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Expressive Languages forQuerying the Semantic Web

MARCELO ARENAS, PUC Chile, Chile

GEORG GOTTLOB, University of Oxford, UK

ANDREAS PIERIS, University of Edinburgh, UK

The problem of querying RDF data is a central issue for the development of the Semantic Web. The query

language SPARQL has become the standard language for querying RDF since its W3C standardization in 2008.

However, the 2008 version of this language missed some important functionalities: reasoning capabilities to

deal with RDFS and OWL vocabularies, navigational capabilities to exploit the graph structure of RDF data,

and a general form of recursion much needed to express some natural queries. To overcome these limitations,

a new version of SPARQL, called SPARQL 1.1, was released in 2013, which includes entailment regimes for

RDFS and OWL vocabularies, and a mechanism to express navigation patterns through regular expressions.

Unfortunately, there is a number of useful navigation patterns that cannot be expressed in SPARQL 1.1, and the

language lacks a general mechanism to express recursive queries. To the best of our knowledge, no efficient

RDF query language that combines the above functionalities is known. It is the aim of this work to fill this gap.

To this end, we focus on a core fragment of the OWL 2 QL profile of OWL 2 and show that every SPARQL

query enriched with the above features can be naturally translated into a query expressed in a language that

is based on an extension of Datalog, which allows for value invention and stratified negation. However, the

query evaluation problem for this language is highly intractable, which is not surprising since it is expressive

enough to encode some inherently hard queries. We identify a natural fragment of it, and we show it to be

tractable and powerful enough to define SPARQL queries enhanced with the desired functionalities.

CCS Concepts: • Information systems→ Structured Query Language;

Additional Key Words and Phrases: Semantic Web, RDF, SPARQL, Query Answering, Datalog-based Languages
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1 INTRODUCTION
The Resource Description Framework (RDF) is the W3C recommendation data model to represent

information about World Wide Web resources. An atomic piece of data in RDF is a Uniform Resource

Identifier (URI). In the RDF data model, URIs are organized as RDF graphs, that is, labeled directed

graphs where node labels and edge labels are URIs. As with any data model designed to model

information, the natural problem of querying RDF data has been widely studied. Since its release

in 1998, several designs and implementations of RDF query languages have been proposed [18]. In

2004, a first public working draft of a language, called SPARQL, was released by the W3C, which is
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39:2 Marcelo Arenas, Georg Gottlob, and Andreas Pieris

in fact a graph-matching query language. Since then, SPARQL has been adopted as the standard

language for querying the Semantic Web, and in 2008 it became a W3C recommendation.
1

One of the distinctive features of Semantic Web data is the existence of vocabularies with

predefined semantics: the RDF Schema (RDFS)
2
and theWeb Ontology Language (OWL)

3
, which

can be used to derive logical conclusions from RDF graphs. Moreover, it has been recognized that

navigational capabilities are of fundamental importance for data models with an explicit graph

structure such as RDF [2, 6, 8, 17, 32], and, more generally, it is well-accepted that a general form of

recursion is a central feature for a graph query language [8, 26, 36]. Therefore, it would be desirable

to have an RDF query language equipped with reasoning capabilities to deal with the RDFS and

OWL vocabularies, as well as a general mechanism to express recursive queries. Unfortunately, the

2008 version of SPARQL missed the above crucial functionalities. To overcome these limitations, a

new version, called SPARQL 1.1 [22], was released in 2013, which includes entailment regimes for

RDFS and OWL vocabularies, and a mechanism to express navigation patterns through regular

expressions. However, it has already been observed that there exist some very natural queries that

require a more general form of recursion and cannot be expressed in SPARQL 1.1 [26, 36].

1.1 Research Challenge
To the best of our knowledge, before the conference papers [5, 20], which the present paper is

based on, no RDF query language that combines all the above functionalities was known. This

work aims at bridging the gap between RDF query languages and the desired functionalities, that

is, reasoning capabilities and a general mechanism to express recursive queries. In particular, our

ultimate goal is to propose an expressive query language that supports these features, and which

can also be evaluated efficiently. Interestingly, Datalog with stratified negation [1, 14] has been

shown to be expressive enough to represent every SPARQL query [2, 3, 6, 33, 37]. Thus, it has been

used as a natural platform for SPARQL extensions with richer navigation capabilities and recursion

mechanisms [26, 36]. Moreover, some extensions of Datalog with existential quantification in

rule-heads are appropriate to encode some inferencing mechanisms in OWL [10].

From the above discussion, we can conclude that Datalog and some of its extensions (in particular,

the members of the Datalog
±
family of knowledge representation and query languages [11]) appear

to be suitable for our purposes. However, for the language obtained by extending Datalog with

existential quantification, the query evaluation problem is undecidable (this is implicit in [9]). In

fact, the undecidability holds even in the case of data complexity, i.e., when the input query is fixed,

and only the extensional database (or the RDF graph) is considered as part of the input [10]. It is

thus a very important and challenging task to single out an expressive RDF query language that

(1) is based on Datalog, which enables a modular rule-based style of writing queries;

(2) is expressive enough for being useful in real Semantic Web applications, and in particular to

support reasoning and navigational capabilities, as well as a general form of recursion;

(3) ensures the decidability of the query evaluation problem; and

(4) has good complexity properties in the case the input query is fixed — this is of fundamental

importance, as a low data complexity is considered to be a key condition for a query language

to be useful in practice.

1
http://www.w3.org/TR/rdf-sparql-query

2
http://www.w3.org/TR/rdf-schema

3
http://www.w3.org/TR/owl-features/
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1.2 TripleQuery Language
A first attempt to design a Datalog-based RDF query language that fulfills the above desiderata,

focussing on the profile OWL 2 QL of OWL 2, was made in [5]. The proposed language, called

TriQ-Lite,4 is based on Datalog
∃,¬s,⊥

, that is, Datalog extended with existential quantification in

rule-heads, stratified negation, and negative constraints expressed by using the symbol ⊥ (false)

in rule-heads. Unfortunately, TriQ-Lite suffers from a serious drawback, which may revoke its

advantage as an expressive RDF query language, namely it is not a plain language. We call a

rule-based query language plain if it allows the user to express a query as a single program in

a simple non-composite syntax. An example of a plain query language is Datalog itself, where

the user simply needs to define a single Datalog program that captures the intended query. The

property of plainness provides conceptual simplicity, which is considered to be a key condition

for a query language to be useful in practice. Although TriQ-Lite is based on an extension of

Datalog, the way its syntax and semantics are defined significantly deviates from the standard way

of defining Datalog-like languages, and thus does not inherit the plainness of Datalog. TriQ-Lite
is a composite language, where the user is forced to split the query program in several programs

Π1, . . . ,Πn so that each Πi can be expressed by the fragment of Datalog
∃,¬s,⊥

underlying TriQ-Lite,
while each pair (Πi ,Πi+1) is bridged via a set Qi of conjunctive queries. In view of the conceptual

weakness of TriQ-Lite discussed above, the new version of it, dubbed TriQ-Lite 1.0, was introduced
in [4]. TriQ-Lite 1.0, which is the main focus of this journal paper, is a plain language based on

Datalog
∃,¬s,⊥

that fulfills all the crucial desiderata discussed above.

1.3 Summary of Contributions
Our contributions can be summarized as follows:

(1) We introduce in Section 4 the language TriQ 1.0, which is a plain query language based on

Datalog
∃,¬s,⊥

. We show that this language is expressive enough for encoding some useful but

costly queries; e.g., whether a graph contains a clique of size k > 0. We then proceed to show

that the query evaluation problem for TriQ 1.0 is ExpTime-complete in data complexity.

(2) We show that TriQ 1.0 is expressive enough to deal with SPARQL queries over a relevant

fragment of the OWL vocabulary. More precisely, we focus in Section 5 on a profile of OWL,

called OWL 2 QL, that is designed to be used in applications where query answering is the

most important reasoning task. In particular, we consider a fragment of OWL 2 QL that

contains its core functionalities, called OWL 2 QL core. This fragment corresponds to the

well-established description logic DL-LiteR [13], which is essentially the logical underpinning

of OWL 2 QL. Then we prove that every SPARQL query under the entailment regime for

OWL 2 QL core, which is inherited from the entailment regime for OWL 2 QL [19, 25], can

be translated into a TriQ 1.0 query. Moreover, we show in Section 5 that the use of TriQ 1.0
allows us to formulate SPARQL queries in a simpler way, as a more natural entailment regime

described in that section can be easily defined by using this query language.

(3) Given the high data complexity of the query evaluation problem for TriQ 1.0, we investigate
in Section 6 whether the results proved in Section 5 can also be obtained for a tractable

sublanguage of this query language. More precisely, we identify a natural restriction on

TriQ 1.0 queries that gives rise to a language, called TriQ-Lite 1.0, with the desired properties.
In particular, we prove that the query evaluation problem for this language is PTime-complete

in data complexity.We also show in Section 6 that TriQ-Lite 1.0 is a (nearly) maximal tractable

4
This language is the lite version of a highly expressive language called TriQ , which stands for triple query language, also

introduced in [5].

ACM Trans. Datab. Syst., Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:4 Marcelo Arenas, Georg Gottlob, and Andreas Pieris

sublanguage of TriQ 1.0 in the sense that the mildest relaxation of the condition posed on

TriQ 1.0 (in order to obtain TriQ-Lite 1.0) that one can think of, leads to a language for which

the query evaluation problem is ExpTime-hard in data complexity.

(4) A key advantage of TriQ-Lite 1.0 is the fact that, whenever the user wants to pose a new

query over an RDF graph, (s)he does not need to modify the part of the query program

that encodes the OWL 2 QL ontology. In Section 7, we show that this favorable behavior

cannot be achieved if we consider Datalog
¬s,⊥

. In particular, we introduce a novel notion of

expressiveness that allows us to collect the queries that can be answered via a fixed program,

and we show that TriQ-Lite 1.0 is more expressive than Datalog
¬s,⊥

under this notion.

The organization of the paper is described in the summary of our contributions. Note that in

Section 2 we give a series of examples that motivate our query languages, the notation used in the

paper is introduced in Section 3, and some concluding remarks are given in Section 8.

2 MOTIVATING SCENARIOS AND QUERIES
The goal of this section is to show some of the difficulties and limitations encountered when

querying RDF data with SPARQL, which motivated us to design an RDF query language based on

Datalog and some of its extensions. To this end, assume that G1 is an RDF graph consisting of:

(dbUllman, is_author_of, “The Complete Book"),

(dbUllman, name, “Jeffrey Ullman").

The first triple indicates that the object with URI dbUllman is one of the authors of the book “The

Complete Book", while the second triple indicates that the name of dbUllman is “Jeffrey Ullman".

To retrieve the list of authors occurring in G1 we can use the following SPARQL query:

SELECT ?X

WHERE {

?Y is_author_of ?Z . (1)

?Y name ?X }

Note that variables start with the symbol ? in this query.Moreover, the expression ?Y is_author_of ?Z
represents a triple that is used to retrieve the pairs (a,b) of elements fromG1, which are stored in

the variables ?Y and ?Z , such that a is an author of b. In the same way, the expression ?Y name ?X
also represents a triple that is used to retrieve the pairs (a, c) of elements fromG1, which are stored

in the variables ?Y and ?X , such that c is the name of a. Finally, the symbol . (dot) is used as a

separator of the triples, whose results have to be joined when computing the answer to the query,

and SELECT ?X indicates that we are interested in the values stored in the variable ?X .

In the query language proposed in this paper, we assume that a predicate triple(·, ·, ·) is used to

store the triples of an RDF graph. Thus, query (1) can be formulated in our language as follows:

triple(?Y , is_author_of, ?Z ), triple(?Y , name, ?X ) → query(?X ). (2)

The possibility of returning an RDF graph as the answer to a SPARQL query is considered as a

fundamental feature [22, 34]. For this reason, one can use the CONSTRUCT operator in order to

produce an RDF graph as the output of a query. For example, the following query constructs an

ACM Trans. Datab. Syst., Vol. 9, No. 4, Article 39. Publication date: March 2010.
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RDF graph consisting of triples (a, name_author,b), where a is the name of an author of b:

CONSTRUCT { ?X name_author ?Z }

WHERE {

?Y is_author_of ?Z .

?Y name ?X }

The expression ?X name_author ?Z represents a triple specifying which RDF triples are to be

included in the output. Hence, the result of evaluating this query over G1 is the RDF graph

(“Jeffrey Ullman”, name_author, “The Complete Book”).

In our language, the user is not forced to learn about a new operator in order to produce an RDF

graph as output, (s)he can simply replace in (2) the predicate query(·) by the predicate triple(·, ·, ·)
in order to produce an RDF graph:

triple(?Y , is_author_of, ?Z ), triple(?Y , name, ?X ) → triple(?X , name_author, ?Z ). (3)

Note that the CONSTRUCT operator in SPARQL is not recursive; to evaluate a query containing

this operator, first the body of the query has to be evaluated to produce assignments for the

variables, and then these assignments are used in the template of the CONSTRUCT operator to

produce an RDF graph. In the same way, the rule (3) may appear recursive but a resulting tuple

triple(a, name_author,b) of this rule cannot be used in the body of (3) to produce new tuples, given

that triple(a, name_author,b) cannot be matched against any of the tuples in the body of (3).

The use of the operator CONSTRUCT in SPARQL allows to have compositionality; the output of

a query can be used as the input of another query. This is a fundamental property, which plays a

crucial role when adding a recursion mechanism to SPARQL [35]. Notice that our language inherits

the compositionality of Datalog, so that a recursion mechanism can be easily introduced without

needing additional syntactic constructs.

Assume now that G2 is an RDF graph extending G1 with the following triples:

(dbAho, is_coauthor_of, dbUllman),

(dbAho, name, “Alfred Aho").

The query language SPARQL allows the use of blank nodes in the CONSTRUCT operator to include

some anonymous resources in an RDF graph. For example, a blank node is used in the following

query to indicate that if a is a co-author of b, then there must be some publication c such that a
and b are both authors of c .

CONSTRUCT { ?X is_author_of _:B . ?Y is_author_of _:B }

WHERE { ?X is_coauthor_of ?Y } (4)

In the above query, _:B is a blank node, while ?X is_author_of _:B and ?Y is_author_of _:B specify

the triples to be constructed for every posible match of the variables ?X and ?Y . The semantics

of SPARQL imposes the restriction that a fresh blank node has to be used for each match of the

variables ?X and ?Y . Although this constraint is natural in this case, this is yet another feature

of SPARQL that the user needs to remember when formulating a query. In our case, we do not

need to add extra notation for the creation of anonymous resources, as our query language allows

existential quantification in the head of the rules:

triple(?X , is_coauthor_of, ?Y ) →

∃?Z triple(?X , is_author_of, ?Z ), triple(?Y , is_author_of, ?Z ).

ACM Trans. Datab. Syst., Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:6 Marcelo Arenas, Georg Gottlob, and Andreas Pieris

Moreover, our query language can be used to lift the restriction that blank nodes are used only

locally. For example, our query language can be used to anonymize the subjects of the triples in an

RDF graph, by replacing every URI in the subject position of a triple by a blank node:

triple(?X , ?Y , ?Z ) → subj(?X )

subj(?X ) → ∃?Y bn(?X , ?Y )

triple(?X , ?Y , ?Z ), bn(?X , ?U ) → output(?U , ?Y , ?Z ).

The first rule is used to store in the predicate subj(·) the URIs mentioned in the subject of the

triples of an RDF graph. The second rule creates a blank node for every URI in the predicate subj(·),

which is stored in the predicate bn(·, ·). Finally, the third rule replaces in the predicate triple(·, ·, ·)
every URI in the subject position by its associated blank node, producing an RDF graph in the

predicate output(·, ·, ·). The ability to anonymize the subjects of an RDF graph is a useful feature

as it can allow publishing data without leaking sensitive information. It is important to note that

such a query cannot be expressed by using the local semantics of blank nodes in the CONSTRUCT

operator of SPARQL, as the same blank node identifying a specific resource in an RDF graph has to

be used every time this resource is considered in the result of the query.

Query (4) encodes some prior knowledge about the co-authorship relation. This type of knowl-

edge can be explicitly encoded in an RDF graph by using the RDFS and OWL vocabularies. As an

example of this, assume that G3 is an RDF graph extending G2 with the following triples:

(r1, rdf:type, owl:Restriction), (r2, rdf:type, owl:Restriction),

(r1, owl:onProperty, is_coauthor_of), (r2, owl:onProperty, is_author_of), (5)

(r1, owl:someValuesFrom, owl:Thing), (r2, owl:someValuesFrom, owl:Thing),

(r1, rdfs:subClassOf, r2).

