
PREPRINT FOR REVIEW PURPOSES. FINAL VERSION WILL BE PUBLISHED IN 28TH ACM ICS ’14: HTTP://DX.DOI.ORG/10.1145/2597652.2597677 1

Thread-cooperative, Bit-parallel Computation of Levenshtein Distance on GPU
Alejandro Chacón∗, Santiago Marco-Sola†, Antonio Espinosa∗, Paolo Ribeca†, and Juan Carlos Moure∗

Abstract—Approximate string matching is a very important problem in computational biology; it requires the fast computation
of string distance as one of its essential components. Myers’ bit-parallel algorithm improves the classical dynamic programming
approach to Levenshtein distance computation, and offers competitive performance on CPUs. The main challenge when designing
an efficient GPU implementation is to expose enough SIMD parallelism while at the same time keeping a relatively small working
set for each thread.
In this work we implement and optimise a CUDA version of Myers’ algorithm suitable to be used as a building block for DNA
sequence alignment. We achieve high efficiency by means of a cooperative parallelisation strategy for (1) very-long integer
addition and shift operations, and (2) several simultaneous pattern matching tasks. In addition, we explore the performance
impact obtained when using features specific to the Kepler architecture.
Our results show an overall performance of the order of tera cells updates per second using a single high-end Nvidia GPU, and
factor speedups in excess of 20× with respect to a sixteen-core, non-vectorised CPU implementation.

Index Terms—SIMD, GPU, CUDA, Myers’ algorithm

1 INTRODUCTION

Current DNA sequencing technologies produce billions of
sequence reads, with hundreds of bases per read, in a single
instrument run. Downstream data analysis for resequencing
projects requires alignment (or mapping) of all these reads to
a reference genome. Sequencing errors, sequence divergence
from the reference and the growing length of reads require
efficient approximate pattern matching algorithms.

Recent sequence alignment software tools, like BWA [10]
or GEM [16], use a two-step alignment strategy. The first
step (based on a seeded search in the case of BWA, or on
filtration in the case of GEM) extracts substrings from the
query (or read); such substrings are searched in the reference
genome (which has been previously turned into an indexed
form allowing fast pattern matching, for instance an FM-
index [3]) generating candidate match positions. The second
step uses online approximate string matching [18] to verify
the similarity between the query and the region adjacent
to every candidate position; it returns as valid matches the
regions that differ from the query, in terms of some string
distance, by less than a value specified by the user.

In the context of biological sequence alignment one often
employs Levenshtein distance, i.e. the minimum number of
edit operations needed to transform the query into the match.
Each operation can be either a substitution, or an insertion,
or a deletion of a single character. Levenshtein distance is
typically evaluated in terms of dynamic programming (DP,
[22]), which casts the problem into the computation of (a
subset of) a suitable integer-valued matrix. Improving upon
a vast previous literature, Myers [17] devises an algorithm
to compute the DP matrix using bit-wise operations;
each multi-bit operation can handle several matrix cells
simultaneously, thus reducing both the total computational
work and memory storage requirements.

∗Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
†Centro Nacional de Análisis Genómico, Barcelona 08028, Spain.
{alejandro.chacon, antoniomiguel.espinosa, juancarlos.moure}@uab.es
{santiagomsola, paolo.ribeca}@gmail.com

CUDA-enabled Graphic Processing Units (GPUs) are
high-performance, cost-effective and power-efficient many-
core architectures appropriate for accelerating the execu-
tion of a wide range of algorithms [11]. They provide
overall peak computation throughput and memory band-
width about an order of magnitude higher than general-
purpose latency-oriented processors. GPUs need Single In-
struction Multiple Data (SIMD) or vector parallelism and
Multiple Instruction Multiple Data (MIMD) parallelism to
feed their computational cores. They also strongly rely on
H/W multithreading (excess of Thread-Level Parallelism, or
TLP) to hide the latency of memory accesses and pipeline
dependencies. In general an algorithm must exhibit mas-
sive and regular data-level parallelism, converted into both
SIMD/vector parallelism and TLP, to achieve high GPU
execution efficiency.

The larger computation capability of GPUs comes at the
expense of having an order of magnitude less on-chip
memory capacity (registers and cache memories) than that
of CPUs. As a result, GPUs put more pressure on reducing
the overall working set of running threads to make it fit
into fast on-chip memory; applications with moderate ratio
between computation and memory operations will need to
reuse data stored in fast on-chip memory not to become
memory-bound.

A typical read-mapping job turns billions of query se-
quences into tens of billions of candidate regions. This
provides plenty of task-level parallelism in the form of
multiple DP matrix calculations. While inter-task parallelism
is a simple way of benefiting from the MIMD and H/W
multithreading capabilities of GPUs, however, it is not ad-
equate to efficiently exploit their SIMD/vector potential. In
addition, running a pattern matching task per thread would
not scale with the query size, due to the impossibility of
fitting the working sets of the threads into available on-chip
GPU memory even for relatively short queries.

Within the low-memory DP framework of Myers’, we
propose and analyse a scheme to make several threads co-
operate on one or multiple pattern matching tasks (through
intra-task parallelism). This approach allows us to tune the

PREPRINT FOR REVIEW PURPOSES. FINAL VERSION WILL BE PUBLISHED IN 28TH ACM ICS ’14: HTTP://DX.DOI.ORG/10.1145/2597652.2597677 2

amount of data per thread, which enables the efficient usage
of GPU registers and shared memory. We test different
cooperative mechanisms, among them the new Kepler shuffle
instruction.

Finally, we present a performance analysis methodology
to identify the most relevant bottlenecks of our GPU algo-
rithm. From it, we derive a new solution that uses register
memory effectively by means of thread cooperation, and we
are able to (1) overcome the memory-bandwidth bottleneck
and (2) achieve a more efficient use of computational re-
sources.

Our main contributions can be summarised as follows:

• We develop an algorithmic approach to solve the prob-
lem of computing Levenshtein distance in a thread-
cooperative way, suited to a SIMD-based computational
model. It relies upon a fast method to communicate
carries by means of collective very-long integer add and
shift operations

• We provide a CUDA-specific implementation of our
algorithm, describing our optimisation strategies on the
GPU

• We present an in-depth performance analysis showing
that our CUDA code is computation-bound and scal-
able, and more efficient than simpler task-parallel CPU
and GPU implementations. Performance is on the order
of TCUPS (Tera Cells Updated Per Second).

