our alternative view
for differential testing of compilers. Indeed, by relaxing semantic
equivalence w.r.t. an input set I, we reduce the second challenge to
the simple task of testing against I. As for the first challenge, note
that P’s executions on I yield a static slice of P and unexecuted “dead
code”. One may freely mutate the “dead code” without changing
P’s semantics on I, thus providing a potentially enormous number
of EMI variants to help stress-test compilers.

Once the EMI variants are generated, testing is straightforward.
Let Q = {Q1, . . . ,Qk} be a set of P’s EMI variants w.r.t. I. For each
Qi ∈Q, we verify the following:

∀i ∈ I Comp(Qi)(i) = Comp(P)(i).

Any deviant behavior indicates a miscompilation.
So far, we have not specified how to “mutate” the unexecuted

“dead code” w.r.t. I. Obvious mutations include pruning, insertion, or
modification. Our implementation, which we describe next, focuses
on pruning, and we show in evaluation that even such a simple
realization is extremely effective — it has detected 147 unique bugs
for GCC and LLVM alone in under a year. We leave as future work
to explore other mutation strategies.

3.2 Implementation of Orion
We now describe Orion, our practical realization of the EMI concept
targeting C compilers via the “profile and prune” strategy. At a high
level, Orion operates on a program’s abstract syntax tree (AST)
and contains two key steps: (1) extracting coverage information
(Section 3.2.1), and (2) generating EMI variants (Section 3.2.2).

One challenge for testing C compilers is to avoid programs with
undefined behavior because the C standard allows a compiler to do
anything with such programs. For example, one major, painstaking
contribution of Csmith is to generate valid test programs most of the
time. In this regard, Orion has a strong advantage. Indeed, the EMI
variants generated by Orion do not exhibit any undefined behavior
if the original program has no undefined behavior (since only dead
code is pruned from the original program). This advantage of Orion
helps to easily generate many valid variants from a single valid seed
program.

Algorithm 1 describes Orion’s main process. As its first step,
Orion profiles the test program P’s execution on the input set I to
collect (1) coverage information and (2) the expected output on each
input value i ∈ I (lines 2–3). It then generates P’s EMI variants w.r.t.



Algorithm 1: Orion’s main process for compiler validation
1 procedure Validate (Compiler Comp, TestProgram P, InputSet I):
2 begin

/* Step 1: Extract coverage and output */

3 Pexe :=Comp.Compile(P,"-O0") /* without opt. */

4 C :=
⋃
i∈I

Ci, where Ci := Coverage(Pexe.Execute(i))

5 IO := {〈i,Pexe.Execute(i)〉 | i ∈ I}
/* Step 2: Generate variants and verify */

6 for 1..MAX_IT ER do
7 P′ := GenVariant(P,C)

/* Validate Comp’s configurations */

8 foreach σ ∈Comp.Configurations() do
9 P′exe :=Comp.Compile(P′,σ)

10 foreach 〈i,o〉 ∈ IO do
11 if P′exe.Execute(i) 6= o then

/* Found a miscompilation */

12 ReportBug (Comp, σ , P, P′, i)

I (lines 5–6), and uses them to validate each compiler configuration
against the collected reference output (lines 7–11). Next, we discuss
each step in detail.

3.2.1 Extracting Coverage Information
Code coverage tools compute how frequently a program’s state-
ments execute during its profiled runs on some sample inputs. We
can conveniently leverage such tools to track the executed (i.e. “cov-
ered”) and unexecuted (i.e. “dead”) statements of our test program
P under input set I. Those statements marked “dead” are candidates
for pruning in generating P’s EMI variants.

In particular, Orion uses gcov [7], a mature utility in the GNU
Compiler Collection, to extract coverage information. We enable
gcov by compiling the test program P with the following flag:

“-O0 -coverage”

which instruments P with additional code to collect coverage infor-
mation at runtime. Orion then executes the instrumented executable
on the provided input set I to obtain coverage files with information
indicating how many times a source line has been executed.

Because gcov profiles coverage at the line level, it may produce
imprecise results when multiple statements are on a single line. For
example, in the example below,

if (false) { /* this could be removed */ }

gcov marks the entire line as executed. As a result, Orion cannot
mutate it, although the statements within the curly braces could be
safely removed. Note that we manually formatted the two test cases
in Figure 1 for presentation. The actual code has every “abort();”
on a separate line.