In G3, the URIs with prefix rdfs: are part of the RDFS vocabulary, while the URIs with prefix owl:

are part of the OWL vocabulary. The first three triples of G3 define r1 as the class of URIs a for

which there exists a URI b such that (a, is_coauthor_of,b) holds, while the following three triples

of this graph define r2 as the class of URIs a for which there exists a URI b such that the triple

(a, is_author_of,b) holds. Finally, the last triple of G3 indicates that r1 is a subclass of r2.

The above set of triples states that for every two elements a and b such that (a, is_coauthor_of,b)
holds, it must be the case that a is an author of some publication. Thus, if we want to retrieve the

list of authors mentioned in G3, then we expect to find dbAho in this list. However, the answer to

the SPARQL query (1) overG3 does not include this URI, and we are forced to encode the semantics

of the RDFS and OWL vocabularies in the query. In fact, even if we try to obtain the right answer

by using SPARQL 1.1 under the entailment regimes for these vocabularies, we are forced by the

restrictions of the language [19] to use a query of the form:

SELECT ?X

WHERE {

?Y name ?X .

?Y rdf:type ?Z .

?Z rdf:type owl:Restriction .

?Z owl:onProperty is_author_of .

?Z owl:someValuesFrom owl:Thing }

This query is obtained from (1) by replacing the expression ?Y is_author_of ?Z by the last four

triples above, which explicitly state that we are looking for the objects that are authors of some

ACM Trans. Datab. Syst., Vol. 9, No. 4, Article 39. Publication date: March 2010.
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publication (that is, the objects of type r2). As the reader may have noticed, the resulting query is

complicated. In our query language such complications can be avoided by using rules encoding

the semantics of the RDFS and OWL vocabularies. For example, the following rule specifies the

semantics of the owl:onProperty primitive of OWL:

triple(?X , rdf:type, ?Y ),

triple(?Y , rdf:type, owl:Restriction),

triple(?Y , owl:onProperty, ?Z ),

triple(?Y , owl:someValuesFrom, ?U ) → ∃?W triple(?X , ?Z , ?W ).

Notice that a fixed set of rules is used to encode the semantics of the RDFS and OWL vocabularies.

If such rules are available as a library, then the user just have to include them in order to answer

queries, without needing to have prior knowledge about the semantics and inference rules for the

respective vocabulary. For example, if these rules have been included, then to retrieve the list of

authors mentioned in G3 we can use query (1) again, as initially expected.

As a last example, consider the fact that it is very common in the Web to have several URIs for

the same object. For example, the following are URIs of Jeffrey Ullman in DBpedia (the RDF version

of Wikipedia) and the semantic knowledge base YAGO:

http://dbpedia.org/resource/Jeffrey_Ullman,

http://yago-knowledge.org/resource/Jeffrey_Ullman,

respectively. To alleviate the issue of having pieces of information about the same object that use

distinct URIs for it, the OWL vocabulary includes the primitive owl:sameAs to indicate that two

URIs represent the same element. For example, this primitive is used in the following RDF graph

G4 to indicate that dbUllman and yagoUllman are URIs for the same object:

(dbUllman, is_author_of, “The Complete Book"),

(dbUllman, owl:sameAs, yagoUllman),

(yagoUllman, name, “Jeffrey Ullman").

Assume now that we want to retrieve the list of authors mentioned inG4. If we try to use again the

SPARQL query (1), then we obtain the empty answer as the semantics of owl:sameAs is not taken

into consideration. To solve this problem, one has to use the following query:

SELECT ?X

WHERE {

{ ?Y is_author_of ?Z .

?Y name ?X }

UNION (6)

{ ?Y is_author_of ?Z .

?Y owl:sameAs ?W .

?W name ?X }

}

In this query, the operator UNION is used to obtain the union of the results of two queries, and the

query occurring after this operator is used to encode the semantics of the owl:sameAs primitive.

Therefore, as in the previous example, the user is forced to encode the semantics of the OWL

vocabulary in the SPARQL query. Moreover, as the reader may have already noticed, the situation

ACM Trans. Datab. Syst., Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:8 Marcelo Arenas, Georg Gottlob, and Andreas Pieris

gets worse if we combine the triples in the graphs G3 and G4. Fortunately, all these problems can

be easily solved in our framework by just incorporating a fixed set of rules encoding the semantics

of the primitive owl:sameAs, which includes rules like the following:

triple(?X , owl:sameAs, ?Y ), triple(?Y , owl:sameAs, ?Z ) → triple(?X , owl:sameAs, ?Z )

triple(?X1, owl:sameAs, ?X2), triple(?Y1, owl:sameAs, ?Y2),

triple(?X1, ?U , ?Y1) → triple(?X2, ?U , ?Y2).

If this fixed set of rules has been included, then to retrieve the list of authors mentioned inG4 we

can just use query (1) again.

As a final example, consider the following scenario from [26]:

Oxford London Madrid Valladolid

A311

TheAirline

BA201

BritishAirways

R502

Renfe

partOf partOf partOf

transportService

partOf
partOf

partOf

In the above RDF graph, we have some transport services between cities. For example, the

triples (TheAirline, partOf, transportService), (A311, partOf,TheAirline), (Oxford,A311, London)
indicate that TheAirline is a transport service, A311 is a specific service provided by TheAirline,

and A311 goes from Oxford to London, respectively. In this case, we would like to pose a query

retrieving the pairs a, b of cities such that there is a way to travel from a to b. As shown in [26, 36],

such a query cannot be expressed with the navigation mechanism of SPARQL 1.1, as it requires

navigating simultaneously in two different directions: the path of transport services from a to b can

be of arbitrary length, and the paths necessary to check that we are connecting cities by transport

services could also be of arbitrary length. For instance, in the RDF graph depicted in the figure, to

check whether we can go from Oxford to Valladolid we need to follow a path of length three, and

to check that A311 is a transport service we need to follow a path of length two to reach the node

transportService. Notice that such paths could be of arbitrary length, as it could be necessary to

use more than three transport services to go from Oxford to Valladolid, and the path from A311 to

transportService could include some additional triples such that (TheAirline, partOf, busService)
to indicate that TheAirline is a bus service, and likewise for BA201 and R502. On the other hand,

the general recursion mechanism of the query language proposed in this paper can be easily used

to expressed this query. More specifically, we first use the following rules to collect all the transport

services in an RDF graph:

triple(?X , partOf, transportService) → ts(?X ),

triple(?X , partOf, ?Y ), ts(?Y ) → ts(?X ).
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Then, the following rules collect all the pairs of connected cities:

ts(?T ), triple(?X , ?T , ?Y ) → query(?X , ?Y ),

ts(?T ), triple(?X , ?T , ?Z ), query(?Z , ?Y ) → query(?X , ?Y ).

3 DEFINITIONS AND BACKGROUND
Assume there are pairwise disjoint infinite countable sets U, B, V. The elements of U are called URIs,

the elements of B are called blank nodes, and the elements of V are called variables and are assumed

to start with the symbol ?. The sets U and B are used when defining both RDF graphs and relational

databases, and we also refer to them as constants and (labeled) nulls, respectively. Henceforth, for

brevity, given two integers n,m such that n ≥ m, we write [m,n] for the set {m,m + 1, . . . ,n}.

3.1 RDF and theQuery Language SPARQL
A triple (s,p,o) ∈ U×U×U is called an RDF triple. In this tuple, s is the subject, p is the predicate, and

o is the object. An RDF graph is a finite set of RDF triples.
5
SPARQL is essentially a graph-matching

query language. Roughly speaking, a SPARQL query is a complex RDF graph pattern expression that

may include RDF triples with variables, conjunctions, disjunctions, optional parts, and constraints

over the values of the variables. The evaluation of a SPARQL query P against an RDF graph G is

done by matching P againstG in order to obtain a set of bindings for the variables in P . The formal

syntax and semantics of SPARQL follow.

Syntax of SPARQL Graph Patterns. We adopt the algebraic formalization of SPARQL proposed in

[31], using binary operators AND , UNION , OPT , and FILTER . We start by defining the notion

of SPARQL built-in condition, which is used in filter expressions. Formally,

(1) If ?X , ?Y ∈ V and c ∈ U, then ?X = c , ?X = ?Y and bound(?X ) are (atomic) built in-conditions.

(2) If R1 and R2 are built-in conditions, then (¬R1), (R1 ∨R2) and (R1 ∧R2) are built-in conditions.

Then the set of (SPARQL) graph patterns is defined recursively as follows:

(1) A set {t1, . . . , tn}, where every ti ∈ (U ∪ B ∪ V) × (U ∪ B ∪ V) × (U ∪ B ∪ V) (1 ≤ i ≤ n), is a
graph pattern (called a basic graph pattern).

(2) If P1 and P2 are graph patterns, then (P1 AND P2), (P1 UNION P2), (P1 OPT P2) are graph

patterns.

(3) If P is a graph pattern and R is a SPARQL built-in condition, then (P FILTER R) is a graph
pattern.

(4) If P is a graph pattern andW is a finite set of variables, then (SELECT W P) is a graph pattern.

From now on, given a graph pattern P , we define var(P) as the set of variables occurring in P , and
likewise for var(R) for a built-in condition R. Moreover, we assume that for every graph pattern

(P FILTER R), it holds that var(R) ⊆ var(P). Finally, we usually omit curly brackets in singleton

basic graph patterns, that is, we replace {t} by t, where t ∈ (U∪B∪V) × (U∪B∪V) × (U∪B∪V).

Semantics of SPARQL Graph Patterns. To define the semantics of SPARQL, we need to introduce

some extra terminology. A mapping µ is a partial function µ : V → U. Abusing notation, for a basic
graph pattern P = {t1, . . . , tn}, we denote by µ(P) the basic graph pattern obtained by replacing

the variables occurring in P according to µ. The domain of µ, denoted by dom(µ), is the subset of
V where µ is defined. Two mappings µ1 and µ2 are compatible, denoted by µ1 ∼ µ2, when for all

?X ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(?X ) = µ2(?X ), i.e. when µ1 ∪ µ2 is also a mapping.

5
RDF triples can also include literals and blank nodes. The former represent actual values, such as integers, real number

and dates, while the latter represent anonymous objects. Given the way these elements are treated in SPARQL [24], we do

not include them in RDF graphs as our results can be established even if these elements are explicitly considered.
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Intuitively, µ1 and µ2 are compatible if µ1 can be extended with µ2 to obtain a newmapping, and vice

versa. We use the symbol µ∅ to represent the mapping with empty domain (which is compatible

with any other mapping). Moreover, given a mapping µ and a set of variablesW , the restriction of µ
toW , denoted by µ |W , is a mapping such that dom(µ |W ) = (dom(µ) ∩W ) and µ |W (?X ) = µ(?X ) for

every ?X ∈ (dom(µ) ∩W ). Finally, given a function h : B → U, we denote by h(P) the basic graph
pattern obtained from P by replacing the blanks nodes occurring in P according to h.

To define the semantics of graph patterns, we first need to introduce the notion of satisfaction of

a built-in condition by a mapping, and then we need to introduce some operators for mappings.

More precisely, given a mapping µ and a built-in condition R, we say that µ satisfies R, denoted by

µ |= R, if one of the following holds:

(1) R is bound(?X ) and ?X ∈ dom(µ).
(2) R is ?X = c , ?X ∈ dom(µ) and µ(?X ) = c .
(3) R is ?X = ?Y , ?X , ?Y ∈ dom(µ) and µ(?X ) = µ(?Y )
(4) R is (¬R1), R1 is a built-in condition, and it is not the case that µ |= R1.

(5) R is (R1 ∨ R2), R1 and R2 are built-in conditions, and µ |= R1 or µ |= R2.

(6) R is (R1 ∧ R2), R1 and R2 are built-in conditions, and µ |= R1 and µ |= R2.

Moreover, given sets Ω1 and Ω2 of mappings, the join of, the union of, the difference between and

the left outer join between Ω1 and Ω2 are defined as follows:

Ω1 Z Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2},

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 r Ω2 = {µ ∈ Ω1 | ∀µ ′ ∈ Ω2 : µ � µ ′},

Ω1 Ω2 = (Ω1 Z Ω2) ∪ (Ω1 r Ω2).

We are now ready to define the semantics of graph patterns as a function J·KG , which takes a

pattern expression and returns a set of mappings. The evaluation of a graph pattern P over an RDF

graph G, denoted by JPKG , is recursively defined as follows:

(1) If P is a basic graph pattern, then JPKG = {µ | dom(µ) = var(P) and there exists h : B →

U such that µ(h(P)) ⊆ G}.

(2) If P is (P1 AND P2), then JPKG = JP1KG Z JP2KG .
(3) If P is (P1 UNION P2), then JPKG = JP1KG ∪ JP2KG .
(4) If P is (P1 OPT P2), then JPKG = JP1KG JP2KG .
(5) if P is (P1 FILTER R), then JPKG = {µ | µ ∈ JP1KG and µ |= R}.
(6) If P if (SELECT W P1), then JPKG = {µ |W | µ ∈ JP1KG }.

3.2 Relational Databases and Datalog∃,¬s,⊥ Queries
A term t is a constant (t ∈ U), labeled null (t ∈ B), or variable (t ∈ V). An atom has the form

p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn are terms. A position p[i] identifies the i-th
attribute of a predicate p. We denote the arity of p by arity(p). For an atom a, we denote by dom(a)
and var(a) the sets of its terms and the set of its variables, respectively; these notations extend to

sets of atoms. We refer to the predicate of an atom a by pred(a). An instance I is a (possibly infinite)
set of atoms p(t), where t is a tuple of constants and labeled nulls. A database D is a finite instance

where only constants occur; we refer to the constants in D as dom(D).
One of the most prominent languages for querying relational data is Datalog, which actually

adds recursion to the relational algebra. The query languages that we are going to propose in this

work are based on an extension of Datalog, and in particular on Datalog
∃,¬s,⊥

, that is, the extension
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of Datalog with existentially quantified variables (∃), stratified negation (¬s), and the truth constant

false (⊥). The formal syntax and semantics of Datalog
∃,¬s,⊥

follow.

Syntax of Datalog∃,¬s,⊥. We start by introducing the syntax of Datalog
∃,¬

, that is, the extension of

Datalog with existential quantification in the head, and negation in the body. A Datalog
∃,¬

rule ρ
is an expression of the form

6

a
1
, . . . ,an ,¬b1

, . . . ,¬bm → ∃?Y1 . . . ∃?Yk c,

where:

(1) n ≥ 1 andm,k ≥ 0;

(2) every ai (1 ≤ i ≤ n) and bi (1 ≤ i ≤ m) is an atom with terms from (U ∪ V);
(3) var({b

1
, . . . ,bm}) ⊆ var({a

1
, . . . ,an});

(4) {?Y1, . . . , ?Yk } ∩ var({a
1
, . . . ,an , b1

, . . . ,bm}) = ∅; and

(5) c is an atom with terms from (U ∪ {?Y1, . . . , ?Yk } ∪ var({a
1
, . . . ,an})).

The set {a
1
, . . . , an} is denoted by body

+(ρ), while {b
1
, . . ., bm} is denoted by body

−(ρ). The body
of ρ, denoted by body(ρ), is defined as (body+(ρ) ∪ body

−(ρ)). The atom c is the head of ρ, denoted
by head(ρ). A Datalog

∃,¬
program Π is a finite set of Datalog

∃,¬
rules. Let sch(X ), where X is either

a program or a set of atoms, be the set of predicates occurring in X . A stratification of Π is a

function µ : sch(Π) → [0, ℓ] such that, for each ρ ∈ Π with p = pred(head(ρ)): (1) µ(p) ≥ µ(p ′),
for each p ′ ∈ sch(body+(ρ)); and (2) µ(p) > µ(p ′), for each p ′ ∈ sch(body−(ρ)). For each i ∈ [0, ℓ],
let Πi = {ρ | ρ ∈ Π and µ(p) = i}. We say that Π is stratified if there exists a stratification of Π. A
constraint ν is an assertion of the form

a
1
, . . . ,an → ⊥,

where n ≥ 1 and every ai (1 ≤ i ≤ n) is an atom with terms from U ∪ V. The body of ν , de-

noted body(ν ), is the set {a
1
, . . . ,an}. A Datalog

∃,¬,⊥
program Π is a finite set of Datalog

∃,¬
rules

and constraints. We denote by ex(Π) the set of Datalog
∃,¬

rules in Π; in other words, ex(Π) is
obtained from Π by dropping the constraints. We say that Π is stratified if ex(Π) is stratified. A
stratified Datalog

∃,¬,⊥
query Q is a pair (Π,p), where Π is a stratified Datalog

∃,¬,⊥
program, and

p ∈ sch(Π) does not occur in the body of a rule of Π. For brevity, we write Datalog∃,¬s,⊥ for stratified

Datalog
∃,¬,⊥

programs and queries. Moreover, a supra-index can be removed from Datalog
∃,¬s,⊥

to

indicate that the corresponding feature is disallowed. For example, in a Datalog
¬s

program neither

existentially quantified variables in the heads of rules nor constraints are allowed.