In section 2 we review some terminology and prereq-
uisites about Levenshtein distance, Myers’ algorithm and
GPU architectures. Section 3 contains our parallelisation
proposal (first, by using a task-parallel approach, and next
by introducing a thread-cooperative approach). In section
4, we present the experimental results we obtain when
benchmarking our proposal on several GPU systems. Section
5 discusses related work and, finally, section 6 summarises
our results, describing future work.

2 BACKGROUND

2.1 Computing Levenshtein distance

Let Σ be an alphabet of size σ, and the pattern P[1..m] and
the text T[1..n] two strings over Σ. DNA strings generated by
sequencing machines can usually be represented with the
alphabet {A,C,G,T,N}, where A,C,G and Ts encode bases
adenine, cytosine, guanine and thymine, respectively, and
N indicates a base which is unknown due to some technical
problem occurred during sequencing.

Levenshtein distance can be computed with DP tech-
niques by using the following recurrence [22] to fill a score

matrix C, with 0 ≤ i ≤ m and 0 ≤ j ≤ n:{
Ci,0 = i, C0,j = 0

Ci,j = min{Ci−1,j−1 + δ(i, j);Ci−1,j + 1;Ci,j−1 + 1}
(1)

where δ(i,j) is 0 if P[i] = T[j], and 1 otherwise. A score value
Cm,j = k identifies an occurrence of P with Levenshtein
distance k, ending at text character T[j]. An example of
score matrix is given in Table 1.a. The time complexity of
the classical DP algorithm is O(nm), i.e. proportional to the
number of cells in matrix C.

We define the maximum allowed error rate as ε = k/m.

2.2 Myers’ bit-parallel algorithm

Ukkonen [25] noticed that adjacent values in matrix C can
differ at most by ±1. A matrix of differences equivalent
to C can be represented using two bits per cell. Table 1.b
shows a matrix of vertical differences, ∆v, where ∆vi,j =
Ci+1,j −Ci,j . Myers [17] used these adjacency properties to
exploit bit parallelism and compute difference cells using
bit-wise logical, shift, and addition operations. Time com-
plexity becomes O(n) if an m-cell column of ∆v fits into a
computer word of size w (typically w=32 or 64). Otherwise,
a block strategy achieves complexity O(ndm/we). Hyyrö et
al. [7] improved Myers algorithm by reducing the number
of bit-wise operations.

Function δ() can be implemented using a query profile (see
Table 1.c). Each of the σ different columns is a bit-vector
codifying the occurrences of each letter into the query. Also,
if matrix C is constructed column-wise only one column
needs to be kept in memory at a time, resulting in total
memory space requirements of O(σ×m) (measured in bits).

Algorithm 1 shows pseudo-code for Myers’ proposal. The
main program and variables are at the top, while the time-
consuming code, invoked once for each of the n columns,
is at the bottom. PV and NV are w-bit vectors encoding
positive and negative differences in a given column. Text
T is scanned symbol by symbol, and each symbol T [i]

determines the appropriate query profile in PEq[]. Function
advance block() executes 17 logical/arithmetic operations to
transform the input (i.e. the previous column encoded as
PV and NV) into the next column, i.e. to compute m new
vertical cells. It also provides a carry (the last cell in the
column), which is the penalty to be added to the alignment
score.

The basic algorithm assumes m ≤ w and is depicted in
Fig.1. Patterns larger than w can be partitioned into w-bit
blocks [17]. The block-based strategy needs to generate and

TABLE 1: Dynamic Programming tables for sequences P=TAGAC and T=ATCGAG

A T C G A G
0 0 0 0 0 0 0

T 1 1 0 1 1 1 1
A 2 1 1 1 2 1 2
G 3 2 2 2 1 2 1
A 4 3 3 3 2 1 2
C 5 4 4 3 3 2 2

(a) C: Score Matrix

+1 +1 0 +1 +1 +1 +1
+1 0 +1 0 +1 0 +1
+1 +1 +1 +1 -1 +1 -1
+1 +1 +1 +1 +1 -1 +1
+1 +1 +1 0 +1 +1 0

(b) ∆v: vertical-differences

A C G T
T 1 1 1 0
A 0 1 1 1
G 1 1 0 1
A 0 1 1 1
C 1 0 1 1

(c) Query profile ≡ δ()

PREPRINT FOR REVIEW PURPOSES. FINAL VERSION WILL BE PUBLISHED IN 28TH ACM ICS ’14: HTTP://DX.DOI.ORG/10.1145/2597652.2597677 3

scorei+1	

VNi VPi

update	
 score	

PEq[]

Ti T1 Tn

carry

scorei	

m
 ≤

 w

VNi+1 VPi+1

Advance Block

Fig. 1: Core operation of Myers’ basic algorithm

send special carries between consecutive blocks, as shown
in Fig.2. This is achieved by means of a slightly modified
version of function advance block().

Algorithm 1: Myers’ algorithm for m ≤ w
input : P=pattern, T=text, m=|P |, n=|T |, σ=|Σ|
output: (minScore, position) with lower # differences

begin
bitvector<w> PV, NV, HMASK, EQ, PEq[σ]
(PV, MV) ←− (∼0, 0)
HMASK ←− 1� (m− 1)
PEq[σ] ←− preprocess(P, σ)
for i=1 to n do

EQ ←− PEq[T [i]]
(c, PV, NV) ←− advance block(EQ, PV, NV)
score ←− score + c
if (score < minScore) then

(minScore, position) ←− (score, i)
end

end
return (minScore, position)

end

Function advance block (bitvector<w> EQ, PV, NV)
begin

bitvector<w> XV, XH, PH, NH
XV ←− EQ | NV
XH ←− (((EQ & PV) + PV) ∧ PV) | EQ
PH ←− NV | ∼ (XV | PV)
NH ←− PV & XH
carry ←− (PH & HMASK) − (NH & HMASK)
PH ←− PH � 1
NH ←− NH � 1
PV ←− NH | (XV | PH)
NV ←− PH & XV
return (carry, PV, NV)

end

2.3 GPU Architectures
GPUs are composed of tens of processing components,
called streaming multiprocessors (SMs) by Nvidia [11]. SMs
share a L2 cache of hundreds of KBytes, and an exter-
nal global memory of several GBytes. Each SM contains
hundreds of SIMD cores that perform in-order execution

scorei+1	

VNi VPi

update	
 score	

Advance	
 Block	
 m/w	

...

