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Abstract

We consider the well-known problem of enumerating all triangles of an undirected graph.
Our focus is on determining the input/output (I/O) complexity of this problem. Let E be the
number of edges, M < E the size of internal memory, and B the block size. The best results
obtained previously are sort(E3/2) I/Os (Dementiev, PhD thesis 2006) and O

(

E2/(MB)
)

I/Os (Hu et al., SIGMOD 2013), where sort(n) denotes the number of I/Os for sorting n

items. We improve the I/O complexity to O
(

E3/2/(
√
MB)

)

expected I/Os, which improves

the previous bounds by a factor min(
√

E/M,
√
M). Our algorithm is cache-oblivious and

also I/O optimal: We show that any algorithm enumerating t distinct triangles must always

use Ω
(

t/(
√
MB)

)

I/Os, and there are graphs for which t = Ω
(

E3/2
)

. Finally, we give a

deterministic cache-aware algorithm using O
(

E3/2/(
√
MB)

)

I/Os assuming M ≥ Eε for a

constant ε > 0. Our results are based on a new color coding technique, which may be of
independent interest.

1 Introduction

Many kinds of information can be naturally represented as graphs, and algorithms for processing
information in this format often need to consider small subgraphs such as triangles. Examples of
applications in which we need to enumerate all triangles in a graph are found in [24] for studying
social processes in networks, [6] for community detection, [12] for solving systems of geometric
constraints. See [14, 5] for further discussion and examples.

A classical example from database theory is the following. A database is created to store
information on salespeople and the products they sell. Each product is characterized by a
brand and a product type, e.g. “ACME vacuum cleaner”, where each product type may be
available in many brands. An obvious representation in a relational database is a single table
Sells(salesperson,brand,productType). However, suppose that a salesperson is characterized
by a set B of brands and a set T of product types, and she sells all available products in B × T .
Then Sells is not in 5th normal form1, so to avoid anomalies it should be decomposed into three
tables, one for each pair of attributes, whose natural join is equal to Sells. Viewing each table
as a bipartite graph with vertices corresponding to attribute values, computing Sells is exactly
the task of enumerating all triangles in the union of these three graphs. In other words, to be
able to compute the join of three tables that are in 5th normal form we must solve the triangle
enumeration problem. Surprisingly, it seems that the challenge of doing this in an I/O-efficient
way was not addressed in the database community until the SIGMOD 2013 paper of Hu, Tao and
Chung [14], though we note that a pipelined nested loop join does a good job when the edge set
almost fits in memory.

∗This work was done while Silvestri was visiting the IT University of Copenhagen.
1The 5th normal form reduces redundancy in relational databases recording multi-valued facts. Intuitively, a

table is in 5th normal form if it cannot be reconstructed from smaller tables using equijoins [16].
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In the context of I/O-efficient algorithms it is natural to not require the listing of all triangles
to external memory. Rather, we simply require that the algorithm enumerates all triangles. More
precisely, it suffices that for each triangle {v1, v2, v3} the algorithm makes exactly one call to a
procedure emit(·, ·, ·) with parameters (v1, v2, v3) at a point of time during the computation where
all edges {v1, v2}, {v2, v3}, and {v1, v3} are present in internal memory. Focusing on enumeration
rather than listing is in line with the way the I/O complexity of algorithms in database systems
is usually accounted for, where pipelining of operations may mean that it is not necessary to
materialize an intermediate result. The same is true for other applications in which enumerating
all triangles is a preprocessing step. Since each triangle is emitted at exactly one point in time
there is no need for a separate duplicate elimination step.

The algorithm for triangle listing in [14] can be easily adapted to solve the enumeration prob-
lem. We recently learned that Hu et al. also make this observation in the journal version [13] of
their SIGMOD 2013 paper. However, the algorithm requires O

(

E2/(MB)
)

I/Os for enumerat-
ing all triangles. We note that the I/O complexity corresponds to E/M scans of the edge set.
The main message of this paper is that it is possible to improve this I/O complexity by a factor
√

E/M , which is significant whenever the data size is much larger than internal memory. Our
contributions are the following:

• We present a randomized triangle enumeration algorithm that is cache-oblivious [11], and im-

proves the I/O complexity of previous algorithms by an expected factor min
(

√

E/M,
√
M
)

.

This is significant for large graphs in which E ≫ M ≫ 1.

• We present a deterministic and cache-aware triangle enumeration algorithm with the same
asymptotic I/O complexity under the mild assumption M ≥

√
E.

• We show that the number of I/Os of our algorithms is within a constant factor of the best
possible under the assumption that each triangle output must be “witnessed” by edges stored
in internal memory. A similar result has been independently achieved in [13].

Formal statements can be found in Section 1.2.

1.1 State of the art

Algorithms for memory hierarchies, in particular in the external memory model [2], have been
widely investigated in the last years and we refer to the excellent survey by Vitter [23] for a
complete overview of the state of the art. Cache-oblivious algorithms have been introduced by
Frigo et al. [10, 11] and are algorithms that do not use in their specifications the parameters
describing the memory hierarchy, but still exhibit an optimal or quasi-optimal I/O complexity.

The triangle listing and enumeration problems are equivalent in flat memory (e.g., the RAM
model) since the cost of writing in memory all the enumerated triangles is asymptotically no larger
than the cost of triangle generation. However, this is not the case when external storage is used:
the cost of writing triangles can significantly increase the I/O complexity in graphs with a large
number of triangles.

