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ABSTRACT
Energy consumption of mobile applications is nowadays a hot
topic, given the widespread use of mobile devices. The high
demand for features and improved user experience, given
the available powerful hardware, tend to increase the apps’
energy consumption. However, excessive energy consumption
in mobile apps could also be a consequence of energy greedy
hardware, bad programming practices, or particular API
usage patterns. We present the largest to date quantitative
and qualitative empirical investigation into the categories
of API calls and usage patterns that—in the context of the
Android development framework—exhibit particularly high
energy consumption profiles. By using a hardware power
monitor, we measure energy consumption of method calls
when executing typical usage scenarios in 55 mobile apps from
different domains. Based on the collected data, we mine and
analyze energy-greedy APIs and usage patterns. We zoom
in and discuss the cases where either the anomalous energy
consumption is unavoidable or where it is due to suboptimal
usage or choice of APIs. Finally, we synthesize our findings
into actionable knowledge and recipes for developers on how
to reduce energy consumption while using certain categories
of Android APIs and patterns.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Measurement
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1. INTRODUCTION
In recent years, we are observing rapid evolution of mobile

devices in terms of available hardware, operating systems,
and, as a consequence of that, the growing lists of features
that mobile applications’ (apps) users demand. These mod-
ern apps have virtually the same features as their equivalent
desktop applications. For instance, many top video games
for mobile devices provide similar levels of user experience as
compared to those console analogs. Such evident step-ahead
has, however, a price to be paid. Nowadays, multi-core
processors, high-performance Graphical Processing Units
(GPUs), and large screens on mobile devices are becoming
more energy demanding as ever. Also, apps fully exploiting
available hardware can easily drain devices’ batteries in no
time.

From a user’s perspective, this produces tangible and perti-
nent problems. The use of energy-draining apps could quickly
leave a user with empty battery, preventing her from using
the smartphone even for phone calls. In addition, having and
running such apps might require frequent battery re-charges.
This represents a problem because modern battery’s life is
quite limited, often to a finite amount of charging cycles (for
Lithium-ion batteries), ranging between 300 and 500 cycles
(with only 100-200 cycles after a mid-life point) and gradually
decreasing with time [4, 5].

A practical, although näıve advice for preventing rapid
discharges and for improving batteries’ life, is to use mobile
devices only for low energy consuming scenarios. However,
while it might be obvious that some apps are likely to be
power demanding—e.g., video games or those apps using
devices such as Global Positioning Systems (GPS)—it can
often happen that some apps might quickly drain the battery
without any apparent reason [32, 33]. For instance, several
studies identified misuses of wakelocks that keep hardware
components unnecessarily awake as causes of high energy
consumption in mobile devices [22, 32, 33, 35].

Also, programming errors, hardware interactions, and API
misuses can cause high levels of energy consumption (also
known as energy bugs) in mobile apps [32]. To identify such
problems, effective strategies for measuring energy consump-
tion in mobile devices are needed. In the literature, several
different strategies have been proposed, based on real mea-
surements [6, 11, 21, 23, 25, 40] and power modeling [19,
20, 33, 34, 43, 46]. While previous work attempted at char-
acterizing energy bugs in mobile devices [6, 7, 19, 33, 40],
most of these classifications have been done either by mining
software repositories (e.g., bug reports, forums, commit logs)
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[32, 42, 44] or by using dynamic tainting [27, 45]. Thus, there
is a clear gap in the research literature on how and where
the uses and misuses of APIs can lead to energy bugs based
on large-scale empirical data. Up-to-date, only the wakelock
and GPS related APIs and their misuses have been studied
and linked to energy bugs [34, 35, 42, 44].

Based on these considerations, our goal is to conduct a
quantitative and, above all, qualitative exploration into how
different API usage patterns can influence energy consump-
tion in mobile apps. We mined and analyzed thousands
of instances of energy-greedy method calls and API usage
patterns by measuring their energy consumption in 55 free
Android apps belonging to different domain categories. In
order to collect energy consumption values for each API call,
we used a hardware-based approach for collecting actual en-
ergy measurements and aligned those values with execution
traces generated from real usage scenarios on mobile apps.
Once energy consumption data were collected for all execu-
tion scenarios, we traced all API calls back to the source code
where they appear using an approach that we specifically
implemented in this paper. Note that, since previous studies
had already shown that 3G/GSM and GPS were energy-
greedy hardware components [6, 19, 33, 34], in this study
we are not interested in measuring the energy consumed by
APIs related to those components.

Using the proposed measurement framework, we analyzed
the consumption of individual APIs as well as their usage
patterns. Firstly, we quantitatively identified the APIs and
the patterns exhibiting high energy consumption. Then,
several evaluators inspected—following a categorization ap-
proach inspired from the grounded theory [12]—thousands of
code fragments where such APIs/patterns occurred. In some
cases, we found evidence of energy bugs due to API misuses
or suboptimal API choices. Overall, our work is in the trend
of mining energy consumption patterns for software systems,
originally pioneered in this community by the work of Hindle
[21]. The contributions of this paper are:

1. An approach for identifying API calls and usage pat-
terns exhibiting high energy consumption;

2. Quantitative ranking of high energy-demanding APIs
and usage patterns, which have been traced back to
original source code in the apps;

3. Results of a qualitative analysis aimed at understanding
energy hotspots in API usage patterns and discussing
whether alternative solutions are available;

4. Actionable knowledge and recipes for developers on
how to reduce energy consumption while using certain
categories of Android APIs and patterns.