PEq[]

...

Ti T1 Tn

carry

carry

carry

scorei	

Advance	
 Block	
 2	

Advance	
 Block	
 1	

m
 >

 w

VNi+1 VPi+1

Fig. 2: Myers’ blocked-based algorithm

of instructions. Each SM contains tens of KBytes of local
storage that is partitioned into explicitly-managed registers
and shared memory banks, and several implicitly-managed
cache memories.

Tens of thousands of threads must be launched simulta-
neously to achieve high performance. The CUDA program-
ming model is based on a hierarchy of threads executing
the same program on different sets of data. A thread-block is
a group of threads that may cooperate using the registers
and shared memory available in a given SM. Thread-blocks
in a grid (or kernel) are scheduled non-deterministically for
independent MIMD execution into SMs. A thread-block is
divided into batches of 32 threads, called warps, which are
the smallest scheduled unit. Between 32 and 64 warps from
one or multiple thread-blocks are dynamically scheduled for
execution in the same SM. This mechanism, often known as
H/W multithreading, is the main latency-hiding strategy on
GPUs.

A warp is executed in a SIMD/vector fashion: threads in
a warp are executed in a lock-step manner operating on 32
values in parallel. If threads in the same warp need to follow
different control flows, all paths must be executed one after
another, with some threads active and the remaining threads
stalled. An instruction executed by a subset of the warp
threads is said to be divergent. Divergence is an inherent
performance limitation of SIMD architectures, and must be
addressed when designing the algorithm.

Another critical performance issue is the memory access
pattern of the algorithm. When executing a SIMD/vector
load or store instruction, the memory addresses provided
by all the threads in the same warp are combined, or
coalesced, to generate one or multiple memory block access
requests (memory blocks of 32 to 128 Bytes). High memory
performance is achieved only when all the data requested
from global memory is really needed by the program. In
practice, that means requested data is coalesced into one or
a few memory blocks. Warp-level, cooperative instructions
may help reducing the need for global and shared memory
accesses.

3 PARALLELISATION ANALYSIS

This section describes and discusses two CUDA implemen-
tation strategies for Myers’ bit-parallel algorithm: (1) task-
parallel and (2) thread-cooperative. The work presented
addresses the computation of Levenshtein distance for DNA
strings, but can easily be extended to different alphabets.

PREPRINT FOR REVIEW PURPOSES. FINAL VERSION WILL BE PUBLISHED IN 28TH ACM ICS ’14: HTTP://DX.DOI.ORG/10.1145/2597652.2597677 4

3.1 Task Parallel Approach

We assume there is a large number of input sequence reads,
and each query must be compared to multiple regions in
a large genome text. Having lots of independent query-text
comparisons provides a straightforward source of task paral-
lelism. This approach has been used on GPUs very recently
in [9] [24]. We have developed our own implementation,
putting our best effort on optimising the code. Apart from
some implementation details described at the end of this
section, the most performance-critical issue is handling the
local storage for each task.

Bit-vectors PV, NV and PEq[] are accessed n times during
the algorithm execution. For the sake of performance, it is
important to reuse this intermediate data, keeping them in
on-chip memory and avoiding costly main memory trans-
fers. The problem is that the aggregated size of this inter-
mediate data grows both with the query size and with the
number of running threads. For moderate and large query
sizes either (1) memory performance suffers because inter-
mediate data exceed the available on-chip GPU memory, or
(2) GPU occupancy is sacrificed to make intermediate data
fit into on-chip memory. Section 4 evaluates performance
when storing intermediate data either in local memory or
shared memory.

3.2 Thread Cooperative Approach

One way to deal with the previous problem is making
threads cooperate on the same task (intra-task parallelism)
so that the amount of intermediate data per thread is re-
duced. Another advantage of thread cooperation is to enable
the allocation of GPU registers for all intermediate variables.
Registers provide more storage capacity and throughput
than any other kind of on-chip memory.

3.2.1 Intra-task SIMD vectorisation: 1 warp per task

Finding enough intra-task parallelism to be efficiently ex-
ploited by even a single warp (SIMD operation) is chal-
lenging. Dynamic programming approaches present a well-
known dependence pattern: any cell of the score matrix can
be computed only after the values of the left and above cells
are known.

There is potential parallelism when computing cells on the
same anti-diagonal, but it is difficult to exploit, since it grows
and diminishes as the anti-diagonal enlarges and shrinks
while traversing the score matrix. Having said that, Myers’
method for computing Levenshtein distance is interesting,
as it allows processing all cells in a column simultaneously.

We revisit Myers’ idea to exploit bit parallelism not only
at the word level, but also at the SIMD level. Each thread
(or SIMD lane) holds a word-size slice of the column infor-
mation stored in bit-vectors PEq[], PV and NV. This scheme
reduces and fixes the total local memory required per thread,
which is now independent of m, the query size. Then, the
CUDA compiler can easily allocate registers for the local
data of each thread.

Most of the bit-wise operations on Algorithm 1 are inher-
ently parallel (and, or, xor, not ...) and are trivially converted
to SIMD/warp instructions. The exceptions are the add

and shift operations inside advance block() function. Algo-
rithm 2 depicts the pseudo-code of our proposed thread-
cooperative m-bit addition and shift operations. Each thread
executes the code, receives a portion of each bit-vector input
and generates a portion of the output. The cooperative
shift requires one extra carry propagation step between
neighbour threads. The cooperative addition uses a simple
ripple-carry scheme. First, all threads perform a bit-wise
addition of their corresponding portion of the input. Then, a
cooperative loop of communication and carry addition steps
iterates until no carries need to be propagated. Most times,
it takes just one or two loop iterations to complete.

It is not surprising to find that most of the complexity
falls in the addition operation. Indeed the “magic” of My-
ers’s method resides in converting cell dependencies into
the carry dependencies within the addition operation. This
strategy ultimately benefits from the very efficient hardware
implementation of the addition operation, which solves the
carry chain dependence very quickly.

