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Abstract are met. The micro-architecture on which the program exscist
a significant factor in WCET analysis, as a program can have di
ferent execution time depending on the underlying hardwiras,
the timing bound obtained from WCET analysis is significairti-
proved by modeling the underlying micro-architecture congnts
such as caches, pipeline and branch predictor.

Conventionally WCET analysis assumes aninterruptedse-
quential execution of the program being analyzed. Howénee-
ality many real time systems run inraulti-taskingenvironment,

Hard real-time systems are typically composed of multipkeks,
subjected to timing constraints. To guarantee that thessti@nts
will be respected, the Worst-Case Response Time (WCRT)alf ea
task is needed. In the presence of systems supporting ptidéenp
tasks, we need to take into account the time lost due to t@som-
tion. A major part of this delay is the Cache-Related Preampt
Delay (CRPD), which represents the penalties due to caduk bl
evictions by preempting tasks. Previous works on CRPD have f ¢ X .
cused on caches with Least Recently used (LRU) replacenognt p  IN Which different programs (or tasks) are scheduled to rom- ¢

icy. However, for many real-world processors such as ARM9 or Currently. For system witipre-emptive priority scheduling task
ARM11, the use of First-in-first-out (FIFO) cache replacetyml- can be '”te”UpFe.d _by anot_her task which has a higher Pt
icy is co’mmon run. Therefore, it is impractical to assume that a prograaimsys

In this paper, we propose an approach to compute CRPD in the gllowed to run uninterrupted. There could be an additioredhyl

presence of instruction caches with FIFO replacement yolite :jmlr)osgd ona r(l;r:)nin%task due t(;]inteyruptionhpy anotrller.mfatgls
use the result of a FIFO instruction cache categorizatiGiyais elay Is caused by changes to the micro-architectura'sstittne

to account for single-task cache misses, and we model agan In  SyStém by the interrupting task. For example, the intemgptask
ger Linear Programming (ILP) system the additional preéonpt may replace some cache blocks in the caches. Caches are small

related cache misses. We study the effect of cache relataogti Ut fast memories, used to bridge the performance gap betaee
anomalies, our work is the first to deal with the effect of timi processor and the main memory. Set-associative cachediaiecd

anomalies in CRPD computation. We also present a WCRT com- i?‘to fixed-sizesets Each S”etgar? hold rl:p t4 different bllocksl fr\(/)vrp]
putation method that takes advantage of the fact that oupated the main memory4 is called the cache associativity level). When

CRPD does not increase linearly with respect to the preempti & Plock needs to be added to a cache set that is already fui, a
count. We evaluated our method by computing the CRPD with re- placement policys used to determine the evicted block. Caches are

alistic benchmarkse(g drone control application, robot controller a;least ar: ordeLof matgnlttuc;je f?stert.h?n thetmalp mke.mmﬁ:?
application), under various cache configuration pararaefEhe changes to cache content dué to an Interrupting tasx IS a hagjo

experimentation shows that our method is able to computd tig tor in the delay caused by the interruption. This delay istm

CRPD bound for benchmark tasks. the Iite_rature a_§:ache Related Preemption Del&@@RPD). CRPD
analysis techniques have been proposed to put a bound on CRPD
Categories and Subject DescriptorsD.2.4 [Software Engineer- In this paper we will concentrate on obtaining the bound on
ing]: Software/Program Verification CRPD for set-associative caches whist-In First-Out (FIFO)
o ) replacement policy. Traditionally, CRPD analysis bourtus &d-
Keywords CRPD, FIFO caches, WCRT, timing anomalies ditional cache misses introduced by preemptions througHah
lowing two factors: (i) number of cache blocks introducedtbhg
1. Introduction preempting task (i.e. Evicting Cache Block or ECB), andr(iijn-

ber of cache blocks that may be reused by the preempted task af
preemption (i.e. Useful Cache Block or UCB). Existing work o
CRPD analysis focus on caches with Least Recently Used (LRU)
replacement policy. A study |[4] shows that these factorsotn
safely bound CRPD cost for FIFO caches, due to the presence of
unbounded timing effeéor FIFO caches. A single evicted memory
block from cache due to preemption can cause unbounded mumbe
of additional cache misses after the preemption. Thus,dheapts

of ECB and UCB cannot be used to safely bound CRPD cost for
Plermission to make digi(tja\:vi%z :Lir?egoef\/sidogdam: gsﬂsﬁmﬁgfoﬁzﬁﬁﬁég FIFO caches. These concepts do not work for FIFO caches &&cau
?o??asr;cf)ict)g]rlrj:z?nlrig:gir;leadvantage an(?that copies bea?tttiseﬂand the full citation they try to bound the numb.er Of. addltl(.)nal conprete cacheesis
on the first page. Copyrights for components of this work ahimg others than ACM Instead, our CRPD analysis relies on information from theeun
must be honored. Abstracting with credit is permitted. Tpycotherwise, or republish, lying cache analysis for computing WCET. We utiligitic phase

to post on servers or to redistribute to lists, requiresr@ecific permission and/or a detection]7] technique to obtain the set of memory blocks that are
fee. Request permissions from permissions@acm.org. categorized aalways hitin the cache assuming no preemption. We
LCTES 14  June 12-13, 2014, Edinburgh, United Kingdom. solve the maximum number of additional cache misses intredu

Copyright(© 2014 ACM 978-1-4503-2877-7/14/06. . . $15.00. ; . ; :
htt,??,’,d?(.dg?org/lol1145/2597809,2597814 by thealways hitblocks as arinteger linear programmindILP)