Replication package. All the data used in our study are
publicly available online [26]. In particular, we provide (i)
the list of the apps and their versions, (ii) the scenarios we
used for executing the apps, and (iii) the raw data of energy
consumption measurements.

2. EMPIRICAL STUDY DESIGN
The goal of this study is to investigate energy-greedy An-

droid APIs, with the purpose of understanding particular
instances of API calls and API usage patterns that cause
(unusually) high energy consumption. The quality focus is
on the identification of API usages that can cause battery
draining and, if any, possible energy bugs.

Table 1: Distribution of 55 apps across categories.
Category Apps (%) Category Apps (%)
Tools 15(27.27%) Communication 2(3.64%)
Music 6(10.91%) Entertainment 2(3.64%)
Books 4(7.27%) Health 2(3.64%)
Productivity 4(7.27%) Brain 1(1.82%)
Arcade 3(5.45%) Business 1(1.82%)
Media 3(5.45%) Casual 1(1.82%)
News 3(5.45%) Education 1(1.82%)
Travel 3(5.45%) Finance 1(1.82%)
Cards 2(3.64%) Lifestyle 1(1.82%)

The context consists of software, i.e., a set of free Android
apps from Google play, and hardware, i.e., an Android-based
smartphone. Specifically, we considered 55 free Android
apps, belonging to different domains (see Table 1). As for
the hardware, we used a brand new, unlocked and rooted
Nexus 4 [18] LG phone with a 1.5 GHz quad-core Qualcomm
Snapdragon S4 Pro CPU, and equipped with Android 4.2
(kernel version 3.4.perf-ge039dcb). The choice of an Android-
based environment (i.e., device, OS, and apps) is not random
but motivated by two main reasons. First, the apps under
study can be downloaded freely from the market and, thus,
our results can be fully reproduced. Second, the Android
framework tools allow remote execution of apps (from a
laptop connected to the device) for debugging and profiling
purposes.

2.1 Research Questions
Our study aims at empirically answering the following

research questions (RQs):

• RQ1: Which are the most energy-greedy Android API
methods? This research question focuses on individual
API method calls. The goal is to understand whether
or not there are any particular API calls consuming
more energy than others.

• RQ2: Which sequences of Android API calls are the
most energy-greedy? This research question focuses,
instead, on patterns that are composed by subsequent
invocations of API calls, possibly interleaved with in-
vocations of other Java methods, i.e., JDK or external
libraries. Some of these patterns reflect specific us-
age scenarios of certain APIs; for example, querying a
database implies preparing an SQL statement, execut-
ing a query, and analyzing the result set. In this study,
we consider patterns with length of two and three.

The dependent variable considered in this study is the
energy consumption—expressed in Joule (J)—of each method
call (RQ1) or of each pattern (RQ2). In addition, to have
a practical implication of the results achieved, we compute
the percentage of the battery charge consumed by a method
call or pattern consuming a certain amount of Joules. In our
context, the Nexus 4 is equipped with a 2,100 mAh, 3.8V
battery. Thus, a method call consuming 0.01 J will consume
3 · 10−5% of the total battery charge:

100 · 0.01

3.8
· 1, 000

2, 100 · 3, 600
= 3 · 10−5%

The dimensional analysis of the formula is [V ][I][S]
[V ]

· 1
[I]·[S]
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Figure 1: Energy trace collection infrastructure:
general architecture (top), phone-to-power monitor
connection (bottom left), test bed (bottom right).

where [V ] indicates voltage, [I] current intensity, and [S] time.
As shown, the formula provides a dimensionless quantity,
indicating the percentage of battery discharge. Note that
1,000 at the numerator is because the charge is in mAh and
not Ah, and 3,600 is to convert hours to seconds.

Since this is mainly a qualitative study, we are not focusing
on identifying independent variables to control and correlate
with the dependent variable. Instead, as it will be explained
in Section 2.4, we inspected occurrences of method calls
and patterns in the source code and categorized them using
grounded theory approach [12].

2.2 Defining the App Execution Scenario
We defined and executed representative scenarios to mea-

sure energy consumption for methods and patterns for each
of the 55 considered apps. Rather than collecting execution
traces with the objective of maximizing code coverage, we
focused on typical usage scenarios, which may not have neces-
sarily resulted in the highest levels of coverage possible. For
example, for a media player one of the execution scenarios
consisted of creating a play list and then playing its songs
for ten seconds each, while for a browser execution scenarios
involved surfing the Web, managing bookmarks and such,
and for a travel guide scenarios such as looking for places in
a city and transportation options. The scenarios have then
been recorded in test scripts by using the Monkey Recorder

tool [1], so that their execution can be automated. This was
needed because each scenario was executed 30 times and the
consumption of each method was averaged to minimize the
measurement randomness (e.g., due to external factors, such
as other running processes).

2.3 Data Extraction Process
This section explains in detail the data-gathering for es-

timating the energy consumed by API method calls. The
data extraction process follows a three-step approach. In the
first step, we monitored energy consumption executing usage
scenarios and at the same time collecting execution traces.
In the second step, we aligned execution traces with energy
measurements. Finally, in the third step, we traced back the
API calls and patterns to source code.