The 1-warp-per-task strategy works reasonably well for
certain query sizes, but fails with others. Fig. 3.a shows how
a query of size m=400 is partitioned into 13 words, and
exactly 13 threads cooperate on the matching task while
the remaining 19 threads are idle. This case involves a
disappointing thread utilisation of 39%. The next step to
achieve high GPU performance requires the threads in a
warp to cooperate on processing several queries.

3.2.2 Intra- and Inter-task SIMD: 1 warp per r tasks

Combining intra- and inter-task parallelism enables two
types of performance improvements. First, several small
queries may be used to “fill” a 1024-bit SIMD vector and
provide useful work for as many threads in a warp as
possible. Fig. 3.b shows how r=2 queries of size m=400
occupy 2×13=26 words (and threads), with an utilisation
that raises to 78% (800 bits used from 1024).

Algorithm 2: Thread-Cooperative m-bit Addition and
Shift functions executed by each thread

Function thread cooperative add (bitvector<w> a, b)
begin

bitvector<w> result
(result, c add) ← a + b
while (check any thread (c add != 0)) do

next c ← send to (threadID+1, c add)
(result, c add) ← result + next c

end
return (result)

end

Function thread cooperative shift (bitvector<w> a)
begin

bitvector<w> result
c shft ← a � (w - 1)
next c ← send to (threadID+1, c shft)
result ← (a � 1) | next c
return (result)

end

PREPRINT FOR REVIEW PURPOSES. FINAL VERSION WILL BE PUBLISHED IN 28TH ACM ICS ’14: HTTP://DX.DOI.ORG/10.1145/2597652.2597677 5

78%

89%

1024 2048 7168

(c) Increasing
words/thread

1 word/thread
r = 1

(bits / warp)

1 word/thread
r = 2

2 words/thread
r = 4

7 words/thread
r = 16 query 1 query 2 query 4 query query 32

query 1 query 2 query 4

query 2 query 1

query 1

query 3

query 16

39%

78%

(a) Cooperative: 1 query

query 3

(b) Cooperative: r queries

Fig. 3: Thread Cooperation: r queries (m=400) and varying #words processed per thread

Second, we can use a larger number of queries per warp
in order to increase the total work per thread. In this case,
more words are handled by each thread, as measured by
the quantity words/thread. Increasing work per thread helps
reducing query fragmentation and increase SIMD efficiency.
Fig. 3.c shows examples for words/thread=2 and 7 (r=4 and
16 queries), with thread utilisation rising to 89%.

But the most important advantage of increasing the
amount of work per thread is the reduction of the total
number of overhead instructions: those not included in the
17 bit-wise original operations in Myers’ algorithm. The
extra instructions needed for inter-thread carry propaga-
tion represent an important portion of this overhead. The
drawback of increasing words/thread is that the amount
of local memory required per thread also increases; this
may compromise the efficient usage of GPU registers and
GPU occupancy. As we will show in the next section,
the best words/thread configuration depends on the query
size but also on the GPU architecture. An extreme thread-
cooperative configuration with r=32 is in fact purely task
parallel, as there is no actual need of thread cooperation.
This option, however, only makes sense for small queries.
An advantage with respect to previous proposals is that the
static declaration of variables allows using GPU registers
instead of local memory.

The mechanism to let several threads cooperate on several
queries requires identifying those threads responsible of the
last slice of each query. They must be inhibited on carry
propagation phases, but are responsible for generating the
final result for each query.

3.3 Optimisation details
We simplify the inner code loop as much as possible to
reduce the amount of divergence and instruction overhead.
We help the compiler to generate non-divergent code by re-
placing conditional control flow structures by computation.

Since the input text can be very large, it is stored in binary
form, with several symbols packed into a single w-bit data
word. Divergence appears when threads access multiple text
regions simultaneously and extract symbols from different
positions of a data word. We apply a loop peeling optimi-
sation [14] to move the extra control instructions and the
associated divergence out of the main loop.

Additionally, divergence and instruction overhead outside
the main loop is further reduced by extending text regions
to start and finish in aligned locations.

Query pre-processing is moved out of the main code, so
that each query is preprocessed just once, and not once for
each candidate text region. All query profiles are created and
stored into global memory before running the comparison
code. For small alphabet sizes, like DNA, query profiles are
just slightly larger than the original query strings.

Special GPU assembly instructions (addc and add.cc) im-
plement carry propagation for local extended additions.
Also, the Kepler-specific funnelshift instruction is used to
propagate the carry in extended shift operations.

Thread-cooperative operations are implemented using th-
read communication at the warp level. We take advantage
of the warp’s lock-step execution to avoid synchronisation
primitives. Several intra-warp communication techniques
for carry propagation (shared memory, ballot and shuffle
instructions) are implemented and evaluated. The Kepler-
specific shuffle instruction is the most efficient alternative,
with an improvement close to 20%.

4 EXPERIMENTAL RESULTS

We ran several implementations of Myers algorithm on
different multi-core and GPU platforms. We first assess
overall performance and then present a detailed analysis in
order to identify the main architectural bottlenecks.

4.1 Experimental setup and methodology

The experimentation platform is a heterogeneous CPU-GPU
node. The CPU is a dual-socket Intel Xeon E5-2650, with
eight 2-way hyperthreaded cores per socket running at
2.0Ghz. Most of the GPU measurements were done on an
Nvidia GTX Titan with 14 Kepler SMs (993Mhz). We also
used a Tesla 2090 with 16 Fermi SMs (1.3 Ghz) and a Tesla
K20c with 13 Kepler SMs (705Mhz).

Commonly-used simulation tools [5] [20] are a standard
way of providing the query input sets. Each input set
contains a million reads. We have used a modified version of
GEM [16] to generate all the candidate matching positions in
the human genome (GRCh37) for such inputs. The accepted
error rate is ε=0.2. At most 20 million query-candidate pairs

PREPRINT FOR REVIEW PURPOSES. FINAL VERSION WILL BE PUBLISHED IN 28TH ACM ICS ’14: HTTP://DX.DOI.ORG/10.1145/2597652.2597677 6

9.
5x
	

6.
3x
	

3.
6x
	

3.
2x
	

3.
0x
	

2.
8x
	

19
.1
x	

21
.8
x	

17
.4
x	

16
.8
x	

15
.5
x	
 19

.0
x	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

100	
 200	
 400	
 600	
 800	
 1000	

Te
ra
	
 C
el
ls
	
 U
pd

at
ed

	
 /
	
 S
ec
on

d	

Query	
 Size	
 (m)	

CPU	
 (task	
 parallel)	
 GPU	
 (task	
 parallel)	
 GPU	
 (coopera:ve)	

CPU:	
 16	
 cores	

GPU:	
 2688	
 CUDA	
 cores	

Fig. 4: Performance overview

(i.e., at most 20 candidates per query) are processed. The
genome text and query profiles reside in CPU and GPU
memory before starting execution measurements. Results
are obtained by averaging over the 3 best executions, and
expressed in terms of cell update operations per time unit.
The variability of the measures is very low (on the level of
the 1%).

