
Gentoo Package Dependencies over Time

Remco Bloemen, Chintan Amrit, Stefan Kuhlmann, Gonzalo Ordóñez–Matamoros
University of Twente

PO Box 217, 7500 AE
Enschede, The Nethelands

<remco@coblue.eu> <c.amrit@utwente.nl>, <s.kuhlmann@utwente.nl>,
<h.g.ordonezmatamoros@utwente.nl>

ABSTRACT
Open source distributions such as Gentoo need to accurately
track dependency relations between software packages in
order to install working systems. To do this, Gentoo has a
carefully authored database containing those relations. In
this paper, we extract the Gentoo package dependency graph
and its changes over time. The final dependency graph spans
15 thousand open source projects and 80 thousand depen-
dency relations. Furthermore, the development of this graph
is tracked over time from the beginning of the Gentoo project
in 2000 to the first quarter of 2012, with monthly resolution.
The resulting dataset provides many opportunities for re-
search. In this paper we explore cluster analysis to reveals
meaningful relations between packages and in a separate pa-
per we analyze changes in the dependencies over time to get
insights in the innovation dynamics of open source software.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms
Measurement

Keywords
Innovation, dependencies, graph, Gentoo

1. INTRODUCTION
No software project stands entirely on its own. Software

is usually developed by taking one or more existing libraries
of components and combining those components in ways
to create new products. Take for example a simple chat
application. The chat application uses a different library for
user interface development that provides components such
as a window a text entry field and a button (that is labeled
”send message” by the chat application). This user interface
library in its turn uses a graphics library to draw the lines,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 — June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

SuperChat v. 1.0

Cute UI lib v. 2.69 Cern Network lib v. 3.14

Berkley Files lib v. 2.72

FreeFont v. 1.74window manager v. 1.41

Fglrx graphics driver v. 1.62

Figure 1: Example dependency graph.

rectangles and text necessary for the fields and buttons. The
graphics library uses a library to read font files and uses
the fonts to turn text into pictures that can be displayed
on the screen. The graphics library then sends the contents
of the window to the window manager, which in turns uses
a graphics card driver to instruct the hardware. The chat
application uses a networking library to provide it with the
basic components for internet communication and uses a file
library to store the users settings. The same file library is also
used by the font library to read font files. The dependency
graph so described is drawn in figure 1. Compared to a real
chat application the graph is hugely simplified, tracing a real
chat application back to all the components involved will
likely result in hundreds of libraries used.

In the remainder of this article, the terms ‘project’, ‘pack-
age’ and ‘library’ will be used as synonyms for a node in the
dependency graph.

Now that a data source is selected, it is time to extract the
required information and process the data into a form that
allows easy calculations. The major steps are collecting the
raw data, parsing this into a simpler format and producing
the final dependency graph from this simpler form. Some
post-processing can then be done on the dependency graph.
In the process, the dataset will shrink from thirteen gigabytes
taking more than a week to collect, to thirty megabytes that
can be processed in four seconds.

2. COLLECTING
The Gentoo portage database consists of a large number

of text files, at least one for every version of every package,
contained in a large directory structure. This entire structure
is kept in a CVS revision control system that has tracked all
changes to the database since the start of the project around
2000.

Using the cvs command one can download the entire
database as it was at a certain point in history. For example

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

MSR’14, May 31 – June 1, 2014, Hyderabad, India
ACM 978-1-4503-2863-0/14/05
http://dx.doi.org/10.1145/2597073.2597131

404

the following command would download the database, as it
was on 1 December 2003:

cvs -d :pserver:anonymous@anoncvs.gentoo.org\

/var/cvsroot co -D 12/01/2003 gentoo-x86

Using a small utility written for the task, this command
was repeatedly invoked to download all the databases from
1 January 2000 until today, with increments of one month.
The .ebuild, .eclass and .eblit files are stored. Other
files are ignored, to save space since they contain no relevant
information. This whole downloading processes took about a
week and a half and the resulting database consists of three
million files occupying thirteen gigabytes of space. There are
also files specifying packages renames, but since these only
get appended to and never deleted they where taken from
the latest version of the database.

