A Performance-Aware Quality of Service-Driven
Scheduler for Multicore Processors

Filippo Sironi, Donatella Sciuto, Marco D. Santambrogio
Politecnico di Milano
{filippo.sironi,donatella.sciuto,marco.santambrogio}@polimi.it

ABSTRACT

In the latest decade, the IT industry shifted from single
to multicore processors. Multicore processors require better
support from operating systems and runtimes to allow ap-
plications to achieve predictable performance and guarantee
quality of service (QoS). Finding a proper schedule to yield
the specified performance for single and multi-threaded ap-
plications can be cumbersome; dealing with multi-program-
med workloads may be even worse.

We present a performance-aware QoS-driven scheduler for
multicore processors, which exploits the availability of run-
time application-specific performance measurements to de-
termine a suitable allotment of cores for multi-programmed
workloads so as to achieve the desired level of QoS. The pro-
posed scheduler is meant to be implemented in user-mode
and harnesses an auto-regressive moving average performance
model to put in a relationship performance measurements
and resource allocation and is capable of embodying appli-
cations’ characteristics such as execution phases.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—Schedul-
ing; D.4.8 [Operating Systems]: Performance—Measure-
ments; Modeling and prediction; Monitors

General Terms

Design, Management, Measurement, Performance

Keywords

Operating systems, Performance measurement, Performance
modeling, Resource allocation

1. INTRODUCTION

Multicore processors are ubiquitous in desktops, servers,
and embedded devices [1, [18, 120]. Computer architects de-
signed multicore processors to overcome the limitations of
superscalar processors (e.g., poor performance per Watt ra-
tios) whose performance stopped growing at historical rate.

This paradigm shift considerably increased the burden on
systems’ and applications’ programmers. Nowadays, com-
modity operating systems schedulers fail in taking full ad-
vantage of multicore processors when scheduling multi-pro-
grammed workloads of multi-threaded applications [21)]. They
are oblivious of applications’ characteristics (e.g., execution

EWiLi ’13, August 26-27, 2013, Toulouse, France.
Copyright retained by the authors.

phases) and the resulting resource allocation may lead to un-
predictable performance [14]. Judicious management of on-
chip shared resources is critical to deliver predictable perfor-
mance and (if possible) guarantee QoS.

Characterizing applications by means of their instructions’
throughput |3], miss rate curves |26], speedup, efficiency (i.e.,
speedup over resource allocation) [10], etc. to overcome the
inefficiencies of commodity schedulers is a widely accepted
practice |9, 121]. Characterization can be performance either
offline, online, or by means of a mix of both. Profiling ap-
plications offline using reference (i.e., training) inputs may
not uncover execution phases that depends on the input it-
self. Moreover, anticipating a significant set of environmen-
tal conditions (i.e., number of different multi-programmed
workloads) is nearly prohibitive and, if possible, is likely to
be time-consuming. As an alternative, it is possible collect-
ing information at runtime to infer applications’ character-
istics and harnessing feedback-based mechanisms.

We understand and appreciate the value of offline analy-
sis that can uncover fine-grained information; however, we
advocate online characterization is key to guarantee QoS.
Moreover, we cannot expect applications’ programmers or
even users to employ machine-specific performance measure-
ments like instructions per cycle (IPC) or last-level cache
(LLC) miss rate. Instead, we claim application-specific per-
formance measurements (e.g., frames/s for a video encoder
or decoder) can be as effective as low-level once when har-
nessing feedback-based mechanisms. In addition, they are
meaningful for applications’ programmers and users since
they address the impedance-mismatch problem [€] by turn-
ing the resource allocation problem into a goal definition
problem, which is later bound to resource allocation.

To this end, this paper presents a performance-aware QoS-
driven scheduler for multicore processors running multi-pro-
grammed workloads and makes the following contributions:

e Introducing a simple yet effective user-mode perfor-
mance monitoring infrastructure to instrument appli-
cations so as to make application-specific performance
measurements system-wide accessible and allow users
specifying QoS requirements;

e Exploiting a first order discrete-time auto-regressive
moving-average (ARMA) performance model to estab-
lish the relationship between resource allocation and
performance measurements;

e Harnessing online estimation to discover the perfor-
mance model’s parameters through a recursive least
square (RLS) filter, thus uncovering applications’ char-
acteristics such as coarse-grain execution phases |24];

real allocation

—_—

QoS Performance Resource Operating System
+] Model & ~| Allocator g L
l| Manager Application

performance

measurement

Performance |_ signals

Monitor

Figure 1: System architecture diagram. Each application
is coupled with an instance of the performance monitor
and one of the performance model and performance man-
ager. A single resource allocator normalizes applications’
resource demands.

e Implementing a performance manager leveraging a pro-
portional-integral (PI) controller feeding resource de-
mands to a fair resource allocator, which exploits well-
established resource allocation mechanisms.