Semantics of Datalog∃,¬s,⊥. The semantics of Datalog
∃,¬s,⊥

are defined via the well-known chase

procedure. Before defining the chase procedure, we need to recall some auxiliary definitions. A

homomorphism from a set of atomsX to a set of atomsX ′
is a partial functionh : U∪B∪V → U∪B∪V

such that (1) t ∈ U implies h(t) ∈ U, and (2) p(t1, . . . , tn) ∈ X implies p(h(t1), . . . ,h(tn)) ∈ X ′
. A

Datalog
∃
rule ρ (i.e., a Datalog

∃,¬
rule without negated atoms) is applicable to an instance I if

there exists a homomorphism h such that h(body(ρ)) ⊆ I . The result of applying ρ to I in this

case is an instance I ′ = I ∪ h′(head(ρ)), where h′
is a homomorphism such that h′(?X ) = h(?X )

if ?X ∈ var(body(ρ)) ∩ var(head(ρ)), and h′(?Y ) is a fresh labeled null not occurring in I if ?Y ∈

var(head(ρ)) \ var(body(ρ)). For such an application of ρ to I we write I ⟨ρ,h⟩ I ′; in fact, I ⟨ρ,h⟩ I ′

defines a single chase step.

The chase algorithm takes as input a database D and a Datalog
∃
program Π, and performs an

exhaustive application of the rules of Π starting from D, which leads to a (possibly infinite) instance

6
For the sake of brevity, in the rest of the paper we may write rules with more than one atom in the head. This is not a

problem as such rules can be transformed into an equivalent set of rules with just one head-atom; see, e.g., [12].
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denoted chase(D,Π). A chase sequence of a database D and a Datalog
∃
program Π is a sequence

of chase steps Ii ⟨ρi ,hi ⟩ Ii+1, where i ≥ 0, I0 = D and ρi ∈ Π. The chase of D and Π, denoted
chase(D,Π), is defined as follows.

• A finite chase of D and Π is a finite chase sequence Ii ⟨ρi ,hi ⟩ Ii+1, where i ∈ [0,m − 1], and

there is no ρ ∈ Π that is applicable to Im ; let chase(D,Π) = Im .
• An infinite chase sequence Ii ⟨ρi ,hi ⟩ Ii+1, where i ≥ 0, is fair if whenever a rule ρ ∈ Π
is applicable to Ii with homomorphism h, then there exists h′ ⊇ h and k > i such that

h′(head(ρ)) ⊆ Ik . An infinite chase of D and Π is a fair infinite chase sequence Ii ⟨ρi ,hi ⟩ Ii+1,

where i ≥ 0; let chase(D,Π) =
⋃∞

i=0
Ii .

We are now ready to define the semantics of Datalog
∃,¬s,⊥

. A crucial notion is the indefinite

grounding of a Datalog
∃,¬

program Π. A subset of B is partitioned into infinite sets of nulls Bρ,?Z ,

one for every ρ ∈ Π and every existentially quantified variable ?Z occurring in ρ. An indefinite

instance of a rule ρ is obtained from ρ by replacing every variable of var(body(ρ)) by an element

of U ∪ B, and every existentially quantified variable ?Z by an element of Bρ,?Z . The indefinite

grounding of Π, denoted ground(Π), is the set of all its indefinite instances. Given an instance I , let
ΠI

be the program {body+(ρ) → head(ρ) | ρ ∈ ground(Π) and (body−(ρ) ∩ I ) = ∅}. Notice that

the rules of ΠI
may contain nulls from B. Therefore, we cannot directly use the chase algorithm

as defined above with such rules. The reason is because the chase is defined for Datalog
∃
rules

that can mention only constants of U and variables of V. Nevertheless, the chase algorithm can

be naturally generalized to such rules by simply treating the null values from B in the same way

as the constants from U. Consider now a database D and a Datalog
∃,¬s,⊥

program Π that admits

a stratification µ : sch(Π) → [0, ℓ]. Recall that ex(Π) is the program consisting of the Datalog
∃,¬

rules in Π. Therefore, ex(Π)i = {ρ | ρ ∈ ex(Π) and µ(pred(head(ρ))) = i}. We inductively define

the sets S0, . . . , Sℓ as follows:

S0 = chase(D, ex(Π)0) and Si = chase(Si−1, (ex(Π)i )
Si−1 ).

If there is a constraint ν ∈ Π for which there exists a homomorphism h such that h(body(ν )) ⊆ Sℓ ,
then D is inconsistent w.r.t. Π; otherwise, D is consistent w.r.t. Π. The semantics Π(D) of Π over

D is defined as ⊤ if D is inconsistent w.r.t. Π; otherwise, Π(D) is defined as the (possibly infinite)

instance Sℓ . Note that ⊤ is a special symbol used to indicate that there is an inconsistency.

Consider a Datalog
∃,¬s,⊥

query Q = (Π,p), where p is an n-ary predicate, and a database D. The
evaluation of Q over D is defined as

Q(D) =


⊤ if Π(D) = ⊤,

{(t1, . . . , tn) ∈ Un | p(t1, . . . , tn) ∈ Π(D)} if Π(D) , ⊤.

As is customary when studying the complexity of the evaluation problem for a query language,

we consider its associated decision problem:

Problem: Eval

Input: A database D, a Datalog∃,¬s,⊥ query Q , and a tuple of constants t.
Question: Does Q(D) , ⊤ imply t ∈ Q(D)?

Let us clarify that this general formulation refers to the combined complexity of the problem. In

this work, we focus our attention on the data complexity of this problem, i.e., the complexity of

the problem Eval(Q), when the query Q is fixed, and only the database D and the tuple t form the

input. We adopt the convention that when we talk about the data complexity of a problem like
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Eval (i.e., the class of problems Eval(Q)), we say that it is complete for a complexity class C if each

of the problems Eval(Q) is in C, and there exists one problem Eval(Q) that is C-hard.

4 TRIPLE QUERY LANGUAGE
Recall that the main goal of this work is to define a query language with reasoning capabilities to

deal with RDFS and OWL vocabularies, navigational capabilities to exploit the graph structure of

RDF data, and a general form of recursion much needed to express some natural and useful queries.

To this end, we introduce a query language that is based on Datalog
∃,¬s,⊥

and incorporates all

the above functionalities. It is well-known that Eval for Datalog
∃,¬s,⊥

queries is undecidable. This

already holds for Datalog
∃
[9, 10], and thus several decidability paradigms have been proposed in

the literature. Two of the most expressive decidable languages, which are of special interest for

our work, are weakly-guarded Datalog
∃
[10] and weakly-frontier-guarded Datalog

∃
[7]. Our query

language, dubbed TriQ 1.0, extends weakly-frontier-guarded Datalog∃ with stratified negation and

constraints. Before introducing TriQ 1.0, let us recall the key idea of weak(-frontier)-guardedness.

4.1 Weakly(-Frontier)-Guarded Datalog∃

The main principle underlying weakly-guarded Datalog
∃
can be informally described as follows:

all the harmful body variables, i.e., variables that may be bound by the program to labeled nulls,

jointly appear in a body atom. The notion of weak-guardedness is a relaxation of guardedness,

which requires all the body variables (harmless or harmful) to jointly appear in a body atom; hence

the name weakly-guarded. Weakly-frontier-guarded Datalog
∃
extends weakly-guarded Datalog

∃
by requiring only the dangerous body variables, i.e., harmful variables that are also propagated

to the rule-head, to jointly appear in a body atom. The body variables that are propagated to the

rule-head are also known as the frontier of the rule, and hence the name weakly-frontier-guarded.

Before giving the formal definitions, we first need to recall some auxiliary terminology.

Given a set of predicates X , the set of positions of X , denoted pos(X ), is the set {p[i] | p ∈

sch(X ) and i ∈ [1, arity(p)]}. Given a Datalog
∃
program Π, the set of affected positions of sch(Π),

denoted by affected(Π), is inductively defined as follows:

(1) if there exists ρ ∈ Π such that an existentially quantified variable occurs at position π , then
π ∈ affected(Π); and

(2) if there exists ρ ∈ Π and a variable ?V that occurs in body(ρ) only at positions of affected(Π),
and ?V appears in head(ρ) at position π , then π ∈ affected(Π).

Let nonaffected(Π) be the set (pos(Π) \ affected(Π)) of non-affected positions of sch(Π).

Example 4.1. Consider the Datalog
∃
program Π:

ρ1 = p(?X , ?Y ), s(?Y , ?Z ) → ∃?W t(?Y , ?X , ?W )

ρ2 = t(?X , ?Y , ?Z ) → ∃?W p(?W , ?Z )

ρ3 = t(?X , ?Y , ?Z ) → s(?X , ?Y ).

Because of the existentially quantified variables, t[3] and p[1] belong to affected(Π). Since the

variable ?X occurs in body(ρ1) at position p[1] that is affected, and also at position t[2] in head(ρ1),

we conclude that t[2] ∈ affected(Π). Similarly, p[2] and s[2] are affected positions of sch(Π). Notice
that, although ?Y occurs in the body of the first rule at the affected position p[2], and also at position
t[1] in the head of the rule, t[1] is not affected since ?Y occurs also at position s[1] < affected(Π).

Having the notion of the (non-)affected position of a schema in place, we can classify the body

variables of a rule into harmless, harmful and dangerous variables as follows. Let Π be a Datalog
∃

program. Fix a rule ρ ∈ Π and a variable ?V ∈ var(body(ρ)). Then:
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• ?V isΠ-harmless if at least one occurrence of it appears in body(ρ) at a position of nonaffected(Π);
• ?V is Π-harmful if it is not Π-harmless;

• ?V is Π-dangerous if it is Π-harmful and appears in head(ρ).

Let harmless(ρ,Π), harmful(ρ,Π) and dangerous(ρ,Π) be the set of body variables of ρ that are

Π-harmless, Π-harmful and Π-dangerous, respectively.
A Datalog

∃
program Π is weakly-frontier-guarded (resp., weakly-guarded) if, for each ρ ∈ Π,

there exists an atom a ∈ body(ρ), called a guard, such that dangerous(ρ,Π) ⊆ var(a) (resp.,
harmful(ρ,Π) ⊆ var(a)). In other words, the body atom a contains (or guards) all the Π-dangerous
(resp. Π-harmful) body variables of ρ. It is not difficult to verify that the program Π in Example 4.1

is weakly-frontier-guarded but not weakly-guarded. A weakly(-frontier)-guarded Datalog
∃
query is

a Datalog
∃
query (Π,p) such that Π is weakly(-frontier)-guarded.

4.2 TheQuery Language TriQ 1.0

We proceed to introduce our main language called TriQ 1.0, which extends weakly-frontier-guarded
Datalog

∃
with stratified negation and constraints. To introduce negation though, we need to revisit

the notion of weak-frontier-guardedness. Given a Datalog
∃,¬s

program Π, we write Π+ for the
program obtained from Π by dropping all the negative atoms. A Datalog

∃,¬s,⊥
program Π is

called weakly-frontier-guarded if ex(Π)+ is weakly-frontier-guarded, i.e., we simply need to check

whether the program obtained from Π after eliminating the negative atoms and the constraints is

weakly-frontier-guarded; weakly-guarded Datalog
∃,¬s,⊥

is defined analogously.

Definition 4.2. A TriQ 1.0 query is a Datalog
∃,¬s,⊥

query that is weakly-frontier-guarded.

A natural question at this point is how expressive TriQ 1.0 is. Interestingly, as we show in the

following example, this language can encode some very useful but costly queries; e.g., whether a

graph contains a clique of size k .

Example 4.3. Consider an undirected graph G = (V ,E), and an integer k > 0. Assume that

|V | = n, where n > 0. The graph G and the integer k can be naturally encoded in a database D.
More precisely, the database D is defined as

{node0(v) | v ∈ V } ∪ {edge
0
(v,w) | (v,w) ∈ E} ∪ {succ0(0, 1), . . . , succ0(k − 1,k)}.

Our goal is to construct a TriQ 1.0 query Q = (Π, yes), where yes() is a 0-ary predicate, such that

G contains a k-clique iff Q(D) , ∅. The program Π is defined as the union of the two subprograms

Πaux and Πclique . Πaux is used to compute some auxiliary relations that are needed when checking

whether G contains a k-clique, while Πclique checks for the existence of a k-clique.

The Program Πaux

Πaux contains two rules to define the usual linear order on [0,k]:

succ0(?X , ?Y ) → less0(?X , ?Y )

succ0(?X , ?Y ), less0(?Y , ?Z ) → less0(?X , ?Z ).

It also contains rules that define the minimum and maximum elements of this linear order:

less0(?X , ?Y ) → not_max(?X )

less0(?X , ?Y ) → not_min(?Y )

less0(?X , ?Y ),¬not_min(?X ) → zero0(?X )

less0(?Y , ?X ),¬not_max(?X ) → max0(?X ).
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Finally, Πaux contains the following rules that they simply copy the atoms of D, and the atoms

generated by Πaux , into a new schema that will be used by Πclique:

node0(?X ) → node(?X )

edge
0
(?X , ?Y ) → edge(?X , ?Y )

succ0(?X , ?Y ) → succ(?X , ?Y )

less0(?X , ?Y ) → less(?X , ?Y )

zero0(?X ) → zero(?X )

max0(?X ) → max(?X ).

The Program Πclique

Let us first give the key idea underlying Πclique. Intuitively, Πclique constructs a tree of mappings

(rooted at some dummy mapping), where a mapping at level i ∈ [1,k] actually maps the set of

integers [1, i] to the vertices ofG . Each mapping µ at level i < k has n child-mappings, one for each

node of G. The child-mapping µ ′ of µ (for a node v) simply extends µ by mapping (i + 1) to v . The
k-th level of the tree contains all the possible nk mappings µ : [1,k] → V . It is then easy to check

whether there exists a mapping that maps [1,k] to a clique of G.
Now we define Πclique. In this program, apart from the predicates node(·), edge(·, ·), succ(·, ·),

less(·, ·), zero(·) and max(·, ·), generated by Πaux , we also have

(1) ism – the atom ism(µ, i) says that µ is a mapping at level i of the tree;
(2) map – the atom map(µ, i,v) says that µ(i) = v ;
(3) next – the atom next(µ,v, µ ′) encodes the fact that µ ′ is obtained from µ by mapping (i + 1)

to v (assuming that µ is a mapping at level i);
(4) noclique – the atom noclique(µ) says that µ does not map to a clique;

The program Πclique consists of the following rules:

zero(?X ) → ∃?Y ism(?Y , ?X )

ism(?X , ?Y ), succ(?Y , ?Z ), node(?W ) →

∃?U next(?X , ?W , ?U ), ism(?U , ?Z ),map(?U , ?Z , ?W )

next(?X , ?Y , ?Z ),map(?X , ?U , ?V ) → map(?Z , ?U , ?V )

less(?X , ?Y ),map(?Z , ?X , ?W ),map(?Z , ?Y , ?U ),¬edge(?W , ?U ) → noclique(?Z )

less(?X , ?Y ),map(?Z , ?X , ?W ),map(?Z , ?Y , ?W ) → noclique(?Z )

ism(?X , ?Y ),max(?Y ),¬noclique(?X ) → yes().

Notice that the purpose of the fifth rule is to avoid the use of the same node more than once in a

clique (which can happen if G contains self-loops).

4.3 The Complexity of TriQ 1.0

The above example shows that the query evaluation problem for TriQ 1.0 is intractable in data

complexity. In fact, we show that:

Theorem 4.4. Eval for TriQ 1.0 is ExpTime-complete in data complexity.

Proof. Eval for weakly-guarded Datalog
∃
is ExpTime-hard in data complexity [10], which

immediately implies the desired lower bound. Let us now proceed with the upper bound. Consider
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a database D and a (fixed) TriQ 1.0 query Q = (Π,p). We construct in constant time the query

Q ′ = (ex(Π) ∪ Π⊥,p), where

Π⊥ = {a
1
, . . . ,an → p(⋆, . . . ,⋆) | a

1
, . . . ,an → ⊥ ∈ Π},

with ⋆ being a special constant not in D or Π. It is clear that Q(D) , ⊤ iff (⋆, . . . ,⋆) < Q ′(D).
Moreover, ifQ(D) , ⊤, then t ∈ Q(D) iff t ∈ Q ′(D), for every t ∈ Uarity(p)

. Therefore, for an arbitrary

tuple t ∈ Uarity(p)
,

Q(D) , ⊤ implies t ∈ Q(D) iff (⋆, . . . ,⋆) < Q ′(D) implies t ∈ Q ′(D).