2.3.1 Power Measurement and Profiling
Figure 1 depicts the test bed components and their inter-

actions. For collecting execution traces, we used the Android
Activity Manager Profiler (AMP) [29]. Note that running
the Android AMP requires the apps to be enabled for debug-
ging, and for this reason we had to enable it by modifying
the manifest file for some of the apps. Because we had to
decompile the APK (Android PacKage) files containing the
apps to an intermediate representation after modifying the
manifest, we recompiled and signed the files to have valid
APKs.

Turning to the energy profiling, we utilized the Monsoon
power monitor [29]. We decided to use a hardware-based
measurement instead of power modeling [19, 20, 33, 34, 43,
46] because using the power monitor allows us to measure
exactly the energy consumed by the device. The whole data
collection process was executed from a laptop (here in after
referred to as a coordinator) connected to the phone via USB.
This made necessary to disable the USB charging to avoid
any bias in the resulting measurements. To limit noise in
the measurement, (i) we disabled all the unnecessary apps
and processes running on the phone to avoid race conditions;
(ii) we put the phone in airplane mode to avoid cell radio
power consumption and asynchronous events related to in-
coming messages or calls (as recommended in the Android
developer guide [16]); (iii) we turned the WiFi on because
some apps require it; and (iv) to avoid energy measurements
by sensors we held the phone steady. We are aware that
such a setting prevented us to study GPS and 3G/GSM
related APIs. However, previous work has shown that GPS
and 3G/GSM are energy-greedy hardware components [6,
19, 33, 34]. We are not interested in such obvious cases of
energy-greedy APIs, therefore, the goal of this study was to
study previously unexplored APIs and patterns.

We summarize all the energy data collections steps in
Listing 1. The entire collection procedure going from the app
installation to the trace generation was entirely automated
and managed by the coordinator, by executing the test scripts
produced as explained in Section 2.2. For each execution, we
installed/uninstalled the app under test remotely to avoid
unexpected behavior because of previous data or application’s
state. After each app was installed, the execution was started
and the AMP was attached to the process running the app1.
Moreover, as explained, each test script was executed 30
times. This procedure was not applicable only to four apps
(i.e., Angry Birds Star Wars, Sniper Shooter, Despicable
Me Minion Rush, and Arcane Legends), since those apps
required gesture events and had a non-deterministic behavior.
For these apps, we programmed the coordinator to collect
data ten times for five minutes without using test scripts;
during the collection period one of the authors played the
games. At the end of each execution, the files generated by
the AMP were pulled from the phone to the coordinator.

2.3.2 Aligning Traces and Energy Measurements
After collecting all the data, we analyzed execution and

energy traces offline to assign energy-related measures (i.e.,
voltage, electric current, and energy) to public Android API
methods. The files generated by the AMP are in the binary
format that can be read using the Android Traceview tool.
However, Traceview is only a visualizer and does not export
the traces to the textual format. Thus, we translated execu-

1In this way we collected the execution trace generated only
from the app under test.
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Listing 1 Energy Data Collection Procedure.

1: Setup(app)
2: InstallInPhone(app)
3: StartPowerMonitor()
4: StartProfiler(app)
5: end
6: FinishExecution(app)
7: StopProfiler(app)
8: StopPowerMonitor()
9: Uninstall(app)

10: PullProfilerData(app)
11: end
12: CollectData(Apps, Scripts, Automatic, Manual)
13: for all app ∈ Apps do
14: if app ∈ Automatic then
15: for iteration = 1 to 30 do
16: Setup(app)
17: script = Scripts[app]
18: Execute(script)
19: FinishExec(app)
20: end for
21: else if app ∈ Manual then
22: for iteration = 1 to 10 do
23: Setup(app)
24: WaitFor(5) //minutes
25: FinishExec(app)
26: end for
27: end if
28: end for
29: end

tion traces into plain files using the dmtracedump tool [17]. A
description of the traces is provided in our online appendix.

In the case of energy traces no pre-processing was required
because the APIs of the Monsoon power monitor allowed us
to get voltage [V] and current intensity [I] values directly, in
Volts and milli-Amperes (mA), respectively. However, the
sampling frequency of the power monitor is 5KHz, which
means that an energy trace is a sequence of time slots with
duration of 200 µs. Thus, because of the sampling difference
between energy and execution traces, we used an approach
similar to the one used by Li et al. [25]. Let T be an energy
trace with an initial timestamp tT,0 and a final timestamp
tT,n, and S a set of time partitions (time slots) on T with
a length of ∆t = 200 µs. The energy consumed by the
phone—measured in Joules—at one slot s ∈ S is:

E(s) = V (s) ·I(s) ·10−3 ·∆t ·10−6 = 2 ·V (s) ·I(s) ·10−7 (1)

Consequently, because an API method can be executed
in a time period that is included in an individual time slot
s or in a time period that is extended through more than
one time slot, the energy consumed by the i-th execution
of a specific method m(i) (e.g., the fifth call to the method
Context.getSystemService) in a trace T is equal to the sum
of the energy consumed during each time slot in T where the
execution is done:

Em(i)(T ) =
∑

s ∈ slots(m(i),T )

Em(i),T (s) (2)

This approach assumes that the energy consumed by a spe-
cific method execution in a time slot is proportional to the
execution time in the slot [25]. Moreover, if several methods

are executed at the same time, the energy consumed is in-
versely proportional to the number of methods executed at
the same moment. Thus, given [ta, tb] the execution period

of a method m(i) in a time slot s, and methodsAt(t, T ) the
set of methods executed in parallel at time t in the trace T ,
then the energy consumed by the specific method execution
m(i) of trace T in the time slot s is defined as follows:

Em(i),T (s) =
E(s)

∆t

∑
t ∈ [ta,tb]

1

methodsAt(t, T )
(3)

After we estimated the energy for each method execution in
a trace (i.e., Em(i)(T )) using equation 2, for each trace, we
generated a file with the API calls, entry and exit timestamps,
nesting level, and the energy consumed in the execution.
We ordered the lines in those files using the same order of
execution in the original trace.