In the rest of this paper: Section [illustrates the design
principles and gives development insights. Sectiond presents
an experimental campaign showing the validity of the pro-
posed approach. Section [4 goes through the related works
and, finally, Section [concludes the paper.

2. DESIGN AND DEVELOPMENT

The scheduler proposed in this paper leverages a classic
feedback-based structure consisting of three distinct phases
respectively devoted to:

1. Monitor applications to gather performance measure-
ments;

2. Evaluate the scheduler’s policy devising a thread to
core mapping so as to guarantee (if possible) QoS;

3. Apply the mapping migrating threads as needed.

These three phases construct a closed loop as depicted in
Figure .

2.1 Performance Monitoring

The Heart Rate Monitor (HRM) [25] is an open source
monitoring infrastructure that compute application-specific
performance measurements on which users can specify QoS
requirements through applications’ instrumentation. Adap-
tation policies, which can be implemented in kernel |3, [25]
and user-space [19], can exploit the availability of perfor-
mance measurements and QoS requirements to affect appli-
cations’ execution. HRM is tightly integrated with the Linux
kernel since its primary goal was to export application-spe-
cific performance measurements to the kernel-space.

This paper proposes a more general approach leveraging
a user-space scheduler that can run on top of most POSIX-
compliant operating systems (e.g., GNU/Linux, BSD, ...)
with minimal changes. Due to this reason, we developed a
portable user-mode performance monitoring infrastructure:
libthroughput with performance comparable to that of HRM.
libthroughput delivers competitive performance with respect
to HRM and provides similar functionality: first, performance
measurements for both single and multi-threaded applica-
tions and multi-programmed applications, second, QoS re-
quirements specification.

libthroughput collects application-specific performance mea-
surements representing applications’ throughput. As an ex-
ample, consider the z264 video encoder, which implements

the H.264/MPEG-4 Part 10 or Advanced Video Coding (AVC)
standard, included in the PARSEC 2.1 benchmark suite [6].
The parallel algorithm of 2264 harnesses a virtual pipeline
with one stage per frame. 26/ processes in parallel a num-
ber of pipeline stages equal to the number of encoder threads
realizing a sliding window moving from the beginning to the
end of the pipeline. Once the execution of a stage finishes
the encoder thread handling the stage issues a signal, which
in the context of x26/ signifies the completion of a frame.
Users can specify QoS requirements through a meaningful
performance measurement like frames/s.

2.2 Performance Modeling and Management

The proposed user-space scheduler leverages a first order
discrete-time ARMA performance model that established
the relationship between the resource allocation and perfor-
mance measurements. Equation (m) reports the mathemati-
cal formulation where r(k) and r(k+1) are the performance
measurements at the k-th and (k + 1)-th control steps, re-
spectively. c(k) is the subset of cores allocated to the ap-
plication. a and b are the performance model’s parameters
whose values depend on the application, the workload, and
the system.

rtk+1)=a-rk)+b-ck) (1)

The proposed user-space scheduler employs a recursive
least squares (RLS) filter, which is a common choices among
least squares and Kalman filters [22], to perform online es-
timation of the performance model’s parameters. Online es-
timation allows the user-space scheduler to capture applica-
tions’ characteristics such as execution phases, which changes
the relationship between the resource allocation and perfor-
mance measurements. Section [3.1] reports a thorough valida-
tion of the performance model.

Starting from the performance model reported in Equa-
tion (ﬁ]) we devised a performance manager leveraging a PI
controller that responds to errors (i.e., difference between
the QoS requirements and performance measurements) by
means of two terms: a proportional and an integral term.
The proportional term changes its effect according to the
current value of the error and in a way that reduces the
future values of the error. The integral term changes its ef-
fect incrementally accounting for the past values of the error.
The choice of neglecting the derivative term, thus the use of
a PID controller, translates into a little loss of control but,
at the same time, leads to notable less noise.

