
Undocumented and Unchecked:
Exceptions That Spell Trouble

Maria Kechagia and Diomidis Spinellis

Athens University of Economics and Business
Department of Management Science and Technology

76 Patission str, 104 34, Athens, Greece
{mkechagia, dds}@aueb.gr

ABSTRACT
Modern programs rely on large application programming
interfaces (apis). The Android framework comprises 231
core apis, and is used by countless developers. We examine a
sample of 4,900 distinct crash stack traces from 1,800 differ-
ent Android applications, looking for Android api methods
with undocumented exceptions that are part of application
crashes. For the purposes of this study, we take as a refer-
ence the version 15 of the Android api, which matches our
stack traces. Our results show that a significant number of
crashes (19%) might have been avoided if these methods had
the corresponding exceptions documented as part of their
interface.

Categories and Subject Descriptors
D.2.17.g [Software Engineering]: Code documentation;
D.2.2.d [Software Engineering]: Modules and interfaces;
D.2.4.f [Software Engineering]: Programming by contract;
D.2.4.g [Software Engineering]: Reliability

General Terms
Documentation, Design

Keywords
apis, mobile applications, stack traces, exceptions

Ken Thompson has an automobile which he
helped design. Unlike most automobiles, it has
neither speedometer, nor gas gauge, nor any of
the other numerous idiot lights which plague the
modern driver. Rather, if the driver makes a
mistake, a giant “?” lights up in the center of
the dashboard. “The experienced driver,” says
Thompson, “will usually know what’s wrong.” —
Anonymous [5]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 une 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

1. INTRODUCTION
Error messages may be redundant for experts, as they

can guess the cause of a problem. However, not all users
are experts, and not all experts are infallible. Therefore,
in a well-designed system the cause of each error should
be unambiguous and well-documented. In this study we
give empirical evidence for this assertion, arguing that all
exceptions should be documented in the description of api
methods used in Java programs.

When a Java program terminates unexpectedly (crashes)
the system produces a crash report with a stack trace and
runtime metadata. The resulting stack trace is a chain of
frames of method calls that leads to an exception and gives
information about the crash cause. In Java there are two
types of exceptions: checked and unchecked exceptions.1

Checked exceptions refer to “exceptional conditions that a
well-written application should anticipate and recover from.”
Unchecked exceptions are exceptional conditions that can be
either external (Error) or internal (RuntimeException) and
the application usually cannot recover from them.

There is a common practice among api designers to include
all the possibly thrown checked exceptions—and some of the
unchecked exceptions—in the api reference. Traditionally,
designers document unchecked exceptions when developers
can overcome from particular execution failures [1, 6]. How-
ever, excluding possible exceptions from the api reference
may not be productive when a large number of developers
from different programming levels uses a common api to
build their applications. The documentation of likely thrown
exceptions in the description of a method can have a twofold
use: guidance on how to use correctly this method and under-
standing of the causes of possible crashes. Thus, documented
exceptions can help in the stability of a program. To the best
of our knowledge, there is no empirical study that argues
when unchecked exceptions must be documented. Here, we
try to show that api methods with undocumented exceptions
can be responsible for application crashes.

In particular, we got a data set of 4,900 distinct Java
stack traces from 1,800 Android applications crashes coming
from a centralized crash report management service. We
identified api methods that probably are responsible for
crashes by applying a heuristic method in our crash data
and we searched for their exceptions in the Android api. We
downloaded and parsed the source code of the version 15 of
the Android api that matched our data set and we located
methods with documented exceptions.

1http://docs.oracle.com/javase/tutorial/essential/exceptions

Our findings show that 19% of the examined stack traces
had api methods with undocumented exceptions. This means
that these crashes could have been avoided if the involved
methods had documentation for possible thrown exceptions.
Also, contrary to our expectations, we realized that 40% of
the documented exceptions in the Android source code are
specific unchecked exceptions, namely: IllegalArgumentEx-

ception, NullPointerException, IllegalStateException.
In the following sections, we first describe our data set

(Section 2). Then, we outline our methods (Section 3). In
Section 4, we present our results and in Section 5 we make a
discussion and refer to the threats to validity of our study.
Finally, we end up with related work (Section 6) and our
conclusions (Section 7).

2. DATA
For the purposes of this study we used a data set of 4,900

Java stack traces (see printStackTrace())2 from Android
application crashes. The provider of the data set was a Greek
startup called BugSense,3 which is currently a company of
Splunk.4 BugSense offers a centralized crash report manage-
ment service that collects stack traces from applications that
have been crashed and have installed the BugSense sdk.