Once API method calls were collected together with their
energy consumption estimates, we computed API usage pat-
terns. A pattern of length n is composed of n method calls
and its energy consumption is the total energy consumption
of the n invoked methods. As mentioned before, the AMP
collects all the calls to Java and Android API methods in-
cluding public, private, and protected ones that were invoked
by the threads managed by the process running an app. How-
ever, we were only interested in patterns composed of calls
to public Android methods. For this reason, we removed
Android non public methods from the identified patterns.
This means that private and protected methods are consid-
ered when computing energy consumption but they are not
included in the identified patterns. We focused on patterns
with length between one (i.e., single method calls) and three
(i.e., sequences of three calls to API methods)

2.3.3 Tracing API usages to Source Code
Collecting execution traces using the AMP allows us to

identify the Android API methods invoked when executing
the apps without instrumenting the source code. However,
this has a drawback: The traces do not include the app
methods responsible for API invocations. In addition, we
removed the calls to Java APIs. Thus, some of the sequences
of API calls extracted from the traces could not belong to the
same scope/context and could not be sequentially invoked
in the apps. In order to solve these issues and to understand
the purpose of each pattern, we traced-back the identified
usage patterns (those with length higher than one) onto the
source code methods of actual apps.

Our approach is based on the concept of fingerprint/signa-
ture analysis that has been previously used for detecting
file cloning [28, 31], and software provenance [9, 10]. Such
approach represents methods in a class by means of a finger-
print, defined as the sequence of signatures of the invoked
API methods. These fingerprints are then matched in the
apps source code.

2.4 Data Analysis Method
For both RQ1 and RQ2, we report quantitative data and

qualitative results. In terms of quantitative analysis, we
report the distribution of the energy consumption for the
executed method calls and for all the identified patterns.
Such quantitative analysis is preliminary to the qualitative
one, since it allows us to identify the methods and patterns
that consume more energy and that, at the same time, are
frequently used in Android apps.

4



Specifically, in our quantitative analysis we focused on
individual (RQ1) and sequences (RQ2) of API calls having
a consumption greater than Q3 + (1.5 · IQR), where Q3 is
the third quartile of the energy consumption distribution,
and IQR is the inter quartile range. Using such an energy
consumption threshold, we identified a set of 131 API method
calls, 15 patterns of length two, and eight patterns of length
three. For each of these APIs and API usage patterns we
manually inspected their occurrences in the source code of
all the apps aiming at deriving the following information:

1. Its purpose, e.g., executing a query on a database,
handling a socket connection, instancing a secure con-
nection, etc.

2. A likely, preliminary category to which the pattern/API
method could be assigned. Such a categorization was
performed following the procedures from the grounded
theory [12], i.e., by relying on keywords found in the
source code, domain analysis, and experts’ (personal)
knowledge.

3. Wherever possible, we inspected specific forums (e.g.,
programmingforums.org), Questions & Answers web-
sites (e.g., StackOverflow), and official Android docu-
mentation, to investigate whether such patterns actu-
ally represent cases of energy bugs, wrong API choices,
or whether they are just cases one has to live with.

4. Also, whenever possible, we investigated and discussed
whether there exists a possible alternative to the APIs
under analysis that could lead towards lower energy
consumption.

After this initial categorization, the categories were con-
solidated, trying to reduce overlaps and small/singleton cate-
gories. The final result is a categorized list of energy-greedy
patterns or API calls, with possible indication of the presence
of energy bugs and suggestion of possible alternatives and/or
countermeasures.

3. STUDY RESULTS
This section reports the results aimed at answering the

research questions formulated in Section 2.1.

3.1 Analysis of Android API Methods
Figure 2(a) represents the distribution of energy consump-

tion values for the 807 Android API methods that were
exercised in the 55 subject apps. Note that the x-axis is re-
ported in log scale for the sake of readability. A distribution
fitting performed using the R [36] power.low.fit procedure
of the igraph package, indicates that the distribution of en-
ergy consumption fits a power law, i.e., a function of type
f(x) = α ·xk. The obtained power law exponent (k) is −1.69,
while the Kolmogorov-Smirnov test [8] p-values returned by
the fitting procedure is 0.76. Since it is greater than 0.05,
this indicates that with a significance level of 5% we cannot
reject the hypothesis that the observed distributions deviate
from the power law.

Out of all the analyzed APIs, 131 represent negative out-
liers in terms of energy consumption (see Section 2.4). While
the average energy consumption for the remaining 676 (807-
131) methods is 4e-5 J on average, for the top-131 methods
it is 5e-3 J on average (125 times higher) with peaks of 0.15
Joule, i.e., more than 3,000 times than the average of all the
methods. Note also that these API invocations are scattered

Table 2: Distribution of 131 energy-greedy APIs.
Category # API Methods (%)
GUI & Image Manipulation 49 (37%)
Database 30 (23%)
Activity & Context 17 (13%)
Services 13 (10%)
Web 7 (5%)
Media & Animation 5 (4%)
Data Structure Manipulation 3 (2%)
File Manipulation 3 (2%)
Geo Location 2 (2%)
Networking 2 (2%)

across all the 55 analyzed apps, with a total of 9,609 instances
(mean 73, median 23).