Equation (E) reports the mathematical formulation of the
PI controller for application 3.

l-p 1-p
5 ei(k) —a 5

ci(k) and c;(k — 1) are the subset of cores required by the
application between the k-th and the (k4 1)-th control steps
to respect the QoS requirement and the subset of cores allo-
cated to the application between the (k — 1)-th and the k-th
control steps, respectively. e;(k) and e;(k — 1) are the errors
at the k-th and (kK — 1)-th control steps, respectively; the
errors are computed as 7 — r;(k) and 7; — r;(k — 1), where
7; is the QoS requirement.

We synthesized the PI controller by applying classical
control theory techniques as explained by Levin [16] and
constrained the transfer function to have a single pole in
p. The controller’s parameter p affects the responsiveness;

cilk) = ci(k— 1) + ek —1) (2)

if the value is chosen in the interval (—1,1) the system is
guaranteed to be stable as long as the performance model
holdsE| Furthermore, if the value is chosen in the interval
(0,1) the system is guaranteed to avoid oscillations. In gen-
eral, large values in the interval (0, 1) translate into a slower
but smoother response, while small values translate into a
faster but rougher response.

2.3 Resource Allocation

Each performance manager i computes the subset of cores
the application ¢ requires to satisfy the QoS requirement.
These computations are carried on independently, thus re-
sulting in either a demand that can or cannot be satisfied
by the number of cores available in the system.

Whenever the demand can be satisfied the user-space sched-
uler can exploit an energy-aware policy shutting down un-
used cores through clock and power gating.

On the other hand, if the demand cannot be satisfied,
the resource allocator can harness many different policies.
We propose re-distributing cores according to performance
managers’ demands following a performance-aware fair pol-
icy similar to one we proposed with Metronome |25]. Equa-
tion (E) reports the mathematical formulation of the re-dis-
tributing filter where ¢ is number of cores available in the
system and ¢;(k) is the proportional demand for application
i at the k-th control step.

25 ¢i(k)

The resource allocator is also in charge of rounding the
floating-point number of cores as needed and inform per-
formance managers to avoid compromising the auto-tuning
process. Moreover, the resource allocator ensures that appli-
cations receive at least one core at every control step main-
taining the highly desirable non-starvation property of most
commodity schedulers.

Alternative policies can employ weights to provide addi-
tional knobs and different service levels for different users.

2.4 Prototype for GNU/Linux

The overall design of the user-space scheduler is general
enough to be implemented on top of most POSIX-compliant
operating systems. Given our design, we developed a proto-
type on top of the GNU/Linux operating system and its
commodity scheduler.

Both performance monitoring and resource allocation heav-
ily relies on the infrastructure provided by GNU/Linux. lib-
throughput exploits cgroups |4] to inform the resource allo-
cator about which threads belong to which application by
creating a new cgroup for each application. The resource al-
locator maps threads belonging to an application to a subsets
of cores by harnessing the cpuset subsystem of cgroups.

¢i(k) = ci(k) - ®3)

3. EVALUATION

We run all the experiments to evaluate the effectiveness
of the performance-aware QoS-driven scheduler on a Dell
Precision T3500 server with an Intel Xeon Processor W3670
and 12 GB of Single Ranked DIMMs. The processor fea-
tures 6 cores clocked at 3.20 GHz and sharing 12 MB of last-
level cache. Each memory module runs at 1066 MHz. We

!The use of adaptive control through the RLS filter enforces
the performance model.

Table 1: Performance model assessment through the av-
erage and the standard deviation of the coefficient of
determination and the mean absolute percentage error
over six static resource allocations

R?[0,1] MAPE [%]
avg. stddev. avg. stddev.

blackscholes 0.97 0.01 0.63 0.04
bodytrack 0.86 0.02 1.10 0.05
canneal 0.96 0.01 0.95 0.04
dedup 0.73 0.02 3.38 0.17
facesim 0.89 0.02 1.03 0.04
ferret 0.92 0.02 0.83 0.03
swaptions 0.98 0.01 0.51 0.02
z264 0.72 0.03 5.48 0.26

application

disabled the Enhanced Intel SpeedStep Technology, the In-
tel TurboBoost Technology, and the Intel Hyper-Threading
Technology to simplify our analysis. The operating system
is Debian GNU/Linux 7.0 x86-64 with the Linux kernel 3.2.