In real time systems, the execution time of a real time pmogra
must bepredictableandconsistento ensure reliability and safety
of the system. The Worst Case Execution Time (WCET) of a pro-
gram is a bound on the maximum execution time of the program
over all possible executions. WCET analysis is used to bahad
WCET of a program to verify that all required timing consttai



problem, given a bound on the total number of preemptions. Ou 3. M ethodology
analysis is safe as we conservatively introduce miss pefalll In this section, we present our method for CRPD computation |

me\r/nvory IbIOthS c?ot(jcltassified ?tﬁ’vay?f hii -y i the presence of FIFO caches. Our method seeks to return & boun
€ also studie € possible eflects tohing anomaliieson on the number of additional cache misses for a tAgkwhich is
CRPD analysis in general. Existing CRPD analysis techsigse preempted by another task up 3 PC (Maximum Preemption

sume an underlying micro-architecture model that is freenftim- Count) times. We assume that the preempting task shares cach
ing anomalies. However, such assumption may render the CRPDSets WithT,. The CRPD ofT} is simply the maximum number of

analysis unsound, as the worst-case delay is underestimate additional cache misses (caused by preemption) multitfiethe
this work, we studied three types of timing anomalies exbibby cache miss penalty. Our(method uécfs congepts) mﬂﬂgﬁase

out-of-qrder processors or FIEO cachies [13]. We tgke thesag detection[7], which is an approach to statically categorize FIFO
anomalies into consideration in our CRPD analysis and shaiv t instruction cache accesses without considering preemplide

our analysis is safe in the presence of these timing anosmaie shall briefl ; : : ;

. ) . y describe static phase detection, then we sixalain
the best .Of. our knowledge,_ours is the f'FSF \_/vork_ on CRPD_ afglys how our analysis can use the information produced by stats®
that explicitly handles architectures exhibiting timingpanalies. detection to compute CRPD

We implemented our FIFO CRPD analysis in Chronos [11],
an open source WCET analysis tool. We have tested our asalysi 3.1 Static phase detection
method on several subject programs, and compare the restlits
a state-of-the-art approach. The state-of-the-art apprtzahandle
CRPD analysis with FIFO instruction caches is by computhrgy t
CRPD assuming LRU replacement policy, and bound the value fo
FIFO policy using the concept aklative competitivenesi 6].

Our experimental results show that, when compared to curren
CRPD analysis technique for FIFO caches, we are able to cempu
significantly tighter bound on CRPD cost for all subject peogs.

Static phase detectiois a method to statically categorize each
instruction asalways hif always missor not classified in the
presence of an instruction cache with FIFO replacementypdihe
analysis works by detectinghasesn instruction cache accesses.

Let B be a set of memory blocks that are mapped to the same
cache set, and 1dB| be the number of pairwise different blocks
in B. A B-phaseis an access sequence such {flaiB| < A (A
being the cache associativity) afig) all blocks in B and only the
blocks fromB are accessed €. a block can be accessed more than

2. Background once in the phase, as long as all blocks frBrare accessed). After
FIFO caches CPU caches are generally small in size and they exactly| B| B-phasesit is guaranteed that all the blocks frafhare
can be filled up with memory blocks rapidly and frequentlyefiéh loaded in the cache. Thereforg, subsequent accesses ks bidg
needs to be aeplacement policyto decide the exact memory &€ guaranteed to be cache hits. _ .

blocks that should be discardetde( replaced by newly inserted This allows us to categorize some instructions in a program a
memory blocks) when a cache set is féist-In First-Outor FIFO always hit if those instructions will always be cache hits during
is one such replacement policies. FIFO caches are used in Cpuruntime. Let/ be an instruction in the program. For all paths in the
architectures such as ARM9 and ARM11. control flow graph (CFG) leading td, if the cache accesses im-

In general, FIFO caches always replace a memory block tisat ha Mediately preceding can be partitioned int@3| B-phasesvhere
been in the cache set the longest, as shown in Figure 2 (thiefig B containsI’s cache block, theid is classified aslways hit Con-

assumes that all represented blocks are mapped to the sBme se yersely, if there exists a path Ieadinglthhat cannot be partitioned
into | B| B-phasesvhere B containsI’s cache block, then execu-

tion along this path can lead to a cache miss whsrtache block
is accessed. In this caskis categorized asot classified

Figure 2: Effect of a memory sequeneaaon a cache setfor FIFO 32 Phase content
policy. First memory access causes a cache miss, and black

is evicted since it is the first memory block inserted in thehea
set. Similarly for the second memory accesslockb is replaced.
There is no change to the cache state when there is a caclas hit (
shown by the third memory access).

[dc b a]l £ [edcb] 2 [aedc] 2 [aedc]

Static phase detection does not consider the effect of taskp-
tion. Any instruction that is classified adways hitby static phase
detection may cause cache misses in case of preemption.obhe g
of our analysis is to bound the number of cache misses oogurri
in always hitinstructions due to preemption. We do not take into
account cache misses occurring in instructions classifedirays
Timing anomalies In general, timing anomaly describes a counter- missor not classifiedunder the assumption that those cache misses

intuitive observation, in which a local worst case timingaeiour will already be taken into account in the computation of WCET
does not entail a global worst case timing behaviour. Qertagro- Since amalways hitinstruction has, on all incoming paths, an
architectural features exhibit timing anomalies. For emkma access sequence that can be partitioned [iB{oB-phasescache
cache hit can cause a higher execution time than a cache misgnisses can occur if a preemption disrupt these access smuen
in a processor with out-of-order executionl[13]. This magetfthe Thus, the first step of our analysis is to computefthase content

soundness of WCET analysis that models the underlying remelw  for all always hitinstructions.
Work in [12] and [5] shows that FIFO caches exhibit timing
anomaly due taunbounded timing effecwith FIFO caches, if
some memory block access in a program results in a cache miss
then the cache miss outcome will not necessarily lead to tizd-m
mal cache miss count for the overall program. An exampledg/sh
in Figure[d. Let us consider that we have a 2-way FIFO instract
cache. Here, the first accestis a cache miss in the general case

DEFINITION 3.1. (Phase content). The phase content of an in-
struction I, denoted asPC(I), is the minimal set of instructions
'such that for any patlp from the program entry point t@, there
exists a sub-path’ leading to that contains only instructions
from PC(I), and whose access sequence can be partitioned into
| B| B-phases wher& contains!’s cache block.