Specifically, we analyzed 4,902 distinct crash reports from
1,800 different Android applications that run on devices with
the Android api level 15 (4.0.3–4.0.4). Our data set was
collected on the May of 2012. In addition, we downloaded
the Android sdk and used the source code of the Android
api (level 15). We parsed 2,171 Java files with online docu-
mentation.

Android is an embedded device based on the Linux operat-
ing system that can host mobile applications. Briefly, in the
bottom layer of Android framework there is the Linux kernel.
The kernel is the border between the device and the software
and it provides services such as memory management, net-
working, and power management. In the middle layer there
is the Dalvik virtual machine and the Java Native Interface.
Dalvik supports the execution of multiple applications on
the system. The Java Native Interface is used to perform
calls from Java code into native code. Finally, on the top
layer there are several Java classes from: 1) core applications
(contacts, phone, browser), 2) third-party applications, and
3) the Java Platform (J2SE).

3. METHODS
To identify methods from the Android api that lack criti-

cal documentation, we worked in two directions. First, we
pinpointed api methods possibly responsible for crashes and
linked the methods with the thrown stack trace exceptions
(Figure 1). Second, we parsed the source code of the An-
droid api and drew methods with documented exceptions
(Figure 2). Thus, having a set of risky api methods and
knowing the documented exceptions of the Android api, we
were able to list methods that are involved in crashes and
have undocumented exceptions. Following we explain our
techniques in details.

3.1 Identification of Risky Methods
2http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html
3https://www.bugsense.com/
4http://www.splunk.com/

Clean

crash reports

Filter

stack traces

Locate

risky APIs

Extract

exceptions

Figure 1: Identification of risky methods

Get Android

source code

Identify

documented

classes

Identify

methods with

@throws/throws

Organize

methods with

exceptions

Figure 2: Extraction of api exceptions

The investigation of risky apis can be made in several
ways. For instance, examining the documentation and finding
complicated apis that lead developers to the violation of
the apis’ invariants or preconditions. Also, through fuzz
testing by passing random values as method inputs [3]. Here,
we empirically identified risky apis based on their frequent
manifestation on application crashes.

In our sample, stack traces consist of method calls from
the Android framework that lead to an exception, possibly
through an application and an api. We assert that the last
instance on an application—api pair is an api call that can
lead to an application crash. Thus, by locating such api
calls we can find api methods that possibly contribute to
application crashes. In Listing 1, setContentView is such an
example. Then, taking also into account the root exception
and the exceptions from the rest frames (for chained stack
traces), we could have more concise information about the
reason of a crash.

Listing 1: Method calls sequence
com . example . S e r i a l i z e $ L o o p e r . run
android . os . Looper . loop
android . os . Handler . dispatchMessage
com . example . S e r i a l i z e H a n d l e r . onMessage
com . example . app . Act iv i ty$1 . work
android . app . Ac t i v i ty . setContentView

Finally, in the beginning of our study, we applied some
basic filtering to conform our data set in an appropriate
format for analysis and removed meta data from our crash
reports.

3.2 Extraction of Documented Exceptions
To identify methods with documented exceptions (checked

and unchecked), we downloaded and parsed the Android
source code of the api (version 15). From the Java files we
kept only the classes that have online documentation in the
Android reference.5 Then, we wrote a Java doclet6 that
identifies methods with @throws comments and declared ex-
ceptions in their signatures; we excluded the private methods
as they do not appear in the online documentation. Thus, we
got a set of methods with documented exceptions. Finally,
we read the files produced by the doclet and organized the
methods in a dictionary based on their names.

4. RESULTS
From the analysis of the Android source code, we found

that only 18% of distinct non-private api methods (grouped
by name) had documented exceptions (56% checked and

5http://developer.android.com/reference/classes.html
6http://docs.oracle.com/javase/6/docs/technotes-
/guides/javadoc/doclet/overview.html

0	

100	

200	

300	

400	

500	

600	

SQ
LE
xce
p1
on
	

Ille
ga
lAr
gu
me
ntE
xce
p1
on
	

IO
Ex
ce
p1
on
	

Nu
llP
oin
ter
Ex
ce
p1
on
	

Ille
ga
lSt
ate
Ex
ce
p1
on
	

Un
su
pp
ort
ed
Op
era
1o
nE
xce
p1
on
	

Cla
ssC
ast
Ex
ce
p1
on
	

DO
ME
xce
p1
on
	

Ind
ex
Ou
tO
fBo
un
ds
Ex
ce
p1
on
	

So
ck
etE
xce
p1
on
	

Figure 3: Top 10 exceptions in all Android packages

44% unchecked). We also investigated 186 methods from
Android packages (android.*) involved in the crashes and we
noticed that 128 of these methods (69%) had undocumented
exceptions. In other words, more than a half of the examined
crashes had methods with undocumented exceptions; all the
involved exceptions were unchecked—uncaught on compile
time. The found undocumented methods came from 944 stack
traces. Then, if these methods had documented exceptions,
even 19% of the examined crashes could have been avoided.
In the rest section, we present descriptive statistics regarding
the unchecked and undocumented exceptions of the Android
api.