Several previous papers have considered the problem of listing triangles in the external mem-
ory model. Before considering these papers, we observe that since triangle enumeration can be
expressed as a natural join of three relations, it is possible to use two block-nested loop joins (in
a pipelined fashion) to solve the problem incurring O

(

(E/M)2E/B
)

= O
(

E3/(M2B)
)

I/Os.
The first two works dealing explicitly with triangle listing in external memory are due to

Menegola [18] and Dementiev [9], which give algorithms using, respectively, O
(

E + E1.5/B
)

and

O
(

(E1.5/B) logM/B(E/B)
)

I/Os. Both algorithms incur a large number of I/Os and have weak

temporal locality of reference since their bounds have at most a logarithmic dependency on the
memory size M . Using graph partitioning ideas, Chu and Cheng [8] improved the bound to
O
(

E2/(MB) + t/B
)

for a class of graphs, where t is the number of returned triangles. This

bound improves the previous ones as soon as M = Ω
(√

E
)

and is the first to be output sensitive.
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The class of graphs handled are those for which each subgraph generated by the partitioning fits
in memory. Hu, Tao and Chung [14] provided an algorithm reaching the same bound, using very
different techniques, working for arbitrary graphs. This improves the algorithm based on block-
nested loop joins by a factor E/M . It is argued in [14] (and elaborated in the full version [13])
that their algorithm is near-optimal in the sense that it cannot be significantly improved for
all combinations of E and M . However, the argument leaves open the question of whether a
significant improvement can be obtained when E ≫ M . In contrast, we show matching upper and
lower bounds for all combinations of E and M .

As mentioned above, a lower bound on the I/O complexity of triangle enumeration has inde-
pendently been shown in the unpublished journal article [13]. Although the main interest of the

paper is in the listing problem, it provides a Ω
(

E3/2/(
√
MB) + E/B

)

lower bound on the I/O

complexity that applies also to the enumeration problem. However, in this paper we extend this
result to be a best-case lower bound and to be output sensitive, using a shorter and arguably
simpler argument. That is, we show that the I/O complexity of any algorithm for enumerating t

triangles is Ω
(

t/(
√
MB) + t2/3/B

)

. Both bounds apply to algorithms that, intuitively, manage

edges and vertices as atomic information.
We recall that triangle listing has been widely studied in other models (there is no distinction

between enumeration and listing in these works). The relations between listing and other problems
have been widely investigated, see for instance Williams and Williams [25] for a reduction to matrix
multiplication, and Jafargholi and Viola [15] for 3SUM/3XOR. Parallel algorithms for triangle
listing have been addressed in the MapReduce framework by Afrati et al. [1], and by Suri and
Vassilvitskii [22]. Triangle listing in certain classes of random graphs has been addressed recently
by Berry et al. [5] to explain the empirically good behavior of simple triangle listing algorithms.
For the related problem of counting the number of triangles in a graph, we refer to [17] and
references therein.

1.2 Our results

Our first main result is a cache-oblivious algorithm for triangle enumeration. In a cache-oblivious
algorithm no variables dependent on hardware parameters, such as internal memory size and block
length, need to be tuned to achieve optimality (or quasi optimality). The cache-oblivious algorithm
is inspired by a recursive approach proposed by Jafargholi and Viola [15], in the context of output
sensitive triangle listing in the RAM model. We prove the following claim.

Theorem 1. Assume E ≥ M . Then there exists a cache-oblivious randomized algorithm for

triangle enumeration using O
(

E3/2
√
MB

)

I/Os in expectation and O (E) words on disk.

By a property of cache-oblivious algorithms [11], we have that the claimed I/O complexity applies
to each level of a multilevel cache with an LRU replacement policy.

Our second result is a deterministic cache-aware algorithm with the same I/O complexity as
the cache-oblivious algorithm, under the assumption that internal memory has size at least

√
E.

This is a reasonable assumption in practice if we are concerned with a graph stored on hard
disk or on solid-state drive and M is the capacity of the RAM. The algorithm is based on the
derandomization of a simple cache-aware algorithm, described in Section 2. The derandomization
uses an idea introduced in [15], though we present a more refined greedy approach that preserves
the exponent 3/2 of the algorithm. We conjecture that with some technical adjustments the
derandomization can be also applied to the cache-oblivious algorithm.

Theorem 2. Assume E ≥ M ≥ Eǫ, for an arbitrary constant ǫ > 0. Then there exists a

deterministic, cache-aware algorithm for triangle enumeration that uses O
(

E3/2
√
MB

)

I/Os and O (E)

words on disk in the worst case.

Finally, we prove that the I/O complexity of our algorithms is optimal in the external memory
model. We assume that information on an edge requires at least one memory word: this assumption

3



is similar to the indivisibility assumption [4] which is usually required for deriving lower bounds
on the I/O complexity, or to the witnessing class of the aforementioned lower bound in [13]. With
respect to this bound, we remark that our lower bound applies also in the best-case and it is
output sensitive.

Theorem 3. For any input graph, an algorithm that enumerates t distinct triangles requires, even

in the best case, Ω
(

t√
MB

+ t2/3

B

)

I/Os .

The above lower bound on the I/O complexity applies also in the case of a weak definition of
the triangle enumeration problem, which requires an algorithm to make at least one call to the
procedure emit(·, ·, ·) for each triangle. Algorithms for the weak triangle enumeration problem
may not be able to compute the exact number of triangles in a graph, while this is not the case of
our algorithms.

Although the work of an algorithm is not the main complexity measure in the external memory
model, we remark that all our algorithms are also work optimal: indeed, it can be easily proved
that each algorithm performs O

(

E3/2
)

operations in the worst case, matching the naive Ω (t)

lower bound for enumerating t triangles when t = Ω
(

E3/2
)

.
The paper is organized as follows. Section 2 gives a simple cache-aware randomized algo-

rithm. Section 3 describes the claimed cache-oblivious randomized algorithm. The deterministic
algorithm is then proposed in Section 4 by derandomizing the previous cache-aware randomized
algorithm. Section 5 gives the lower bound on the I/O complexity. We conclude the paper with
some final comments in Section 6.

1.3 Preliminaries

We study our algorithms in the external memory model [2], which consists of an internal memory
of M words and of an external memory of unbounded size. The processor can only use data
stored in internal memory and move data from the two memories in chunk of consecutive B
words. The I/O complexity of an algorithm is defined as the number of input/output blocks
performed by the algorithm. We denote the I/O complexity of sorting n entries with sort(n) =

O
(

n log(n/B)
B logM + n

B

)

[23].