(i.e. the initial cache state does not contain any block from the ex If a preemption occurs at any instructionftC'(I), the preemp-
ample). In this case, the overall cache miss couft Idowever, if tion may disrupt the access sequence leading to instructiara
we alter the initial cache state to make sure that the firsissctoe way that causes cache misses foAn example is shown in Fig-

is a cache hit, the overall cache miss count is increaséd to ure[3. We consider a FIFO cache with an associativitg.df the
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Figure 1: FIFO cache timing anomaly example. For the memocgss sequence at the bottom, the entry cache state causdseani for
the first access to, but this causes the overall cache miss count to be greatethie memory access sequence on top.

PC(5) . 3.4 |ILPformulation
' . © PC(6) , We bound the additional cache miss count using an ILP sy&tém.
' ' make use of the ILP system computed by the main WCET analysis
[1(a)—>{2(b) —>{3(a)—>{4(b) —P{5(a)—>{6(b)] (containing, for example, the structural constraintswdetifrom the
I | } | program CFG), and we add additional CRPD-related conssr&on
EC, EC, EC, it. We first describe how to bound the preemption count foheac

) ] equivalence class, and then we show how to express the boands

Figure 3: Phase contents and equivalence classes the number of cache misses for eatways hitinstruction.

For each equivalence clag(}, € (SI/ ~), an ILP variable
ecy, is created. This variable represents the number of times a

figure, the nodes of the CFG drblocks An I-block is a maximal preemption occurs at an instruction contained in the etprica
sequence of instructions such that each instruction isérsttme classEC}. Theec;, variables are bounded as follows:

basic block, and mapped to the same cache block. As with basic

blocks, it is possible to conneleblocksusing edges to represent the Z ecy, < MPC

control flow. EacH-blockin the figure is labeled witk (y), where ke[15n]

x refers to the node number apdefers to the mapped cache block ) ) , .

set.I-blocks5 and6 are classified aalways hit because they are M PC is the maximum preemption count of the preempting task.

executed after two phases containing cache blcks. The figure MPC'is a parameter of the analysis, and is considered a constant

shows the phase contents fdslocks5 and6. If a preemption oc-  [10m the point of view of the ILP system. .

curs in the code delimited byC (5) (resp.PC/(6)), an additional For eactalways hitinstruction/y, an ILP variablerpmy is cre-

cache miss may occur Irblock 5 (resp.l-block 6). ated to represent the number of cache misses (due to preenpti
for I.. zpm,, is created only if the cache set containihgis also

used by the preempting task (otherwise the preempting task c

33 Equivalence classes not evict the cache block containidg). Instructionl, may cause

Let us definePC " as follows: cache miss only if a preemption occurs at an instruction feom
, . , equivalence clas&C), such thatl, € PC’”(EC’;C). Thus, the
I'e PC™ (1) & 1€ PC(I) number of cache misses i can be bounded using the bounds on
the maximum preemption count in each equivalence class:

In other words, if a preemption occurs at instructiQiit may cause
additional misses for instructions in the $&€~* (I). Let us define

. . xpme < ec;
the equivalence relatior, as follows: Pk = Z J

Vj/I,e PC—1(ECj)

’ -1 _ —1/7/
I I'e PO (1) = PCT(T') Eachzpm,. variable must also be bounded by the execution count

Let ST be the set of all instructions in a program, and f&f/ ~) = of the basic block containingx. This can be achieved by the
{EC4, ..., ECy} be the set ofV equivalence classes defined by ~constraintzpmy < xx, wherex), represents the execution count
the equivalence relatior. We also define?C~'(EC},) as the of the basic block. We assume that already exists in the ILP
result of applyingPC ~*() function to any instruction il C. system computed by the main WCET analysis.

To bound the maximum number of additional cache misses due Finally, the maximum number of additional cache misses due t
to preemption, we first need to bound, for each equivalermescl ~ Preemption is found by solving the following objective ftioo:
ECy € (SI/ ~), the number of preemptions occurring inside it
(i.e. occurring at an instruction in that equivalence class). Wg o
need to bound the preemption count for each equivalencs, elad Vk/I €SI
not for each individual instruction. This is based on theavbation We will show a simple example using the CFG in Figlie 3.
that if two instrulctionsh and/, a}re in the samle equivalence class The additional cache misses due to preemptior-fdocks 5 and
ECy, thenPC™ (EC,) = PC™ (1) = PC™(I3). Thismeans ¢ are represented by ILP variablesms andzpme respectively.

maxrimize E TpMmi

that a preemption occurring at eithigror I> will have the same ef-  gqyivalence classes, andec, contribute additional cache misses

fect on the additional cache misses. T.hen, the bound fotiaddl for I-block 5, while equivalence classes: and ec; contribute

cache misses of eaaiways hitinstruction can be expressed as a  aqgitional cache misses foblock 6. The total preemption count

function of the preemption count for each equivalence class in all equivalence classes is bounded by the maximum préempt
Figure[3 shows the partitioning of the CFG according to coynt, A7 PC (set tol in this case). Thus, we have the following

the equivalence classes. In this example, the equivalelasses ILP constraints :

{EC1, EC5, EC5} are computed based on the phase contents for

I-blocks5 and6 only. A preemption occurring if#C1 (resp.EC3) xpms < ec1 + eco

may add one cache miss fbblock 5 (respl-block 6), and a pre-

emption occurring inEC> may add one cache miss for badth
blocks5 and6. ec1 +eca +ec3 <1

zpme < eca + ec3



Maximizing the number of additional cache missets +
xpme) With an ILP solver yields the following result:

ecit =0, eco =1, ec3 =0, xpms =1, xpme = 1

It shows that the preemption should occur in equivalencesde;
to cause maximum additional cache miss count (two additiona
misses; one fokblock 5 and one fol-block 6).