By construction, Q ′
is a weakly-frontier-guarded Datalog

∃,¬s
query. Thus, to establish the desired

upper bound, it suffices to show that query evaluation for weakly-frontier-guarded Datalog
∃,¬s

is

in ExpTime in data complexity. The latter can be reduced to Eval for weakly-guarded Datalog
∃,¬s

via a database-independent reduction; implicit in [21]. Therefore, it suffices to show that query

evaluation for weakly-guarded Datalog
∃,¬s

is in ExpTime in data complexity. This can be shown

by exploiting a recent complexity result for guarded Datalog
∃,¬s

[23].

A guarded Datalog
∃,¬s

query is a Datalog
∃,¬s

query (Π,p) such that Π is guarded, i.e., for each

rule ρ ∈ Π, there exists an atom a ∈ body
+(ρ) such that var(body(ρ)) ⊆ var(a). It is implicit

in [23] that Eval for guarded Datalog
∃,¬s

is feasible in double-exponential time in the arity of the

underlying schema, in exponential time in the size of the given query program, and in polynomial

time in the size of the given database.
7
Having this result in place, to establish the desired upper

bound it suffices to reduce Eval for weakly-guarded Datalog
∃,¬s

to Eval for guarded Datalog
∃,¬s

in polynomial time, without increasing the arity of the underlying schema. This can be done by

instantiating the harmless variables occurring in a rule of the given query with constants occurring

in the given database. More precisely, given a database D and a weakly-guarded Datalog
∃,¬s

query

Q = (Π,p), we construct the guarded Datalog
∃,¬s

query Q ′ = (Π′,p), where Π′ =
⋃

ρ ∈Π inst(ρ)
with inst(ρ) being the set of rules obtained after replacing the ex(Π)+-harmless variables occurring

in ρ with constants of dom(D) in all the possible ways. It is clear that Q(D) = Q ′(D), while |Π′ |

is polynomial in the size of dom(D). We conclude that Eval for weakly-guarded Datalog
∃,¬s

is in

ExpTime in data complexity, and the claim follows.

4.4 The Expressive Power of TriQ 1.0

An important issue for a query language is to understand its expressive power, a topic common to

database theory. Roughly, by the expressive power of a query language we refer to the set of all

queries expressible in that language. In formal terms, a query Q defines a function fQ that maps

each input database D (over a certain schema) to a set of answers fQ (D) ⊆ dom(D)n , where n ≥ 0

is the arity ofQ . The expressive power of a query language L is the set of functions fQ for all queries

Q expressible in L by some query expression (or program); this syntactic expression is usually

identified with the semantic query that it defines, and, by abuse of terminology, simply called query.

In this context, a crucial task is to determine the absolute expressive power of a query language

L. This is done by showing that L is able to express exactly the queries whose evaluation is in a

complexity class C, and we write L = C. The evaluation of an n-ary query Q is the problem of

deciding, given a database D and a tuple t ∈ dom(D)n , whether t ∈ µQ (D). It holds that:

Theorem 4.5. TriQ 1.0 = ExpTime.

7
In fact, the work [23] considers guarded Datalog

∃,¬
, where the (non-stratified) negation is interpreted according to the

well-founded semantics, which generalizes guarded Datalog
∃,¬s

.
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Proof. We need to show that (i) the evaluation complexity of a TriQ 1.0 query is in ExpTime,

and (ii) for every query Q whose evaluation is in C, there exists a TriQ 1.0 query Q ′
such that

fQ (D) = fQ ′(D), for every database D. The former follows from the fact that Eval for TriQ 1.0 is
in ExpTime in data complexity (Theorem 4.4), while the latter follows from [21], where the same

result is shown for weakly-guarded Datalog
∃,¬s

.

At this point, let us clarify that there is a crucial difference between the fact that Eval for a query

language L is C-hard in data complexity, and the fact that L = C. The former simply says that there

exists a queryQ expressible in L for which the evaluation problem is C-hard. The latter says thatQ
expresses all queries whose evaluation is in C (including all the C-hard queries). Clearly, the above

result implies that TriQ 1.0 and weakly-guarded Datalog∃,¬s are equally expressive query languages.
However, the fact that TriQ 1.0 is based on the more refined notion of weak-frontier-guardedness,

allows us to write more intuitive and succinct queries than weakly-guarded Datalog
∃,¬s

.

5 FROM SPARQL OVER OWL 2 QL TO TriQ 1.0

The first version of the Web ontology language OWL was released in 2004 [27]. The second version

of this language, which is called OWL 2, was released in 2012 [38]. OWL 2 includes three profiles

that can be implemented more efficiently [28]. One of these profiles, called OWL 2 QL, is based

on the description logic DL-LiteR [13] and is designed to be used in applications where query

answering is the most important reasoning task. As the main goal of our paper is to design a query

language that naturally embeds the fundamental features for querying RDF, we focus on OWL

2 QL, identify a core fragment of it, called OWL 2 QL core, which corresponds to DL-LiteR , and

show that every SPARQL query under the OWL 2 QL core direct semantics entailment regime,

which is inherited from the OWL 2 direct semantics entailment regime [19, 25], can be naturally

translated into a TriQ 1.0 query.8 Furthermore, a second goal of this section is to show that the use

of TriQ 1.0 allows us to formulate SPARQL queries in a simpler way, as a more natural notion of

entailment can be easily encoded by using this query language.

For the sake of presentation, we first omit the direct semantics entailment regime, and explain

in Section 5.1 how a SPARQL query can be translated into a Datalog
¬s

query. It is important to

clarify that it is known that SPARQL can be translated into Datalog
¬s

[2, 3, 6, 15, 33, 37], if one

focuses on RDF graphs with RDFS vocabulary extended with a special symbol to represent the null

value (and with a built-in predicate to check for this symbol). Thus, the goal of Section 5.1 is not to

prove that SPARQL can be embedded into Datalog
¬s
, but instead to propose a translation that uses

such a special symbol for the null value in a fairly limited way (in fact, we only use this symbol to

compute that final answer to the query), and which can be easily extended to deal not only with

the RDFS vocabulary but also with the vocabulary used in OWL 2 QL core ontologies. In fact, we

extend this translation in Section 5.2 and show that every SPARQL query under the OWL 2 QL

core direct semantics entailment regime can be transformed into a TriQ 1.0 query. Moreover, we

show in Section 5.3 that a more natural notion of entailment, which is obtained by removing a

restriction from the regime proposed in [19], can also be encoded in TriQ 1.0.

5.1 Translating SPARQL into Datalog¬s

In this section, we explain via some illustrative examples how a SPARQL query can be translated

into a Datalog
¬s

query. As it is already known that SPARQL can be translated into Datalog
¬s
, we

8
Let us clarify that we focus on OWL 2 QL core, instead of the full formalism of OWL 2 QL, for technical clarity. However,

our approach is generic enough to deal with all the constructs of OWL 2 QL.
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do not provide the details of the translation, but rather mention what is needed to fix the notation

used in the rest of the paper. The complete translation can be found in Appendix ??.
From now on, given an RDF graph G, we define

τdb(G) = {triple(a,b, c) | (a,b, c) ∈ G},

i.e., the instance of the relational schema {triple(·, ·, ·)} naturally associated with G.

Example 5.1. We give a series of graph patterns, where their structural complexity is progressively

increased, and explain how they are encoded in Datalog
¬s
.

• We first consider the graph pattern

P1 = (?X , name, ?Y ),

where name is a constant, that asks for the list of pairs (a,b) of elements from an RDF graph

G such that b is the name of a inG . This graph pattern can be easily represented as a Datalog

program over τdb(G):

triple(?X , name, ?Y ) → queryP1

(?X , ?Y ).

The predicate queryP1

(·, ·) is used to store the answer to the graph pattern P1.

• Now consider the graph pattern

P2 = (?X , name, _:B),

where _:B is a blank node. This time we are asking for the list of elements in an RDF graph

G that have a name (the blank node _:B is used in P2 to indicate that ?X has a name, but

that we are not interested in retrieving it). As in the previous case, this graph pattern can be

easily represented as a Datalog program over τdb(G):

triple(?X , name, ?Y ) → queryP2

(?X ). (7)

Given that blank nodes are used as existential variables in basic graph patterns, ?Y is used

in the previous rule to represent blank node _:B. However, this time we do not include the

variable ?Y in the head of the rule as we are not interested in retrieving names.

• As a third example, consider the graph pattern:

P3 = (?X , name, ?Y )︸            ︷︷            ︸
P 1

3

OPT (?X , phone, ?Z )︸             ︷︷             ︸
P 2

3

,

where phone is a constant. For every constant a in an RDF graph G, this graph pattern is

asking for the name and phone number of a, if the information about the phone number of a
is available in G, and otherwise it is only asking for the name of a. The basic graph patterns

P1

3
and P2

3
are represented via the rules

triple(?X , name, ?Y ) → queryP 1

3

(?X , ?Y ) (8)

triple(?X , phone, ?Z ) → queryP 2

3

(?X , ?Z ). (9)

Predicates queryP 1

3

(·, ·) and queryP 2

3

(·, ·) are used in the representation of graph pattern P3 in

Datalog
¬s
. More precisely, we first construct a set of rules for the cases where the information

about phone numbers is available:

queryP 1

3

(?X , ?Y ), queryP 2

3

(?X , ?Z ) → queryP3

(?X , ?Y , ?Z ) (10)

queryP 1

3

(?X , ?Y ), queryP 2

3

(?X , ?Z ) → compatibleP3

(?X ). (11)
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As for the previous graph patterns, we use a predicate queryP3

(·, ·, ·) to store the answers

to the query. But in this case, we also include a predicate compatibleP3

(·), which stores the

individuals with phone numbers. This predicate is used in the definition of the third rule

utilized to represent P3, which takes care of the individuals without phone numbers:

queryP 1

3

(?X , ?Y ),¬compatibleP3

(?X ) → query
{3}

P3

(?X , ?Y ). (12)

The predicate query
{3}

P3

(·, ·) is used to store the answer, which has a supra-index {3} to indicate

that the third argument in the answer to P3 is missing (which is the phone number).

• As a final example, consider the graph pattern

P4 = ((?X , name, ?Y ) OPT (?X , phone, ?Z ))︸                                            ︷︷                                            ︸
P 1

4

AND (?Z , phone_company, ?W )︸                             ︷︷                             ︸
P 2

4

,

where phone_company is a constant used to indicate that a phone number is associated

with a phone company. In this case, we first consider a set of Datalog
¬s

rules that define the

answer to the sub-pattern P1

4
, which is stored in predicates queryP 1

4

(·, ·, ·) and query
{3}

P 1

4

(·, ·),

and to the sub-pattern P2

4
, which is stored in predicate queryP 2

4

(·, ·). We have already seen

how these rules look like, and thus we skip their definition. Having the above predicates in

place, we now use two rules to define the answer to P4. The first rule considers the case of

the individuals with phone numbers:

queryP 1

4

(?X , ?Y , ?Z ), queryP 2

4

(?Z , ?W ) → queryP4

(?X , ?Y , ?Z , ?W ).

Moreover, the second rule used to define the answers to P4 considers the case of the individuals

without phone numbers, where a join is not needed:

query
{3}

P 1

4

(?X , ?Y ), queryP 2

4

(?Z , ?W ) → queryP4

(?X , ?Y , ?Z , ?W ) (13)

Although query P4 is a valid SPARQL query, it can be difficult to interpret because if a person

has no phone number, then she gets all the phone companies associated to her. The rules

used to translate P4 make this phenomenon very clear: the two predicates in the body of

rule (13) do not have any variables in common, so every pair of values assigned to variables

?X , ?Y is combined with every pair of values assigned to variables ?Z , ?W .

This completes our example.

The approach shown in Example 5.1 can be generalized to represent any graph pattern P . Our goal
is to construct a Datalog

¬s
query Pdat = (Π, answerP ), where Π is the union of three subprograms:

(1) τbgp(P) encodes the basic graph patterns occurring in P .
(2) τopr(P) represents the non-basic graph patterns occurring in P ; in fact, these rules are used to

encode the semantics of the SPARQL operators appearing in P .
(3) τout(P) computes the output predicate answerP .

Example 5.1 gives a good idea of how the programs τbgp(P) and τopr(P) are defined (their precise

definitions can be found in Appendix ??). For the definition of τout(P), there is one issue that

needs to be resolved. Assume that P3 is the graph pattern in Example 5.1. In this case, we expect

queryP3

(·, ·, ·) to be the output predicate. However, the predicate query
{3}

P3

(·, ·) is also used to collect

some answers; more specifically, query
{3}

P3

(?X , ?Y ) is used to collect the answers to the query where
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?Z is not assigned a value. To deal with this issue, the following rules are included in τopr(P3):

queryP3

(?X , ?Y , ?Z ) → answerP3
(?X , ?Y , ?Z ),

query
{3}

P3

(?X , ?Y ) → answerP3
(?X , ?Y ,⋆),

where ⋆ is a special constant used to represent the fact that some positions in a tuple have not

been assigned values. Thus, answerP3
(·, ·, ·) is the only output predicate in this example (the precise

definition of τout(P) can be found in Appendix ??).

Having the above three programs in place, we are now ready to define the Datalog
¬s

query that

represents the graph pattern P . In particular, we define

Pdat = (τbgp(P) ∪ τopr(P) ∪ τout(P), answerP ).

Notice that Pdat is a non-recursive Datalog
¬s

query of exponential size. Is it possible to represent

a graph pattern P as a non-recursive Datalog
¬s

query of polynomial size? This is an interesting

question that goes beyond the scope of this work.

In order to state the correctness of our translation, we need to define one last notion. Let P be a

graph pattern,G an RDF graph, and t = (t1, . . . , tn) a tuple constants that belongs to Pdat(τdb(G)). By
construction, in the set of rules τout(P) there is an atom answerP (?X1, . . . , ?Xn) that contains only

variables (and not the constant ⋆). We define a mapping µt,P corresponding to t given P by taking

dom(µt,P ) = {?Xi | i ∈ [1,n] and ti , ⋆} and, for every i ∈ [1,n], ti , ⋆ implies µt,P (?Xi ) = ti . We

then define the set of mappings corresponding to the answers of Pdat given τdb(G):

JPdat,τdb(G)K = {µt,P | t ∈ Pdat(τdb(G))}.

With this notation in place, we are ready to state that our translation is correct, which can be easily

shown by induction on the structure of P .

Theorem 5.2. For every graph pattern P and RDF graph G, it holds that

JPKG = J(Pdat,τdb(G))K.

5.2 SPARQL Entailment Regime and TriQ 1.0

As pointed out in Section 1, several functionalities were added to SPARQL 1.1 [22] to overcome

some of the limitations of the first version of this language. In particular, SPARQL 1.1 includes an

entailment regime to deal with RDFS and OWL vocabularies [19, 25]. In this section, we show how

this functionality can be encoded by using TriQ 1.0 if we focus on a specific ontology language.

Storing Ontologies in RDF. We start by defining a fragment of OWL 2 QL that includes the main

features of the description logic DL-LiteR [13], on which the profile OWL 2 QL is based. The

vocabulary Σ of an OWL 2 QL core ontology is a finite set of unary and binary predicates, called

classes and properties, respectively. A basic property over Σ is either p or p−, where p is a property

in Σ, while a basic class over Σ is either a or ∃r , where a is a class in Σ and r is a basic property over
Σ. To represent an OWL 2 QL core ontology over a vocabulary Σ, we first include the following
triples to indicate what the classes and properties in Σ are:

• For every class a in Σ, we include the triple

(a, rdf:type, owl:Class).

Notice that this triple uses the URIs rdf:type and owl:Class, and indicates that a, which is

also a URI, is of type class.
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OWL 2 QL core Axiom RDF Triple

SubClassOf(b1,b2) (b1, rdfs:subClassOf,b2)

SubObjectPropertyOf(r1, r2) (r1, rdfs:subPropertyOf, r2)

DisjointClasses(b1,b2) (b1, owl:disjointWith,b2)

DisjointObjectProperties(r1, r2) (r1, owl:propertyDisjointWith, r2)

ClassAssertion(b,a) (a, rdf:type,b)

ObjectPropertyAssertion(p,a1,a2) (a1,p,a2)

Table 1. Representation of OWL 2 QL core axioms as RDF triples.

• For every property p in Σ, we include the following triples, where p, p−, ∃p and ∃p− are

considered as URIs (constants), and they are assumed to be pairwise distinct:

(p, rdf:type, owl:ObjectProperty) (p−, rdf:type, owl:ObjectProperty)

indicating that p and p− are properties,

(p, owl:inverseOf,p−) (p−, owl:inverseOf,p)

indicating that p− is the inverse of p,

(∃p, rdf:type, owl:Restriction) (∃p−, rdf:type, owl:Restriction)
(∃p, owl:onProperty,p) (∃p−, owl:onProperty,p−)

(∃p, owl:someValueFrom, owl:Thing) (∃p−, owl:someValueFrom, owl:Thing)

indicating that ∃p and ∃p− are restrictions of p and p−, respectively, and finally

(∃p, rdf:type, owl:Class) (∃p−, rdf:type, owl:Class)
indicating that ∃p and ∃p− are classes.