A cache-oblivious algorithm is an algorithm that does not use in its specification the parameters
describing the memory hierarchy (i.e., M and B in our model), but still exhibits an optimal or
quasi-optimal I/O complexity. An algorithm that does use at least one of these parameters is
said cache-aware. In the context of cache-oblivious algorithms, we assume that block transfers
between internal and external memories are automatically managed by an optimal replacement
policy. However, it can be shown [11, Lemma 6.4] that optimality with an optimal replacement
policy implies an optimal number of I/Os on each level of a multilevel cache with LRU replacement,
under a regularity condition. This condition says that the I/O complexity Q(n,M,B) satisfies
Q(n,M,B) = O (Q(n, 2M,B)). Since our cache-oblivious algorithm for triangle enumeration is
optimal and satisfies the regularity condition, we have that this result applies to our algorithm
as well. In the paper, we make the standard tall cache assumption M = Ω

(

B2
)

, which has
been shown to be necessary for getting optimal cache-oblivious algorithms, in particular for the
problems of sorting [7] and permuting [20].

We consider a simple, undirected graph (no self loops, no parallel edges) with vertex set V and
edge set E. Each vertex and edge requires one memory word. For notational convenience and
consistency with earlier papers, whenever the context is clear we use E as a shorthand for the size
of a set E (and similarly for other sets). We denote with deg(v) the degree of a vertex v ∈ V . We
assume that the elements of V are ordered according to degree, breaking ties among vertices of the
same degree in an arbitrary but consistent way. We assume that an edge {v1, v2} is represented
by the tuple (v1, v2) such that v1 < v2, and that these tuples are sorted lexicographically (so for
each vertex v we have the list of neighbors that come after v in the ordering). If the graph comes
in some other representation, it can be converted to this form in sort (E) I/Os. Following [14], for
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a triangle {v1, v2, v3}, with v1 < v2 < v3, we call the edge {v2, v3} its pivot edge, and the vertex
v1 its cone vertex.

The following lemma describes a subroutine that is widely used in the paper for enumerating
all triangles containing a given vertex v.

Lemma 1. Enumerating all triangles in an edge set E that contain a given vertex v can be done
in O (sort(E)) I/Os.

Proof. By scanning E, we find the set Γv of vertices that are adjacent to v, and we sort it by
degree. Then we sort edges in E by the smallest vertex and find the set Ev ⊆ E of edges with
the smallest vertex in Γv, just by scanning E and Γv. Finally, we sort edges in Ev by the largest
vertex and compute the set of edges E′

v ⊆ Ev with both vertices in Γv with another scan of Ev

and Γv. By construction we have that, for each e = {u,w} ∈ E′
v, there exists a triangle with

vertices v, u and w.

Another subroutine used in the paper is the algorithm given in [14] that efficiently finds all
triangles with a pivot edge in a set E′ ⊆ E. Though this subroutine was presented in [14] as a
listing algorithm, it is easy to see that it works for enumeration as well. We sketch the result
below for the sake of completeness.

Lemma 2. (Hu et al. [14, Algorithm 1, step 2]) The set of triangles in an edge set E with a pivot
edge in E′ ⊆ E can be enumerated in O (E/B + E′E/(MB)) I/Os.

Proof. The algorithm runs in iterations. In each iteration αM new edges from E′, for a suitable
constant α ∈ (0; 1), are loaded into internal memory. Let Γmem be the set of vertices that appear
in an edge of E′ currently stored in internal memory. Then, for each vertex v in the graph, the
algorithm computes the set

Γv = {u | (v, u) ∈ E, u > v, u ∈ Γmem},

that is, the set containing all vertices larger than v that are adjacent to v, and appear in an edge of
E′ stored in internal memory in the current iteration. Then, it enumerates all triangles {v, u, w}
where {u,w} ∈ E′ and u,w ∈ Γv. It is easy to see that it is possible to compute Γv for every
vertex v using a single scan of all edges in E, since all edges {v, u} ∈ E with u > v are stored
consecutively in external memory. Then, we get the I/O complexity O

(

⌈E′/M⌉
∑

v∈V deg(v)/B
)

which is upper bounded by O (E/B + E′E/(MB)).

2 Cache-aware enumeration

Our first algorithm is cache-aware, that is, it is given information on the internal memory size M
and on the block length B. The algorithm also explicitly manages block transfers. Without loss
of generality we assume that E > M and that

√

E/M is an integer.

2.1 Algorithm overview

Let Vh = {v | deg(v) >
√
EM} be the set of high-degree vertices, and Vl = V \Vh be the remaining

low-degree vertices. There cannot be too many vertices in the set Vh: indeed we have Vh <
√

E/M .
We denote with Eh the set of edges incident to at least one vertex in Vh, and with El = E\Eh the
remaining edges.

The first step of our algorithm enumerates the triangles that involve at least one edge from Eh

using the algorithm described in Lemma 1 for each high-degree vertex in Vh. Subsequent steps
can then focus on triangles within El. Our algorithm will work with a coloring ξ : V → {1, . . . , c}
of the vertex set where the number of colors will be c =

√

E/M . The coloring will partition the
edges of El into c2 = E/M sets according to the colors of their vertices. More specifically, for
τ1, τ2 ∈ {1, . . . , c} let

Eτ1,τ2 = {{v1, v2} ∈ El | v1 < v2, ξ(v1) = τ1, ξ(v2) = τ2} .

5



Since the number of partitions is E/M , the average number of edges in a partition is M . If
all partitions did indeed have size M , we could easily obtain an algorithm with the desired I/O
complexity by considering all c3 possible coloring of the vertices of a triangle in O (M/B) I/Os.
However, some partitions may be much larger than M , so there is no guarantee that we can fit a
large part of a partition in memory.

We are now ready to describe the high-level algorithm:

1. Enumerate all triangles with at least one vertex in Vh using the algorithm of Lemma 1.

2. Choose ξ uniformly at random from a 4-wise independent family of functions, and construct
the sets Eτ1,τ2 using a sorting algorithm.