3.5 Computingthe WCRT

In this section, we will show how to get the Worst-Case Respon
Time (WCRT) of a task, based on our CRPD computation method.
We assume éixed-priority preemptive schedulingf a set of pe-
riodic tasks with possibility of nested preemptions. Th® Itys-
tem constructed in sectidn 3.4 can be used to compute the CRP
between two tasks for any number of preemptions, based on the
M PC parameter. Let us define:

crpd(T;, Tj,n) = addmiss(T;, Tj,n) X penalty

crpd(T;, T;,n) is the estimated CRPD when tdskpreempts task
T; for n preemptions (thex parameter is optional, and defaults to
1 if omitted). addmiss(T;, T, n) is the bound on the additional
cache misses for preemptions ofl; by 7; (as computed using
the ILP system, while setting/ PC' to n). penalty bounds the
increase in execution time when a cache miss occurs.

Traditionally, CRPD is computed for one preemption, andhthe
this result is multiplied with the preemption count in the WT
computation formula. However, that may be pessimisticesial-
though we haver x crpd(T;,T;) > crpd(Ts, T, n), in the gen-
eral case we do not have x crpd(T;,T;) = crpd(T;, Tj,n).
This is because there is a finite number of program points evher
preemption can cause a large number of cache misses. Omsee the
program points are taken by preemptions, additional pré&emns
cannot contribute as much to the CRPD.

In this paper, we discuss on the WCRT computation of a task
using two approachesFixed CRPD approactand Iterative ap-
proach In the former approach, we will have to run the CRPD
computation only once (for one preemption). In the lattgrapch,
we have to iteratively re-compute the CRPD each time the maxi
mum preemption count is updated, during the fixed-pointutalc
tion. Each approach has its advantages and drawbackscassksl
in the next subsections.

35.1 Fixed CRPD approach

In this approach, we compute the CRPD for one preemption, and
use the result as it is done traditionally to compute the WARE
following equation computes the WCRT of taék W C RTr; until

a fixed-point is reached:

WCRTr; = WCETr;

WCRTT;
+ Y | pamions
VjEhp(i)

In Equation[(1) W C ETr; is the computed WCET of task;.

% bounds the number of preemptions by t&4gkon

taskT;, where PERIODr; is the period of task;. hp(i) con-
tains the set of tasks with higher priority than teBk Without
considering nested preemption, we can simply defiper; =
erpd(T3, Ty). If nested preemptions are possible, then this is incor-
rect, because if task; preempts a taskj which in turn preempts
taskT;, then the CRPD of; preemptingl}, is not taken into ac-
count. To solve this problem, we defigdunction as such :

W (WCETr; 4+ vyrir;) (1)

YTi, Tj = C’/‘pd(TL‘7 Tj) + C?“pd(Tk7 Tj)
Vk/k€hp(i)AjEhp(k)

This approach has the advantage of being fast (we have torperf
the CRPD computation only once), and easily adaptable stiegi
WCRT computation formula. Its main drawback is the intradre
of pessimism.

35.2

It is possible to take into account the real preemption catieach
step of the fixed-point WCRT computation. With an iteratiye a
proach, the WCRT of each task is computed in order of decrgasi
priority. For each task, the maximum preemption coumt”#C)

by higher-priority tasks is computed, and is fed to the ILBtem.
This (intermediate) CRPD enables us to refine the maximum pre
emption count, and this process is repeated until a fixedtpsi

Iterative approach

preached. Thus, this method gives a tighter result.

The main drawback of this approach is the analysis time, be-
cause we have to solve an ILP system at each step of the fixetl-po
WCRT computation. To mitigate this issue while still maintag
a relatively tight CRPD bound, it is possible to uséydbrid ap-
proach The main idea is to use the iterative approach until some
arbitrary time limit is reached. This will produce a tempgréun-
derestimated) CRPD, since the analysis is not finished. , Tfhem
this temporary value, we can compute the final (safe) CRPDdbou
in a non-costly way.

To describe this last step, we make the following obserrago
increase in the maximum preemption coubtPCincrease, l€ads
to an increase in th€ RPD, CRPD;ncrease. AS the maximum
preemption counts get higher, the rati Ifgi""méc decreases
(or remains equal). Because of this, the foqlroc\ﬁlei(ﬁsge propéaids
for all M (whereM is the preemption count):

crpd(To, Th, M + 1) — crpd(To, Th, M) <
erpd(To, T, M) — crpd(To, Th, M — 1)

Let M, be the maximum preemption count obtained when the
time limit is reached. Based on the observation made abowaniy
M- greater than\/y, the following property holds :

C’/‘pd(To7 T17 MQ) — C’/‘pd(To7 T17 Ml) S
(Crpd(,l—byleMl + 1)—CTpd(,Ib,T1,M1)) X (M2 - Ml)

Therefore, once the iterative analysis has reached thditimite
it is possible to boundrpd(To, 71, M) for any M, greater than
M3, by the following value:

crpd(To, Th, Mq)+
(Crpd(,l—byleMl + 1)—CTpd(,Ib,T1,M1)) X (M2 - Ml)

This allows us to compute the final WCRT by fixed-point itera-
tion without having to solve a costly ILP system at each stém
computed WCRT will be tighter than the one computed with fixed
CRPD approach, but less tight than the one computed with ifull
erative approach. This hybrid approach is described in Atlym[1.