We now indicate how OWL 2 QL core ontologies are stored as RDF graphs, following the standard

syntax to represent OWL 2 ontologies as RDF triples [30]. By using the functional-style syntax of

OWL [29], we can have the following axioms in an OWL 2 QL core ontology:

• SubClassOf(b1,b2): a basic class b1 is a sub-class of a basic class b2.

• SubObjectProperty(r1, r2): r1 is a subproperty of r2, where r1, r2 are basic properties.

• DisjointClasses(b1,b2): basic classes b1 and b2 are disjoint.

• DisjointObjectProperties(r1, r2): basic properties r1 and r2 are disjoint.

• ClassAssertion(b,a): a constant a belongs to a basic class b.
• ObjectPropertyAssertion(p,a1,a2): a constant a1 is related to a constant a2 via a property p.

Moreover, by following the mapping defined in [30], we have that the above axioms are stored

as RDF triples as shown in Table 1. We say that an RDF graph G represents an OWL 2 QL core

ontology if there is an OWL 2 QL core ontology O such that its representation as RDF generates G .
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OWL 2 QL Core Direct Semantics Entailment Regime. We proceed to show how a graph pattern is

evaluated under the OWL 2 QL core direct semantics entailment regime, which is based on the

definition of a direct semantics entailment regime for SPARQL 1.1 given in [19]. To compute the

answer to a graph pattern, this regime is first applied at the level of basic graph patterns, and then

the results of this step are combined using the standard semantics for the SPARQL operators [25].

Thus, we only need to define the OWL 2 QL core direct semantics entailment regime for basic graph

patterns. Consider a basic graph pattern P . Under the OWL 2 QL core direct semantics entailment

regime, the evaluation of P over an RDF graph G adopts an active domain semantics, that is, it

uses the notion of entailment in OWL 2 QL core (which corresponds to the notion of entailment in

DL-LiteR ) but allowing the variables and blank nodes in P to take only values fromG . For example,

assume that we are given an RDF graph G consisting of

(dog, rdf:type, animal) (animal, rdfs:subClassOf,∃eats), (14)

which indicate that dog is an animal, and every animal eats something. Moreover, assume that we

want to retrieve the list of elements of G that eat something. The natural way to formulate this

query is by using a graph pattern of the form (?X , eats, _:B), where _:B is a blank node. However,

the answer to this query is empty under the OWL 2 direct semantics entailment regime, as there

are no elements a, b inG that can be assigned to ?X and _:B in such a way that the triple (a, eats,b)
is implied by the axioms in G. In other words, the answer to (?X , eats, _:B) is empty under the

active domain semantics adopted in SPARQL 1.1. To obtain a correct answer in this case, we can

consider the graph pattern (?X , rdf:type,∃eats), as the triples in G can be used to infer the triple

(dog, rdf:type,∃eats), from which the correct answer dog is obtained.

LetG be an RDF graph representing an OWL 2 QL core ontology. Given t ∈ U × U × U, we write
G |= t to indicate that t is implied by G as defined in [19, 28], which in turn is based on the notion

of entailment for DL-LiteR [13]. Moreover, given a basic graph pattern P , the evaluation of P over

G under the OWL 2 QL core direct semantics entailment regime, denoted by JPKUG , is defined as:

{µ | dom(µ) = var(P) and there exists h : B → U such that for every t ∈ µ(h(P)): G |= t}. (15)

Notice that the supra-index U in JPKUG is used to indicate that every variable and blank node in

P has to be assigned a constant, as U is the range of functions h and µ in the previous definition.

Moreover, the evaluation of a graph pattern P over an RDF graph G under the OWL 2 QL core

direct semantics entailment regime, denoted by JPKUG , is recursively defined as the usual semantics

for graph patterns (which is given in Section 3) but replacing the rule for evaluating basic graph

patterns by rule (15).

In what follows, we define a fixed Datalog
∃,¬s,⊥

program τowl2ql_core that is used to encode the

semantics J·KUG . In this program, we first include a Datalog rule to store in a unary predicate C all

the URIs from the graph (recall that we assume that an RDF graph does not contain blank nodes):

triple(?X , ?Y , ?Z ) → C(?X ),C(?Y ),C(?Z ). (16)

Then we define some Datalog rules that store the different elements in the ontology:

triple(?X , rdf:type, ?Y ) → type(?X , ?Y )

triple(?X , rdfs:subPropertyOf, ?Y ) → sp(?X , ?Y )

triple(?X , owl:inverseOf, ?Y ) → inv(?X , ?Y )
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triple(?X , rdf:type, owl:Restriction),

triple(?X , owl:onProperty, ?Y ),

triple(?X , owl:someValueFrom, owl:Thing) → restriction(?X , ?Y )

triple(?X , rdfs:subClassOf, ?Y ) → sc(?X , ?Y )

triple(?X , owl:disjointWith, ?Y ) → disj(?X , ?Y )

triple(?X , owl:propertyDisjointWith, ?Y ) → disj_property(?X , ?Y )

triple(?X , ?Y , ?Z ) → triple
1
(?X , ?Y , ?Z )

If we have the triples (a, rdf:type,b) and (b, rdfs:subClassOf,∃r ) in an OWL 2QL core ontology, then

the Datalog
∃,¬s,⊥

program τowl2ql_core will create a triple of the form (a, r , z), where z is a null value.
If (a, r , z) is stored in the relation triple, then by using rule (16) we will conclude that C(z) holds,
violating the intended interpretation of predicate C. To solve this problem, we include the Datalog

rule triple(?X , ?Y , ?Z ) → triple
1
(?X , ?Y , ?Z ) to produce a copy of the predicate triple(·, ·, ·) in the

predicate triple
1
(·, ·, ·). In this way, the new values are added to triple

1
(·, ·, ·), that is, we do notmodify

the predicate triple(·, ·, ·) but instead both triple
1
(a, rdf:type,b) and triple

1
(b, rdfs:subClassOf,∃r )

hold, from which we conclude that triple
1
(a, r , z) also holds. Moreover, we include the following

rules to reason about properties:

sp(?X1, ?X2), inv(?Y1, ?X1), inv(?Y2, ?X2) → sp(?Y1, ?Y2)

type(?X , owl:ObjectProperty) → sp(?X , ?X )

sp(?X , ?Y ), sp(?Y , ?Z ) → sp(?X , ?Z )

The first rule states that if p is a sub-property of q, then p− is a sub-property of q−. The other two
rules state that sub-property is reflexive and transitive. We also include the rules:

sp(?X1, ?X2), restriction(?Y1, ?X1), restriction(?Y2, ?X2) → sc(?Y1, ?Y2)

type(?X , owl:Class) → sc(?X , ?X )

sc(?X , ?Y ), sc(?Y , ?Z ) → sc(?X , ?Z )

The first rule states that if p is a sub-property of q, then ∃p is a sub-class of ∃q. The other two
rules state that sub-class is reflexive and transitive. We include the following rule to reason about

disjointness constraints:

disj(?X1, ?X2), sc(?Y1, ?X1), sc(?Y2, ?X2) → disj(?Y1, ?Y2)

disj_property(?X1, ?X2), sp(?Y1, ?X1), sp(?Y2, ?X2) → disj_property(?Y1, ?Y2).

Finally, we include the following rules to reason about membership assertions:

triple
1
(?X , ?U , ?Y ), sp(?U , ?V ) → triple

1
(?X , ?V , ?Y )

triple
1
(?X , ?U , ?Y ), inv(?U , ?V ) → triple

1
(?Y , ?V , ?X )

type(?X , ?Y ), restriction(?Y , ?U ) → ∃?Z triple
1
(?X , ?U , ?Z )

type(?X , ?Y ) → triple
1
(?X , rdf:type, ?Y )

type(?X , ?Y ), sc(?Y , ?Z ) → type(?X , ?Z )

triple
1
(?X , ?U , ?Y ), restriction(?Z , ?U ) → type(?X , ?Z )

type(?X , ?Y ), type(?X , ?Z ), disj(?Y , ?Z ) → ⊥

triple
1
(?X , ?U , ?Y ), triple

1
(?X , ?V , ?Y ),

disj_property(?U , ?V ) → ⊥.
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Given a graph pattern P and an RDF graphG , to compute JPKUG we need to include τowl2ql_core in the

Datalog
¬s

query Pdat defined in Section 5.1. More precisely, we need to add to the program of Pdat
the program τowl2ql_core, but taking into consideration the active domain semantics in the entailment

regime just defined. For example, assume that P is the basic graph pattern (?X , eats, _:B) and G is

the RDF graph in (14) storing information about animals. Then τbgp(P) is the following rule:

triple(?X , eats, ?Y ) → queryP (?X ). (17)

In order to combine this rule with τowl2ql_core, we first need to consider the fact that all the triples

inferred by using the axioms inG are stored in the predicate triple
1
(·, ·, ·). Thus, we need to replace

triple(·, ·, ·) by triple
1
(·, ·, ·) in (17). We also need to enforce the constraint that every variable and

blank node in P can only take a value from G (the active domain semantics restriction), which is

done by including the predicate C:

triple
1
(?X , eats, ?Y ),C(?X ),C(?Y ) → queryP (?X ). (18)

Thus, given a graph pattern P , let τU
bgp

(P) be the set of rules obtained from τbgp(P) by first replacing

triple by triple
1
in every rule of τbgp(P), and then adding C(?X ) in the body of every resulting rule

ρ if ?X occurs in ρ. Finally, we define

PU
dat
= (τowl2ql_core ∪ τU

bgp
(P) ∪ τopr(P) ∪ τout(P), answerP ).

Then it is possible to prove that:

Theorem 5.3. For every graph pattern P and RDF graph G that represents an OWL 2 QL core

ontology, JPKUG = J(PU
dat
,τdb(G))K.

Interestingly, after a careful analysis of the syntax of the query PU
dat
, we observe that:

Corollary 5.4. For every graph pattern P , PU
dat

is a TriQ 1.0 query.

Before we proceed further, we would like to stress the fact that the program τowl2ql_core, which is

responsible for encoding the semantics J·KUG for basic graph patterns, is fixed and does not depend

on the given graph pattern P . This implies that, for a new graph pattern P ′
, we only need to compute

the programs τU
bgp

(P ′), τopr(P
′) and τout(P

′)without altering τowl2ql_core. This is quite beneficial since,

whenever the user wants to pose a new query, (s)he can use τowl2ql_core as a black box.

5.3 Removing the Active Domain Restriction
Consider the basic graph pattern:

Q = {(?X , eats, _:B), (_:B, rdf:type, plant_material)},

which asks for the lists of animals that eat some plant material, and assume thatG is an RDF graph.

Under the active domain semantics, a is an answer to Q over G if we can replace the blank node

_:B by a specific plant material b such that G implies (?X , eats,b). But what happens if such a

concrete witness cannot be found in G, and we can only infer that a is an answer to Q by using

the axioms in the ontology? For example, this could happen if G stores information only about

herbivores, so it includes the axiom (∃eats−, rdfs:subClassOf, plant_material). In this case, Q has

to be replaced by a basic graph pattern of the form:

{(?X , rdf:type,∃eats), (∃eats−, rdfs:subClassOf, plant_material)}

in order to obtain the correct answers. And even worse, what happens if the query has to be

distributed over several RDF graphs, which is a very common scenario in the Web. Then the user is
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forced to use a graph pattern of the form:

{(?X , eats, _:B), (_:B, rdf:type, plant_material)} UNION

{(?X , rdf:type,∃eats), (∃eats−, rdfs:subClassOf, plant_material)},

in which some inferences have to be encoded. All these issues can be solved if we do not force _:B
to take values only in G , as this allows us to use the initial basic graph pattern Q . This gives rise to

the semantics JPKAllG that is defined exactly as JPKUG , but considering every basic graph pattern as a

conjunctive query, and treating blank nodes as existential variables that are not forced to take only

values in G (they can take values in the interpretations of G).
At this point, one may be tempted to think that the semantics J·KAll can be directly defined

by transforming every basic graph pattern into a conjunctive query, which has to be evaluated

over a DL ontology. In fact, this approach works well with our initial query Q , which can be

transformed into the conjunctive query ∃Y (eats(X ,Y ) ∧ plant_material(Y )). However, there are
simple queries for which this approach does not work. For instance, consider the basic graph

pattern (?X , rdfs:subClassOf,∃eats). Given that ?X is used to store class names, this pattern cannot

be transformed into a conjunctive query in order to define its semantics; instead, we need to replace

?X by every class name C , and then verify whether the inclusion C ⊑ ∃eats is implied by the

DL ontology in order to define its semantics. Thus, the goal of this section is to show that the

more natural semantics J·KAll can be easily defined by using Datalog
∃,¬s,⊥

, without the need of

differentiate between variables that are used to store individuals, classes or properties.

Given a basic graph pattern P , let τAll
bgp

(P) be the rule obtained from τU
bgp

(P) by removing every

atom of the form C(?X ) such that ?X < var(P) (that is, every atom C(?X ) such that ?X is a variable

associated to a blank node occurring in P ). For example, assume that P is the basic graph pattern

(?X , eats, _:B). Then we have that τU
bgp

(P) is the rule (18), and thus τAll
bgp

(P) is the rule:

triple
1
(?X , eats, ?Y ),C(?X ) → queryP (?X ).

Moreover, given a graph pattern P , define τAll
bgp

(P) as the Datalog program consisting of the rules

τAll
bgp

(Pi ) for every basic graph pattern Pi occurring in P . Finally, we define

PAll

dat
= (τowl2ql_core ∪ τAll

bgp
(P) ∪ τopr(P) ∪ τout(P), answerP ).

With this simple modification of PU
dat
, we can formally define the semantics J·KAll:

Definition 5.5. Given a graph pattern P and an RDF graph G, define JPKAllG as J(PAll

dat
,τdb(G))K.

We conclude by pointing out that PAll

dat
is a TriQ 1.0 query, for every graph pattern P . Thus, this

query language is expressive enough to represent the OWL 2 core direct semantics entailment

regime, even if the active domain restriction is not imposed.

6 A TRACTABLE QUERY LANGUAGE
TriQ 1.0 forms a natural language that embeds the fundamental features for querying RDF, as

shown in Section 5. Unfortunately, Theorem 4.4 shows that this language is highly intractable in

data complexity. The goal of this section is to identify a core sub-language of TriQ 1.0, dubbed
TriQ-Lite 1.0, that is powerful enough for expressing every SPARQL query under the entailment

regime for OWL 2 QL core, and ensures the tractability of query evaluation in data complexity.

6.1 TheQuery Language TriQ-Lite 1.0
After a careful analysis of the program ex(Π), where Π is the query program of PU

dat
(or even PAll

dat
)

for an arbitrary graph pattern P , we observe that it enjoys an interesting property regarding the
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ex(Π)+-dangerous variables: for each rule ρ ∈ ex(Π), its dangerous variables are isolated in a single

atom of body
+(ρ), and they can interact with the rest of the rule-body only via ex(Π)+-harmless

variables. Another key observation is that the involved negation, apart from being stratified, is also

grounded, i.e., it is used in front of predicates that can store only constants, but not nulls. Inspired

by the above observations, we introduce a syntactic condition, called wardedness, that allows us to

define TriQ-Lite 1.0, the sub-language of TriQ 1.0 that we are looking for.

A Datalog
∃
program Π is warded if, for each rule ρ ∈ Π, either dangerous(ρ,Π) = ∅, or there

exists an atom a ∈ body(ρ), called a ward and denoted by ward(ρ), such that

(1) dangerous(ρ,Π) ⊆ var(a), and
(2) (var(a) ∩ var(body(ρ) \ {a})) ⊆ harmless(ρ,Π).

Notice that the key difference between weakly-frontier-guarded Datalog
∃
and warded Datalog

∃
is

the additional condition (2) in the definition of wardedness, which simply states that the guard

can only share Π-harmless variables with the rest of the body. The body of a rule occurring in a

warded Datalog
∃
program Π can be graphically illustrated (via its hypergraph) as

ward
rest of the body

harmless variables

dangerous variables
harmful (non-dangerous) 

variables
harmful (non-dangerous) or 

harmless variables

where the shaded part consists of Π-harmless variables, while the dashed area represents an

arbitrary hypergraph. We can now define warded Datalog
∃,¬s,⊥

in the natural way. More precisely,

a Datalog
∃,¬s,⊥

program Π is warded if the program ex(Π)+ is warded, i.e., if the Datalog∃ program

obtained from Π after eliminating the negative atoms and the constraints is warded.