3. For every triple (τ1, τ2, τ3) ∈ {1, . . . , c}3, enumerate all triangles with a cone vertex of color
τ1 and a pivot edge in Eτ2,τ3 . We use the algorithm in Lemma 2 by setting the pivot edge to
Eτ2,τ3 , the edge set to Eτ1,τ2 ∪ Eτ1,τ3 ∪ Eτ2,τ3 , and ignoring triangles where the cone vertex
does not have color τ1.

2.2 Analysis

2.2.1 Correctness

We first argue for correctness of the algorithm. Every triangle that includes at least one vertex
in Vh is enumerated in step 1 by Lemma 1. On the other hand, a triangle with vertices v1 <
v2 < v2, none of which belongs to Vh, is enumerated in step 3, specifically in the iteration where
(τ1, τ2, τ3) = (ξ(v1), ξ(v2), ξ(v3)).

2.2.2 I/O complexity

We define the random variable Xξ as follows:

Xξ =
∑

τ1,τ2

(

Eτ1,τ2

2

)

. (1)

This variable denotes the number of pairs of edges in each partition and will be used for bounding
the I/Os in step 3. We have the following bound.

Lemma 3. Let ξ : V → {1, . . . , c} be chosen uniformly at random from a 4-wise independent
family of functions, where c =

√

E/M . Then

E [Xξ] ≤
(

E

2

)

/c2 +
∑

v∈Vl

(

deg(v)

2

)

/c ≤ EM.

Proof. Define the indicator variable Ye1,e2 to be 1 if e1 and e2 are colored in the same way (i.e.,
belong to the same set Eτ1,τ2), and zero otherwise. By linearity of expectation we have:

E [Xξ] =
∑

e1 6=e2

E [Ye1,e2 ] =
∑

e1 6=e2

Pr (Ye1,e2 = 1) .

There are at most
∑

v∈Vl

(

deg(v)
2

)

pairs of edges {e1, e2} ⊆ El that share a vertex, and for those
E [Ye1,e2 ] ≤ 1/c since the ξ function is chosen uniformly at random from a 4-wise independent

family of functions. For the remaining at most
(

E
2

)

pairs the colorings are independent, and
hence the probability of having the same coloring is 1/c2. Summing up, and using the fact that
deg(v) ≤

√
EM for all v ∈ Vl gives Xξ < E2/(2c2) +E

√
EM/(2c). Finally, inserting c =

√

E/M
yields the stated bound.
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Theorem 4. Assume E ≥ M ≥ Eǫ, for an arbitrary constant ǫ > 0. Then the above cache-aware

randomized algorithm for triangle enumeration requires O
(

E3/2
√
MB

)

I/Os in expectation and O (E)

words on disk.

Proof. When M ≥ Eǫ, for an arbitrary constant ǫ > 0, the first and second steps together require

O (Vhsort (E)) = O
(

E3/2
√
MB

)

I/Os, which is upper bounded by the claimed complexity. By setting

Eτ1,τ2,τ3 = Eτ1,τ2 + Eτ1,τ3 + Eτ2,τ3 , we get that the I/O complexity Q(E,M,B) of step 3 is by
Lemma 2

Q(E,M,B) = O





∑

(τ1,τ2,τ3)

Eτ1,τ2,τ3

B
+

E2
τ1,τ2,τ3

MB



 .

Since
∑

(τ1,τ2)
Eτ1,τ2 = E, the above bound becomes

Q(E,M,B) = O





cE

B
+
∑

(τ1,τ2,τ3)

E2
τ1,τ2 + E2

τ1,τ3 + E2
τ2,τ3

MB



 ,

and hence

Q(E,M,B) = O





cE

B
+

c

MB

∑

(τ1,τ2)

E2
τ1,τ2



 .

Since E2
τ1,τ2 ≤ 4

(Eτ1,τ2
2

)

and by the definition of Xξ in (1), we get

Q(E,M,B) = O
(

E3/2

√
MB

+

√
E

M3/2
Xξ

)

.

That is, the expected time complexity is governed by the expectation of the random variable
Xξ. By Lemma 3, we have that E [Xξ] ≤ EM and then the expected I/O complexity of step 3 is

O
(

E3/2/(
√
MB)

)

. The algorithm clearly requires O (E) space on disk.

3 Cache-oblivious enumeration

In this section we describe a cache-oblivious, randomized algorithm for the enumeration of all

triangles in a graph in O
(

E3/2/(
√
MB)

)

expected I/Os, proving Theorem 1. Optimality of

this bound is shown in Section 5. As already noticed, an optimal cache-oblivious algorithm
implies an optimal number of I/Os on each level of a multilevel cache with LRU replacement if
a regularity condition is verified (i.e., the I/O complexity of the algorithm Q(n,M,B) satisfies
Q(n,M,B) = O (Q(n, 2M,B))). Since our cache-oblivious algorithm is optimal and satisfies the
regularity condition, we have that this result applies to our algorithm as well.

3.1 Algorithm overview

The cache-oblivious algorithm in this section is inspired by a recursive approach proposed by
Jafargholi and Viola [15], in the context of output sensitive triangle listing in a RAM model.
To describe the algorithm we define the more general (c0, c1, c2)-enumeration problem. Let ξ :
V → Z be a coloring of the vertex set, assigning an integer to each vertex. The (c0, c1, c2)-
enumeration problem with coloring ξ consists of enumerating all triangles colored according to the
vector (c0, c1, c2), i.e., triangles with vertices {u, v, w} ⊆ V where u < v < w, ξ(u) = c0, ξ(v) = c1,
and ξ(w) = c2. The enumeration of all triangles simply reduces to the (1, 1, 1)-enumeration
problem with the constant coloring ξ(v) = 1.