Occasionally, coverage information computed by gcov can also
be ambiguous. For instance, in the sample snippet below (extracted
from the source code of the Mathomatic4 computer algebra system),
gcov marks line 2613 as unexecuted (indicated by prepending the
leading “#####”):

#####: 2613: for (;; cp = skip_param(cp)) {
.....

7: 2622: break;
#####: 2623: }

4 http://www.mathomatic.org/

Algorithm 2: Generate an EMI variant
1 function GenVariant (TestProgram P, Coverage C): Variant P′:
2 begin
3 P′ := P
4 foreach s ∈ P′.Statements() do
5 PruneVisit (P′, s, C)

6 return P′

7 procedure PruneVisit (TestProgram P′, Statement s, Coverage C):
8 begin

/* Delete this statement when applicable */

9 if s /∈C and FlipCoin(s) then
10 P′.Delete (s)
11 return

/* Otherwise, traverse s’s children */

12 foreach s′ ∈ s.ChildStatements() do
13 PruneVisit (P′, s′, C)

Based on this information, Orion assumes that it can remove the
entire for loop (lines 2613–2623). This is incorrect, as the for
loop is actually executed (indicated by the execution of its child
statement break). What gcov really means is that the expression
“cp = skip_param(cp)” is unevaluated. We remedy this coverage
ambiguity by verifying that none of the children of an unexecuted
statement is executed before removing it in the next step.

To avoid the aforementioned problems caused by collecting
coverage statistics at line granularity, we could modify gcov or
implement a new code coverage tool that would operate at the
statement level. This can make our analysis more precise and
help generate more variants. However, the practical benefits seem
negligible as often there are only few such impacted statements. Our
extremely positive results (Section 4) demonstrate that the use of
gcov has been a good, well-justified decision.

3.2.2 Generating EMI Variants
Orion uses LLVM’s LibTooling library [26] to parse a C program
into an AST and mutate it based on the computed coverage informa-
tion to generate the program’s EMI variants.

The mutation process happens at the statement level in the AST.
We mark a statement unexecuted if (1) the line number of its first
token is marked unexecuted by gcov, and (2) none of its child
statements in the AST is executed. When Orion decides to prune
a statement, it removes all tokens in its AST subtree, including
all its child statements. Thus, all variants generated by Orion are
syntactically correct C programs.

Algorithm 2 describes Orion’s process for generating EMI
variants. The process is simple — We traverse all the statements in
the original program P and randomly prune the unexecuted “dead”
statements. On line 9, we use the function FlipCoin to decide
stochastically whether an unexecuted statement s should be kept or
removed. We control Orion’s pruning via two parameters, Pparent
and Pleaf , which specify the probabilities to prune parent or leaf
statements in FlipCoin. One can use static probabilities for deleting
statements and uniformly vary these values across different runs. An
alternative is to allow dynamically adjusted probabilities for each
statement. From our experience, this additional dynamic control
seems quite effective. In fact, our standard setup is to randomly
adjust these two parameters after each statement pruning by resetting
each to an independent random probability value from 0.0 to 1.0.

In our actual implementation, Algorithm 1 is realized using shell
scripts. In particular, we have a set of scripts to collect coverage
and reference output information, control the outer loop, generate

http://www.mathomatic.org/


EMI variants and check for possible miscompilation or compiler
crashes. We have implemented Algorithm 2 in C++ using LLVM’s
LibTooling library [26]. Unlike random program generators such
as Csmith, Orion requires significantly less engineering effort. It
has approximately 500 lines of shell scripts and 1,000 lines of C++
code, while Csmith contains about 30-40K lines of C++ code.

4. Evaluation Setup and Results
This section presents our extensive evaluation of Orion to demon-
strate the practical effectiveness of our EMI methodology besides
its conceptual elegance and generality.

Since January 2013, we have been experimenting with and
refining Orion to find new bugs in three widely-used C compilers,
namely GCC, LLVM, and ICC. We have also occasionally tested
CompCert [12, 13], a formally verified C compiler. In April 2013,
we started our extensive testing of GCC, LLVM, and ICC. After
finding and reporting numerous bugs in ICC, we stopped testing it
for the lack of direct communication with its developers (although
we did learn afterward by checking its later releases that many bugs
we reported had been fixed). Since then, we have only focused
on GCC and LLVM because both have open bug repositories, and
transparent bug triaging and resolution. This section describes the
results from our extensive testing effort for about eleven months.

Result Summary Orion is extremely effective:

• Many confirmed bugs: In eleven months, we have found and
reported 147 confirmed, unique bugs in GCC and LLVM alone.