As designed, our qualitative analysis focuses on the anal-
ysis of these 131 API methods to understand whether they
represent a wrong implementing choice made by developers
(i.e., energy bugs) or just cases where developers had no
different choice to implement the required feature. Table 2
reports the categories in which these 131 methods have been
classified. For the sake of space, we discuss only the most
interesting examples, while the complete list of APIs and
energy measurements can be found in the online appendix.

As we can see, APIs related to GUI & Image Manipulation
and Database represent, all together, 60% of the energy-
greedy APIs. Concerning the GUI & Image Manipulation
category, an interesting case is represented by the method
notifyDataSetChanged of class ArrayAdapter. In the An-
droid documentation, this method is described as the one in
charge of notifying the attached observers that the underly-
ing data has been changed and any View reflecting the data
set should refresh itself. This method is energy-greedy due
to the necessity of refreshing all views when changes happen
to the data represented in them. This method appears to
be a well-known energy bottleneck and it has been spotted
and discussed by Android developers on Stack Overflow [37].
However, this example represents one of those cases where
developers have no choice to implement automatic updating
of view basic blocks in response to data changes.

Several methods from the Database category are needed in
the management of an SQLite database on Android. We go
from the database opening SQLiteDatabase.openDatabase,
to its querying SQLiteDatabase.query, until its deletion
ContextWrapper.deleteDatabase, for a total of 30 energy-
greedy APIs. It should be noted that energy-greedy APIs
responsible for XML files manipulation are, instead, very rare,
with only the method XML.newSerializer belonging from
the File Manipulation category (see Table 2). Of course, this
does not mean that the use of an SQLite database represents
an energy bug, but just that developers should seriously think
if their application really needs to use a relational database
as a storage layer or, instead, could also store persistent data
in XML files or using SharedPreferences [14] for storing
key-value pairs of primitive data types.

An interesting case of an energy bug was observed, surpris-
ingly, in the Data Structure Manipulation category. Among
the energy-greedy methods falling in this category, one was a
very simple getter method (i.e., Bitmap.getPixel(int,int))
in charge of retrieving a specific pixel from a matrix of integer
representing a Bitmap image. While this could seem as a
very simple operation, we found this particular operation to
be very expensive in terms of energy consumption. When in-
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vestigating this in depth, we found that this specific method
was discussed on Stack Overflow [38] by Android developers
as a very slow (i.e., computationally expensive) method. In
the discussion, one of the participants explained that:

For functions as simple as setPixel, getPixel, the func-
tion call overhead is relatively large. It would be a lot
faster to access the pixels array directly instead of through
these functions. Of course that means you have to make
pixels public, which is not very nice from a design point
of view, but if you absolutely need all the performance
you can get, this is the way to go.

Also the official Android API documentation performance
tips [13] suggest using getters and setters when accessing in-
ternal class fields could be a bad idea on Android, since virtual
method calls are expensive, much more so than instance field
lookups. This highlights the fact that good programming
practices (information hiding in this case) should not always
be adopted while programming for mobile devices, where
energy savings is often the priority when building an efficient
app. Note that we found usage of the getPixel method in 27
of the 55 analyzed apps, highlighting that it is quite popular
in our sample of apps.

In the Web category, which included all the APIs related
to internet surfing, we found seven methods having high
energy consumption. Among those, we found constructors
of WebView class to be especially energy-greedy. While inves-
tigating those methods, we found that developers experience
troubles to stop the WebView thread when the user switches
out of it. In fact, in order to do this the code should invoke
the onPause/onResume methods on the WebView. However,
these methods are hidden and the Java reflection mechanism
is needed to access them [39]. Thus, the design of the Web-

View in Android often pushes the developers to inadvertently
introduce this not-so-obvious energy bug.

Other instances of energy-greedy APIs are, for example, the
Context.bindService method (category Service), in charge
of connecting an application to a bound service, send requests
and receive responses, or the Activity.findViewById (cat-
egory Activity and Context). While we found many other
instances of energy-greedy APIs in the remaining categories
(e.g., Media and Animation, Geo Location, Networking), these
energy problems are rather self-explanatory and somewhat
expected.

3.2 Analysis of Android API Usage Patterns
Figures 2(b) and 2(c) show the distribution of energy

consumption values for Android API usages patterns with
two and three calls. Also in this case the x-axis is reported
in log scale for the sake of readability and the distribution
of energy consumption fits a power law. The obtained power
law exponent (k) is −1.53 (size two) and −1.55 (size 3), while
the Kolmogorov-Smirnov test [8] p-values returned by the
fitting procedure are 0.37 and 0.60, respectively. Again, we
cannot reject the hypothesis that the observed distributions
deviate from the power law.

We found 642 and 319 different patterns with length two
and three respectively in the considered set of apps. For the
former (length = 2) there were 15 negative outliers, while
for the latter (length = 3) we found eight outliers.