A triangle is proper if it satisfies the (c0, c1, c2) coloring, and an edge {u, v}, with u < v, is
incompatible with coloring (c0, c1, c2) if (ξ(u), ξ(v)) 6∈ {(c0, c1), (c1, c2), (c0, c2)}. Without loss of
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generality, we assume that there are no incompatible edges in G and that the color of each vertex
is stored within the vertex (these assumptions can be guaranteed by suitably sorting edges without
increasing the I/O complexity).

Our algorithm solves the (c0, c1, c2)-enumeration problem with coloring ξ in three steps:

1. The algorithm enumerates all triangles satisfying the (c0, c1, c2) coloring with at least one
local high degree vertex. A local high degree vertex is a vertex with degree at least E/8; there
are at most 16 local high degree nodes. For each local high degree vertex v, the algorithm
enumerates all triangles containing v with the subroutine in Lemma 1 (using any efficient
cache-oblivious sorting algorithm, e.g., the one from [11]). Local high degree vertices and
their edges are then removed.

2. A new coloring ξ′ : V → Z is defined by adding a random bit to the value returned by ξ in the
least significant position of the binary representation. Specifically, let ξ′(v) = 2ξ(v) − b(v),
where b : V → {0, 1} is chosen uniformly at random from a 4-wise independent family of
functions.

3. The remaining triangles that satisfy (c0, c1, c2) under coloring ξ are enumerated by recursively
solving 8 subproblems. For each color vector ζ ∈ {2c0−1, 2c0}×{2c1−1, 2c1}×{2c2−1, 2c2},
we recursively solve the ζ-enumeration problem with coloring ξ′ on the graph obtained by
removing edges incompatible with the color vector.

The recursion ends when E is empty, or at depth log4 E: in the first base case there are
no triangles; in the second base case, triangles are enumerated with the deterministic algorithm
by Dementiev [9], which relies on sort and scan operations, and can be trivially made oblivious
using any oblivious sorting algorithm. We note that step 1 has an effect also in the recursive calls,
since E refers to the number of edges compatible with the given subproblem. In fact, this is the
main conceptual difference between our algorithm and the algorithm in [15].

We observe that at the recursive level i = log c, with c =
√

E/M , the behavior of the algorithm
is similar to the one of the cache-aware algorithm presented in Section 2: There are c colors and,
as we will see below, when i = log c each vertex with degree at least

√
EM is expected to be

removed, and there are (E/M)3/2 subproblems, each of expected size M .

3.2 Analysis

3.2.1 Correctness

We argue that all proper triangles with coloring (c0, c1, c2) are correctly enumerated. Indeed,
proper triangles with a local high degree vertex v are found in step 1, and cannot appear again
since edges adjacent to v are subsequently removed. The remaining triangles are enumerated in
the subproblems. Indeed, each proper triangle is given a coloring in {2c0−1, 2c0}×{2c1−1, 2c1}×
{2c2 − 1, 2c2} under ξ′, and there is exactly one recursive call reporting each triangle.

3.2.2 I/O Complexity

Suppose the 8i subproblems at level i, with 0 ≤ i ≤ log4 E, are arbitrarily numbered. We
denote by Ei,j , ξi,j , (c

0
i,j , c

1
i,j , c

2
i,j) the input edge set, the coloring, and the triplet defining proper

triangles, respectively, of the jth subproblem at level i, for any 0 ≤ i ≤ log4 E and 0 ≤ j < 8i.

We then define Ek,l
i,j , for any 0 ≤ k < l ≤ 2, as the set containing each edge {u, v} ∈ Ei,j , with

u < v, such that ξi,j(u) = cki,j and ξi,j(v) = cli,j . With a slight abuse of notation, we let Ei,j and

Ek,l
i,j also denote the size of the respective sets. Since there are no incompatible edges, we have

Ei,j ≤ E0,1
i,j + E1,2

i,j + E0,2
i,j .

In order to upper bound the expected I/O complexity of our algorithm we introduce two
lemmas. Lemma 4 gives an upper bound on the expected value and variance of each subproblem
at a given recursive level. Then, Lemma 5 uses these bounds to limit the probability that a
subproblem is larger than the expected size.
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Lemma 4. For any 0 ≤ i ≤ log4 E and 0 ≤ j < 8i, we have

E

[

E0,1
i,j

]

≤ E

4i
, Var

(

E0,1
i,j

)

≤ 3E2

16i
.

The same bounds apply to E1,2
i,j and E0,2

i,j .

Proof. For the sake of the analysis we do not remove local high degree vertices in step 1, but
replace them with vertices of degree one. Specifically, for any removed vertex v with (local) degree
deg(v), we replace it with deg(v) new vertices vi of degree 1, and replace each edge {v, u} with
{vi, u} for a suitable i. This assumption simplifies the analysis since no edges are removed in a
recursive level. However, correctness is not affected since the new vertices will not be involved in
any proper triangle enumerated in recursive calls as they have degree one. By symmetry we may
focus on E0,1

i,j , the proofs for E1,2
i,j and E0,2

i,j being analogous.

We now prove by induction that, at any recursive level 0 ≤ i ≤ log4 E, we have E
[

E0,1
i,j

]

= X/4i

and Var
(

E0,1
i,j

)

≤ X2/16i + 2X/4i, where X = E0,1
0,0 = E. The lemma then follows since X = E

and X2/16i + 2X/4i ≤ 3X2/16i as soon as i ≤ log4 X . The claim is trivially verified when i = 0

since we get E
[

E0,1
0,0

]

= E0,1
0,0 = X , and Var

(

E0,1
0,0

)

= 0.