• Many long-latent bugs: Quite a few of the detected bugs have
been latent for many years, and resisted the attacks from both
earlier and contemporary tools.

• Many have been already fixed: So far, 110 of the bugs have
already been fixed and resolved; most of the remaining ones
have been triaged, assigned, or are being actively discussed.

• Most are miscompilations: This is perhaps the most important,
clearly demonstrating the strengths of EMI for targeting the hard-
to-find and more serious miscompilations (rather than compiler
crashes). For example, Orion has already found about the same
number (around 40) of miscompilations in GCC as Csmith did,
but over several years’ prior and continuing testing.

4.1 Testing Setup
Hardware and Compiler Our testing has focused on the x86-
linux platform. Since late April 2013, we have performed our
testing on two machines (one 18 core and one 6 core) running
Ubuntu 12.04 (x86_64). For each compiler (i.e. GCC and LLVM),
we test its latest development version (usually built once daily)
under the most common configurations (i.e. -O0, -O1, -Os, -O2,
and -O3), generating code for both 32-bit (-m32) and 64-bit (-m64)
environments. We did not use any finer-grained combinations of the
compilers’ optimization flags.

Test Programs In our testing, we have drawn from three sources
of test programs to generate their EMI variants (note that none of
the original test programs triggered a compiler bug):

• Compiler Test Suites: Each of GCC and LLVM has an already
sizable and expanding regression test suite, which we can use
for generating EMI variants (which in turn can be used to test
any compiler). For example, the original test case shown in
Figure 1 was from the GCC test suite, and one of its EMI variants
helped reveal a subtle miscompilation in LLVM. We used the
approximately 2,000 collected tests from the KCC [6] project, an
executable formal semantics for C. Among others, this collection
includes tests primarily from regression test suites of GCC and

LLVM. The programs in these test suites do not take inputs,
and are generally quite small. Nonetheless, we were able to find
bugs by pruning them. The problem with this source is that the
number of bugs revealed by their EMI variants saturated quickly,
which is expected as they have few unexecuted statements.

• Existing Open-Source Projects: Another interesting source is the
large number of open-source projects available. One challenge
to use such a project is that its source code usually scatters
across many different directories. Fortunately, these projects
normally use the GNU build utilities (e.g. “configure” followed
by “make”) and do often come with a few test inputs (e.g. invoked
by “make test” or “make check”), which we can leverage to
generate EMI variants.
In particular, we modify a project’s build process to generate
coverage information for “make test”. To generate an EMI
variant for the project, we bootstrap its build process. Before
compiling a file, we invoke our EMI-gen tool that transforms the
file into an EMI file, which is then compiled as usual. The output
from the build process is an EMI variant of the original project.
Then, we can use it to test each compiler simply by running
the accompanying “make test” (or “make check”). If checking
fails on the variant under a particular compiler configuration, we
have discovered a compiler bug.
Now, we face another challenge, that is how to reduce the bug-
triggering EMI variant for bug reporting. This is a more serious
challenge, particularly for miscompilations. Although we have
applied Orion on a number of open-source projects—including
all nine SPEC2006 integer C programs, Mathomatic and tcc5—
and found many inconsistencies, we were only able to reduce
one GCC crashing bug triggered by an EMI variant of gzip.
We are yet to reduce the others, such as an interesting GCC
miscompilation triggered by a variant of tcc.

• Csmith-Generated Random Code: Csmith turns out to be an
excellent source for providing an enormous number of test
programs for Orion. Programs generated by Csmith, which
do not take inputs, are generally complex and offer quite rich
opportunities for generating EMI variants. Our Csmith setup
produces programs with an average size of 4,590 LOC, among
which 1,327 lines on average are unexecuted. This corresponds
to a vast space of EMI variants. More importantly, these Csmith-
variants can often be effectively reduced using existing tools
such as C-Reduce [24] and Berkeley Delta [17]. Thus, most of
our testing has been on top of the random programs generated
by Csmith, running in its “swarm testing” setup [8] .

Test Case Reduction Test case reduction is still a significant and
time-consuming challenge. Our experience suggests that neither
C-Reduce nor Berkeley Delta is the most effective on its own. We
have devised an effective meta-process to utilize both. It is a nested
fixpoint loop. First, we use Delta to repeatedly reduce the test case
until a fixpoint has been reached (i.e. no additional reduction from
Delta). Then, we run C-Reduce on the fixpoint output from Delta.
We repeat this two-step process until reaching a fixpoint. This meta-
process strikes a nice balance to take advantage of Delta’s better
efficiency and C-Reduce’s stronger reduction capability.