3.6 Scalability

The ILP constraint generation described in sedfioh 3.4 yres a
large number of constraints and variables, which causege laP
computation time. Ideally we want to decrease the numbekBf |
constraints and variables. The following observation camiade:
for anyl-block (recall that arl-block is a maximal sequence of in-
structions such that each instruction is in the same basakphnd

in the same cache block) containing the sequence of inginsct
(I1,I2, ..., I), the effect on cache misses will be the same if a
preemption occurs ifil2; I,,], independently of the exact instruc-
tion. The reason for this is illustrated in Figle 4. In |4k, the
instructions/, through Is are guaranteed to be cache hits, since
the cache block is loaded ih. If a preemption occurs at any of
these instructions and evicts the cache block, it will resubne



Algorithm 1 Iterative hybrid computation

1: TL <+ task list ordered by decreasing priority
2: for : e TLdo
3: WCRT; + WCET;

4: change <« true
5: flag < false
6: while change A (WCRT; < deadline;) do
7: for j € hp(3) do
. WCRT;
8: MPCZ‘A,J' < [m-‘
9: if flag then
10: Yi,j <—70i,j + R X (MPCZ'J‘ —MPCOZ',]‘)
11 dse
12: Vi,j < crpd(i, j, MPC; ;)
13: end if
14: end for
15: if (timeis up) A —flag then
16: for j € hp(3) do
17: ’}/Oi,j — Yi,j
18: MPCO0;,; < MPC; ;
19: R+ C’/‘pd(@j, MPCi,j + 1) — 04,5
20: end for
21: flag < true
22: end if
23: for j € hp(s) do
24: S, o
Vk/k€hp() Aj€hp(k)
25: ’y,E,j —~ MPC;; x WCET; + S,
26: WCRT{ «+ WCET; + Y i,
Vj€hp(i)
27: end for
28: change < (WCRT; = WCRT/")
29: WCRT; +— WCRT{
30: end while
31: end for
L-block 1 L-block 1
L-block 2 L-block 2
11 11
12 |- preemption 12
13 13
14 14
15 preemption > |5
L-btck 3 L-bick 3

Figure 4: Preemption point equivalence

preemption-related miss, regardless of the specific iostm that
is executing when the preemption occurs.

Based on this observation, it is possible to generate, foh ea
I-block Ly, only two xpm variables: variablerpm; for the first
instruction I; of the I-block, and variable:pms for the second
instruction I>. Both variables are constrained by the expression
zpmr < 3ok repo-1(Bo,) €Ck @s described in Sectign 3.4. Ad-

ditionally, variablezpm, is bounded byrpm; < z (wherexy
represents the execution count of I-blaEk, which is equal to the
execution count of the basic block containifig). On the other
hand, variablecpm. is bounded byrpm. < zi x |instr(k) — 1],
whereinstr(k) is the set of instructions in the |-blocks. This
constraint represents the fact that variabten. counts additional
cache misses not only for instructidp, but also for all instruc-
tions in the I-block except fof;. This amounts tdinstr(k) — 1|
instructions. As such, the maximum additional misses fes¢hin-
structions iginstr(k) — 1| each time I-blockly, is executed.

3.7 Handlingtiming anomalies

In this section, we will discuss three timing anomalies teslato
caches that may affect the safety of CRPD analysis in general
We shall refer to these timing anomaliesAsomaly 1 Anomaly

2 andAnomaly 3Anomaly landAnomaly 2 as mentioned in [13],
may occur in the presence of an out-of-order processor. liyjain

a cache hit or miss may cause unexpected timing delay in the
execution of instructions in the pipelindnomaly 3came from
work in [3], which show that FIFO caches exhildibmino effect

in which a change in the cache state could potentially canse a
unbounded timing delay. Thus, if an additional cache hit @sm

is introduced due to preemption, a safe CRPD analysis should
consider these unexpected timing delays. We also propase so
solutions to handle the identified anomalies. It should ledhthat

the solutions are in general applicable to any CRPD analysils
certain assumptions on the WCET analysis technique thatiigb
used. We first state the necessary assumptions.

Assumptions about the WCET analysisLet us assume that a
taskT is defined as its control flow graptiir = (B, E), where

B = {LBs,...,LB,} is the set ofl-blocksin task 7", and E is
the set of edges representing control flow between two Iksloc
TaskT is then represented by an ILP system having a variable
(execution count) for each I-blockB,, € B. For each I-block,
two variables existsth,, and tm.,, representing respectively the
maximum execution time of that |-block in case of cache hit or
cache miss. The ILP variable&,, andcm., represent the number
of cache hits and misses, respectively, for |-block n. Fahea
block n, an ILP constrainth,, + ¢cm., = c, is generated. The
WCET and M C functions, to compute respectively the WCET
of the task, and its total cache miss count (preemptiorteelar
not), are defined as follows:

DEFINITION 3.2. (WCET). The resuliWWCET(T) is defined as
the maximized objective function, , ., thi X chi +tmy X cmy,
for the ILP system generated for tafk

DEFINITION 3.3. (MC). The miss count, noted C'(T") is defined
as the maximized objective functidn,, . cmy, for the ILP sys-
tem generated for task. -

For each of the three timing anomalies, we first give an exampl
that illustrates the anomalous behaviour, then we prooeguid-
pose a solution to handle the anomaly.

Anomaly 1: Miss penalties can be higher than expectedhe
cache analysis used in WCET computation usually take cache
misses into account by adding a fixed miss penalty for eack. mis
Simply making this miss penalty equal to the memory latency
behind the cache can lead to WCET underestimation. Lundqvis
et al. proved inl[13] that in some cases, replacing a cacheyhit
cache miss can increase the execution time by an amounegreat
than the memory latency.

Figurel® shows an example, assuming a processor similag to th
one used in the example in Figlide 6. The cache miss whileifefch
instruction A causes instructiom3 to be scheduled later, after
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Figure 5: Miss penalty greater than memory latency

instructionC'. Since instructionD depends onB, the execution
is delayed byt cycles (compared to the cache hit scenario), while
the memory latency is onl¥ cycles.