Now consider a subproblem j at level i > 0 and its parent problem j′ at level i− 1. By the in-

ductive hypothesis, we have for the parent problem that E
[

E0,1
i−1,j′

]

= X/4i−1 and Var
(

E0,1
i−1,j′

)

≤
X2/16i−1+2X/4i−1. Assign to each edge e ∈ E0,1

i−1,j′ a random variable Ye equal to one if e ∈ E0,1
i,j

and 0 otherwise. By conditioning on the number of edges in the parent problem, we get

E

[

E0,1
i,j

]

= E






E







∑

e∈E0,1

i−1,j′

Ye|E0,1
i−1,j′












=

E

[

E0,1
i−1,j′

]

4
=

X

4i

since each edge in E0,1
i−1,j′ is in E0,1

i,j with probability 1/4. The first claim follows.
Now consider the variance. We have

Var
(

E0,1
i,j

)

= E

[

(E0,1
i,j )

2
]

− E

[

E0,1
i,j

]2

= E

[

E

[

(E0,1
i,j )

2|E0,1
i−1,j′

]]

− E

[

E0,1
i,j

]2

. (2)

The conditional expectation E

[

(E0,1
i,j )

2|E0,1
i−1,j′

]

can be computed as follows. Since we have E0,1
i,j =

∑

e∈E0,1

i−1,j′
Ye, it follows that

(

E0,1
i,j

)2

=
∑

e∈E0,1

i−1,j′

Y 2
e +

∑

e,e′∈E0,1

i−1,j′

e6=e′,|e∩e′|=1

YeYe′ +
∑

e,e′∈E0,1

i−1,j′

e6=e′,e∩e′=∅

YeYe′ .

Let W 0,1
i,j =

∑

e,e′∈E0,1

i−1,j′
,e6=e′,e∩e′=∅ YeYe′ ; note that W 0,1

i,j denotes the number of edge pairs that

do not share any vertex in the j-th subproblem at level i. Two edges sharing a vertex (i.e.,
|e ∩ e′| = 1) are in E0,1

i,j with probability 1/8. Also, there are at most 2(E0,1
i−1,j′ )

2/8 pairs of edges

that share exactly one vertex, since the maximum degree after step 2 is E0,1
i−1,j′/8. Then the

conditional expectation becomes

E

[

(E0,1
i,j )

2|E0,1
i−1,j′

]

=
E0,1

i−1,j′

4
+

(E0,1
i−1,j′ )

2

32
+ E

[

W 0,1
i,j |E

0,1
i−1,j′

]

, (3)
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We then take the expectation of (3):

E

[

E

[

(E0,1
i,j )

2|E0,1
i−1,j′

]]

=

=
E

[

E0,1
i−1,j′

]

4
+

E

[

(E0,1
i−1,j′ )

2
]

32
+ E

[

W 0,1
i,j

]

=
E

[

E0,1
i−1,j′

]

4
+

Var
(

E0,1
i−1,j′

)

+ E

[

(E0,1
i−1,j′ )

]2

32
+ E

[

W 0,1
i,j

]

.

By the inductive hypotheses on expectation and variance at level i− 1 it follows that

E

[

E

[

(E0,1
i,j )

2|E0,1
i−1,j′

]]

≤ X2

16i
+

5X

4i+1
+ E

[

W 0,1
i,j

]

.

The term E

[

W 0,1
i,j

]

can be upper bounded assuming that no two input edges share a vertex in

E0,1
0,0 . This gives an upper bound since a vertex shared by two edges cannot increase W 0,1

i,j . By

induction it follows that E
[

W 0,1
i,j

]

≤ X2/16i: indeed, an edge pair in E0,1
i−1,j′ is also in E0,1

i,j with

probability 1/16. Then we get

E

[

E

[

(E0,1
i,j )

2|E0,1
i−1,j′

]]

≤ 2X2

16i
+

5X

4i+1
.

Finally, by (2), we get that the variance at level i is:

Var
(

E0,1
i,j

)

≤ 2X2

16i
+

5X

4i+1
− X2

16i
≤ X2

16i
+

2X

4i

and the claim follows.

Lemma 5. For any 0 ≤ i ≤ log4 E, 0 ≤ j < 8i and 0 ≤ k < log4 E − i, we have that

Pr

(

Ei,j ≥ 9
E

4i−k

)

≤ 1/16k.

Proof. Since Ei,j ≤ E0,1
i,j + E1,2

i,j +E0,2
i,j , we clearly have Pr

(

Ei,j ≥ β E
4i−k

)

≤ 3Pr
(

E0,1
i,j ≥ β

3
E

4i−k

)

.

Lemma 4 gives E
[

E0,1
i,j

]

≤ E/4i and Var
(

E0,1
i,j

)

≤ 3E2/(16)i. Then, by Chebyshev’s inequality,

we get

Pr

(

E0,1
i,j ≥ β

3

E

4i−k

)

≤ Pr

(

∣

∣

∣E
0,1
i,j − E

[

E0,1
i,j

]∣

∣

∣ ≥ (β/3− 1)E

4i−k

)

≤ 9
Var

(

E0,1
i,j

)

16i−k

(β − 3)2E2
≤ 27

(β − 3)216k
.

By setting β = 9 the lemma follows.

We are now ready to prove the first result of the paper, repeated here for convenience.

Theorem 1. Assume E ≥ M . Then there exists a cache-oblivious randomized algorithm for

triangle enumeration using O
(

E3/2
√
MB

)

I/Os in expectation and O (E) words on disk.

Proof. We first argue that the I/O complexity of subproblems with input size not larger than M
is asymptotically negligible. Consider a subproblem x whose input size is smaller than M , but
its parent y has input size larger than M . Since the data used by x fits in memory, the I/O
complexity for solving x (including subproblems generated in x) is O (M/B + 1). On the other
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hand, in our analysis we assume that the I/O complexity of y is Ω (M/B + 1), and thus the cost
for solving x is asymptotically negligible. Since a problem with input larger than M can have at
most 8 child subproblems, we can ignore subproblems of size smaller than M without affecting
asymptotically the I/O complexity of our algorithm.

We now upper bound the I/O complexity without taking into account the cost of subproblems
at level log4 E which have a slightly different I/O complexity than a subproblem at level i < log4 E
— we will later see how to bound this quantity.