3.1 Performance Model Validation

We evaluate the effectiveness of the performance model
against a subset of the applications from the PARSEC 2.1
benchmark suite |6] instrumented with libthroughput. We
run each application 100 times randomly varying the subset
of cores allocated and collecting performance measurements
through libthroughput. We applied the least squares algo-
rithm to regress the performance model’s parameters.

We then run each application fixing the subset of cores al-
located (from 1 to 6) and computed the coefficient of determi-
nation R? and the mean absolute percentage error (MAPE)
as suggested by Sharifi et al. |22] using the application-spe-
cific performance measurements provided by libthroughput
instead of the IPC.

Table E] reports the average and the standard deviation
of R? and MAPE for the applications we analyzed. The av-
erages of the first metric, R?, is close to 1, which means
the performance model is quite accurate; the small standard
deviations say the averages holds for most of the applica-
tions apart from dedup and z264. These two applications
go through different execution phases, thus benefiting from
the online estimation of the performance model’s parame-
ters that is not employed for performance model assessment.
The averages and standard deviations of the second metric,
MAPE, leads to similar considerations with the addition of
quantitative information on the percentage error.

The rest of this section focuses on the experiments with
two instances of £264. Among the subset of the PARSEC 2.1
benchmark suite we employed, 2264 is the most challenging
application and provides the opportunity to evaluate com-
plex scenarios, especially when two instances run at the same
time

3.2 Static Resource Allocation: Comparison

We compare the proposed user-space scheduler with two
standard (static) resource allocation mechanisms provided
by the cgroups subsystem of the Linux kernel: cpuset and
bandwidth. cpuset allows a group of threads to use a subset

2We show only the experimental results obtained with 264
for space constraints. Moreover, we limited our study to
workloads made up of two applications since our evaluation
platform cannot afford running more applications with rea-
sonable performance.

of the available cores. The cpuset subsystem is an exam-
ple of spatial scheduling solution while the bandwidth is a
more classical time-share scheduling approach. The band-
width subsystem enforces the reservation of a certain quota
of the multicore processor computational power over a pe-
riod of time for a cgroup.

Figures @ and show the behavior of the first and sec-
ond instances of x26/, respectively, with the best static re-
source allocation to respect the QoS requirements of 8 and
12 frames/s or fps through the cpuset subsystem. The first
instance is assigned 2 cores (i.e., 0 and 1) while the second in-
stance gets 3 cores (i.e., 2-4). With these static resource allo-
cations both the applications satisfy the QoS requirements at
the end of the execution; however, during the execution the
performance measurements vary a lot between 6 and 13 fps
for the first instance and between 10 and 18 fps for the sec-
ond instance. This is due to the different execution phases,
which for z264 are input-dependent, the application goes
through. Ideally, one would want to keep the performance
measurements as close as possible to the QoS requirements
during the whole execution to avoid wasting resources. The
take out of this experiment is that: there exists no static
resource allocation that can be achieved through the cpuset
subsystem such that both the instances of £264 respect the
QoS requirements during the whole execution.

Figures 2d and Bd display the experimental results ob-
tained by replicating the previous experiments exploiting
the bandwidth subsystem. With the bandwidth subsystem,
applications make use of all the cores available, which are
six on our evaluation platform. The first instance of 26/ is
assigned 33 % of the bandwidth of the multicore processors,
which is approximately equal to the 2 cores assigned in the
previous experiment. The second instance gets 47 % of the
bandwidth of the multicore processors, which is, once again,
approximately equal to the 3 cores assigned in the previ-
ous experiment. Even though the bandwidth subsystem is
much finer-grained than the cpuset subsystem, the take out
of this experiment is the same of the first. It is worth noting
that coupling the cpuset and bandwidth subsystems to per-
form static resource allocation yields equally unsatisfactory
experimental results.

3.3 Dynamic Resource Allocation

We evaluate the proposed performance-aware QoS-driven
scheduler for multicore processors in the same scenario of the
static resource allocation, with the same multi-programmed
workload and the same QoS requirements. performance man-
agers run every 50ms and update the performance model
at the same frequency by retrieving performance measure-
ments through libthroughput, which is capable of comput-
ing fresh information every 10ms. performance managers
demand new resource allocations and coordinate through
the resource allocator every 500 ms. Each of these periods is
configurable and different configuration benefit different ap-
plications depending on the execution phases they may go
through.