4.1 Unchecked Exceptions
Figure 3 illustrates the ten top exceptions in the Android

api source code. We found these exceptions in @throws com-
ments and declared exceptions in the method signatures. It is
notable that 40% of the methods with documented exceptions
had specific unchecked exceptions (IllegalArgumentExcep-
tion, NullPointerException, IllegalStateException) in
their description.

4.2 Undocumented Exceptions
Figure 4 shows the ten top thrown exceptions from the

stack traces. It seems that most crash causes came from
programming errors (NullPointerException), race condi-
tions (IllegalStateException) and out of memory prob-
lems (OutOfMemoryError). In addition, Table 1 presents the
ten most common methods from the stack traces that had
undocumented exceptions in the source code. These findings
concern the version 15 of the Android api, according to the
api level of our stack traces.

5. DISCUSSION
Our findings show that a significant number (44%) of api

methods in the Android api reference has documentation
for unchecked exceptions. We also found that IllegalArgu-

mentException and IllegalStateException are among the
most common documented unchecked exceptions in the An-
droid api and among the most common reasons for an ap-
plication to crash. This means that these exceptions can
be included in the api documentation plentifully. In addi-
tion, we found in our stack traces many methods (24%) with
generic exceptions (RuntimeException and NullPointerEx-

0	

20	

40	

60	

80	

100	

120	

Nu
llP
oin
ter
Ex
ce
p6
on
	

Ille
ga
lSt
ate
Ex
ce
p6
on
	

Ou
tO
fM
em
ory
Err
or	

Ille
ga
lAr
gu
me
ntE
xce
p6
on
	

Ru
n6
me
Ex
ce
p6
on
	

Se
cu
rit
yE
xce
p6
on
	

Ar
ray
Ind
ex
Ou
tO
fBo
un
ds
Ex
ce
p6
on
	

Re
so
urc
es
$N
otF
ou
nd
Ex
ce
p6
on
	

Ind
ex
Ou
tO
fBo
un
ds
Ex
ce
p6
on
	

W
ind
ow
Ma
na
ge
r$B
ad
To
ke
nE
xce
p6
on
	

Figure 4: Top 10 exceptions in the stack traces

ception) that have not got documented exceptions in their
interfaces. This can be considered as an api design problem.
Such methods could have more specific exceptions in the
documentation based on possible crashes. For instance, the
open7 method for the camera could be associated with excep-
tions regarding permissions and concurrency issues. However,
as it is not always feasible for api designers to include in the
documentation exceptions about crashes related to resource
management (OutOfMemoryError), they could provide exam-
ples for the safe implementation of crucial methods such as
createBitmap.8 Finally, they could include prevention mech-
anisms in the interfaces—for the previous case, an autoresize
interface for costly bitmaps.

5.1 Threats to Validity
Internal Validity For the identification of the risky api

methods we used heuristics based on regular expressions.
Then, we could have missed methods from third-party apis
(i.e. methods started with com.* in the stack traces.)

External Validity Even though we used data from real
crashes and found thrown exceptions that are not in the
documentation of the involved methods, we need further
empirical evidence to strengthen our results. Our findings
are associated with one system, Android, and a specific pro-
gramming language, Java. To argue about the kinds of the
exceptions that should be in the documentation, we need
to examine other data sets such as from the ios. In addi-
tion, we examined the methods of a limited sample of stack
traces. We would like to investigate a larger sample and
argue about specific kinds of methods that should have doc-
umented unchecked exceptions. We also aim to compare the
stack traces from different Android api versions to validate
our results. For instance, we found that the createScaled-

Bitmap method had not got the IllegalArgumentException

in its documentation for the version 15 of the Android api,
whereas this exception exists in version 19. Finally, we found
that 19% of our sample’s crashes could have been avoided if
the thrown exceptions in the stack traces where also in the
documentation. However, this percentage is an upper bound,
because it not always feasible for api designers to include

7http://developer.android.com/reference/android/-
hardware/Camera.html
8http://developer.android.com/reference/android/-
graphics/Bitmap.html

Table 1: Top 10 methods involved in crashes
Methods Exceptions
dismiss IllegalArgumentException, NullPointerException
show WindowsManager.BadTokenException, IllegalStateException, InflateException
setContentView InflateException
createScaledBitmap IllegalArgumentException, NullPointerException
onKeyDown IllegalStateException
isPlaying IllegalStateException
unregisterReceiver IllegalArgumentException
onBackPressed IllegalStateException
showDialog WindowManager.BadTokenException
create Resources.NotFoundException

exceptions such as OutOfMemoryError in the documentation.