Table 3 reports the categories in which the energy greedy
patterns have been classified. As already observed when
analyzing single API methods, also in this case energy-greedy

Table 3: Distribution of energy-greedy API pat-
terns.

Category
# Patterns l

= 2 (%)
# Patterns

l = 3 (%)
GUI Manipulation 8 (53%) 5 (62%)
Database 5 (33%) 3 (38%)
Web 1 (7%) 0 (0%)
Activity & Context 1 (7%) 0 (0%)

patterns mainly fall into two categories: GUI Manipulation
and Database. Note that this holds for both patterns of
length two and three. As in Section 3.1, for the sake of
space, we discuss in the following only the most interesting
examples, while the complete list of patterns and energy
measurements can be found in the online appendix. Also,
code snippets detailing the most interesting patterns are in
our online appendix2.

The pattern <Activity.setContentView(int); Activi-

ty.findViewById(int); View.setVisibility(int)> is the
most energy-greedy sequence we found, with an average
consumption of 0.20 Joules. It is used for setting the content
view of an Activity and make it visible to the user. Most
of the energy consumption for this pattern is due to the
Activity.findViewById(int) method (also present among
the 131 greedy-energy methods identified in RQ1). This
method is in charge of finding a View basic block identified
by the id passed as a parameter. The problem is that the
views structure for an Android app is stored in XML files
(known as layout files) that can easily reach very large size.
Thus, in order to find a specific view given its id, all the layout
files must be iterated through, which is a computationally
expensive operation resulting in high-energy consumption
as well. Although the consumed energy depends on the
amount of views declared in the layout files, some developers
recommend to save a global private instance of every visual
component that will be used instead of calling Activity.-

findViewById often, as described by an Android Framework
Engineer in the Google Forum [2]:

How expensive findViewById? [...] Actually it’s not
nearly so smart – it is just a traversal through the view
hierarchy until it finds a matching id [...] As with all
things, you should avoid doing this repeatedly if you don’t
need to (keep the thing you find in a variable so you don’t
have to look it up again).

Curiously, this is exactly the opposite of what we found in
several apps, like a birthday reminder app showing an app
method with more than 50 calls to the Activity.findView-

ById(int) API. We looked for the energy consumed by those
calls and we found that the 57 executions of findViewById
can consume up to 0.22 J, which represents 8 · 10−3% of
the battery of a Nexus 4 smart phone. Note that this is the
consumption caused by the execution of just one method, and
that is given the fact that multicore CPUs implemented in
modern smart phones are able to execute millions of methods
in less than a second time.

Among the energy-greedy patterns related to database op-
erations, interesting ones are those represented by sequences
of calls to the SQLiteDatabase.execSQL(String) method,
especially long when the statements are used to create/drop
database elements. We found some examples, such as one

2http://bit.ly/1fCsjwz
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319 usage patterns of length 3 (log scale)
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Figure 2: Energy consumption (in Joule) of 807 Android APIs invoked in 55 apps, (b) API usage patterns
of length two, and (c) of length three.

public	
  void	
  open()	
  throws	
  SQLiteExcep9on	
  {
	
  	
  	
  	
  	
  	
  try{
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  this.db	
  =	
  this.dbHelper.getWritableDatabase();
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  return;
	
  	
  	
  	
  	
  	
  }	
  	
  catch	
  (SQLiteExcep9on){
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  this.db	
  =	
  this.dbHelper.getReadableDatabase();
	
  	
  	
  	
  	
  	
  }
}

Figure 3: Usage example of the pattern <SQLi-

teOpenHelper.getWritableDatabase(); SQLiteOpen-

Helper.getReadableDatabase()> in a Productivity
app.

method in an Education app in which 26 execSQL(String)

invocations are performed, leading to battery consumption
up to 3 · 10−3% for a single execution of method.

An interesting example of energy-greedy pattern related
to database operations, is <SQLiteOpenHelper.getWritable-
Database(); SQLiteOpenHelper.getReadableDatabase()>

(see Figure 3), with an average consumption of 0.16 J. Those
two methods are used to get access to the database, how-
ever one provides access to the database in reading/writing
mode (i.e., getWritableDatabase()) while the other one just
provides access to the database in reading mode (i.e., get-
ReadableDatabase()). It is important to highlight that this
pattern is quite rare (just two instances found), but there
is a reason for this. In fact, these two methods should not
be used together. We found an example in a Productivity
app, in which programmers are managing possible problems
occurred when opening the database in reading/writing (e.g.,
the smart phone memory is full) by opening the database
just in reading mode and avoiding the thrown of an SQLite-

Exception. In a correct behavior the exception should be
thrown to alert the invoker of method open() of such a
problem.

Another example is an instance of <ConnectivityMan-

ager.getNetworkInfo(int); ConnectivityManager.getNet-

workInfo(int); NetworkInfo.isConnected()> in a News
and Magazines app. It is used to monitor available network
connection; in this example, two types of network are mon-
itored. The pattern consumes on average 0.003 J, and we
found that it can be implemented with a call to the method
ConnectivityManager.getActiveNetworkInfo() instead of

using ConnectivityManager.getNetworkInfo(int) for each
type of network [15].