Figures [2d and 2 show the experimental results obtained
by running the two instances of £264 with QoS requirements
of 8 and 12 fps, respectively. Both the performance profiles
track the QoS requirements after an initial settling phase
in which the performance model’s parameters converge to
their “real” values. Figures @ and display the subset of
the available cores assigned to the first and to the second

instance of x26/, respectively. The resource allocations fol-
low the performance profile of the application, decreasing
the number of cores when the performance measurements
naturally rise because of the lower complexity of the video
and increasing the number of cores when the performance
measurements fall due to the higher complexity of the video.
Moreover, it is important to notice how the sum of the num-
ber of cores assigned to the first and second instances of
2264 never exceeds number of available cores thanks to the
re-distributing filter inside the resource allocator.

3.4 Discussion

The choice of exploiting the cpuset subsystem instead of
the bandwidth subsystem is actually sub-optimal for the pro-
posed approach for two reasons: first, the cpuset subsystem
is coarser-grained than the bandwidth subsystem and, sec-
ond, the cpuset subsystem requires, like the bandwidth sub-
system, running each multi-threaded application with a num-
ber of threads which is at least as high as the number of avail-
able cores. The first drawback is easy to understand since
the cpuset subsystem allows partitioning the bandwidth of
the hexa-core processors by multiple of ~ 16 %. This is-
sue is simply addressed by increasing the decision/actuation
frequency of the performance managers and resource allo-
cator. The cpuset subsystem enables resource allocation on
space axis; variable dynamic resource allocation either re-
quires multi-threaded applications to vary the number of
threads accordingly or to run with a number of threads
that allows exploiting the full parallelism of the multicore
processor. Conversely, the bandwidth subsystem always re-
quires multi-threaded applications to run with an adequate
number of threads since resource allocation is performed on
the time axis. With the cpuset subsystem multi-threaded
applications may end in unbalanced configurations where
some cores must handle more threads than others possibly
introducing artificial critical paths due to synchronization is-
sues. This is an issue we observe with the proposed approach
and it may require the adoption of advance load balancing
scheme such as Juggle [12].

4. RELATED WORK

Recently there has been extensive research on solutions to
maximize performance and/or respect QoS requirements.

Researchers focused on cache partitioning approaches [13,
23], memory bandwidth partitioning solutions [17], cores
partitioning algorithms [9, 21], and both time and space-
sharing approaches [, [25]. Moreover, these works exploited
different decision-making techniques spanning from heuris-
tics |4, 19, 21, 125] to machine learning |7, [19], control the-
ory [22], a mix of them [11].

The proposed approach borrows the design of HRM from
Metronome [25] to leverage application-specific performance
measurements and explores the use of a PI controller instead
of the speedup-based approach from Metronome++ |5]. Like
METE |22], our user-space scheduler employs an ARMA
performance model coupled with a PI controller to imple-
ment the performance manager. METE handles multiple re-
sources (i.e., cores, cache ways, and memory bandwidth)
while the proposed approach partitions a single resource
(i-e., cores); our limitation is due to the fact that we im-
plemented the proposed approach on real hardware, while
METE cannot be implemented since cache ways and mem-
ory bandwidth partitioning is not supported by any com-

performance [fps]

— test #1, 2 cores

(a) Performance profile of the first instance running with 2 cores.

time [s]

20— -

performance [fps]

: | — test #2, 33% bandwidth|

(¢) Performance profile of the first instance running with 33 % of

time [s]

the bandwidth.

20—

performance [fps]

(e) Performance profile of the first instance meeting the 8 fps re-

quirement.

time [s]

cores

<x Wworkload
mm 2pplication

(g) Core allocation for the first instance while meeting the 8 fps

20 30 40 50 60
time [s]

requirement.
Figure 2: Performance profiles of the two instances of £264 running simultaneously with various static resource alloca-

tions obtained through the cpuset and bandwidth subsystems, and performance profiles of the two instances of 26/
running simultaneously with the proposed user-space scheduler.