Let Yi,s denote the number of subproblems at level i with input size (E/4s+1, E/4s], for any
0 ≤ i ≤ log4 E and 0 ≤ s < log4(E/M). The cost of a subproblem of size Yi,s is dominated by the
sorting in step 1, and then we get:

Q(E,M,B) = O





log
4
E−1
∑

i=0

log
4
(E/M)
∑

s=0

Yi,ssort(E/4s)





= O





log
4
(E/M)
∑

s=0

log
4
E−1
∑

i=0

Yi,ssort(E/4s)





Since there are at most 2 · 8s subproblems of size no larger than E/4s at levels 0, . . . , s, we get

Q(E,M,B) = O





log
4
(E/M)
∑

s=0



8s +

log
4
E−1
∑

i=s+1

Yi,s



 sort(E/4s)



 .

By Lemma 5, the probability that a subproblem at level i > s has size at least E/4s+1 is

Pr
(

Ei,j ≥ E/4s+1
)

≤ Pr
(

Ei,j ≥ 9E/4s+3
)

≤ 1/16i−s−3 .

The expected number of subproblems of size larger than E/4s+1 at level i > s is 8i 1
16i−s−3 =

O
(

16s/2i
)

, which means that

E [Yi,s] = O
(

16s/2i
)

and E





log
4
E

∑

i=s+1

Yi,j



 = O (8s) .

It follows that the expected value of Q(E,M,B) is

E [Q(E,M,B)] = O





log
4
(E/M)
∑

s=0

2s
E log(E/4s)

B logM





= O
(

E

B logM

∫ log
4
(E/M)+1

0

2x log(E/4x)dx

)

= O
(

E

B logM

2x (ln(E/4x) + 2)

ln2 2

∣

∣

∣

∣

log
4
(E/M)+1

0

)

= O
(

E3/2

√
MB

)

.

We now bound the expected number of I/Os required for subproblems at level i = log4 E. Since
we are using the algorithm by Dementiev [9] for solving base cases, the cost of a subproblem with
input size in the range (E/4s+1, E/4s] is O

(

sort
(

(E/4s)3/2
))

I/Os. This means that the number
Q′(E,M,B) of I/Os required by level log4 E is:

Q′(E,M,B) = O





log
4
(E/M)
∑

s=0

Ylog
4
E,ssort

(

(E/4s)3/2
)



 .
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By applying Lemma 5 as before, we get that

E
[

Ylog
4
E,s

]

= O
(

16s/2log4 E
)

.

Hence the expected value of Q′(E,M,B) is

E [Q′(E,M,B)] = O





log
4
(E/M)
∑

s=0

2s
Elog(E/4s)

B logM





which is O
(

E3/2
√
MB

)

as shown before. The I/O complexity of the cache-oblivious algorithm follows

by summing the expected values of Q(E,M,B) and Q′(E,M,B).
If the input of a subproblem is stored in a new location, the used space on disk is O (E) in

expectation since the expected size decreases geometrically. However, O (E logE) space is required
in the worst case (i.e., when there exists only one partition containing all edges). The claimed
O (E) bound follows by noticing that no new space is required for storing subproblem input: before
each recursive call, edges are sorted so that the subproblem input is stored in consecutive locations
in the input of the parent problem. In this case, just pointers to the initial and final positions are
required for denoting the input.

4 Derandomization

We now pursue a derandomization of the cache-aware algorithm in Section 2 via small-bias prob-
ability spaces. More specifically, we need to find a balanced coloring ξ such that Xξ = O (EM).
The idea of using this method to derandomize a triangle enumeration algorithm was previously
used in [15], though we present a more refined greedy approach that preserves the exponent 3/2
of the algorithm.

For convenience we round up the number of colors c to the nearest power of 2, which can only
decrease E [Xξ] for random ξ. We split Xξ into two terms, Xξ = Xadj

ξ +Xnonadj
ξ , where the two

terms are the contributions in the sum defined in (1) from adjacent and non-adjacent edge pairs,
respectively.

Our algorithm fixes one bit of the coloring at a time, aiming to approach the coloring guarantee
of Lemma 3. Formally we start with the constant coloring ξ0 that assigns color 1 to every vertex.
For i = 1, . . . , log c we find a two-coloring bi−1 : V → {0, 1} such that the coloring ξi(v) =
2ξi−1(v) − bi−1(v) satisfies

4iXnonadj
ξi

c2
+

2iXadj
ξi

c
≤ (1 + α)iEM . (4)

Setting α = 1/ log c we have (1 + α)log c < e so for the final coloring ξ = ξlog c, since c ≥
√

E/M

we get Xξi = Xnonadj
ξi

+Xadj
ξi

< eEM .
It remains to be shown how we select ξi to ensure (4) for i = 0, . . . , log c. For i = 0 we have

Xnonadj
ξ0

< E2/2 and Xadj
ξ0

< E
√
EM/2, and inserting c ≥

√

E/M the claim follows. The function
bi−1 used for constructing ξi for i > 0 will be taken from an almost 4-wise independent sample
space. We use the following known result:

Lemma 6. ([3, Theorem 2].) For any α > 0 there is a set of t = O
(

(log(V )/α)2
)

functions
β1, . . . , βt : V → {0, 1} such that: For every four vertices v1, v2, v3, v4 and each vector x ∈ {0, 1}4
the set {βj | (βj(v1), βj(v2), βj(v3), βj(v4)) = x} has size at most (1 + α)2−4t. The space required
for computing a value of bi is O (log(V/α)) bits.

We now argue that if (4) holds for ξi−1 there exists a function bi−1 from the sample space of
Lemma 6 such that (4) holds for ξi. To see this, consider the function

ξi(v) = 2ξi−1(v) − bi−1(v)

12



where bi−1 is chosen at random from the family of Lemma 6. Then E

[

Xnonadj
ξi

]

≤ Xnonadj
ξi−1

(1+α)/4

because each pair contributing to Xnonadj
ξi−1

has probability at most (1 + α)/4 of colliding under ξi.