In order to avoid WCET underestimation due to this anomaly,
we need to compute correctly the miss penalty for each patent
cache miss. A sound way to do that is to computettheandim,,
values for eaclrblock using a pipeline analysis approaehd.the
execution graphmethod [10]). Then, the penalty is computed as
shown in Definitio 3.4 to avoid the problem described abd\es
penalty should be a sound over-approximation, since camgpthte
exactth,, andtm,, values is generally infeasible.

DEFINITION 3.4. (penalty). The miss penaltyenalty(T) is de-
fined for a specific task, as:

penalty(T) > maxz(tmy — tha|n € [1; N])

Anomaly 2: Cache hits can result in worst case timingThe ma-
jority of cache-related analysis for WCET computation assu
that, if the hit/miss classification of a memory access ctiweo
determined, the case leading to the WCET is the cache miss. Un
fortunately, it has been shown by Lundqvist etlal! [13] tha hot
always true. In some cases, specifically in the presenceookpr
sors with out-of-order execution, replacing a cache miss tgche

hit can increase the execution time of an instruction secgien

An example is shown in FiguFé 6, assuming an out-of-order exe
cution processor, and an instruction sequence using tnegidnal
units. In this example, a cache miss while fetching the irtston
A (shown in the lower half of the figure) causes instructi@rio
be scheduled earlier. Since instructibrdepends o, this causes
the execution of the instruction sequence to finish one cgale
lier compared to the cache hit case. This effect can lead {0 un
safe CRPD analysis. For example, let us consider a preertgstied
containing a I-blockL By, classified aslways missA preemption
can load the cache block &fBy, into the cache, causing cache hit
for L By.. Traditionally, CRPD analysis attempt to bound additional
cache misses, but does not consider any additional cachelumt
to preemption. If the execution time fdrBy, is greater in case of
cache hits, this effect will not be captured by the CRPD agigly
potentially leading to an unsafe WCET.

There is a trivial way to prevent WCET underestimation irs thi
case, and another, more sophisticated way. The trivial way i
consider allalways missas not classifiedin the WCET analysis
prior to the CRPD computation. This allows us to modify (it
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Figure 6: Hit resulting in longer time

any impact on the computed WCEM).,, for each I-block as such:
@

By doing this, we guarantee that., is the worst possible time
for thel-block n (including the scenario presented in Figlire 6).

The other way is to include lost time due to additional cadte h
in the CRPD computation. To do that, we define hiitepenaltyas
maz (0, tm,, — thy,), and compute the maximum additional cache
hits in the same way we computed the bound on the additional
cache misses. This is done by modifying our CRPD analysis so
that the phase contenBC(I) is computed for eachlways miss
instruction (instead ofalways hi), and if a preemption occurs
at an instruction inPC(I), thenI can cause cache hits. We did
not implement the latter method as it makes a difference famlly
blocksshowing a greater execution time for cache hits. That iequit
rare in our observation, so the increase in precision iSgibtg.

tmy < max(tman, thy)

Anomaly 3: Impact on WCET may not be bounded (Domino
effect) In LRU caches, the effect of a change in cache state is
boundedbecause after any sequence of (at ledd)fferent blocks
mapping to the same cache set (ordawvay cache), the whole
set is filled with blocks belonging to this sequence. As shbwn

C. Berg et al.|[3], this is not true with FIFO caches. With FIFO
caches, a cache state alteration can have unbounded regersu

in subsequent accesses.

Figure[T shows an example with a 2-way set-associative FIFO
cache. The edges are labeled with the concrete cache stétes a
program point, with the most recently loaded block locatedie
left. For the CFG on the left side of the figure, for even itierat
numbers, accesses toand ¢ are hits; while for odd iteration
numbers, accesses boare hits, so there i$.5 cache misses on
average per loop iteration. For the CFG on the right, an acces
to block x is added. Each cache block access in the loop is now
a cache miss. The additional access to blockdds, on average,
1.5 cache misses per loop iteration, and this effect is unbalinde
(except, of course, by the maximum loop iteration count).

This problem does not occur in our CRPD analysis, since the
cache blocks involved in the domino effect would be categpati
asnot classifiedby the static phase detection step. However, this
observation is not sufficient to ensure that this effect casdfely
ignored in the general case. To handle the problem in the gen-
eral case, we make the following observation: when dealiitg w
WCET computation, we are assuming that no infinite path gxist
the program. This is guaranteed by additional flow constisasuch
as loop bounds. When computing the effect of a preemptiohen t
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Figure 7: FIFO cache domino effect

miss count, we must take these constraints into accountdar ¢o
get a bounded result. The effect of a preemption on the misstco
is captured byaddmiss (defined in Definitio 3]7), which allows
us to ensure a bounded effect.

CRPD soundness We proceed to present a proof to guarantee the
safety of our CRPD analysis. We have defii€d’ ET'(T") in Def-
inition B.2. Let us further introduc®’ C ET PR(Ty,T1,p) as the
WCET of taskT'0 subject to cache interference due to preemption
by task7'1 at program poini, as defined in Definitioh 3]5. Let
us also defineddmiss(To,T1) in Definition[31, as the bound on
the additional cache misses due to preemptiodfwby T4. Our
concept of program path in a CFG is defined in Definifion 3.6.

DEFINITION 3.5. (WCETPRand MCPRW CETPR(T0,T1,p)

is the computed WCET of tagl0, such that the cache classifica-
tion analysis is performed on the CRGro,71,,. This CFG results
from the merging of the CFGs @f0 (preempted task) an@i1 (pre-
empting task), connected with call/return edges at proggoimt

p. Only the cache classification analysis is computed-an, 1.
The main WCET analysis is performed 6 alone. The function
MCPR(Ty, T, p) is defined in a similar way for the miss count
(recall that M C(T) is defined in Definitiof313).

DEFINITION 3.6. (path). A program path in a task is defined as

a function associating an execution count to each node iCH@

of T. The functionsW CET, WCETPR, MC, and MCPR
are enhanced to accept a path as the last (optional) paramete
The effect of this optionaglath parameter is the creation of ILP
constraintsvn, path(LBy) = ¢,. We also noteath € T if path

is a valid path for the tasi.