— test #1, 3 cores

performance [fps]

0 |||lillllillllillllillllillllillllillllillll

0 5 10 15 20 25 3 5 40 45
time [s]

(b) Performance profile of the second instance running with 3

cores.

: | — test #2, 47% bandwidth

90T

performance [fps]

0 |||lillllillllillllillllillllillllillllillll

0 5 10 15 20 25 30 35 40 45
time [s]

(d) Performance profile of the second instance running with 47 %

of the bandwidth.

D T P S S S SN SR

performance [fps]

0 |||lillllillllillllillllillllillllillllillll

0 5 10 15 20 25 30 35 40 45
time [s]

(f) Performance profile of the second instance meeting the 12 fps
requirement.

< workload
| mm 2pplication

cores

25 30 35 45

time [s]

(h) Core allocation for the second instance while meeting the
12 fps requirement.

modity multicore processor.

Orthogonal approaches |[15] dynamically adjust the num-
ber of threads within multi-threaded applications to opti-
mize the overall efficiency of the system or proactively ad-
dresses the load balancing issue [12]. Coupling the proposed
approach with these approaches may solve the second is-
sue discussed in Section m The availability of Scheduler
Activations [2] can improve the efficiency of the proposed
approach avoiding costly kernel-space thread migrations in
favor of user-space thread migrations.

The proposed approach might recall a real-time scheduling
infrastructure. However, we believe the two scheduling solu-
tions are different in some of the key aspects. Let us focus on
priority-based real-time scheduling infrastructures that are
the one resembling more the proposed scheduling approach.
The earliest deadline first (EDF) is a priority-based schedul-
ing algorithm; with EDF an application ¢ specifies a relative
deadline D; and a worst-case execution time C;. Applica-
tions programmers may need to overestimate C; to account
of workload variations among the deadlines. The overesti-
mation may in turn lead to a waste of resources (e.g., the
scheduling infrastructure implements a hard admission con-
trol policy and no application can exploit unused resources).
The proposed approach borrows ideas from adaptive systems
and accounts for application-specific performance measure-
ments and QoS requirements to gracefully adapt resource
allocation shifting from resource-centric solutions like real-
time scheduling infrastructures to a goal-oriented one.

S. CONCLUSIONS

We presented a performance-aware QoS-driven scheduler
for multicore processors and multi-programmed workloads
that sits on top of well-established resource allocation mech-
anisms, namely the cgroups subsystem of the Linux ker-
nel. The proposed approach harnesses application-specific
performance measurements and QoS requirements provided
through libthroughput, the user-space dual of HRM to ad-
dress the impedance-mismatch problem and turn the re-
source allocation problem into a goal-definition problem. In
addition, the proposed approach leverages a discrete-time
ARMA performance model and a RLS filter to dynamically
establish the relationship between the resource allocation
and the performance measurements. A set of PI controllers
determine suitable allotments of cores so as applications
can respect (if possible) QoS requirements. Experimental
results on a commodity multicore processor with emerging
real-world applications highlight the effectiveness of the pro-
posed approach that allows applications respecting QoS re-
quirements even in presence of execution phases.

6. REFERENCES

[1] Read how NVIDIA Tegra is redefining mobile performance.
URL http://www.nvidia.com/object/white-papers.html.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler Activations: Effective Kernel Support for
the User-Level Management of Parallelism. In ACM Trans.
Comput. Syst., volume 10, 1992.

[3] R. Azimi, M. Stumm, and R. W. Wisniewski. Online Per-
formance Analysis by Statistical Sampling of Microprocessor
Performance Counters. In ICS, 2005.

[4] G. Banga, P. Druschel, and J. C. Mogul. Resource Con-
tainers: A New Facility for Resource Management in Server
Systems. In OSDI, 1999.

[5]

[6]

7]

(10]

11]

(12]

13]

14]

(15]

[16]
(17]

(18]

(19]

20]

(21]

(22]

(23]

[24]

25]

[26]

D. B. Bartolini, R. Cattaneo, G. C. Durelli, M. Maggio, M. D.
Santambrogio, and F. Sironi. The Autonomic Operating Sys-
tem Research Project — Achievements and Future Directions.
In DAC, 2013.