The multi-core CPU implementation is task-parallel, with
16×2 threads (OpenMP) to exploit hyperthreading, and is
not vectorized. GPU implementations set the thread-block
size to 128 for Kepler and 256 for Fermi, since they provide
the highest performance.

4.2 Overall Performance Results
Fig. 4 shows performance on CPU (task-parallel approach)
and GPU (both using task parallelism and thread coopera-
tion) for increasing query sizes (m from 100 to 1000). The
presented results correspond to the best-performing config-
uration for each query size and implementation version.

The thread-cooperative GPU algorithm provides the best
performance, surpassing the Tera-CUP barrier (from 1.0 up
to 2.3). These results are between 15× and 22× better than
those obtained by the multi-core CPU. Additionally, on the
GPU the cooperative approach outperforms the task-parallel
scheme by 2×-7×.

In general, longer queries provide better relative per-
formance. This is expected since the relative weight of
the initialisation phase and parallelisation overheads are

0	

100	

200	

300	

400	

500	

600	

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

100	
 200	
 400	
 600	
 800	
 1000	

By
te
s	
 /

	
 C
el
l	

Te
ra
	
 C
el
ls
	
 U
pd

at
ed

	
 /
	
 S
ec
on

d	

Query	
 Size	
 (m)	

	
 	
 	
 Performance	
 	
 	
 	
 GDRAM	
 mem	
 accesses	

Fig. 5: GPU Task Parallel: local memory

reduced. However, the performance of the GPU task-parallel
version reduces by a factor of up to 0.6× as the query length
increases. This unexpected result is studied in detail in the
next subsection. The analysis done helps understanding the
reasons behind the thread-cooperative solution results.

4.3 Task Parallel: Performance limiters
The task parallel scheme uses one thread for each query-
candidate pair. This is a coarse-grained approach that per-
forms well on a CPU but not on GPUs. In the next sections,
we analyse the performance bottlenecks of the GPU imple-
mentation, either using local or shared memory to describe
the reasons for these results.

4.3.1 Using Local Memory: high miss rate
Square bars on Fig.5 quantify how performance degrades
up to 1.41× when increasing query size and using local
memory. The solid line indicates an increase of 1.7× in
the number of GDRAM memory accesses, from 297 to 506
Bytes/cell. There is a clear correlation between increasing
the amount of GDRAM accesses and performance reduction.

The amount of local memory needed by the application
grows linearly with the number of simultaneous queries and
the query size. The number of queries is determined by the
total number of threads launched for execution. Increasing
query size decreases temporal locality and the L1 and L2
GPU caches become less effective to filter GDRAM accesses.
For example, with a query size of m=1000, 94% of L1 and
79.5% of L2 accesses are misses.

Once GDRAM memory is identified as the main perfor-
mance bottleneck, we need to see if the problem is latency-
or bandwidth-bound. We measured empirical GDDR5 band-
width to be between 185 GB/s and 210 GB/s, which range
between 85% and 95% of the maximum bound provided
by the Nvidia bandwidth test. Therefore, we conclude that
the task-parallel GPU implementation using local memory is
bound by GDRAM bandwidth. In contrast, owing to larger
on-chip caches the CPU implementation is not memory- but
computation-bounded.

4.3.2 Using Shared Memory: low GPU occupancy
The classical solution to overcome GDRAM bandwidth
memory problems is to foster data reuse by explicitly using

0	

20	

40	

60	

80	

100	

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

100	
 200	
 400	
 600	
 800	
 1000	

G
PU

	
 o
cc
up

an
cy
	
 (%

)	

Te
ra
	
 C
el
ls
	
 U
pd

at
ed

	
 /
	
 S
ec
on

d	

Query	
 Size	
 (m)	

	
 	
 	
 Performance	
 GPU	
 Occupancy	

Fig. 6: GPU Task Parallel: shared memory

PREPRINT FOR REVIEW PURPOSES. FINAL VERSION WILL BE PUBLISHED IN 28TH ACM ICS ’14: HTTP://DX.DOI.ORG/10.1145/2597652.2597677 7

shared memory. The best performance is achieved when we
store columns PV and NV in shared memory, but maintain
query profiles, PEq[], in local memory. Measured GDRAM
bandwidth values for query sizes m=100, 200, 400, 600, 800,
1000 are now 41.2, 8.30, 1.56, 0.98, 0.72, 0.57 GB/s. Therefore,
using shared memory actually prevents GDRAM bandwidth
from becoming a bottleneck.

Table 2 compares effective GDRAM memory accesses
with an estimation of best local data reuse. The estimation
assumes that all data requests imply no additional GDRAM
accesses if elements are already placed in on-chip memory.

A task parallel approach with local memory exhibits very
limited data reuse. The use of shared memory increases the
latter, but there is a significant amount of requests that are
still fetched from GDRAM and not from on-chip memory.

Fig. 6 shows the performance of the shared memory
implementation. Bars indicate a performance degradation
from 1.18× to 13.66× as query size increases. Again, this
is due to the higher amount of local data, but now the
effect is revealed by a reduction of GPU occupancy (i.e.
the percentage of active versus potential running threads,
depicted by the dashed line in Fig. 6). Shared memory is
a scarce resource that must be assigned equally to each
thread. The GPU cannot allocate the same amount of active
threads if each thread requires more memory; as a result,
GPU occupancy is reduced to levels that strongly reduce
overall performance.

Comparing Fig. 5 and Fig. 6 we conclude that using
shared memory only benefits small query size cases, m ≤
200, when GPU occupancy is high enough to hide memory
latencies.