DEFINITION 3.7. (addmiss)addmiss(To, T1) is defined as:
max(MCPR(To, Th, p, path) — MC(Ty, path)|path € Tp)

In other words, it is the maximum additional cache miss cedint
by the ILP solution, for any possible path through td%k and for
any possible program point for preemption by taSk This does
not represent the maximum number of additional concretsesijs
but instead it is the difference of miss count as determinethé
analysis. Sinceiddmiss() is computed from the result of the ILP
system, it takes into account the various flow control cexsts
that are needed to ensure that no infinite path exists withen t
program. Therefore, an implementationa@fdmiss() compatible
with this definition will always yield a finite and safe bound o

The following lemma states that the CRPD is sound if a preemp-
tion does not change the worst-case path for the preemmkd ta

LEMMA 3.1. Let Ty be a preempted task, arifh a preempting
task. Thervpath € To:

Vp, WCETPR(Ty, T, p,path) <
WCET (To, path) + addmiss(To, T1) x penalty(To)

PROOF. Let Y, ., thk X chj + tmyx x cmj be the objec-
tive function for computingWCET PR(Ty,Ti, p, path), and
let >, <, the X chy + tmy x cmy be the objective function
for computing WCET (Ty, path). ch;, and cm;, represent the
number of cache hits and misses, respectively, for a I-bloak
case of preemption. Thereforé/ C ET PR(Tv, 11, p, path) —
WCET(Tv, path) is equal to the difference of the maximized
objective functions:

Z thy % (chy, — chg) 4 tmy x (cmj), — cmy,)
vk<n

Since the worst-case path is unchanged by the preemptidmavee
Vk, ¢, = cx, and so the above can be rewritten as:

Z (emy, — emy) x (tmy — thy)
vk<n

We need to make the following assumption :
Vn, thy, < tmny

®)

Therefore, we have :
Z (emj—cmy) X (tmy—thy) < Z (emj,—cmi) xpenalty(To)

Vk<n Vk<n

Z (emj,—cmy) xpenalty(To) < addmiss(To, Th) x penalty(To)
Vk<n
Recall thatpenalty(To) is defined in Definitiol 314.

The following theorem states that the CRPD is sound everif th
preemption changes the worst-case path.

THEOREM3.2. Let Ty be a preempted task, afid a preempting
task. Then:

Vp, WCETPR(To, T1, p) < WCET(To)+
addmiss(To, Th) x penalty(To)

PROOF Let p be any program point ifiy, and letwcpath be the
worst-case path folW CET PR(Ty,T1,p). Then, the following
properties are true:

1. WCET (Tv, wepath) < WCET(Tp), since adding a path
constraints to an ILP system can never increase the result.

2.Vp, WCETPR(Ty,Th,p) < WCETPR(To,T1,p, wcpath),
sincewcpath is the path with the highest WCET

3. Vp, WCETPR(Ty, T1, p, wepath) < WCET (To, wepath)
+addmiss(To, Th) x penalty(To), from Lemmd 3L

Therefore from (1) and (2), we havle, WCETPR(To,T1,p) <
WCET(To) + addmiss(To, T1) X penalty(To).

This result enables us to guarantee that a CRPD analysibawill
safe even in the presence of timing anomalies, providedsthrat
conditions are respected. Indeed, itis not tied to any fip€eRPD
computation method, and can be applied to any existing CRPD
analysis, as long as these propositions are true:

the number of additional cache misses, even in the presehce o 1. The CRPD computed for the preemption of the tasky T

unbounded domino effect.

is a bound ormddmiss(To, T1) x penalty(To).



| Task | Size || Task | Size |
senddataautopilot | 300 || altitudecontrol| 1496
chedkfailsafe 1116 || climbcontrol | 6104
checkmegal28valuge 648 stabilisation | 3600
testppm 7876 radiocontrol | 3600

| Fly-by-wire || Autopilot |

Table 1: Code size (in bytes) of tasks in Papabéheby-wireand
autopilotmodules

2. penalty and addmiss are compatible with the definitions
found in Definitio 3.4 and Definition 3.7.

3. Assumption[(B) must be true. This is easily accomplished b
disabling themay cache analysis, and alteringn,, values as
described in Equatidd 2.

Timing anomalies with our FIFO CRPD analysis In our ap-
proach, we do not do theway cache analysis, and ogenalty

is computed as defined in Definitibn_B.4. Furthermore, singe o
FIFO CRPD analysis uses an ILP system to bounds the number of
additional cache misses due to preemption for any possidie p
and preemption point, this result boungédmiss(To, T1), there-

fore the proof described above applies to our analysis ds wel

4. Experimental results

In this section, we give experimental results for our methgd
analyzing a set of representative benchmarks. We implerdent
our CRPD analysis framework on top of Chronps| [11], an open
source WCET analysis tool. We extended Chronos to suppadi AR
architecture and all of our chosen benchmarks are comped a
ARM binaries. In our analysis, we model a single ARM926EJ-S
processor core with a level 1 instruction cache that supgelifO
replacement policy. We run our analysis for different instion
cache configurations (associativity level, number of satd,cache
block size). We use three types of benchmafapaBencHh15],
Malardalenbenchmarks [8], and a robot control application [6].
For each benchmark, we compute the bound on the additional
cache misses due to a single preemption for ¢ask setconsist-
ing of two tasks: a low priority task, and a high priority taske
assume dixed-priority preemptive scheduliraf tasks. The list of
the analyzed task sets is defined in Table 3. Both the tasktagka
set will run in the same processor core. We compute the preemp
tion cost (in term of additional cache misses) with our méttamd
compare it to the preemption cost computed withriative com-
petitivenessnethod [15]. We also plot the average number of addi-
tional cache misses against the number of preemptionsteimpt
to determine the advantage of using the iteratii@ P D computa-
tion, as opposed to computing theR P D for one preemption and
multiplying it by the preemption count.