Before introducing TriQ-Lite 1.0, which is based on warded Datalog∃,¬s,⊥, we need the additional
notion of grounded negation. A programΠ is called Datalog

∃,¬sg,⊥
program (“sg” stands for stratified

and grounded) if, for each rule ρ ∈ Π, atom p(t1, . . . , tn) ∈ body
−(ρ), and i ∈ [1,n], either ti ∈ U or

ti ∈ harmless(ρ, ex(Π)+). We are now ready to introduce TriQ-Lite 1.0:

Definition 6.1. A TriQ-Lite 1.0 query is a Datalog
∃,¬sg,⊥

query that is warded.

TriQ-Lite 1.0 is powerful enough to express every SPARQL query under the entailment regime

for OWL 2 QL core. In particular, it can be easily verified that, for every graph pattern P , both PU
dat

and PAll

dat
are TriQ-Lite 1.0 queries. This fact, together with Theorem 5.3, implies that:

Corollary 6.2. Every graph pattern under the OWL 2 QL core direct semantics entailment regime

(with or without the active domain restriction) can be expressed as a TriQ-Lite 1.0 query.

At this point, one may be tempted to think that TriQ-Lite 1.0, and, in particular, the notion

of wardedness, is ad-hoc and not well-justified. More precisely, in view of the fact that tractable

sub-languages of weakly-frontier-guarded Datalog
∃
already exist (details are given below), the next

critical question comes up:

(1) Can we use a known tractable sub-language of weakly-frontier-guarded Datalog
∃
to define

TriQ-Lite 1.0? In other words, do we really need warded Datalog
∃
?

Furthermore, even if wardedness is essential for capturing SPARQL queries under the OWL 2 QL

core direct semantics entailment regime, the next question comes up:
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(2) Is warded Datalog
∃
the best we can achieve? In other words, is there an obvious way to relax

the wardedness condition without losing tractability?

The rest of this section is devoted to give answers to the above questions. We show, via a

model-theoretic argument, that a language based on one of the most expressive tractable sub-

languages of weakly-frontier-guarded Datalog
∃
would not be powerful enough for our purposes,

and thus, warded Datalog
∃
is essential (Section 6.2). We then proceed to establish that evaluation of

TriQ-Lite 1.0 queries is tractable in data complexity (Section 6.3). Finally, we show that the mildest

relaxation of warded Datalog
∃
that one can think of, that is, at most one occurrence of exactly one

harmful variable that occurs in the ward can appear also outside the ward, leads to an intractable

language; more precisely, to an ExpTime-hard language (Section 6.4). This is a strong indication that

there is no obvious way to extend warded Datalog
∃
without losing tractability in data complexity.

6.2 Model-Theoretic Justification of Wardedness
A well-known tractable sub-language of weakly-frontier-guarded Datalog

∃
is frontier-guarded

Datalog
∃
[7], where the guard must contain all the body variables that appear in the rule-head

(and not only the dangerous body variables). A crucial limitation of this language is the fact that

is not able to compute the transitive closure of a binary relation. This has recently motivated

the definition of a refined language, called nearly frontier-guarded Datalog
∃
, which allows for

non-frontier-guarded rules as long as their body variables are harmless [21]. Formally, a Datalog
∃

program Π is nearly frontier-guarded if, for each ρ ∈ Π, ρ is frontier-guarded or var(body(ρ)) =
harmless(ρ,Π). Although nearly frontier-guarded Datalog

∃
is not widely known, it is considerably

more expressive than frontier-guarded Datalog
∃
, while it remains tractable. Actually, it is currently

the most expressive tractable sub-language of weakly-frontier-guarded Datalog
∃
.

We proceed to show that a query language based on nearly frontier-guarded Datalog
∃
is not

a good candidate for our purposes. But let us first clarify what we mean by saying a Datalog
∃

language is a “good candidate”. In the sequel, we call an OWL 2 QL core ontology positive if it does

not contain axioms of the form DisjointClasses(b1,b2).

Definition 6.3. A Datalog
∃
language L is a good candidate if there exists an L program Π such

that, for every basic graph pattern P , and every RDF graph G that represents a positive OWL 2 QL

core ontology, it holds that JPKAllG = J(QΠ,τdb(G))K, where QΠ = (Π ∪ τAll
bgp

(P) ∪ τout(P), answerP ).
9

It is important to clarify that in the above definition we ask for a program Π in L that does the
job for every P and every G since, as discussed in Section 5, it is vital to keep the program that

encodes the semantics J·KAllG fixed. We would also like to stress that a Datalog
∃
language L is a

good candidate even if the query QΠ does not fall in L. The adoption of such a liberal definition

allows us to keep independent the notion of the good candidate from the specific encodings of

the programs τAll
bgp

(P) and τout(P). In other words, it would be conceptually misleading to classify

a Datalog
∃
language as a “bad candidate” only because the program (Π ∪ τAll

bgp
(P) ∪ τout(P)) does

not syntactically fall in L, as there might be different encodings of τAll
bgp

(P) and τout(P) such that

(Π ∪ τAll
bgp

(P) ∪ τout(P)) is an L program. To sum up, Definition 6.3 states that a Datalog
∃
language

L is a good candidate if we are able to encode the semantics J·KAllG via a fixed L program. Then:

Proposition 6.4. Nearly frontier-guarded Datalog
∃
is not a good candidate.

9
Notice that if we go beyond basic graph patterns and positive ontologies, then a Datalog

∃
language is trivially not a good

candidate since the features ¬sg and ⊥ are not available. Moreover, τopr(P ) is empty, and this is the reason why is not

included in the definition of QΠ .
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With the aim of showing that nearly frontier-guarded Datalog
∃
is not a good candidate, we

isolate a model-theoretic property, called unbounded ground-connection property, that is essential

for a Datalog
∃
language in order to be a good candidate. Roughly, a language L has this property if

it allows us to connect, via a fixed program, an invented null value with an unbounded number of

constants occurring in the underlying database. Given an instance I , the ground connection of a

null z ∈ (dom(I ) ∩ B), denoted gc(z, I ), is defined as the set of constants

{c ∈ U | there exists a ∈ I such that {c, z} ⊆ dom(a)},

i.e., all the constants that jointly appear with z in an atom of I . For a Datalog∃ program Π, and a

family of databases (Dn)n>0, we define the function

mgc(n) = max

z∈(dom(Π(Dn ))∩B)
{|gc(z,Π(Dn))|};

if (dom(Π(Dn)) ∩ B) = ∅, then mgc(n) = 0. We say that a Datalog
∃
language L has the unbounded

ground-connection property (UGCP) if there exists a program Π in L, and a family of databases

(Dn)n>0, such thatmgc(n) < O(1). The next lemma shows that the UGCP is essential for a Datalog
∃

language in order to be a good candidate:

Lemma 6.5. If a Datalog
∃
language L is a good candidate, then L has the UGCP.

Proof. Let On , where n > 0, be the positive OWL 2 QL core ontology consisting of

ClassAssertion(a0, c), SubClassOf(a0,∃p), SubClassOf(∃p−,a1),

SubClassOf(a1,a2), . . . , SubClassOf(an−1,an),

and let Gn be the RDF graph obtained after translating On into RDF. Let also Pn , where n > 0, be

the basic graph pattern

{(_:B, rdf:type,a1), . . . , (_:B, rdf:type,an)},

where _:B is a blank node, which simply asks whether there exists an object that belongs to the

classes a1, . . . ,an . Since, by hypothesis, L is a good candidate, there exists an L program Π such

that JPnKAllGn
= J(QΠ,τdb(Gn))K, where n > 0 and QΠ = (Π ∪ τAll

bgp
(Pn) ∪ τout(Pn), answerPn ). The

latter implies that Π(τdb(Gn)) contains the atoms

triple(z, rdf:type,a1), . . . , triple(z, rdf:type,an),

where z ∈ (dom(Π(τdb(Gn))) ∩ B). Observe that |gc(z,Π(τdb(Gn)))| = n, which implies that, for the

program Π, and the family of databases (τdb(Gn))n>0, mgc(n) < O(1). Thus, L has the UGCP.

Having Lemma 6.5 in place, to establish Proposition 6.4 it remains to show that:

Lemma 6.6. Nearly frontier-guarded Datalog
∃
does not have the UGCP.

Proof. Let Π be a nearly frontier-guarded Datalog
∃
program, and (Dn)n>0 a family of databases.

Assume that Π(Dn) =
⋃

i≥0
Ii , where Ii ⟨ρi ,hi ⟩ Ii+1 is a chase sequence of Dn and Π; notice that,

since Π is a Datalog
∃
program, Π(Dn) = chase(Dn ,Π). By construction, for each null z in Π(Dn),

there exists kz > 0 such that z < dom(Ikz ) and z ∈ dom(Ikz+1). Let Ikz+1 \ Ikz = {p(t1, . . . , tm)}, i.e.,
p(t1, . . . , tm) is the atom in which z was invented. We claim that |gc(z,Π(Dn))| ≤ (m +CΠ), where

CΠ is the number of constants in Π. Towards a contradiction, assume that |gc(z,Π(Dn))| > (m+CΠ).

This implies that there exists i > kz , and a constant c ∈ dom(Dn) that does not occur in p(t1, . . . , tm)
or in Π, such that {c, z} ⊆ dom(a), where Ii+1 \ Ii = {a}. In simple words, during the chase step

Ii ⟨ρi ,hi ⟩ Ii+1 the rule ρi puts together in a the constant c and the null z. It is easy to verify that
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this can only be done via a non-frontier-guarded rule of Π since, after the application of a frontier-

guarded rule ρ, z can jointly appear in the generated atom with constants in p(t1, . . . , tm) and
head(ρ). Therefore, ρi is a non-frontier-guarded rule. But this implies that hi (body(ρi )) contains
only constants since the body variables of ρ are Π-harmless, and thus, z < dom(a). This contradicts
the fact that {c, z} ⊆ dom(a), and thus, |gc(z,Π(Dn))| ≤ (m +CΠ). Hence, mgc(n) ∈ O(1), which in

turn implies that nearly frontier-guarded Datalog
∃
does not have the UGCP.

6.3 The Complexity of TriQ-Lite 1.0
Interestingly, TriQ-Lite 1.0 queries can be evaluated in polynomial time in the size of the database.

Theorem 6.7. Eval for TriQ-Lite 1.0 is PTime-complete in data complexity.

It is easy to verify that every Datalog program is a warded Datalog
∃,¬sg,⊥

program. More precisely,

given a Datalog program Π, since affected(Π) = ∅, we conclude that for every rule ρ ∈ Π,
dangerous(ρ,Π) = ∅, which in turn implies that Π is trivially warded. Therefore, every Datalog

query is a TriQ-Lite 1.0 query. This allows us to deduce the lower bound in Theorem 6.7, as the

query evaluation problem for Datalog is ptime-hard in data complexity (see, e.g., [16]). The rest of

this subsection is devoted to establishing the membership of our problem in ptime.

Consider a database D and a (fixed) TriQ-Lite 1.0 query Q = (Π,p). As discussed in the proof of

Theorem 4.4, for an arbitrary tuple t ∈ Uarity(p)
,

Q(D) , ⊤ implies t ∈ Q(D) iff (⋆, . . . ,⋆) < Q ′(D) implies t ∈ Q ′(D),

where Q ′ = (ex(Π) ∪ Π⊥,p), and Π⊥ is defined as the Datalog program

{a
1
, . . . ,an → p(⋆, . . . ,⋆) | a

1
, . . . ,an → ⊥ ∈ Π},

with⋆ being a constant not inD or Π. By construction,Q ′
is a warded Datalog

∃,¬sg
query. Therefore,

to establish the desired upper bound, it suffices to show that:

Proposition 6.8. Eval for warded Datalog
∃,¬sg

is in ptime in data complexity.

Consider an instance of Eval for warded Datalog
∃,¬sg

, i.e., a database D, a warded Datalog
∃,¬sg

query Q = (Π,p), and a tuple of constants t. Our goal is to show that the problem of deciding

whether t ∈ Q(D) is feasible in polynomial time in D. Notice that we focus on the problem whether

t ∈ Q(D), without checking if Q(D) , ⊤, since Q(D) , ⊤ holds trivially due to the absence of

constraints. The algorithm for checking whether t ∈ Q(D) consists of the following two steps.

Step 1 - Eliminate Negation.We construct a database D+ ⊇ D and eliminate the negation from

the given query Q = (Π,p) to produce Q+ = (Π+,p) such that Q(D) = Q+(D+). Since the negation
in Π is stratified and grounded, Π+ can be computed from Π in the standard way by replacing each

negative atom ¬s(t) with a positive atom s̄(t), where the relation s̄ in D+ stores the complement of

s with respect to the ground semantics of Π over D, that is, the instance

Π(D)↓ = {a ∈ Π(D) | dom(a) ⊂ U},

which collects all the atoms of Π(D) with constants only. We proceed to formalize the above

informal construction. Let σ : sch(Π) → [0, ℓ] be a stratification of Π, and let Π0, . . . ,Πℓ be the

partition of Π induced by σ . We denote by (Πi )+, where i ∈ [1, ℓ], the program obtained from Πi by

replacing each negative atom ¬s(t) with the positive atom s̄(t). Let sch−(Πi ) be the set of predicates

occurring in Πi in at least one negative atom. We inductively define D⋆
ℓ
and Π⋆

ℓ
as follows: D⋆

0
= D
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and Π⋆
0
= Π0; and for i ∈ [1, ℓ], D⋆

i = (D⋆
i−1

∪Ci−1), where

Ci−1 =

s̄(u)
������ s ∈ sch

−(Πi ),

t ∈ (dom(D))arity(p),
s(t) < Π⋆

i−1
(D⋆

i−1
)↓

 ,
and Π⋆

i = Π⋆
i−1

∪ (Πi )+. Let D+ = D⋆
ℓ
and Π+ = Π⋆

ℓ
.

Step 2 - Scan the Ground Semantics. We simply check whether the atom p(t) belongs to the

ground semantics of Π+ over D+. Formally, if p(t) ∈ Π+(D+)↓, then accept; otherwise, reject.

It is not difficult to verify that the above algorithm is correct. In fact, by construction, Q(D) =
Q+(D+), which in turn implies that t ∈ Q(D) iff the algorithm accepts. However, at this point, it is

not clear whether the above algorithm runs in polynomial time. This depends on the complexity of

computing the ground semantics of a program over a database. Observe that during the computation

of the algorithm, we are always interested in the ground semantics of a warded Datalog
∃
program

(without negation) over a database. Moreover, it is easy to verify that, if the ground semantics of

a warded Datalog
∃
over a database D can be computed in polynomial time in D, then the above

algorithm runs in polynomial time in D. Consequently, to establish Proposition 6.8, it suffices to

show the following crucial technical lemma:

Lemma 6.9. Consider a database D, and a warded Datalog∃ program Π. The instance Π(D)↓ can be

constructed in polynomial time in D.

It is easy to see that the size of Π(D)↓ is polynomial in the size of D. More precisely, |Π(D)↓ | ≤

|sch(Π)| · |dom(D)|arity(Π), that is, the maximum number of ground atoms that can be formed using

predicates of sch(Π) and constants of dom(D). Hence, to establish our claim, it suffices to show

that the problem of deciding whether a ground atom p(t), where p ∈ sch(Π) and t ∈ dom(D)arity(p),
belongs to Π(D) is feasible in polynomial time in D. The rest of this subsection is devoted to

establishing this rather involved result.

A crucial notion in our analysis is the so-called proof-tree of p(t) with respect to D and Π,
introduced in [12].

10
Such a proof-tree (if it exists) can be conceived as a tree-like representation of

the proof of p(t) with respect to D and Π, that is, the part of Π(D) which entails p(t). Before we
proceed further, let us illustrate the notion of the proof-tree via a simple example.

Example 6.10. Consider the warded Datalog
∃
program Π:

ρ1 = s(?X , ?Y , ?Z ) → ∃?W s(?X , ?Z , ?W )

ρ2 = s(?X , ?Y , ?Z ), s(?Y , ?Z , ?W ) → q(?X , ?Y )

ρ3 = t(?X ) → ∃?Z p(?X , ?Z )

ρ4 = p(?X , ?Y ),q(?X , ?Z ) → r (?X , ?Y , ?Z )

ρ5 = r (?X , ?Y , ?Z ) → p(?X , ?Z ),

the database D = {s(a,a,a), t(a)}, and the ground atom p(a,a). A proof and a proof-tree of p(a,a)
with respect to D and Π are given in Figure 1(a) and 1(b), respectively. Observe that a proof of

p(a,a) with respect to D and Π encodes which rules must be applied during the construction of

chase(D,Π) in order to entail p(a,a). A proof-tree is a tree-like representation of such a proof.