There is another challenge: How to reject code with undefined
behavior in test case reduction? We follow C-Reduce [24] and
leverage (1) GCC and LLVM warnings, (2) KCC [6], and (3)
static analysis tools such as Frama-C.6 We also utilize Clang’s
(although imperfect) support for undefined behavior sanitization, as
well as cross-checking using a few different compilers and compiler

5 The “Tiny C Compiler” (http://bellard.org/tcc/)
6 http://frama-c.com/
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Figure 4: Statistics for GCC (lighter bars: confirmed bugs; darker bars: fixed bugs).
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Figure 5: Statistics for LLVM (lighter bars: confirmed bugs; darker bars: fixed bugs).

configurations to detect inconsistent behavior caused by invalid
code (i.e. code with undefined behavior). Whenever possible, we
use CompCert (and its C interpreter) for detecting and rejecting
invalid code.

Number of Variants It is also important to decide how many
variants to generate for each program. There is a clear trade-off
in performance and bug detection. Our experience suggests that
eight variants appear to strike a good balance. In earlier testing, we
used a static bound, such as 8, as the number of variants to generate
for each program. Later, we added a random parameter that has
roughly an expected value of 8 to control the number of generated
variants for each test program independently at random. This has
been quite effective. For future work, we may explore white-box
approaches that support less stochastic, more controlled generation
of EMI variants.

We have conducted our testing over an extended period of time.
We usually had multiple runs of Csmith with different configurations,
especially after we learned that certain Csmith configurations may
often lead to test cases with undefined behavior. One such example
is the use of unions because code with unions can easily violate the
strict aliasing rules, thus leading to undefined behavior. Sometimes,
we also needed to restart a Csmith run due to system failures, Csmith
updates, bugs in Orion, and re-seeding Csmith’s random number
generation. As the number of EMI variants that we generated for
each test case was also stochastic, we do not have exact counts of
the Csmith tests and their derived EMI variants, but both numbers
were in the millions to tens of millions range.

4.2 Quantitative Results
This subsection presents various summary statistics on results from
our compiler testing effort.

Bug Count We have filed a total of 195 bug reports for GCC and
LLVM during our testing period: (1) three derived from compiler test
suites, (2) one from existing open-source projects, and (3) the rest
from Csmith tests. They can be found under “su@cs.ucdavis.edu”
and “dhazeghi@yahoo.com” in GCC’s and LLVM’s bugzilla
databases. Till March 2014, 147 have been confirmed, 110 of which
have been resolved and fixed by the developers. Note that when a

bug is confirmed and triaged, it corresponds to a new defect. Thus,
all confirmed bugs that we reported were unique and independent.

Also note that although we always ensured that all of our reported
bugs had different symptoms, some of them were actually linked to
the same root cause. These bugs were later marked as duplicate by
developers. The remaining 13 bugs — 4 for GCC and 9 for LLVM
— have not yet been confirmed as the developers have not left any
comments on these reports. One such example is LLVM bug 18447,7
which was reported on January 11, 2014.

Table 1 classifies the reported bugs across the two tested compil-
ers: GCC and LLVM. It is worth mentioning that we have focused
more extensive testing on GCC because of the very quick responses
from the GCC developers and relatively slow responses from the
LLVM developers (although later we had seen much increased activ-
ities from LLVM because of its 3.4 release). This partially explains
why we have reported more bugs for GCC over LLVM.

GCC LLVM TOTAL
Reported 111 84 195

Marked duplicate 28 7 35
Confirmed 79 68 147

Fixed 56 54 110

Table 1: Bugs reported, marked duplicate, confirmed, and fixed.

Bug Types We distinguish two kinds of errors: (1) ones that
manifest when compiling code, and (2) ones that manifest when the
compiled EMI variants are executed. We further classify compile-
time bugs into compiler crashes (e.g. internal compiler errors and
memory-safety errors) and performance bugs (e.g. compiler hang or
abnormally slow compilation).

A compile-time crash occurs when the compiler exits with a
non-zero status. A runtime bug occurs when an EMI variant behaves
differently from its original program. For example, it crashes or
terminates abnormally, or produces a different output. We refer to
such compiler errors as wrong code bugs. Silent wrong code bugs
are the most serious, since the program surreptitiously produces
wrong result.