Also, two widgets that are often used in Android apps are
members of energy-greedy patterns: ProgressBar and Toast.
The former is used for visualizing the state and remaining
time of activities such as downloads, upgrade, installation,
etc.; the latter is used for displaying small popups without
hiding or blocking the current activity. An instance of <Pro-
gressBar.setProgress(int); ProgressBar.setProgress(

int)> on average consumes 0.007 J. However, frequently up-
dating a ProgressBar in the main method of a Runnable

object during a long task could consume a considerable
amount of energy. In the case of Toast, although it is
a transient widget, the pattern <Toast.makeText(Context,

CharSequence,int); Toast.show()>, which is used to cre-
ate and show a small non-modal popup in a web browser,
consumes 0.008 J on average.

Finally, in the Web category we found patterns including
the creation of a Webview as energy-greedy ones. As previ-
ously explained in the context of our RQ1 this is mainly due
to the fact that developers experience troubles in stopping
the WebView thread when the user switches out of it.

Based on the obtained results, we derive pieces of action-
able knowledge or Energy-Saving Recipes (ESR) for Android
developers reported in Table 4. Each ESR derives from one
or more examples, and is intended to provide practical advice
to both developers, who are interested in avoiding energy
bugs, and researchers, who are interesting in deriving rec-
ommender systems aiming at guiding developers in building
energy green apps.

4. THREATS TO VALIDITY
Threats to construct validity concern the relationship be-

tween theory and observation, and are essentially due to the
measurements/estimates on which our study is based. In this
work our main goal was to have accurate energy consumption
measures, and for this reason we have used a hardware meter
instead of simulators or available energy profiles. To mea-
sure the consumption of each method we had to compute a
proportion over the time frame for which the meter provided
the measure. Although this is clearly an approximation, it
has been performed in a related study [25], which however
includes in the approximation tail energy and we do not;
thus, it is also a possible threat. Another threat is due to
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Table 4: Actionable knowledge: energy-saving recipes (ESRs) for Android developers.
ESR1 Carefully design the storage strategy. Using DBMS is expensive for managing persistence data and

should only be used when forced. In addition, creating the schema is particularly expensive since it requires
the execution of SQLiteDatabase.execSQL(String) multiple times. Since schema creation is performed at the
first usage of the App, it could make the user less confident about the efficiency of the app.

ESR2 Limit the use of the Model-View-Controller (MVC) pattern, especially when used in apps with
many views. Refreshing views is expensive. Thus, avoid the use of MVC, unless there are no alternatives.
Although it increases coupling, an explicit polling may reduce energy consumption. In addition, avoid
unnecessary refreshing, i.e., refresh operations made on inactive or invisible views.

ESR3 Limit the use of energy-greedy widgets for cyclic activities. Updating the state of widgets or calling
energy-greedy methods inside loops or in the main method (Runnable.run()) or Runnable objects could be an
expensive operation when considering the energy consumed as a result of repetitive actions.

ESR4 Carefully design apps that make use of several views. The navigation of View components is energy
consuming. Navigating and identifying View components is energy expensive since it is necessary to browse
the layout files in Android. This calls for an alternative solution for facilitating the identification and browsing
of views.

ESR5 Carefully analyze the trade-off between design principles and battery saving. This trade-off should
be particularly analyzed, since design principles could be energy-greedy. For instance, information hiding in
Android is quite expensive. Thus, disregarding such a principle (giving direct access to private field) could
actually help to save battery.

how patterns have been matched in the analyzed apps, i.e.,
by matching method calls in the source code. Instrumenting
apps and tracing method entry and exit points would have
avoided this problem. However, we decided not to do so to
minimize the noise to the measurements. In the end, we
preferred to loose some pattern instances rather than having
unreliable measures. Since this is mainly a qualitative study,
we are interested to discuss relevant examples rather than
having a full coverage of patterns.

Threats to internal validity concern factors that can affect
our results. Also in this case, such threats can arise during
the measurement process. As explained in Section 2.3.1, we
have tried to limit these factors in various ways, such as
putting the phone in airplane mode (but with working Wifi),
disabling the battery charging, and killing processes that
could have interfered with our measurements. Last, but not
least, we have followed a consolidated practice in electric
measurements, i.e., repeating the measures at least 30 times.

Threats to external validity concern the generalization of
our findings. This study is admittedly limited to the energy
consumption of Android APIs, whereas there could be other
APIs that strongly contribute to the energy consumption of
apps. Also, since the study has been conducted on a specific
device, it could be the case that some APIs could consume
more (or less) on other smartphones/tablets. Last, but not
least, although we have selected a pretty varied set of 55
apps, we cannot claim they fully represent the universe of
Android apps.

5. RELATED WORK
There are two threads of related work that we are interested

to discuss. Firstly, we summarize existing approaches for
tracing energy consumption in mobile apps. We also outline
their pros and cons as well as similarities with the approach
presented in this paper. Secondly, we explain the major
differences between our study and previous work on finding
energy problems in mobile phone apps. Also, while there are
several existing approaches for mining API usage patterns
[3, 24, 30, 41, 47], the goal of this work is rather on studying
energy consumption of API patterns and not improving the
state-of-the-art in API usage pattern mining. Thus, due

to space limitations, we are not discussing all the related
approaches and studies in detail, but rather summarize them
across the most pertinent dimensions.