Similarly, E
[

Xadj
ξi

]

≤ Xadj
ξi−1

(1 + α)/2. This means that

E

[

4iXnonadj
ξi

c2
+

2iXadj
ξi

c

]

=
4iE

[

Xnonadj
ξi

]

c2
+

2iE
[

Xadj
ξi

]

c
≤

≤ (1 + α)

(

4i−1Xnonadj
ξi−1

c2
+

2i−1Xadj
ξi−1

c

)

≤ (1 + α)iEM.

So we conclude that there must exist a choice of bi−1 for which (4) holds.
Finally, we need to argue that the right function bi−1 can be chosen efficiently. To do this we

maintain the list of edges sorted according to color class, such that all edges in

Ei−1
τ1,τ2 = {{v1, v2} ∈ El|v1 < v2, ξi−1(v1) = τ1, ξi−1(v2) = τ2}

are stored consecutively. Since Xξi =
∑

τ1,τ2

(Ei
τ1,τ2
2

)

, in a single scan of the edge list we can
compute the value of (4) for every choice of bi−1, using the assumption that M is large enough to
hold a constant number of variables for each function in internal memory. In particular, what is
needed is keeping track of the number of edges of each color class Ei−1

τ1,τ2 that go into each of the
four possible new color classes for those edges. We then select the function bi−1 that minimizes (4),
and split the edge set into new color classes in one additional scan. This concludes the description
of our deterministic cache-aware algorithm for triangle enumeration:

Theorem 2. Assume E ≥ M ≥ Eǫ, for an arbitrary constant ǫ > 0. Then there exists a

deterministic, cache-aware algorithm for triangle enumeration that uses O
(

E3/2
√
MB

)

I/Os and O (E)

words on disk in the worst case.

Proof. If M > k log2 V log2(E/M) for a sufficiently large constant k, we spend O (E/B) I/Os
for finding the best bi, and then O (sort(E)) I/Os to organized edges after fixing the coloring
ξi, for each i = 1, . . . log c. Thus the final balance coloring is computed in O (E log(E/M)/B)
I/Os as soon as M ≥ Eǫ. By mimicking the argument of Theorem 4, we get the claim since
Xξ ≤ eEM .

5 Lower bound

In this section, we lower bound the I/O complexity of any algorithm for triangle enumeration.
We restrict our attention to algorithms where each edge requires at least one memory word. That
is, at any point in time there can be at most M edges in memory, and an I/O can move at
most B edges to or from memory. This assumption is similar to the indivisibility assumption [4]
which is usually required for deriving lower bounds on the I/O complexity. The optimality of
our algorithms follows from the following theorem since a clique of

√
E vertices has t = Ω

(

E3/2
)

triangles.

Theorem 3. For any input graph, an algorithm that enumerates t distinct triangles requires, even

in the best case, Ω
(

t√
MB

+ t2/3

B

)

I/Os .

Proof. In order to emit a triangle, information on the three nodes (or edges) must reside in internal
memory at some point in time. Since there are at most M edges in internal memory, it follows
from e.g. [1, Section 4.1] that no more than O

(

M3/2
)

distinct triangles can be emitted without
doing any I/O.

Let A be any (possibly non-deterministic) algorithm for triangle enumeration. For the sake
of the lower bound, consider the best execution A′ of algorithm A for a given input graph on a
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internal memory of size M and block B. In other words, we consider the execution getting the
smallest I/O complexity QA′(E,M,B) for a given input: for instance, for a randomized algorithm
we take the execution with the most favorable choice of the random values. Since, A′ is an
execution, all decisions that can be made by algorithm A have already been taken.

We simulate the execution A′ on an internal memory of size 2M in such a way that the
computation advances in epochs, and blocks are read (resp., written) on disk only at the beginning
(resp., end) of an epoch. The simulation works as follows. We consider the internal memory to be
divided into two non-overlapping parts M0 and M1 of size M , where M0 will be used to simulate
the memory of size M used by execution A′, and M1 will be used for anticipating/delaying block
reads/writes. Specifically, each epoch simulates M/B consecutive I/Os of A′: the input blocks are
prefetched and stored in M1 at the beginning of the epoch; the output blocks are temporary stored
in M1 and then written on the external memory at the end of the epoch; the I/Os performed by
A′ are then simulated by moving data between M0 and M1. By construction, we have that the
I/O complexity of the simulation is QA′(E,M,B) and the I/O complexity of each epoch is M/B
(except the last epoch, which may use fewer I/Os). In an epoch the processor touches at most
2M internal memory words and thus O

(

M3/2
)

distinct triangles can be emitted. Then we have

QA′(E,M,B) ≥
⌊

t

O
(

M3/2
)

⌋

M

B
.

Since Ω
(

t2/3
)

edges are required for enumerating t distinct triangles, we also have QA′(E,M,B) =

Ω
(

t2/3/B
)

and the theorem follows.

6 Conclusion

In this paper we have investigated the I/O complexity of triangle enumeration in external memory.

In particular, we have described an optimal cache-oblivious algorithm requiringO
(

E3/2/(
√
MB)

)

expected I/Os, which improves previous bounds by a factor min(
√

E/M,
√
M).

Recently, it has been shown [21] that the cache-aware randomized algorithm described in Sec-
tion 2 can be extended to the enumeration of a given subgraph with k vertices in the Alon class [1]
(which includes k-cliques) with O

(

Ek/2/(Mk/2−1B)
)

expected I/Os if k ≥ 3 is a constant. The

algorithm decomposes the problem into O
(

(E/M)k/2
)

subproblems of expected size O (M) using
the random coloring technique in Section 2; each subproblem is then solved using an extension of
the algorithm in [14] that enumerates all cliques of k vertices in O

(

Ek−1/(Mk−2B)
)

I/Os.
An interesting open problem is to derive a triangle enumeration algorithm whose I/O com-

plexity is sensitive to the number of triangles in the input graph. Another direction is to extend
to more general types of database queries, and consider for example cases of cyclic joins where
the sizes of relations differ. Recently Pagh and Stöckel [19] made progress on I/O-efficient join
algorithms that make duplicate-eliminating projections. Extending their approach to other types
of database queries is also an interesting direction.
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