6. RELATED WORK
Although there are practical guidelines for well-written

apis [1, 6], there is still ground for empirical studies that
distinguish good from bad api paradigms. Current studies
focus on api learnability [9, 8]. Here, we argued about excep-
tions that could have been included in the documentation of
api methods.

A crash report can include a stack trace and metadata:
application name, operating system, date and time of the
crash. These data provide valuable information for crash
cause understanding and software reliability. Ganapathi et
al. [4] analyzed crash reports from the Windows xp kernel and
identify basic crash cause types. Kim et al. [7] conducted an
empirical investigation on the Firefox and Thunderbird crash
report databases to predict “top crashes” for new software
releases. In addition, stack traces are useful for the mining
and quality evaluation of crash reports [10, 2], as well as
for bug localization [11]. Contrary to the existing works,
we analyzed stack traces from crash reports and identified
Android api methods with undocumented exceptions.

7. CONCLUSIONS
We analyzed stack traces from Android application crashes

to identify methods from the Android api that have missing
documentation concerning exceptional cases. We found that
18% of non-private methods in the Android api had undoc-
umented exceptions. From the methods with documented
exceptions, 56% were checked and 44% unchecked. Also, we
found that 69% of the methods—from Android packages—in
our stack traces had undocumented exceptions in the An-
droid api. Then, 19% of our crashes could have been caused
by insufficient documentation.

8. ACKNOWLEDGMENTS
We would like to thank BugSense (which is now a Splunk

company), and more specifically its founders Panos Pa-
padopoulos and John Vlachogiannis for the data and in-
formation they provided us. In addition, we would like to
thank Dimitris Mitropoulos for his ideas and internal reviews.

This research has been co-financed by the European Union
(European Social Fund—esf) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(nsrf)—Research Funding Program: Thalis—Athens Uni-
versity of Economics and Business—Software Engineering

Research Platform.

9. REFERENCES
[1] J. Bloch. How to design a good API and why it

matters. In Companion to the 21st ACM SIGPLAN
symposium on Object–Oriented Programming Systems,
Languages, and Applications, OOPSLA ’06, pages
506–507, New York, NY, USA, 2006. ACM.

[2] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel.
ReBucket: a method for clustering duplicate crash
reports based on call stack similarity. In Proceedings of
the 2012 International Conference on Software
Engineering, ICSE 2012, pages 1084–1093, Piscataway,
NJ, USA, 2012. IEEE Press.

[3] J. E. Forrester and B. P. Miller. An empirical study of
the robustness of windows NT applications using
random testing. In Proceedings of the 4th USENIX
Windows System Symposium, pages 59–68, 2000.

[4] A. Ganapathi, V. Ganapathi, and D. A. Patterson.
Windows XP kernel crash analysis. In LISA, volume 6,
pages 49–159, 2006.

[5] S. Garfinkel, D. Weise, and S. Strassmann, editors. The
UNIX Hater’s Handbook. IDG Books Worldwide, Inc.,
San Mateo, CA, USA, 1994.

[6] M. Henning. API design matters. Commun. ACM,
52(5):46–56, May 2009.

[7] D. Kim, X. Wang, S. Kim, A. Zeller, S. Cheung, and
S. Park. Which crashes should I fix first?: Predicting
top crashes at an early stage to prioritize debugging
efforts. Software Engineering, IEEE Transactions on,
37(3):430–447, 2011.

[8] W. Maalej and M. P. Robillard. Patterns of knowledge
in API reference documentation. IEEE Transactions on
Software Engineering, 99(PrePrints):1, 2013.

[9] M. Robillard and R. DeLine. A field study of API
learning obstacles. Empirical Software Engineering,
16(6):703–732, 2011.

[10] A. Schroter, N. Bettenburg, and R. Premraj. Do stack
traces help developers fix bugs? In Mining Software
Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 118–121, May 2010.

[11] S. Wang, F. Khomh, and Y. Zou. Improving bug
localization using correlations in crash reports. In
Proceedings of the Tenth International Workshop on
Mining Software Repositories, MSR ’13, pages 247–256,
Piscataway, NJ, USA, 2013. IEEE Press.

	Introduction
	Data
	Methods
	Identification of Risky Methods
	Extraction of Documented Exceptions

	Results
	Unchecked Exceptions
	Undocumented Exceptions

	Discussion
	Threats to Validity

	Related work
	Conclusions
	Acknowledgments
	References