5.1 Energy Profiling in Mobile Phone Apps
While energy profiling is a broad research area encom-

passing architectures, operating systems, networking, and
software engineering fields, in this section we position ap-
proach used in this paper in the context of the related work
among the other techniques for energy profiling of mobile
apps. In particular, we consider the following dimensions
while classifying the related work (see Table 5): Apps - num-
ber of applications used in the evaluation of the proposed
technique; Approach - approach used for collecting and esti-
mating energy measurements, i.e., Hardware-based profiling
(HBP), Power models (PM), Android Battery API (ABA);
Profiling granularity, i.e., Application (A), Browser Activi-
ties (BA), Device Components (DC), Process (P), Flow Path
(FP), Function (F), API Calls (APIC) and Statement (S); 4)
Platform - underlying programming platform, i.e., Android
(A) and Windows (W).

While our study is not the only one relying on hardware-
based profiling approach, which is the most precise technique
for measuring power consumption in mobile phones, it is
the largest study up to date, surpassing existing studies by
one order of magnitude in terms of the apps traced and
analyzed. Moreover, our study is the only study that ensures
statistical significance of the results since we executed major
scenarios for each of the 55 applications at least 30 times. In
fact, our study is the only study in the literature that uses
HBP and does profiling of APIs calls. Pathak et al. [33]
provide a first examination on the energy consumed by apps
methods and the Android API. In this sense [33] could be
considered as the closer paper to ours. The approach used in
[33] also allows estimating power consumption at API level
granularity and relies upon power models (PM). However,
the study in [33] is not focused on API patterns and only a
small set of Android API methods are reported as energy-
greedy. Moreover, in our study we analyzed more apps and
tested the scenarios 30 times to reduce the impact of race
conditions on the measurements. Our approach also was able
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Table 5: Related techniques on energy profiling.
Technique Apps Approach Element Platform
Flinn and Satyanarayanan[11] 1 HBP P,F A
Zhang et al. [46] 6 PM A A
Carroll and Heiser [6] 6 HBP CD A
Chung et al. [7] 4 HBP F A
Pathak et al. [34] 15 PM DC A,W
Pathak et al. [33] 22 PM F,APIC A,W
Thiagarajan et al. [40] N/A HWP BA A
Kapetanakis and Panagiotakis [23] 1 ABA,HBP BA A
Hao et al. [19] 5 PM A,F A
Xu et al. [43] 6 PM DC A
Hao et al.[20] 6 PM A,FP,F,S A
Li et al. [25] 5 HBP S A
Our work 55 HBP APIC A

Table 6: Related studies on energy bugs.
Study Apps Element Platform E-bugs Prof.
Pathak et al. [32] N/A N/A A,N General N/A
Zhang et al. [45] 15 O A Network No
Pathak et al. [35] 86 FP A No-sleep No
Vekris et al. [42] 328 APIC A No-sleep No
Liu et al. [27] 6 BI A Sensors No
Zang et al. [44] 6 APIC A,iOS,W No-sleep No
Our work 55 APIC A General H

to identify energy-greedy APIs that were not analyzed before
(e.g., SQLiteDatabase.query, Bitmap.getPixel(int,int)).

5.2 Energy Bugs in Mobile Apps
There are several recent studies that aim at detecting a

subset of energy bugs in mobile apps. We consider the follow-
ing dimensions while classifying this related work (see Table
6): Apps - number of applications used in the study; Code -
code elements representing the energy bugs, i.e., Objects(O),
Flow paths (FP), API calls (APIC), and bytecode instruc-
tions (BI); Platform - underlying programming platform and
operating system, i.e., Android (A), iOS, and Windows (W);
E-bugs - types of energy bugs analyzed, i.e., Networking, sen-
sor, no-sleep related, and general (or all) the possible types;
Profiling - an indication whether any applications have been
actually traced in the study (Exec) or only forums and/or
repositories have been analyzed (Docs).

As it can be seen in Table 5, our study is the only pioneering
study that focuses on finding energy bugs by actually power
profiling the apps and analyzing API calls and patterns in
the code of those apps. Other studies analyzed only forums
and the repositories, but did not involve actual energy data
collection on real apps. Also, our study aims at finding all
possible types of energy problems (mostly focusing on those
that were not previously identified in the literature), not only
on those specifically related to networking or wakelock APIs,
among the others.

6. CONCLUSION AND FUTURE WORK
This paper reports a study aimed at quantitatively and

qualitatively investigating energy-greedy API calls and pat-
terns identified from 55 free Android apps. To this aim, we
have exercised 55 apps in the context of real usage scenarios,
measured the energy consumption using a hardware meter,
aligned such measurements with execution traces, and finally
identified and traced onto source code the interesting API
calls and patterns.

The obtained results allowed us to distill some pieces of
actionable knowledge. Specifically, our findings indicate that
some consolidated design and implementation practices, such
as the use of Model-View Controller, information hiding, or
else the implementation of the persistence layer through a

relational database may have a non-negligible impact on the
app energy consumption. For this reason, we suggested to
developers to carefully ponder such choices, possibly pursuing
alternative solutions, and balancing the tradeoff between a
good design (i.e., high maintainability) and a better energy-
aware solution.

Our work-in-progress goes towards different possible direc-
tions. First, for the sake of a better generalization of the
obtained results we will sample and analyze further appli-
cations, possibly discovering patterns (and new categories)
not encountered yet. Second, with the aim of providing
further useful suggestions to mobile apps developers, we will
compare the energy consumption of code implementing the
same feature in similar apps, in order to identify the options
that are more energy-efficient. Last, but not least, all the
collected body of evidence can be used to build a catalogue
of energy-aware patterns and anti-patterns in the context of
mobile app development.
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