4.4 Thread Cooperative: Performance limiters

We analyse performance and limiting factors of the cooper-
ative approach. We first address the case of assigning a slice
of the column to each thread, using one word per thread.
Subsequently, we explore the performance advantage of
using several words per thread. Finally, we analyse the
execution in detail to find out performance bottlenecks.

4.4.1 Cooperation: one word/thread
Fig. 7 presents results for the best combination of m (query
size) and r (tasks or queries assigned to each warp). Per-
formance varies between 0.6 and 1.0 TCUPS, always higher
than the results obtained with the task parallel approach.

Table 2 shows that the cooperative approach drastically
reduces the amount of GDRAM memory accesses, almost
reaching the theoretical minimum. In fact, effective mea-
sured GDRAM bandwidth is lower than 7 GB/s for all
query sizes. Also, all the executions achieve 100% GPU
occupancy. Therefore, neither memory nor GPU occupancy
are performance bottlenecks here.

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

0.1	

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

100	
 200	
 400	
 600	
 800	
 1000	

In
st
ru
c(
on

s	
 e
xe
cu
te
d	

/	

Ce

ll	

Te
ra
	
 C
el
ls
	
 U
pd

at
ed

	
 /
	
 S
ec
on

d	

Query	
 Size	
 (m)	

	
 	
 	
 Performance	
 	
 	
 	
 Instruc:ons	
 /	
 Cell	

Fig. 7: GPU Thread Cooperative: 1 word/thread

We measured the total instruction count (in warp instruc-
tions) and computed the cell-normalised rate, that we denote
by instructions/cell. This metric is depicted by the solid line
in Fig.7 and exhibits a strong correlation with performance,
which is inversely proportional to instructions/cell. This
result suggests that GPU execution is now computation-
bound.

In fact, the reason for the performance variations discov-
ered in Fig. 7 has to be found elsewhere. Warp instructions
can simultaneously operate with 32 bits × 32 threads = 1024
cells. For each query size m, we must adjust the number
of simultaneous queries r to use a total number of bits as
close to 1024 as possible. Fig. 3 was showing the problem
of low thread utilisation. For the cases of Fig. 7, thread
utilisation is 78%, 78%, 78%, 59%, 78% and 97%, respectively.
Considering that overhead instructions are relatively less
frequent for larger query sizes, thread utilisation correlates
almost perfectly with instructions/cell.

4.4.2 Cooperation: several words/thread
Fig. 8 depicts the performance impact of increasing the
amount of work per thread (measured in words/thread) by
processing more queries per warp. For fixed values of m and
words/thread the optimal value of r is derived empirically.
Results show performance speedups from 1.22× to 2.70×
when increasing the amount of work per thread.

Also for this scenario we carried out an in-depth perfor-
mance analysis, which can help generating new optimisation
ideas. Fig. 9 shows the performance trade-off involved when
increasing the amount of work assigned to each thread.

On one hand, instructions/cell is reduced between 1.39×
and 2.33× when increasing words/thread. This is due to
the reduction of the instructions devoted to communication
and synchronisation among the cooperating threads, and
explains why the overall performance increases.

TABLE 2: Ratio of effective GDRAM accesses versus estimated GDRAM accesses

Query size (m) 100 200 400 600 800 1000
Task parallel (Local Mem.) 54071× 145270× 368912× 546418× 724375× 931655×
Task parallel (Shared Mem.) 7515× 3042× 1149× 1082× 1059× 1058×
Cooperative (1 word/thread) 1.60× 1.28× 1.14× 1.11× 1.07× 1.05×

PREPRINT FOR REVIEW PURPOSES. FINAL VERSION WILL BE PUBLISHED IN 28TH ACM ICS ’14: HTTP://DX.DOI.ORG/10.1145/2597652.2597677 8

1.
20

x	
 1.
47

x	

1.
36

x	
 2.
13

x	

1.
36

x	
 1.
43

x	

1.
22

x	

1.
83

x	

1.
89

x	

2.
70

x	

1.
90

x	
 1.
86

x	

1.
03

x	

1.
92

x	

1.
80

x	

2.
36

x	

1.
94

x	

1.
97

x	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

100	
 200	
 400	
 600	
 800	
 1000	

Te
ra
	
 C
el
ls
	
 U
pd

at
ed

	
 /
	
 S
ec
on

d	

Query	
 Size	
 (m)	

1	
 word/thread	

2	
 words/thread	

4	
 words/thread	

8	
 words/thread	

Fig. 8: Performance for varying words/thread

72%	

52%	

43%	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

1	
 2	
 4	
 8	

G
PU

	
 o
cc
up

an
cy
	
 (%

)	

In
st
ru
c8
on

s	
 /
	
 C
el
l	

Words	
 per	
 Thread	

Instruc4ons	
 	
 /	
 Cell	
 GPU	
 occupancy	

m	
 =	
 1000	

Fig. 9: Impact of varying words/thread on instructions/cell and
GPU occupancy

On the other hand, GPU occupancy falls sharply. As local
data increases, more registers per thread are required and,
hence, GPU occupancy decreases. In the examples shown
in the Figure, the numbers of allocated registers are 28,
38, 56, and 92, respectively. The sharp plunge of GPU
occupancy explains why overall performance flattens and
even worsens.

In summary, for each query size m one can find a con-
figuration of r (number of queries) and words/thread that
maximises performance.

4.4.3 Detailed Performance Analysis
We also measured the performance impact of using Kepler-
specific instructions such as shuffle and funnelshift. Execution
time is improved up to 28% and an average of 18%, meaning
that Kepler GPUs have an important performance advantage
with respect to previous-generation Fermi GPUs.

Table 3 provides data from relevant experiments
with selected maximum performance values of m and
words/thread to help understand the final performance
limits of our GPU implementation. The first row of the table
shows the empirical number of bitmap operations needed to
compute a column, which varies between ∼24 and ∼33. The
theoretical minimum is 17 bitmap operations [17] but this
value does not consider the operations for score calculation,
management of conditional structures, synchronisation and
memory access. We conclude from those results that the
parallelization overhead is limited and acceptable.