10
Notice that in [12] the term resolution proof-scheme is adopted. However, for the sake of readability, we prefer to use the

more compact term proof-tree.
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(b)(a)

s(a,a,a)

s(a,a,z1)
ρ 1

ρ2

q(a,a)

ρ2s(a,z1,z3)
ρ1

t(a)

p(a,z2)
ρ 3

r(a,z2,a)
ρ4

ρ4

p(a,a)
ρ5

p(a,a)

q(a,a)

r(a,z2,a)
ρ5

ρ3

p(a,z2)

t(a)

ρ4 ρ4

ρ2 ρ2

s(a,z1,z3)

s(a,a,z1)
ρ1

s(a,a,a)
ρ1

s(a,a,z1)

s(a,a,a)
ρ1

Fig. 1. Proof and proof-tree from Example 6.10.

It is clear that p(t) ∈ Π(D) iff p(t) has a proof with respect to D and Π. Now, having a proof of
p(t) with respect to D and Π, we can construct a proof-tree of p(t) by, roughly speaking, reversing

the edges and unfolding the obtained graph into a tree by repeating some of the nodes. On the

other hand, having a proof-tree of p(t), we can construct a proof of p(t) by reversing the edges and

collapsing some of the nodes. Therefore, p(t) ∈ Π(D) iff p(t) has a proof-tree with respect to D and

Π. Thus, our problem is equivalent to the problem of deciding whether a proof-tree of p(t) with
respect to D and Π exists. We solve the latter problem via a recursive alternating algorithm that

constructs a proof-tree P of p(t) with respect to D and Π (if it exists) by building the branches of P
in parallel universal computations. We proceed to formalize the above informal discussion.

For technical clarity, in the rest of this section, we focus on rules with at most one occurrence

of an existentially quantified variable. This does not affect the generality of our proof since every

warded Datalog
∃
program Π can be transformed into a warded Datalog

∃
program Π′

, where each

rule contains at most one occurrence of an existentially quantified variable, that preserves all the

ground atoms that can be inferred from Π. More precisely, given a rule ρ

a
1
, . . . ,an ,¬b1

, . . . ,¬bm → ∃?Y1 . . . ∃?Yk c,

with X = var(body(ρ)) ∩ var(head(ρ)), we define N(ρ) as the set of rules

a
1
, . . . ,an → ∃?Y1 p

ρ
1
(X, ?Y1)

p
ρ
1
(X, ?Y1) → ∃?Y2 p

ρ
2
(X, ?Y1, ?Y2)

...

p
ρ
k−1

(X, ?Y1, . . . , ?Yk−1) → ∃?Yk p
ρ
k (X, ?Y1, . . . , ?Yk )

p
ρ
k (X, ?Y1, . . . , ?Yk ) → c,

where p
ρ
1
, . . . ,p

ρ
k are auxiliary predicates not occurring in Π. The program Π′

is defined as⋃
ρ ∈Π N(ρ). It is easy to verify that, if Π is warded, then also Π′

is warded. Moreover, Π(D)↓ =
Π′(D)↓, for every database D. Given a rule ρ, let π∃(ρ) be the position at which the existentially

quantified variable occurs in ρ; π∃(ρ) = ε if there is no existentially quantified variable in ρ.
Let us now recall the key notion of the proof-tree. To this end, we need to introduce some

auxiliary notation and terminology. Given a Datalog
∃
rule ρ and an atom a = p(t1, . . . , tn), we say

that ρ is compatible with a, written ρ ◃ a, if the following two conditions hold: (i) there exists a
homomorphism h such that h(head(ρ)) = a, and (ii) for each i ∈ [1, arity(p)], if ti ∈ U or ti occurs
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more than once in a, then π∃(ρ) , p[i]. Observe that the homomorphism that maps head(ρ) to a is

unique, and we refer to it by hρ,a . Given a set of termsT and a set of predicates X , let base(T ,X ) be

the set of atoms {p(t) | p ∈ X and t ∈ T arity(p)}, i.e., the atoms that can be formed using terms from

T and predicates from X . We are now ready to recall the definition of the proof-tree of a ground

atom with respect to a database and a program [12].

Definition 6.11. Consider a database D, a Datalog∃ program Π, and an atom p(t) with p ∈ sch(Π)
and t ∈ dom(D)arity(p). Let P = (N ,E, λN , λE ) be a labeled rooted tree, where N is the node set, E is

the edge set, λN : N → base(dom(D) ∪ B, sch(Π)), and λE : E → Π. P is a proof-tree of p(t) with
respect to D and Π if the following hold:

(1) If v is the root node of P , then λN (v) = p(t).
(2) For each v ∈ N with child nodes u1, . . . ,un , there exists ρ ∈ Π such that:

(a) for each i ∈ [1,n], λE ((v,ui )) = ρ,
(b) ρ ◃ λN (v), and
(c) there exists a bijective function f : body(ρ) → {u1, . . . ,un} such that, for each a ∈ body(ρ),

λN (f (a)) = γ (a), where γ = hρ,λN (v) ∪ {?V → t |?V ∈ var(body(ρ) \ head(ρ)) and t ∈

(dom(D) ∪ B)}.
(3) Let BP =

⋃
v ∈N {z ∈ B | z ∈ dom(λN (v))}. For a null z ∈ BP , we define the set of its critical

edges as follows:

critical(z) =

e = (v,u) ∈ E

������ z ∈ (dom(λN (v)) ∩ B),
π∃(λE (e)) , ε,
z appears in λN (v) at position π∃(λE (e))

 .
For each z ∈ BP , and pairs (v,u), (v ′,u ′) ∈ critical(z), it holds that λN (v) = λN (v

′).

(4) For each leaf node v ∈ N , λN (v) ∈ D.

Let us clarify that the above definition is slightly different than the one in [12]. However, the

two definitions are equivalent in the sense that an atom a has a proof-tree (adopting the definition

in [12]) with respect to a databaseD and a program Π iff a has a proof-tree (adopting Definition 6.11)
with respect to D and Π. The next lemma is implicit in [12]:

Lemma 6.12. Consider a database D, a Datalog∃ program Π, and an atom p(t) with p ∈ sch(Π) and
t ∈ dom(D)arity(p). Then p(t) ∈ Π(D) iff p(t) has a proof-tree with respect to D and Π.

The above lemma shows that our problem is equivalent to the problem of deciding whether p(t)
has a proof-tree with respect to D and Π. For technical clarity, we normalize even further the rules

occurring in a warded Datalog
∃
program Π so that every rule is head-grounded, i.e., each term in

the head is either a constant or a harmless variable, or semi-body-grounded, i.e., there exists at most

one body atom that contains a harmful variable. More precisely, for each rule ρ ∈ Π of the form

s0(X,Y1), s1(Y2,Z1), . . . , sn(Y2,Z1) → ∃W t(X,Y3,Z2,W),

where n ≥ 1, dangerous(ρ,Π) = X, Y3 ⊆ (Y1 ∪ Y2) and Z2 ⊆ Z1, let N(ρ) be the set of rules

consisting of

s1(Y2,Z1), . . . , sn(Y2,Z1) → tρ (Y12,Y3,Z2) (19)

s0(X,Y1), tρ (Y12,Y3,Z2) → ∃W t(X,Y3,Z2,W), (20)

where tρ is an auxiliary predicate not occurring in sch(Π), and Y12 = (Y1∩Y2). Let Π
′ =

⋃
ρ ∈Π N(ρ).

It is clear that each variable in the head of (19) is Π′
-harmless, while in the body of (20) only the

atom s0(X,Y1) contains Π
′
-harmful variables. Moreover, Π(D)↓ = Π′(D)↓, for every database D.
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We are now ready to present our alternating algorithm ProofTree. Let us first give a high-level
description of it.

A High-Level Description of ProofTree

The algorithm ProofTree accepts as input a database D, a warded Datalog
∃
program Π, and an

atom p(t), where t is a tuple of constants of dom(D). As explained above, Π can be normalized in

such a way that each rule is head-grounded or semi-body-grounded. Henceforth, we assume that

Π is in normal form, and we write Πh
and Πb

for the head-grounded and the semi-body-grounded

rules of Π, respectively. ProofTree starts from p(t), and applies resolution steps until the database

D is reached. It consists of the following steps:

• If p(t) ∈ D, then accept; otherwise, a rule ρ ∈ Πh
such that ρ ◃ p(t) is guessed. After

resolving p(t) with ρ we get the set of atoms γ (body(ρ)), where γ extends hρ,p(t) by mapping

the variables in the body but not in the head of ρ to (dom(D) ∪ B).
• The setγ (body(ρ)) is partitioned into {S1, . . . , Sn} in such a way that, for each null z occurring
in γ (body(ρ)), there exists exactly one i ∈ [1,n] such that Si contains z, and there is no

partition of γ (body(ρ)) with n + 1 elements that satisfies the latter condition, i.e., each

element of {S1, . . . , Sn} is ⊆-minimal. The intention underlying the above partitioning step

is to keep together, in a parallel universal computation of the alternating algorithm, the nulls

that appear in γ (body(ρ)), until the atom in which they are invented is known. This is vital

for ensuring the compatibility of the various branches that are built in parallel computations.

• Universally select each set S ∈ {S1, . . . , Sn} and prove it. In fact, if S consists of a single atom

p ′(t′), where t′ is a tuple of constants of dom(D), thenwe recursively callProofTree(D,Π,p ′(t′));
otherwise, we proceed as follows.

• For each atom a ∈ S , a rule ρa ∈ Πb
is guessed such that ρa ◃ a, and the set of atoms

γa(body(ρa)), where γa extends hρa,a by mapping the variables that appear in the body but

not in the head of ρa to (dom(D) ∪ B), is obtained.
• The set

⋃
a∈S γa(body(ρa)) is partitioned as above, and each component of the partition is

proved in a parallel universal computation as done for {S1, . . . , Sn}.

During the execution of the above procedure, the first time that a null z is lost after resolving an
atom a (that contains z) with a rule ρ ∈ Π, which means that z is associated with the existentially

quantified variable in head(ρ), we store hρ,a(head(ρ)) as the atom where z is invented. It is vital
to ensure that the atoms where z is invented in parallel computations are precisely hρ,a(head(ρ)).
This is achieved by carrying the atom hρ,a(head(ρ)) together with the component that contains z.

The Formal Definition of ProofTree

Before formalizing the above algorithm, we need to introduce an additional auxiliary notion.

Consider a set of atoms S such that dom(S) ⊂ (U ∪ B), and a set N ⊆ (dom(S) ∩ B). A partition

{S1, . . . , Sn} of S is called [N ]-linking if, for each z ∈ (dom(S) ∩ B) \ N , there exists exactly one

i ∈ [1,n] such that z ∈ dom(Si ). Moreover, {S1, . . . , Sn} is called [N ]-optimal if (i) it is [N ]-linking,

and (ii) for every i ∈ [1,n] and a ∈ Si , the partition {S1, . . . , Si−1, Si \{a}, Si+1, . . . , Sn , {a}} of S is not
[N ]-linking. Consider, for example, the set S = {p(c, z1),p(z1, z2),p(z2, z3),p(z3, z4)}, where c ∈ U
and z1, z2, z3, z4 ∈ B, and letN = {z2, z3, z4}. The partition {{p(c, z1),p(z1, z2)}, {p(z2, z3),p(z3, z4)}}

is [N ]-linking since z1 ∈ (dom(S) ∩ B) \ N occurs in exactly one component. However, it is not

[N ]-optimal since the partition {{p(c, z1),p(z1, z2)}, {p(z2, z3)}, {p(z3, z4)}} is still [N ]-linking. In

fact, the latter partition is [N ]-optimal since, once we split the component {p(c, z1),p(z1, z2)} into

two components, the obtained partition is not [N ]-linking. We are now ready to formalize our

alternating algorithm.
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ProofTree(D,Π,p(t)) consists of the following steps:
(1) If p(t) ∈ D, then accept.

(2) Guess a rule ρ ∈ Πh
such that ρ ◃ p(t); if there is no such a rule, then reject.

(3) Guess a mapping µ : var(body(ρ)) \ var(head(ρ)) → (dom(D) ∪ B), and let γ = hρ,p(t) ∪ µ.
(4) Let {S1, . . . , Sn} be the [∅]-optimal partition of γ (body(ρ)).
(5) Universally select S ∈ {S1, . . . , Sn} and do the following:

(a) if S = {p ′(t′)} and dom(p ′(t′)) ⊆ dom(D), then call ProofTree(D,Π,p ′(t′));
(b) if (dom(S) ∩ B) , ∅, then goto (6).

(6) RS := {(z, ε) | z ∈ (dom(S) ∩ B)}.
(7) For each a ∈ S do the following:

(a) Guess a rule ρa ∈ Πb
such that ρa ◃ a; if there is no such a rule, then reject.

(b) Assume that z ∈ (dom(a) ∩ B) occurs in a at position π∃(ρa), and (z,x) ∈ RS . If x = ε , then
RS := (RS \ {(z, ε)}) ∪ {(z,a)}; otherwise, if x , a, then reject.

(c) Guess amapping µa : var(body(ρa))\var(head(ρa)) → (dom(D)∪B) such that dom(γa(body(ρa)\
{ward(ρa)})) ⊆ dom(D), where γa = hρa,a ∪ µa .

(8) S+ :=
⋃

a∈S γa(body(ρa)).

(9) N := {z ∈ (dom(S+) ∩ B) | (z,x) ∈ RS and x , ε}.
(10) Let {S+

1
, . . . , S+n } be the [N ]-optimal partition of S+.

(11) F := {z ∈ B | z ∈ dom(S+) \ dom(S)}.
(12) For each i ∈ [1,n], letRS+i = {(z,x) ∈ RS | z ∈ (dom(S+i )∩B)\F } ∪ {(z, ε) | z ∈ (dom(S+i )∩F )}.

(13) Universally select S ∈ {S+
1
, . . . , S+n } and do the following:

(a) If S = {p ′(t′)} and dom(p ′(t′)) ⊆ dom(D), then call ProofTree(D,Π,p ′(t′)).
(b) If (dom(S) ∩ B) , ∅, then goto (7).

The correctness of the above algorithm follows by definition:

Lemma 6.13. Consider a database D, a warded Datalog∃ program Π, and an atom p(t) with p ∈

sch(Π) and t ∈ dom(D)arity(p)
. ProofTree(D,Π,p(t)) accepts iff p(t) has a proof-tree with respect to D

and Π.

Recall that our goal is to show that the problem of deciding whether p(t) belongs to Π(D) is feasi-
ble in polynomial time in D. By Lemma 6.12 and Lemma 6.13, p(t) ∈ Π(D) iff ProofTree(D,Π,p(t))
accepts. It is well-known that alternating logarithmic space coincides with polynomial time. There-

fore, it suffices to show the following:

Lemma 6.14. Consider a database D, a warded Datalog∃ program Π, and an atom p(t) with p ∈

sch(Π) and t ∈ dom(D)arity(p)
. If Π is fixed, then ProofTree(D,Π,p(t)) uses O(log(|dom(D)|)) space

at each step of its computation.

Proof. We first show that the size of a component of an [N ]-optimal partition computed during

the execution of ProofTree(D,Π,p(t)) is at most maxρ ∈Π{|body(ρ)|}. This is done by induction

on the number of partitioning steps that are being applied during a universal computation of

ProofTree. It is clear that the first partitioning step is actually step (4), where the [∅]-optimal

partition {S1, . . . , Sn} of a set of atomsγ (body(ρ)), where ρ ∈ Π andγ is a mapping var(body(ρ)) →
(dom(D) ∪B), is computed. Observe that, for each i ∈ [1,n], |Si | ≤ |body(ρ)|, and the claim follows.

Consider now a component S ′ obtained during the i-th partitioning step, for i > 1. Observe that in

this case S ′ is actually obtained during step (10) of the algorithm, where the [N ]-optimal partition

of a set of atoms S+ =
⋃

a∈S γa(body(ρa)), where S is a component obtained during the (i − 1)-th

partitioning step, ρa ∈ Π, γa is a mapping var(body(ρa)) → (dom(D) ∪B), and N ⊆ (dom(S+) ∩B),
is computed. We claim that |S ′ | ≤ |S |, which in turn implies that |S ′ | ≤ maxρ ∈Π{|body(ρ)|} since,
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by induction hypothesis, |S | ≤ maxρ ∈Π{|body(ρ)|}. By construction, ρa ∈ Πb
, i.e., is a semi-body-

grounded rule of Π. This implies that, for each a ∈ S , only one atom a⋆ of γa(body(ρa)) may

contain nulls, while all the other atoms contain only constants. Assuming that S = {a
1
, . . . ,am}, it

is easy to verify that the largest component that we can have in the [N ]-optimal partition of S+ is
{a⋆

1
, . . . ,a⋆m}, while all the other components consist of a single atom. Thus, |S ′ | ≤ |S |, as needed.
Having a bound on the size of a set of atoms that belongs of an [N ]-optimal partition computed

during the execution of ProofTree(D,Π,p(t)), it is not difficult to bound the space needed at each

step of its computation. In the worst case, we need to remember (maxρ ∈Π{|body(ρ)|})
2
due to step

(8), where the set S+ is computed. It is not difficult to see that the space needed to represent an

atom depends polynomially on Π, and is logarithmic in |dom(D)|. The same holds for a pair of

the form (z,x), where z is a null and x is either ε or an atom. Therefore, assuming that Π is fixed,

ProofTree(D,Π,p(t)) uses O(log(|dom(D)|)) space at each step of its computation, and the claim

follows.