C. Bienia. Benchmarking Modern Multiprocessors. PhD the-
sis, Princeton University, 2011.

R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated Man-
agement of Multiple Interacting Resources in Chip Multipro-
cessors: A Machine Learning Approach. In MICRO, 2008.
J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird, M. Moretd,
D. Chou, B. Gluzman, E. Roman, D. B. Bartolini, N. Mor,
K. Asanovié, and J. D. Kubiatowicz. Tessellation: Refactor-
ing the OS around Explicit Resource Containers with Con-
tinuous Adaptation. In DAC, 2013.

J. Corbalan, X. Martorell, and J. Labarta.
Driven Processor Allocation. In OSDI, 2000.
D. L. Eager, J. Zahorjan, and E. D. Lozowska. Speedup Ver-
sus Efficiency in Parallel Systems. In IEEE Trans. Comput.,
volume 38, 1989.

H. Hoffmann, J. Holt, G. Kurian, E. Lau, M. Maggio, J. E.
Miller, S. M. Neuman, M. Sinangil, Y. Sinangil, A. Agarwal,
A. P. Chandrakasan, and S. Devadas. Self-aware Computing
in the Angstrom Processor. In DAC, 2012.

S. Hofmeyr, J. A. Colmenares, C. lancu, and J. Kubiatowicz.
Juggle: Proactive Load Balancing on Multicore Computers.
In HPDC, 2011.

M. Kandemir, T. Yemliha, and E. Kultursay. A Helper
Thread Based Dynamic Cache Partitioning Scheme for Mul-
tithreaded Applications. In DAC, 2011.

R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Us-
ing OS Observations to Improve Performance in Multicore
Systems. In IEEE Micro, volume 28, 2008.

J. Lee, H. Wu, M. Ravichandran, and N. Clark. Thread
Tailor: Dynamically Weaving Threads Together for Efficient,
Adaptive Parallel Applications. In ISCA, 2010.

W. S. Levin. The Control Handbook. CRC-Press, 1996.

F. Liu and Y. Solihin. Studying the Impact of Hard-
ware Prefetching and Bandwidth Partitioning in Chip-
Multiprocessors. In SIGMETRICS, 2011.

H. MclIntyre, S. Arekapudi, E. Busta, T. Fischer, M. Golden,
A. Horiuchi, T. Meneghini, S. Naffziger, and J. Vinh. Design
of the Two-Core x86-64 AMD “Bulldozer” Module in 32 nm
SOI CMOS. In [EEE J. Solid-State Circuits, volume 47,
2012.

J. Panerati, F. Sironi, M. Carminati, M. Maggio, G. Bel-
trame, P. J. Gmytrasiewicz, D. Sciuto, and M. D. Santam-
brogio. On Self-adaptive Resource Allocation through Rein-
forcement Learning. In AHS, 2013.

S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada,
M. Ratta, and S. Vora. A 45nm 8-Core Enterprise Xeon
Processor. In ISSSC, 2009.

H. Sasaki, T. Tanimoto, K. Inoue, and H. Nakamura.
Scalability-Based Manycore Partitioning. In PACT, 2012.
A. Sharifi, S. Srikantaiah, A. K. Mishra, M. Kandemir, and
C. R. Das. METE: Meeting End-to-End QoS in Multicores
through System-Wide Resource Management. In SIGMET-
RICS, 2011.

A. Sharifi, S. Srikantaiah, M. Kandemir, and M. J. Irwin.
Courteous Cache Sharing: Being Nice to Others in Capacity
Management. In DAC, 2012.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Auto-
matically Characterizing Large Scale Program Behavior. In
ASPLOS, 2002.

F. Sironi, D. B. Bartolini, S. Campanoni, F. Cancare, H. Hoff-
mann, D. Sciuto, and M. D. Santambrogio. Metronome:
Operating System Level Performance Management via Self-
Adaptive Computing. In DAC, 2012.

D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
RapidMRC: Approximating 1.2 Miss Rate Curves on Com-
modity Systems for Online Optimizations. In ASPLOS,
2009.

Performance-

http://www.nvidia.com/object/white-papers.html

	Introduction
	Design and Development
	Performance Monitoring
	Performance Modeling and Management
	Resource Allocation
	Prototype for GNU/Linux

	Evaluation
	Performance Model Validation
	Static Resource Allocation: Comparison
	Dynamic Resource Allocation
	Discussion

	Related Work
	Conclusions
	References