The second row of Table 3 shows the ratio between
effective and estimated GDRAM accesses. This is a measure
of data reuse, which is between 1.02 and 5.39. Effective
GDRAM bandwidth is listed in the third row of the Table,
and complements previous information. Measured band-
width is found to be between 1.3 GB/s and 29 GB/s, very
far from GPU memory system limits. From those results we
conclude that memory reuse is very effective.

Finally, Table 3 shows an IPC (Instructions Per Cycle)
value between 2.59 and 4.73. We consider these figures as
quite close to the limit: the theoretical architecture maximum
is 7, and many sources from Nvidia state that values above
4.5 are rarely obtained in real applications.

As a conclusion, the cooperative solution is computation-
bound and exploits all GPU resources very efficiently.

4.4.4 Performance on different GPUs
We have repeated our performance analysis on different
GPU architectures, namely Fermi and Kepler. Speedups with
respect to the 16-core CPU are also included as a reference
in Fig.10. The normalised performance obtained for all the
GPUs is between 0.5 and 0.86 GCUPS per core and GHz.
For a fixed query size, normalised performance (obtained
by factoring out the architectural advantage of the Kepler
instructions) is very similar in all three GPUs. This means

TABLE 3: Detailed performance metrics for best performing cases

(m, words/thread) (100, 4) (200, 8) (400, 4) (600, 4) (800, 8) (1000, 8)
Bitmap operations/Column 29.23 26.95 33.35 29.49 30.17 24.09
Effective/Estimated GDRAM accesses 5.39 1.57 1.12 1.07 1.03 1.02
Bandwidth (GB/s) 29.19 7.25 2.69 1.85 1.29 1.29
IPC 2.59 3.66 4.73 4.52 4.00 4.06

PREPRINT FOR REVIEW PURPOSES. FINAL VERSION WILL BE PUBLISHED IN 28TH ACM ICS ’14: HTTP://DX.DOI.ORG/10.1145/2597652.2597677 9

0	

5	

10	

15	

20	

25	

100	
 200	
 400	
 600	
 800	
 1000	

Sp
ee
du

p	

Query	
 Size	
 (m)	

M2090	
 (Fermi)	
 K20c	
 (Kepler)	
 TITAN	
 (Kepler)	

M2090:	
 512cores	
 	
 @	
 	
 	
 1.3Ghz	

K20c:	
 	
 	
 2496	
 cores	
 @	
 705Mhz	

Titan:	
 	
 	
 2688	
 cores	
 @	
 993Mhz	

Fig. 10: Speedup of several GPUs vs CPU

that performance scales fairly well with the number of cores
and clock frequency, even when using GPUs with different
CUDA capabilities (Fermi and Kepler). Such results back the
expectation that our proposal will show a good performance
scaling even on future, more powerful GPUs.

5 RELATED WORK

Two recent works implement a task-parallel scheme of
Myers’ algorithm on the GPU. On one hand Langner et
al. [9] analyse GPU implementations of Levenshtein and
Damerau distances. They aim to integrate the GPU code into
SeqAn [1], a library of bioinformatics algorithms and data
structures. They propose a task-parallel design, and evaluate
the use of shared memory. On the other hand Tristam et
al. [24] use a task-parallel design to evaluate the difficulty
of the required GPU optimisations. Their setup includes an
interleaved layout for the input strings, the usage of 16-
Byte loads, and a tuned kernel scheduling. Due to the many
differences it’s difficult to directly compare such results with
ours, but their performance hardly reaches 100 GCUPS.

Both works address the optimal usage of the different
GPU memories. They recognise memory bandwidth as the
main bottleneck, and the need for cooperative strategies;
however, they apparently do not take into account register
memory. In fact, with the present paper we demonstrate
for the first time that an efficient use of register memory
by means of thread cooperation is key to overcome the
memory-bandwidth bottleneck. Of note, both works also
propose the usage of banded and cutoff techniques [6] to
reduce the number of cells to be computed; we too plan
to include these techniques into our implementation in the
future.

First works on GPU were focused on the Smith-Waterman
algorithm [23] for general score functions, using a substitu-
tion matrix and affine gap penalties. Manavski and Valle
[15] exploited task parallelism by allocating one pairwise
sequence alignment task to each single thread. Liu et al.
[12] [13] have implemented several versions of CUDASW++.
The first version of CUDASW++ [12] adopted a task-parallel
approach for small sequences (≤ 3072) and thread cooper-
ation for large sequences, exploiting anti-diagonal (wave-
front) parallelism. Hains et al. [4] improve the cooperative
version using tiling and more efficient register usage. They
achieve performance in the range of 10s of GCUPS. Liu
et al. [13] employ GPU SIMD parallelisation using PTX

instructions to gain additional data parallelism. They also
address concurrent CPU and multi-GPU processing and
present a performance of about 120 GCUPS on a single
Kepler GPU (GTX 680). However, the usage of general
distances prevents the use of simple bit-parallel strategies,
making the parallelisation more complex. Farivar et al. [2]
apply tiling strategies similar to [4], but using a global
alignment algorithm [19].

Bit-level parallelism can also be exploited for the Longest
Common Subsequence (LCS) problem, which is similar to,
but simpler than, the problem of computing Levenshtein
distance. Kawanami and Fujimoto [8] implement the first
GPU solution, which exploits task parallelism. Ozsoy et al.
[21] propose an improved GPU design that reaches 1 TCUPS
using 3 Fermi GPUs. The cooperative scheme proposed in
this paper should be useful to obtain a better solution for
the LCS problem as well.

6 CONCLUSIONS AND FUTURE WORK

Upcoming sequencing technologies will produce longer
reads at reduced cost. This will put additional stress on
current sequence alignment algorithms, that will quickly
become the bottleneck of the pervasive analysis pipelines
used to process resequencing data.

In this work we improve on the GPU Myers’ algorithm,
which computes the Levenshtein distance between two
strings and constitutes a basic block of several popular align-
ers. Experimental results show that our best implementation
obtains on a single GPU performance speedups of 20×
with respect to a sixteen-core, non-vectorised CPU version,
providing a peak performance of 2.3 TCUPS.

The solution presented here is ready to be efficiently
executed on any current GPU. To tune it to the target
architecture it is sufficient to adjust the work-per-thread
ratio; if more local memory is available on the GPU, an
appropriate reconfiguration will improve performance.