7 http://llvm.org/bugs/show_bug.cgi?id=18447
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Table 2 classifies the bugs found by Orion according to the above
taxonomy. Notice that Orion found many wrong code (more serious)
bugs, confirming its strengths in stress-testing compiler optimizers.
For example, Csmith found around 40 wrong code bugs in GCC over
several years’ prior and continuing testing, while Orion found about
the same number of wrong code bugs in a much shorter time (and
after GCC and LLVM had already fixed numerous bugs discovered
by Csmith).

GCC LLVM TOTAL
Wrong code 46 49 95

Crash 23 10 33
Performance 10 9 19

Table 2: Bug classification.

Importance of the Reported Bugs It is reasonable to ask whether
the compiler defects triggered by randomly pruning unexecuted
code matter in practice. This is difficult to answer and a question
that Csmith has also faced. The discussion from the Csmith pa-
per [28] is quite relevant here. First, most of our reported bugs have
been confirmed and fixed by the developers, illustrating their rel-
evance and importance (as it often takes substantial effort to fix a
miscompilation).

Second, some of our reported bugs were later reported by others
when compiling real-world programs. As a recent example, from an
EMI variant of a Csmith test, we found a miscompilation in GCC
and reported it as bug 59747.8 Later, others discovered that GCC
also miscompiled the movie player mplayer, and filed a new bug
report 59824.9 The two bugs turned out to share the same root cause,
and subsequently bug 59824 was marked as duplicate.

Affected Compiler Versions We only tested the latest develop-
ment trunks of GCC and LLVM. When we find a test case that
reveals a bug in a compiler, we also check the compiler’s stable
releases against the same test case. Respectively, Figures 4a and 5a
show the numbers of bugs that affect various versions of GCC and
LLVM. Obviously both development trunks are the most frequently
affected. However, Orion has also found a considerable number of
bugs in many stable releases that had been latent for many years.

Optimization Flags and Modes Figures 4b and 5b show which
optimization levels are affected by the bugs found in GCC and
LLVM. In general, a bug occurs at lower optimization levels is
likely to also happen at higher levels. However, we did encounter
cases where a bug only affected one optimization flag. In most such
cases, the flag is “-Os”, which is quite intuitive because “-Os” is the
only flag that optimizes for code size and is less used. Table 3 shows
the number of bugs that affected code generated for 32-bit (“-m32”)
and 64-bit (“-m64”) environments, alone or both.

GCC LLVM TOTAL
-m32 alone 15 10 25
-m64 alone 21 18 39

Both 43 40 83

Table 3: Bugs found categorized by modes.

Affected Compiler Components Figures 4c and 5c show which
compiler components in GCC and LLVM were affected by the
reported bugs respectively. Most of the bugs that Orion found in
GCC are optimizer bugs. As for LLVM, the developers do not (or

8 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59747
9 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59824

have not) appropriately classify the bugs, so the information we
extracted from the LLVM’s bugzilla database may be quite skewed,
where most have been classified as “LLVM Codegen” thus far.

4.3 Assorted Bug Samples Found by Orion
Orion is capable of finding bugs of diverse kinds. We have found
bugs that result in issues like compiler segfaults, internal compiler
errors (ICEs), performance issues at compilation, and wrong code
generation, and with various levels of severity, from rejecting valid
code to release-blocking miscompilations. To provide a glimpse of
the diversity of the uncovered bugs, we highlight here several of
the more concise GCC and LLVM bugs. The wide variety of bugs
presented demonstrates EMI’s power and broad applicability.

4.3.1 Miscompilations
We first discuss a few selected wrong code bugs:

Figure 6a: All versions of GCC tested (4.6 to trunk) failed to
correctly compile the program shown in Figure 6a in 64-bit
mode under -O3. The resulting code crashes with a segfault. The
reason is believed to be a wrong offset computation in GCC’s
predictive commoning optimization. The generated code tries to
access memory quite far from what it actually should access due
to incorrectly generated offsets, causing a segmentation fault.

Figure 6b: When compiling the code in Figure 6b, Clang generated
incorrect code, making the program return an incorrect value.
The bug is caused by Clang’s vectorizer.

Figure 6c: GCC trunk failed to compile the program listed in
Figure 6c at -O1 and above in both 32-bit and 64-bit modes
because of a bug in its jump threading logic. The shape of
the control-flow graph caused the code to handle jump threads
through loop headers to fail.