2.1 Parsing
The files are written in a text based computer language

called ‘ebuild’ which is based on the Bash shell script lan-
guage. Being a scripting language, the files can refer to other
files and include complicated code to calculate dependencies
on demand. This eases the task of the script developer, since
he can automate many processes, but it complicates the task
of extracting data. Several approaches where tried to extract
the data in the industrial quantities the analysis requires.

The first approach was to use Paludis and its C++ bindings
to load a repository and extract metadata. Paludis is a tool
designed to process ebuild files, we then query its database
interface to gather all the dependency information from all
the packages. This approach takes a lot of time, it requires
around a half an hour per database version, but it fails
on some of the older databases because the format of the
database changed over time.

The second attempt was to use a custom build metadata
extraction program that also supports an older version of
the database. This parser looks for text patterns resembling
dependency specifications and implements only a minimal
amount of the ebuild file format (basically only dependencies
and the inherit inclusion statement). This technique is very
fast, processing the entire set in 70 minutes, but fails on the
newer databases that use complex techniques such as macro’s
in the dependency specifications.

The final method is a hybrid of the first two, using the
Paludis’ instruo command to pre-process and expand all
the macros to create simplified versions that can be parsed
using the custom parser. The instruo command was run
on every version of the database downloaded. Where the
command failed on a package (the older format ones) the
original was kept. The total running time of this operation
was around four days.

2.2 Producing the Dependency Graphs
Now the data is in 154 snapshots of the package database

in a simplified text based format. This is several gigabytes
and several millions of files large and needs to be processed
into dependency graphs. Obviously it is inhumane to do this
by hand, therefore more specialized tools were developed.

By design the database can work with complicated depen-
dency relations, such as “package amarok requires package
phonon-kde, minimum version 4.3, but only when feature
player is required”. This is would be coded as player? (

>=kde-base/phonon-kde-4.3). An example of the run time

>=media-libs/taglib-1.6.1[asf,mp4]

>=media-libs/taglib-extras-1.0.1

player? (

app-crypt/qca:2

>=app-misc/strigi-0.5.7[dbus,qt4]

|| (>=dev-db/mysql-5.0.76

=virtual/mysql-5.1)

>=kde-base/kdelibs-4.3[opengl?,semantic-desktop?]

sys-libs/zlib

x11-libs/qt-script

>=x11-libs/qtscriptgenerator-0.1.0

Figure 2: Fragment of the runtime dependencies of
the Amarok music player.

dependencies for the Amarok music player is given in fig-
ure 2. The figure includes more complex rules such as “either
package X or package Y is required”, “ package X is required
to contain feature Y”, etcetera.

These conditional rules are relevant when compiling and
running software, but the conditions are not necessary when
analysing component use from an innovation perspective.
If Amarok has an optional dependency on a package, the
developers of Amarok are actively using the innovation pro-
vided by that package even though it may not be enabled
by the end user in the final product. For this reason, and of
simplicity, all the conditionals are ignored when parsing the
ebuilds.

When a database snapshot contains several versions of the
same package, only the latest is used. For some of the analysis
techniques presented in the version information might be
relevant, but at this point it was decided not to include
different versions to simplify processing analysis. When
several versions where available in the database at a certain
point in time, only the highest version was included. This
ensures that each snapshot represents the state of art at that
time.

In the Gentoo Portage database the dependencies are
sorted in two kinds, compile time dependencies and runtime
dependencies. The first kind are required to build and install
the package. The second kind is only required when actually
using the package. The reason for this distinction is a tech-
nical: it solves installation issues with cyclical dependencies.
For the current purposes both kinds of dependencies are
considered equal.

Sometimes, package get renamed or moved around in the
database, this needs to be accounted for. Luckily, to allow
users to upgrade from an older version to a newer version
the processing of moves and renames has been automated
in the Gentoo Portage database. The developers maintain a
list of all the moves and renames that have happened in the
database in a structured format. The latest version of this
list is used to retroactively change all the package names in
the historical snapshots to their modern name. This ensures
that moves and renames do not harm historical continuity
in the dataset.