From a methodological standpoint, this paper provides
an example of how task-parallel CPU approaches can be re-
designed into cooperative multi-thread algorithms adapted
to many-core architectures like the GPU; the main principle
guiding our implementation has been to get the most from
local memory system and reduce the number of instructions.
We have also demonstrated how specific Kepler architecture
instructions can be used to further improve algorithmic
performance.

From the standpoint of the analysis of sequencing data,
we have shown that GPUs are computational platforms suit-
able to efficiently implement string-comparison algorithms.
Our results indicate that GPUs can become an additional
source of computational power in order to perform high-
quality alignment of longer sequence reads in acceptable
times. As future work, we will implement on the Intel MIC
architecture a version of the cooperative-parallel algorithm
that uses explicit SIMD instructions; its performance will
provide us with a comparison of the benefits offered by
the two architectures. Also, we plan to integrate our GPU
algorithm into the GEM mapper [16], thus demonstrating
the practical relevance of our results.

PREPRINT FOR REVIEW PURPOSES. FINAL VERSION WILL BE PUBLISHED IN 28TH ACM ICS ’14: HTTP://DX.DOI.ORG/10.1145/2597652.2597677 10

7 ACKNOWLEDGMENTS

This research has been supported by MICINN-Spain under
contract TIN2011-28689-C02-01. The authors would like to
thank Nvidia for supporting our research with the donation
of a K20c Kepler GPU card.

REFERENCES

[1] A. Döring, D. Weese, T. Rausch, and K. Reinert. SeqAn an
efficient, generic C++ library for sequence analysis. BMC
bioinformatics, 9(1):11, 2008.

[2] R. Farivar, H. Kharbanda, S. Venkataraman, and R. H. Camp-
bell. An algorithm for fast edit distance computation on GPUs.
In Innovative Parallel Computing (InPar), 2012, pages 1–9. IEEE,
2012.

[3] P. Ferragina and G. Manzini. Opportunistic data structures
with applications. In Proceedings of the 41st Symposium on
Foundations of Computer Science (FOCS 2000), pages 390–398.
IEEE, 2000.

[4] D. Hains, Z. Cashero, M. Ottenberg, W. Bohm, and S. Ra-
jopadhye. Improving CUDASW++, a parallelization of Smith-
Waterman for CUDA enabled devices. IEEE International
Symposium on Parallel and Distributed Processing Workshops and
Phd Forum, 2011:490–501, 2011.

[5] M. Holtgrewe. Mason - A read simulator for second generation
sequencing data. Technical Report FU Berlin, 2010.

[6] H. Hyyrö. A Bit-Vector algorithm for computing Levenshtein
and Damerau edit distances. Nord. J. Comput., 10(1):29–39, 2003.

[7] H. Hyyrö and G. Navarro. Faster bit-parallel approximate
string matching. In Proceedings of the 13th Annual Symposium
on Combinatorial Pattern Matching, CPM ’02, pages 203–224,
London, UK, UK, 2002. Springer-Verlag.

[8] K. Kawanami and N. Fujimoto. GPU accelerated computation
of the longest common subsequence. In R. Keller, D. Kramer,
and J.-P. Weiss, editors, Facing the Multicore - Challenge II,
volume 7174 of Lecture Notes in Computer Science, pages 84–95.
Springer Berlin Heidelberg, 2012.

[9] L. Langner, K. Reinert, and D. Weese. Myers Bit-Vector Al-
gorithm on GPU for SeqAn. Master’s thesis, Freie Universität
Berlin, 2011.

[10] H. Li and R. Durbin. Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics, 25(14):1754–
1760, 2009.

[11] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA
Tesla: a unified graphics and computing architecture. IEEE
Micro, 28(2):39–55, 2008.

[12] Y. Liu, B. Schmidt, and D. Maskel. CUDASW++2.0: enhanced
Smith-Waterman protein database search on CUDA-enabled
GPUs based on SIMT and virtualized SIMD abstractions. BMC
Research Notes, 3:93, 2010.

[13] Y. Liu, A. Wirawan, and B. Schmidt. CUDASW++ 3.0: accelerat-
ing Smith-Waterman protein database search by coupling CPU
and GPU SIMD instructions. BMC Bioinformatics, 14(1):117,
2013.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated exe-
cution using the hyperblock. In ACM SIGMICRO Newsletter,
volume 23, pages 45–54. IEEE Computer Society Press, 1992.

[15] S. Manavski and G. Valle. CUDA compatible GPU cards as
efficient hardware accelerators for Smith-Waterman sequence
alignment. BMC Bioinformatics, 9(Suppl 2):S10, 2008.

[16] S. Marco-Sola, M. Sammeth, R. Guigo, and P. Ribeca. The GEM
mapper: fast, accurate and versatile alignment by filtration.
Nature Methods, 9(12):1185–1188, 2012.

[17] G. Myers. A fast Bit-Vector algorithm for approximate string
matching based on dynamic programming. J. ACM, 46(3):395–
415, May 1999.

[18] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1):31–88, Mar. 2001.

[19] S. Needleman and C. Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of two
proteins. J. Mol. Biol, 48:443–453, 1970.

[20] Y. Ono, K. Asai, and M. Hamada. PBSIM: PacBio reads
simulator—toward accurate genome assembly. Bioinformatics,
29(1):119–121, 2013.

[21] A. Ozsoy, A. Chauhan, and D. M. Swany. Achieving teraCUPS
on longest common subsequence problem using GPGPUs. In
ICPADS. IEEE Computer Society, 2013.

[22] P. H. Sellers. The theory and computation of evolutionary
distances: Pattern recognition. Journal of Algorithms, 1(4):359
– 373, 1980.

[23] T. Smith and M. Waterman. Identification of common molec-
ular subsequences. J Mol Biol, 147:195–197, 1981.

[24] D. Tristram and K. Bradshaw. Evaluating the acceleration of
typical scientific problems on the GPU. In Proceedings of the
South African Institute for Computer Scientists and Information
Technologists Conference, SAICSIT ’13, pages 17–26, New York,
NY, USA, 2013. ACM.

[25] E. Ukkonen. Finding approximate patterns in strings. Journal
of algorithms, 6(1):132–137, 1985.

	Texto2: © ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ICS 2014. International Conference on Supercomputing. Munic, Alemanya, 2014
DOI: 10.1145/2597652.2597677