Figure 6d: Clang trunk failed to compile the test case in Figure 6d
and crashed with a segfault under -O2 and above in both 32-bit
and 64-bit modes. The problem was caused by GVN forgetting
to add an entry to the leader table when it fabricated a “ValNum”
for a dead instruction. Later on, when the compiler wants to
access that table entry, it fails with a segfault as the entry is
nonexistent.

Figure 6e: The test program in Figure 6e was miscompiled by
Clang trunk when optimized for code size (i.e. at -Os), causing
the binary to print “0” when executed where it should have
printed “1”. The root cause was traced to a bug in the LLVM
inliner.

Figure 6f: GCC’s vectorizer was not immune to Orion either. It
miscompiled the program in Figure 6f, resulting in wrong output
from executing the generated code.

4.3.2 Compiler Performance Issues
Orion also helps discover another category of bugs: compiler per-
formance bugs resulting in terribly slow compilation. For instance,
it took GCC minutes to compile the program in Figure 7, orders
of magnitude slower than both Clang and ICC. Across different
versions, GCC 4.8 was considerably faster than trunk, whereas GCC
4.6 and 4.7 were much slower. The performance issue is believed
to be caused by loop unrolling while retaining a large number of
debug statements (> 500,000) within a single basic block that will
have to be traversed later.

While Clang was much faster than GCC at compiling the
program in Figure 7, it had performance bugs elsewhere. Both Clang
3.3 and trunk failed to perform satisfactorily in compiling the code
in Figure 8, taking minutes to compile the code under -O3, orders of
magnitude longer than -O2, GCC, ICC, and even the previous Clang

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59747
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59824


int b, f, d[5][2];
unsigned int c;
int main() {
for (c = 0; c < 2; c++)
if (d[b + 3][c] & d[b + 4][c])
if (f)

break;
return 0;

}

(a) http://gcc.gnu.org/bugzilla/show_bug.
cgi?id=58697: All tested GCC versions gener-
ated wrong code that crashed at run-time due to
invalid memory access, when compiled at -O3 in
64-bit mode.

int main() {
int a = 1;
char b = 0;
lbl:
a &= 4;
b--;
if (b) goto lbl;

return a;
}

(b) http://llvm.org/bugs/show_bug.cgi?id=
17532: Clang bug affecting 3.2 and above:
the vectorizer generates incorrect code affect-
ing the program’s return value in both 32-bit
and 64-bit modes. The bug disappears with
-fno-vectorize.

int a;
int main() {
int b = a;
for (a = 1; a > 0; a--);

lbl:
if (b && a)

goto lbl;
return 0;

}

(c) http://gcc.gnu.org/bugzilla/show_bug.
cgi?id=58343: GCC trunk crashed at -O1 and
above in both 32-bit and 64-bit modes with an
Internal Compiler Error (ICE) due to the unusual
shape of the control-flow graph which causes
problems in the jump threading logic and leads to
a failure.

int *a, e, f;
long long d[2];
int foo() {
int b[1]; a = &b[0];
return 0;

}
int bar() {
for (f = 0; f < 2; f++) d[f] = 1;
e = d[0] && d[1] - foo();
if (e) return 0;
else return foo();

}

(d) http://llvm.org/bugs/show_bug.cgi?id=
17307: Clang trunk segfaulted when compiled at
-O2 or -O3 in both 32-bit and 64-bit modes due to
GVN’s incorrectly updating the leader table.

int printf(const char *, ...);
struct S0 { int f0, f1, f2, f3, f4 }
b = {0,0,1,0,0};

int a;
void foo(struct S0 p) {
b.f2 = 0;
if (p.f2) a = 1;

}
int main() {
foo(b);
printf("%d\n", a);
return 0;

}

(e) http://llvm.org/bugs/show_bug.cgi?id=
17781: Clang trunk miscompiled this program
when optimized for code size (-Os) as a result of
an LLVM inliner bug, generating incorrect output.

int printf(const char *, ...);
int a[8][8] = {{1}};
int b, c, d, e;
int main() {

for (c = 0; c < 8; c++)
for (b = 0; b < 2; b++)
a[b + 4][c] = a[c][0];

printf("%d\n", a[4][4]);
return 0;

}

(f) http://gcc.gnu.org/bugzilla/show_bug.
cgi?id=58228: GCC vectorizer regression from
4.6 triggers a miscompilation affecting pro-
gram output under -O3 in both 32-bit and
64-bit modes. The bug goes away with the
-fno-tree-vectorize flag.