Using all the observations and choices made above, a tool
was developed to extract dependency graphs from all the
simplified database snapshots. The shear scale of the result-
ing dataset, 1.3 million packages and 6.9 million dependency
relations, required a solution to store efficiently. Therefore,
a compressed format was developed that only stores the
changes between the historical snapshots instead of storing
whole snapshots. The extraction process took three hours

405

Figure 3: Growth of the total number of packages
in the Gentoo package database over time.

Figure 4: The number of package additions and re-
movals over time.

and resulted in a 29 megabyte file. Reading this file into mem-
ory resident data structures and performing simple queries
takes about 4 seconds. The dataset is now in a usable form.

3. EXPLORING THE DATASET
In figure 3 the number of packages in the database is

plotted over time. One can see how the database started
in 2001, underwent a period of rapid growth between 2002—
2006 and settled into calm a linear growth from 2006 onwards.
In figure 4 the rate of introducing and removing packages
is plotted over time. This show two spikes, one at the start
of 2002 and one in 2005. The cause of these spikes was
not thoroughly investigated, but a likely cause is a massive
cleanup and refactoring of the database. This is a warning
sign that the data exactly at these points might contain
a lot of noise. In general, the data before 2006 should be
considered with more caution than the data afterwards.

The effect of the growth of the entire dataset on the number
of dependencies for individual packages was investigated, but
no influence was found. Since the total number of packages
grows one would expect the ‘market’ for a certain package to
grow and thus the number of dependency relations to that
package to grow. To compensate for this one could divide
the number of dependers by the total number of packages,
compare this with using a market-share instead of an absolute
number of users. In practice, this only made any significant

difference for early data, but that was determined to be
unreliable anyway. In the interest of keeping the analysis
simple no compensation was made for the growth of the
number of packages.

One of the first thing attempted after generating the
dataset was to visualize the entire graph of the latest snap-
shot. The problem is, to make any sense of a graph it has
to be laid out visually on a plane, nodes that are connected
should be placed close to each other so that connecting lines
are short and have little overlap. Software packages such
as Graphviz, Tulip, Gephi, Jetty and Cytoscope have been
tried, but after days of trying and many hours of calculation,
none where able to produce any insightful layout for the
sixteen thousand nodes and hundred thousand relations.

Since it was impossible to get a visual overview of the en-
tire dependency graph, its structure was plotted using double
logarithmic histograms. It was found that there there are
many packages with only zero, one or a few dependencies and
a few packages with a lot of dependencies. Statistically this
means the distribution of the number of dependencies has a
fat tail. Likewise, the number of dependers for each package
was plotted, this can be interpreted as the distribution of
the number of adopters of a given technology. Again, there
was a fat tail, even fatter than the one from the number
of dependencies. The histogram was approximately linear
in the double logarithmic scale, suggesting a power-law like
distribution of the number of adopters for a given technol-
ogy. Zheng et al. [2] suggest that the structure of package
dependency networks is not comparable to known models
of social networks and have developed their own model to
explain the graph structure.

4. THE KDE SUBGRAPH
The entire graph might be difficult to visualize, but a

small part should be easier. The problem with choosing a
small part is that the part must have a meaningful boundary,
a random selection will likely have few relations and miss
some key packages. It was therefore decided to only pick
the packages that belong to the KDE desktop environment.
The primary reason is that the author is familiar with this
set of packages and knows its structure in some detail. A
secondary reason is that the packages are developed by a
tightly connected community where component reuse among
the projects is stimulated by creating libraries. The selection
was implemented by considering only packages in the category
kde-base from the Gentoo Portage database.

The program Tulip was used to visualize the graph, the
result is in figure 5. First the graph was laid out using a
force based method, this clusters packages that are strongly
connected close to each other. Then the graphs where colored
according to their k-core measure, this is a measure for the
‘connectedness’ of a package. At this point there was still an
unclear mess of lines between the packages, this was resolved
by bundling the edges. Edge bundling merges neighboring
lines to a single thicker line, this creates a vein-like structure.