6.4 Complexity-Theoretic Justification of Wardedness
We conclude this section by justifying the design choices made in the definition of wardedness. To

this end, we show that the mildest relaxation of warded Datalog
∃
that one can think of leads to an

inherently intractable language; in fact, to an exptime-hard language. This is a strong indication that

there is no obvious way to extend warded Datalog
∃
without losing tractability in data complexity.

Recall that the key idea underlying wardedness is to collect all the dangerous body variables in

a single body atom, the so-called ward, while this atom can share only harmless variables with

the rest of the rule-body. In other words, the ward can interact with the rest of the rule-body only

via harmless variables. The mildest relaxation of wardedness that one can propose is as follows:

allow at most one occurrence of exactly one harmful variable ?V that occurs in the ward to appear

outside the ward in an atom of the form p(t1, . . . , ti−1, ?V , ti+1, . . . , tn), where each ti is either a
constant or a harmless variable; in this case, we say that the warded Datalog

∃
program is with

minimal interaction. Formally, a warded Datalog
∃
program Π is with minimal interaction if, for

each rule ρ ∈ Π, where a ∈ body(ρ) is the ward, the following hold:

(1) | (var(a) ∩ var(body(ρ) \ {a})) \ harmless(ρ,Π)︸                                                        ︷︷                                                        ︸
B

| ≤ 1;

(2) if B = {?V }, then there exists at most one occurrence of ?V in (body(ρ) \ {a}); and
(3) if ?V occurs in b ∈ (body(ρ) \ {a}), then var(b) \ {?V } ⊆ harmless(ρ,Π).

It is possible to show that query evaluation for warded Datalog
∃
with minimal interaction is

exptime-hard. This is done by simulating the behavior of an alternating Turing machine that uses

linear space. Before we proceed further, let us recall the basics on alternating Turing machines.

An alternating Turing machine is a tuple M = (S,Λ,δ , s0), where S = S∀ ⊎ S∃ ⊎ {sa} ⊎ {sr } is
a finite set of states partitioned into universal states, existential states, an accepting state and a

rejecting state, Λ is the tape alphabet, δ ⊆ (S × Λ) × (S × Λ × {−1,+1}) is the transition relation,

and s0 ∈ S is the initial state. We assume that Λ contains a special blank symbol ⊔. The symbols −1

and +1 denote the cursor directions left and right, respectively. A computation tree forM is a tree

labeled by configurations, i.e., tape content, cursor position, and internal state, ofM such that:

(1) if node v is labeled by an existential configuration, then v has one child, labeled by one of

the possible successor configurations;

(2) if v is labeled by a universal configuration, then v has one child for each possible successor

configuration;

(3) the root is labeled by the initial configuration; and
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(4) all leaves are labeled by accepting or rejecting configurations.

A computation tree is accepting if it is finite and all leaves are labeled by accepting configurations.

We are now ready to show that:

Theorem 6.15. Eval for warded Datalog
∃
with minimal interaction is exptime-hard in data

complexity.

Proof. The proof is by a reduction from the acceptance problem of an alternating polynomial-

space Turing machine M on input I . We assume that M is well-behaved and never tries to read

beyond its tape boundaries, and uses n = |I | tape cells. Our goal is to construct in polynomial time

a database DM that depends onM , and a warded Datalog
∃
query Q = (Π, accept(·)) with minimal

interaction that does not depend onM , such thatM accepts on input I iffQ(DM ) = {(ι)}, where ι is
a special constant the represents the initial configuration ofM .

The Predicates. We first describe the predicates that we are going to use in the definition of Π.
These predicates, together with their semantic meaning, are as follows:

• config(?V ) – ?V is a configuration;

• succ(?V , ?V1, ?V2) – ?V1 and V2 are successor configurations of ?V ;

• follows(?V , ?V ′) – ?V ′
is a successor configuration of ?V ;

• state(?S, ?V ) – in configuration ?V the state is ?S ;
• previous-state(?S, ?V ) – the state of the predecessor configuration of ?V is ?S ;
• cursor(?C, ?V ) – in configuration ?V the cursor points to the cell ?C;
• symbol(?A, ?C, ?V ) – in configuration ?V the cell ?C contains the symbol ?A;
• state-cursor-symbol(?S, ?C, ?A, ?V ) – in configuration ?V the state is ?S , and the cursor points
to the cell ?C that contains the symbol ?A;

• next-cell(?C, ?C ′) – cell ?C ′
follows cell ?C on the tape;

• neq(?C, ?C ′) – ?C and ?C ′
are different cells;

• next-symbol(?C, ?A, ?V ) – in a successor configuration of ?V the cell ?C contains the symbol

?A;
• exists(?S) – state ?S is existential;

• forall(?S) – state ?S is universal;

• accept(?V ) – ?V is an accepting configuration;

• previous-accept(?V ) – the predecessor configuration of ?V is an accepting configuration;

• sibling-accept(?V ) – the sibling configuration of ?V , that is, the one that has the same

predecessor as ?V , is an accepting configuration;

• both-siblings-accept(?V ) – both ?V and its sibling configuration are accepting configurations;

• transition(S,A, S1,A1,M1, S2,A2,M2) – encodes the transition rule of the form δ (S,A) =
((S1,A1,M1), (S2,A2,M2)).

Notice that the above set of predicates does not depend onM .

The Database. We now define the database DM , which actually describes the initial configuration

ofM , and also stores the transition function ofM . We use constants to identify the cells and states

of M . In particular, we use the constant ci for the i-th cell of the tape, and the constant s for the
state s of M ; recall that s0 represents the initial state of M . Moreover, we use the constant ι for
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identifying the initial configuration ofM . DM is defined as the database

{config(ι), state(s0, ι), cursor(c1, ι)}

∪ {symbol(αi , ci , ι) | i ∈ [1,n] and αi is the i-th symbol of the input string}

∪ {next-cell(ci , ci+1) | i ∈ [1,n − 1]}

∪ {neq(ci , c j ) | i, j ∈ [1,n] and i , j}

∪ {exists(s) | s ∈ S∃} ∪ {forall(s) | s ∈ S∀}
∪ {trans(s,α , s1,α1,m1, s2,α2,m2) | (s,α) → ((s1,α1,m1), (s2,α2,m2)) ∈ δ }.

Notice that DM depends onM , and can be constructed in polynomial time.

The Program.We are now ready to define the fixed warded Datalog
∃
program Π with minimal

interaction. We start with the rule that generates the configurations ofM :

config(?V ) → ∃?V1∃?V2 succ(?V , ?V1, ?V2),

config(?V1), config(?V2),

follows(?V , ?V1), follows(?V , ?V2).

We also add rules that encode the transition function ofM . For example, the transitions that move

the cursor to the left in the first successor configuration, and to the right in the second successor

configuration are encoded as follows:

transition(?S, ?A, ?S1, ?A1,−1, ?S2, ?A2,+1),

succ(?V , ?V1, ?V2), state-cursor-symbol(?S, ?C, ?A, ?V ),

next-cell(?C1, ?C), next-cell(?C, ?C2) →

state(?S1, ?V1), state(?S2, ?V2),

symbol(?A1, ?C, ?V1), symbol(?A2, ?C, ?V2),

cursor(?C1, ?V1), cursor(?C2, ?V2).

Similar rules are used to encode all the possible moves of the cursor in the successor configurations.

The auxiliary predicate state-cursor-symbol(·, ·, ·, ·), which allows us to write the above rule as a

warded rule with minimal interaction, is defined via the rules

state(?S, ?V ), cursor(?C, ?V ) → state-cursor(?S, ?C, ?V ),

state-cursor(?S, ?C, ?V ), symbol(?A, ?C, ?V ) → state-cursor-symbol(?S, ?C, ?A, ?V ).

It should not be forgotten that the cells that are not involved in the transition must keep their old

values, which is encoded by the following rules:

transition(?S, ?A, ?S1, ?A1,−1, ?S2, ?A2,+1),

state-cursor-symbol(?S, ?C, ?A, ?V ), neq(?C, ?C ′), symbol(?C ′, ?A′, ?V ) →

next-symbol(?C ′, ?A′, ?V )

and

follows(?V , ?V ′), next-symbol(?C, ?A, ?V ) → symbol(?C, ?A, ?V ′).
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Finally, we define when a configuration is accepting, which in turn will be used to conclude whether

ι is accepting. This can be achieved by the following rules:

state(s0, ?V ) → accept(?V )

follows(?V , ?V ′), state(?S, ?V ) → previous-state(?S, ?V ′)

succ(?V , ?V1, ?V2), accept(?V2) → sibling-accept(?V1)

succ(?V , ?V1, ?V2), accept(?V1) → sibling-accept(?V2)

accept(?V ), sibling-accept(?V ) → both-siblings-accept(?V )

previous-state(?S, ?V ), exists(?S), accept(?V ) → previous-accept(?V )

previous-state(?S, ?V ), forall(?S), both-siblings-accept(?V ) → previous-accept(?V )

follows(?V , ?V ′), previous-accept(?V ′) → accept(?V ).

This concludes the construction of the program Π.

Clearly, Π does not depend onM . Observe that, for each rule ρ introduced above, the Π-harmful

variables that occur in ρ are the variables ?V , ?V1, ?V2. It is then easy to verify that Π is indeed

a warded Datalog
∃
program with minimal interaction. Moreover, by construction,M accepts on

input I iff Q(DM ) = {(ι)}, and the claim follows.

7 PROGRAM EXPRESSIVE POWER
As already discussed in Section 4.4, an important issue for a query language is to understand its

expressive power, and, in particular, its expressiveness relative to other central and well-studied

query languages; such a key language is Datalog. It is a common practice in database theory to

study the expressiveness of a newly introduced query language L relative to Datalog, which in turn

gives some insights about the kind of queries that can be expressed in L. The goal of this section is

to perform such a relative expressive power analysis for warded Datalog
∃
and TriQ-Lite 1.0.

By using the results of Section 6.2, it is easy to show that Datalog is not a good candidate for our

purposes. Given a Datalog program Π, Π(D) does not contain a null value, for every database D,
which immediately implies that Datalog does not have the UGCP. Thus, by Lemma 6.5, Datalog is

not a good candidate. On the other hand, the fact that PAll

dat
is a TriQ-Lite 1.0 query, for every graph

pattern P , implies that warded Datalog
∃
is a good candidate. This suggests that warded Datalog

∃
is more expressive than plain Datalog. However, according to the classical notion of expressive

power, the languages in question are equally expressive. It can be shown that, for every warded

Datalog
∃
query Q1, we can construct a Datalog query Q2 such that Q1 and Q2 are equivalent, i.e.,

Q1(D) = Q2(D), for every databaseD; the converse is trivial since a Datalog query is, by definition, a
warded Datalog

∃
query. Therefore, to formally show the intuitive statement that warded Datalog

∃
is more expressive than Datalog, we need to adopt a refined notion of expressive power, which

allows us to classify query languages according to their expressive power on a finer scale.

By Definition 6.3, a Datalog
∃
language L is a good candidate if we can encode the semantics J·KAllG

via a fixed L program. Thus, intuitively speaking, the key advantage of warded Datalog
∃
against

Datalog is the fact that we can express more via a single program. This led us to introduce the refined

notion of program expressive power. Consider a Datalog
∃
language L, and a Datalog

∃
program Π.

The program expressive power of Π relative to L, denoted PepL[Π], is defined as the set of triples

(D,Λ, t), where D is a database, Λ is a set of Datalog rules of the form a
1
, . . . ,an → p(?X1, . . . , ?Xn)

with p being an n-ary predicate that does not appear in Π or in the body of a rule of Λ, and t ∈ Un
,

such that the query Q = (Π ∪ Λ,p) falls in L, and t ∈ Q(D); the rules of Λ act as the output rules of

the query Q . In simple words, PepL[Π] collects the tuples t that can be inferred from a database

ACM Trans. Datab. Syst., Vol. 9, No. 4, Article 39. Publication date: March 2010.



Expressive Languages for Querying the Semantic Web 39:39

D via an L query Q , where Π is the query program of Q excluding the output rules. Now, for a

Datalog
∃
language L, it is natural to define its program expressive power as the set

Pep[L] = {PepL[Π] | Π is an L program}.

Roughly, Pep[L] is a family of sets of triples, where each of its members encodes the program

expressive power of an L program relative to L. Given two languages L1 and L2, we write L1 ≼Pep L2

if Pep[L1] ⊆ Pep[L2]. Finally, we say that L2 is more expressive (w.r.t. the program expressive power)

than L1, written L1 ≺Pep L2, if L1 ≼Pep L2 �Pep L1. We proceed to show that:

Theorem 7.1. Datalog ≺Pep warded Datalog
∃.

Proof. For notational convenience, we write DAT for Datalog and WAR for warded Datalog
∃
. It

is clear that Pep[DAT] ⊆ Pep[WAR] since, by definition, a Datalog program is a warded Datalog
∃

program, and, therefore, DAT ≼Pep WAR. It remains to show that WAR �Pep DAT, or, equivalently,

Pep[WAR] * Pep[DAT]. Consider the database D = {p(c)}, and the warded Datalog
∃
queries

Q1 = (Π ∪ Λ1,q) and Q2 = (Π ∪ Λ2,q), where

Π = {p(X ) → ∃Y s(X ,Y )} Λ1 = {s(X ,Y ) → q} Λ2 = {s(X ,Y ),p(Y ) → q}.

Clearly, () ∈ Q1(D) and () < Q2(D). Hence, (D,Λ1, ()) ∈ Pep
WAR

[Π] and (D,Λ2, ()) < Pep
WAR

[Π],
which in turn implies that Pep[WAR] contains a set of triples T such that (D,Λ1, ()) ∈ T and

(D,Λ2, ()) < T . We claim thatT < Pep[DAT], which in turn implies that Pep[WAR] * Pep[DAT], as
needed. It is not difficult to see that, for every Datalog program Π′

, () ∈ Q ′
1
(D) implies () ∈ Q ′

2
(D),

whereQ ′
1
= (Π′∪Λ1,q) andQ

′
2
= (Π′∪Λ2,q). Thus, the triples (D,Λ1, ()) and (D,Λ2, ()) necessarily

coexist in Pep
DAT

[Π′], for every Datalog program Π′
. Thus, T < Pep[DAT].

By providing a similar argument, we can show that:

Theorem 7.2. Datalog
¬s,⊥ ≺Pep TriQ-Lite 1.0.

Equipped with the above result, it is easy to show that TriQ-Lite 1.0 is more expressive (w.r.t. the

program expressive power) than existing languages suitable for querying RDF graphs. Indeed,

several query languages that enhance SPARQL with navigation capabilities and/or recursion

mechanisms have been proposed, most notably nSPARQL [32], PSPARQL [2], recursive triple

algebra [26], and NEMODEQ [36]. Each one of the above languages L is contained in Datalog
¬s,⊥

,

in the sense that every query inL can be expressed as a Datalog¬s,⊥ query. Thus, we can consider the

Datalog version Ldat
of L in order to compare the program expressive power of L and TriQ-Lite 1.0.

From Theorem 7.2, we immediately conclude that:

Corollary 7.3. If L is nSPARQL, PSPARQL, recursive triple algebra or NEMODEQ, then Ldat ≺Pep
TriQ-Lite 1.0.

8 CONCLUSIONS
We considered the problem of bridging the gap between the existing RDF query languages and

key features for querying RDF data such as reasoning capabilities, navigational capabilities, and a

general form of recursion. A tractable Datalog-based query language has been proposed, called

TriQ-Lite 1.0, which is expressive enough to encode every SPARQL query under the entailment

regime for OWL 2 QL core. Moreover, this language allows us to formulate SPARQL queries in a

simpler way, as it can easily encode a more natural notion of entailment.

We are currently working on the experimental evaluation of TriQ-Lite 1.0. To this end, a challeng-
ing task is to design a practical algorithm for computing the ground semantics of a warded Datalog

∃
program over a database. Furthermore, we are planning to investigate whether TriQ-Lite 1.0 is
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powerful enough to deal with the other two lightweight profiles of OWL 2, namely OWL 2 EL and

OWL 2 RL, and if not, how it can be extended in order to obtain a unique tractable Datalog-based

language that can deal with all the three lightweight profiles of OWL 2.
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