Figure 6: Example test cases uncovering a diverse array of GCC and LLVM bugs.

int a, b, c, d;
int *foo(int *r, short s, short t) { return &c; }
short bar(int p) {
int t = 0;
for (a = 0; a < 8; a++)
for (b = 0; b < 8; b++)
for (p = 0; p < 8; p++)
for (d = 0; d < 8; d++) foo(&t, p, d);

bar (0);
return 0;

}
int main() { return 0; }

Figure 7: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=
58318: GCC retains many debug statements that will have to be
traversed in a single basic block as a result of loop unrolling, caus-
ing orders of magnitude slowdown in compilation speed.

release (3.2), which took 9 seconds to compile at -O3. GCC had the
fastest compilation — only 0.19 seconds at -O3.

Clang’s performance issue was caused by its creation of thou-
sands of stale lifetime marker objects within the compiler that are
not properly cleaned up, drastically slowing down compilation.

4.4 Remarks
One of the reasons why Csmith has not been extended to C++ or
other languages is because it requires significant engineering efforts
to realize. One essentially has to rebuild a new program generator
almost entirely from scratch. In contrast, Orion is much easier to be
targeted for a new domain. To add C++ support to Orion, we simply
need to handle a few more C++ statements and constructs in the
generator EMI-gen. Although we have not yet done any substantial

int a = 1, b, c, *d = &c, e, f, g, k, l, x;
static int * volatile *h = &d;
static int * volatile **j = &h;
void foo(int p) { d = &p; }
void bar() {

int i;
foo (0);
for (i = 0; i < 27; ++i)
for (f = 0; f < 3; f++)
for (g = 0; g < 3; g++) {

for (b = 0; b < 3; b++)
if (e) break;

foo (0);
}

}
static void baz() {

for (; a >= 0; a--)
for (k = 3; k > 0; k--)
for (l = 0; l < 6; l++) { bar (); **j = &x; }

}
int main() { baz(); return 0; }

Figure 8: http://llvm.org/bugs/show_bug.cgi?id=16474: It
takes Clang 3.3+ minutes to compile at -O3, compared to only
0.19 seconds with GCC 4.8.1. The performance issue is caused by
the creation of a large number of dead lifetime marker objects in the
compiler that are not cleaned up.

testing of Orion’s C++ support, our preliminary experience has
been encouraging as Orion has already uncovered potential latent
compiler bugs using small existing C++ code.

Even for a completely new domain, EMI also requires much
less engineering effort because it can leverage existing tools and
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infrastructures. Our active ongoing work on adapting Orion to
testing the JVM JIT confirms this.

Currently, Orion only focuses on integer C programs. We plan
to extend the work to floating-point programs. This direction is
new and exciting, and our EMI methodology offers a promising
high-level approach. The key technical challenge is to define the
“equivalence” of floating-point EMI variants considering the inherent
inaccuracy of floating-point computation.

5. Related Work
Our work is related to the large body of research on compiler testing
and verification. This section surveys some representative, closely
related work, which we group into three categories: (1) compiler
testing, (2) verified compilers, and (3) translation validation.

Compiler Testing The most directly related is compiler testing,
which remains the dominant technique for validating production
compilers in practice. One common approach is to maintain a
compiler test suite. For example, each major compiler (such as
GCC and LLVM) has its own regression test suite, which grows
over the time of its development. In addition, there are a number of
popular, commercial compiler test suites (e.g. Plum Hall [21] and
SuperTest [1]) designed for compiler conformance checking and
validation. Most of these test suites are written manually.

Random testing complements manually written test suites. Zhao
et al. [29] develop JTT, a tool that automatically generates test pro-
grams to validate the EC++ embedded compiler. It takes as input a
test specification (e.g. optimizations to be tested, data types to use,
and statements to include), and generates random programs to meet
the given specification. Recent work by Nagai et al. [18, 19] focuses
on testing C compilers’ arithmetic optimizations by carefully gen-
erating random arithmetic expressions to avoid undefined behavior.
As of November 2013, they have found seven bugs each for GCC
and LLVM. Another notable recent random C program generator is
CCG [2], which targets only compiler crashes.