4.1 Benchmarks

PapaBench PapaBench is a real-time benchmark based on the
control application of a drone called Paparazzi. It has twodubes:
fly-by-wire and auto-pilot Each module contains several tasks,
which are large enough for the needs of our experiments.

Malardalen benchmarks The Malardalen benchmarks are a set
of programs designed to evaluate WCET analysis methodst Mos
Malardalen programs are too small to be interesting foresyer-
iments, so we used two of the largest programs in the Makemda
benchmarksgompressandadpcm

Robot Control Application This benchmark is a real-life robot
controller application. This software contains severaks$a such

| Task | Size |
encode (adpcm) | 5716 || Task | Size ]
decode (adpcm) | 5240 remote 944
reset (adpcm) 1104 balance 27580
clblock (compress)| 2016 || trackandmove| 6704
output (compress)| 1372 | Robot control |

Table 2: Code size (in bytes) of tasks in Malardalen bencksna
and robot control application

Malardalen benchmarks |

[ Set| Low-priority | High-priority |
1 | senddataautopilo checkfailsafe
2 | senddataautopilof checkmegal28values
3 | senddataautopilo testppm
4 testppm checkfailsafe
5 testppm checkmegal28values
6 testppm senddataautopilot
(a) PapaBench (fly-by-wire)
[ Set] Low-priority | High-priority |
7 | altitudecontrol| climbcontrol
8 | altitudecontrol| radiocontrol
9 | altitudecontrol| stabilisation
10 climbcontrol | altitudecontrol
11 | climbcontrol radiocontrol
12 climbcontrol stabilisation
(b) PapaBench (auto-pilot)
[ Set] Low-priority | High-priority |
13 encode (adpcm) decode
14 reset (adpcm) encode
15 | clblock (compress) output

(c) Malardalen benchmarks

| Set| Low-priority | High-priority |

16 remote balance
17 remote trackandmove
18 | trackandmove balance

(d) Robot control application

Table 3: Task sets definition

asnavigationtask, andbalancetask (to ensure that the robot does
not fall). The tasks are preemptiblbalancetask has the highest
priority), and sufficiently large for our experiments.

Table[d shows the code size (in bytes) for the PapaBench tasks
Table[2 shows the code size (in bytes) for the tasks from the
Malardalenbenchmarks and the robot control application.

4.2 Results

For each task set, the bound on the number of additional cache
misses (the misses already present without preemption @re n
counted) for a single preemption is computed for each caohe ¢
figuration. The cache configuration parameters include sheca-
tivity level (from 1 to 4), the cache block size (fror to 32) and

the set count (froni6 to 64). The results are shown for Papabench
in Figure[8 and Figurg]9 (fofly-by-wire and autopilot modules
respectively). The results for the Méalardalen benchmarid the
robot control application are shown in Figlird 10 and Fi§ieet
spectively. The task sets referenced are defined in Table 3.
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We display results only for each different set count, whilera
aging the results over the other parameters (cache bloek aim
associativity level), because we observe that the restdtpramar-
ily influenced by the cache set count. The associativityllbes
little effect on the results, since increasing the numbexafs for
FIFO caches only increases the maximum length of phasesdotde
in the static phase detection analysis, however those tqigeses
happen rarely in programs. The number of additional caclseesi
increases with cache set count, as more cache sets allowofer m
blocks to be in the cache at the same time, whicah are pdtgntia
evicted by a preemption. The cache block size has littleceffa
the additional cache miss count on average, because while it
lows for a greater amount of data in the cache, it does nottafie
maximum count of blocks that can be in the cache.

The results show that the new approach introduces far less pe
simism, compared with the approach based on relative campet
tiveness. This gap between the two methods can be attritbated
two main causes. First, since the relative competitiveresed

90 T T T T

T T T T T
new FIFO CRPD method 1N
80 - relative competitivenessZseyesss |
@ .
2 —
]
€
(]
ey
Q
IS
o
©
c
2
=
=]
©
IS
T T T T T T T T T
90 L new FIFO CRPD method NN |
relative competitivenessZadiadsid
80 1
8 70 |- ocl
a o)
oAt
g o | 2o
OO
e &/XQ*O&)(\/\
S S5
8 50 | gl
© 5]
5 b
§ 40 | e
= ]
3 30 L L;o;qo;; S
] P20 f{f’?\)
o 55
20 + s
10
0
16 32 64 16 32 64 16 32 64
2 3 3
— ~ g
= = b=

(2] ~
Figure 11: Robot experimental results

counts additional cache misses due to preemption only farkil
that were previouslhalways hit thus limiting the double-counting
of cache miss significantly.

Sensitivity to number of preemptionsAs mentioned previously
in Section[B, our method can be used either at each iteration i
the WCRT computation (in order to compute the exact number of
added cache misses for each preemption count), or it candae us
to compute the additional misses for one preemption, andiphul
that number by the preemption count at each iteration of tid&V
computation. The second method is faster (because we deeadt n
to repeat the computation at each step of the iteration)t lualso
more pessimistic: while the number of preemption increasss
and less additional cache misses are caused by each preempti
This effect is shown in Figue_12. We see that for a low num-
ber of preemptions.g. less thar200), there is not much difference
in tightness between the two approaches (note that the pteem
count is the maximum number of preemptions each time the pre-
empted task is activated, not the total preemption courg)th®

approach handles FIFO caches by assuming a LRU cache with apreemption count goes up, the difference between the twb-met

lower associativity level, and that the resulting miss ¢ouost be
multiplied (by a factor depending on the associativity Igvié is
reasonable to expect a high miss count. Additionally, opragch

ods increases. This threshold increases with the preerntgstkedize
(since it increases the number of program points where anpee
tion could generate a lots of additional misses).
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