In figure 5 one can see that all the packages depend on
kdelibs, the large blue dot in the middle. The kdelibs

package provides a lot of basic functionality, such as a unified
set of icons, file open/save dialogues and less visible standard
components. Almost all the packages in the KDE set require
one or more of these components. It should be stressed
that there was no manual work involved in the layout of
this graph, Tulip was able to determine using only objective,

406

Figure 5: Internal dependencies of modules in the
KDE project. Color represents the k-core measure.
The graph edges have been bundled to improve read-
ability.

deterministic mathematical methods from graph theory that
kdelibs plays a central role in the KDE technology.

The second thing to notice are the clusters that form along
the edge of the figure. All these clusters represent related
areas of technology within KDE. The brownish-grey cluster
immediately at the top contains mostly educational software
and a few file utilities. Going clockwise, the little blue clus-
ter next to it contains programs for compact discs. The
large brownish-grey cluster on the right consists exclusively
of games and supporting technologies. The complex mesh
that starts around seven o’clock begins with technology used
to allow users to log in. It then proceeds towards hard-
ware related technology and desktop infrastructure. The
big blue dot marked ‘solid’ at eight o’clock is KDE’s hard-
ware abstraction layer. At nine o’clock the big blue dot
represents the notification library, used to notify users of
hardware events (“battery low” and the likes), appointments
or incoming emails. The mesh now shifts towards personal
information management at ten o’clock. These contain utili-
ties such as an email client, a note taking application, a chat
client and a calendar application and related technologies.
Lastly, the small brown-grey cluster at eleven o’clock contains
technology to allow integration of scripting languages.

Scattered throughout the figure are yellow dots containing
packages that are only connected to kdelibs, without any
apparent pattern in their location. This was expected since
the packages only depend on kdelibs and are not depended
upon by other packages. This means there is no information
that brings any insight in their nature and where to cluster
them. Perhaps if dependencies from outside the KDE subset
where included the packages would form more clusters.

It is remarkable how only a few dependency relations
provide sufficient clues for the clustering algorithm to auto-
matically find related areas of technology. Similar but faster

Table 1: Key figures of the dataset

Time

Period 2000 to Q1 2012
Resolution Monthly
Snapshots 154 Graphs

All graphs

Nodes 1.3 Million
Vertices 6.9 Million

Final graph

Nodes 15 Thousand
Vertices 80 Thousand

Raw ebuilds

Format SquashFS
Size 239 MB (compressed)

4.4 GB (uncompressed)
Files 2,990,722

Compressed graphs

Format Tar+XZ compressed GML
Size 2 MB

clustering techniques where used on the whole snapshot with
similar results. Related packages for certain programming
languages (Perl, Php, Java, Python, Ruby) would cluster and
packages related to either KDE or GNOME would cluster,
among many more. Unfortunately the analysis software was
struggling with the size of the dataset and the full set was
not investigated further.

5. FINAL REMARKS
The dataset collected is available at

http://datahub.io/dataset/gentoo-dependency-graph

as compressed GML graphs for every snapshot. Raw data is
available at
http://www.utwente.nl/mb/iebis/staff/amrit/

timeline.squashfs

as a SquashFS compressed filesystem. The SquashFS format
allows one to mount the compressed data as a read-only
disk drive and operate directly on the dataset. It contains
the pre-processed ebuild files and the file graphs.bip that
contains all of the graphs in a custom format specialized
for quick processing of large graphs over time. A C++
toolkit to work with the graphs.bip file is available at https:
//github.com/Recmo/depgraph.

In a separate paper [1] we analyzed the changes in the
dependency graph over time. In particular the growth of the
number of dependers on a given package is explained using
the Bass model of innovation diffusion.

6. REFERENCES
[1] Innovation Diffusion in Open Source Software.

[2] X. Zheng, D. Zeng, H. Li, and F. Wang. Analyzing
open-source software systems as complex networks.
Physica A: Statistical Mechanics and its Applications,
387(24):6190–6200, 2008.

407