Csmith [4, 24, 28] has been the most successful random testing
system for C compilers. It has helped find a few hundred compiler
bugs over the last several years and contributed significantly to
improving the quality of GCC and LLVM. It is based on differential
testing [16] by randomly generating C programs and checking for
inconsistent behavior across compilers or compiler versions. What
make it stand out from other random C program generators are the
many C language features it supports and its careful control to avoid
generating programs with undefined behavior. Thus, in addition to
compiler crashes, it is suitable for finding miscompilations. Csmith
has also been applied to find bugs in static analyzers, for example,
in Frama-C [5].

Orion is complementary. Different from Csmith-like tools, it
does not generate random programs, but rather consumes existing
code (whether real or randomly generated) and systematically
modifies it. EMI variants generated from existing code, say via
Orion, are likely programs that people may actually write. The EMI
concept is general and can be adapted to any program analysis and
transformation systems. Its simplicity makes it easy to implement
for a new domain — there is no need to specifically craft a new
program generator each time.

Holler et al.’s recent work on LangFuzz [10] is also related.
It is a random generator that uses failing programs as stems for
producing test programs. LangFuzz has found many bugs in the
PHP and Mozilla JavaScript interpreters. The same idea may be
adapted to Orion. As we have already experimented in this work,
problematic programs (such as those from the GCC and LLVM test
suites) can be used as seeds to generate their EMI variants. We can
also incorporate them in generating other programs’ EMI variants,
which we plan to investigate in our future work.

Verified Compilers A decade ago, “the verifying compiler” was
proposed as a grand challenge for computing research [9]. Com-
piler verification in particular has been a fruitful area for this grand
challenge. A verified compiler ensures that the semantics of a com-
piled program is preserved. Each verified compiler is accompanied
by a correctness proof that guarantees semantic preservation. The
most notable example is CompCert [12, 13], a verified optimizing
compiler for a sizable C subset. Both the compiler itself and the
proof of its correctness have been developed using the Coq proof
assistant. The same idea has been applied to the database domain.
In particular, there is some early work toward building a verified
relational database management system [14]. There is also recent
work by Zhao et al. [30] on a proof technique to verify SSA-based
optimizations in LLVM using the Coq proof assistant.

The benefits of verified compilers are clear because of their
strong guarantee of semantic preservation. Despite considerable
testing, neither Csmith nor Orion has uncovered a single CompCert
back-end bug to date. This is a strong testimony to the promise
and quality of verified compilers. However, techniques like Csmith
and Orion are complementary as much work remains to build a
realistic production-quality verified compiler. CompCert, for exam-
ple, currently supports fewer language constructs and optimization
techniques than GCC and LLVM (thus is less performant). These
make verified compilers mainly suitable for safety-critical domains
that may be more willing to sacrifice performance for increased
correctness guarantees.

Translation Validation It is difficult to automatically verify that
a compiler correctly translates every input program. However, it is
often much easier to prove that a particular compilation is correct,
which motivated the technique of translation validation [22]. In
particular, the goal of translation validation is to verify the compiled
code against the input program to find compilation errors on-the-fly.
Early work on translation validation focuses on transformations
among different languages. For example, Pnueli et al.’s seminal
work [22] that introduced translation validation considers the non-
optimizing compilation from SIGNAL to C.

Subsequent work by Necula [20] extends this technique to handle
optimizing transformations and validates four optimizations in
GCC 2.7. Extending work on super-optimization [3, 11, 15], in
particular Denali [11], Tate et al. introduce the Peggy optimization
and translation validation framework for JVM based on equality
saturation [25]. Tristan et al. [27] adapt the work and evaluate it on
validating intra-procedural optimizations in LLVM.

Although promising, translation validation is still largely im-
practical in practice. Current techniques focus on intra-procedural
optimizations, and it is difficult to handle optimizations at the inter-
procedural level. In addition, each validator is attached to a particular
implementation of an optimizer, thus changes in the optimizer may
require appropriate changes in the validator. Since the validator is
not verified, it may also produce wrong validation results.

6. Conclusion and Future Work
We have described a new validation methodology — equivalence
modulo inputs (EMI) — for testing compilers. The distinctive
benefits of EMI are its simplicity and wide applicability. We have
applied it to test optimizing C compilers. Our evaluation has
provided strong evidence of EMI’s impressive power: 147 confirmed,
unique bug reports for GCC and LLVM in a short few months.

This work complements decades of extensive work on compiler
validation and verification by opening up a fresh, exciting avenue of
research. We are actively pursuing future work to refine the general
approach and extend it to other languages (such as C++ and JVM)
and settings (such as database engines, interpreters, and program
analysis and transformation systems in general).
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