
%?
ConferenceCompanion‘ CHI’940 Boston,MassachwttsUSAt April?24-28,1994 Demonstrations

Repeat and Predict - Two Keys to Efficient Text Editing

Toshiyuki MASUI

Software Laboratories

SHARP Corporation
2613-1 Ichinomoto-cho

Tenri, Nara 632, Japan
Tel: +81-7436-5-2468

E-mail: masui@shpcsl.sharp. co,jp

ABSTRACT
We demonstrate a simple and powerful predictive interface

technique for text editing tasks. With our technique called

the dynamic macro creation, when a user types a special

“repeat” key after doing repetitive operations in a text editor,

an editing sequence corresponding to one iteration is detected,

defined as a macro, and executed at the same time. When

we use another special “predict” key in addition to the repeat

key, wider range of prediction schemes can be performed

depending on the order of using these two keys.

KEYWORDS: Text Editing, Predictive Interface, Program-

ming By Example, PBE, Programming by Demonstration,

PBD, Keyboard Macro, Dynamic Macro Creation

DYNAMIC MACRO
Various techniques for programming by demonstration (PBD)

and predictive user interface have been proposed to support

easy programming or to reduce the burden of doing simi-

lar operations repeatedly 1] [2]. We propose a new simple

and powerful method of creating a keyboard macro from

repetitive user operations, which we call the dynamic macro

creation method.

Dynamic macro works as follows: All the recent user opera-

tions in a text editor is logged as a string, and when a special

“repeat” command is issued by typing a special key denoted

as (=~, the system looks for repetitive operations from the

end of the string. If such operations are found, they are de-
fined as a macro and then executed at the same time. If=

is typed again, the macro is executed again. For example,

when a user enters a string “abcabc” and types =

after that, the system detects the repetition of “abc,” defines

it as a macro, and executes the macro, resulting in another

“abc.” When the user types m again, one more “abc”

is inserted.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title .?f she publisatlon and it= data appear, and nO1iGo is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

andlor specific permission.

CH194 Companion-4/94 Boston, Massachusetts USA

e 1994 ACM 0-89791 -651 -4/94 /0031 . ..$3.50

Ken NAKAYAMA

Department of Information Science
Faculty of Science

The University of Tokyo

3-8-1 Komaba, Meguro, Tokyo 153, Japan
Tel: +81-3-5478-0520

E-mail: ken@is,s.u-tokyo. ac.jp

The process of detecting repetitive operations consists of the

following two strategies.

Rulel: If there exist two same consecutive sequences of

operations just before typing =, define the sequence

as a macro. If there exist more than one such sequences,

take the longest one. For example, if the user types =3

after “abccabcc,” define “*cc” as the macro, not “c.”

Ru1e2: If there exists no such sequence, look for a pattern

XYX just before -, where X and Y denote nonemply

sequences of operations. If there exist such sequences, define

XY as a macro, executing only Y for the first @@&@. If there

exist more than one such sequences, take the longest X and

take the shortest Y with that X. For example, if the user

types _ after “abracadabra,” take “abra” as X

and “cad” as Y, not “a” as X and “br” as Y.

Example
Figure 1 shows the case when a user types mafter typing

m~mmm on GNU Ems’= In this case! Rule2
applies and ~ [~] [~] [~] is executed repeatedly.

l’his is a sempla \TeX text file.

(a) The area from the first line to the end

of this paragraph should be commented

out using the cement character ‘ %. ‘

I
mommm

% This is a sample \TeX text file.

(b) %*o area front the first line to the end

of this paragraph should be commented

out using the comment character ‘ %. ‘

~m(=mi-HFl)

v

% This is a B-le \TeX text file.

(c) %: The area from the first line to the end

#f this paragraph should ba commented

out using the comment character ‘ %.’

I
@mm(=Gzl Glf3zJm)

% This ia a mmple \TeX text file.

(d) % The area from the first line to the end

$ of this paragraph should be commented

~eut usinq the comment character ‘ %.’

Figure 1: Adding comment characters to each line.

31

http://crossmark.crossref.org/dialog/?doi=10.1145%2F259963.259999&domain=pdf&date_stamp=1994-04-28

Demonstrations
5!?

CHI’94- “CelebratingInterdependence”o ConferenceCompanion
—

USING DYNAMIC MACRO WITH OTHER PREDICTION
TECHNIQUES
Dynamic macro predicts right inmost cases, but it sometimes

guesses differently from theuser’s expectation. For exam-

ple, if a user types @@@] after [=)(?kiii]~i)~ mm

mm,Rulel applies andanother ~ is executed,

which may be different from theuser’s expectation of ~

~~~. This problem can be SOIVed by using a “Pre-
dict” key, or ~w~~, with which users can change the pre-

diction scheme after the system made a wrong guess. @%@@’

normally acts like conventional predictive keys such as the

“file name completion” key or “dynamic abbreviation” key

of GNU Emacs. Using [P=+ after @%&@, users can try

different candidates whenever the prediction was an unex-

pected one. In Figure 2, changing the prediction scheme

by ~=wl makes Rule2 active, and next candidate, ~

@l@!lm> iS predicted instead. If this prediction iS the
one in the user’s mind, the user can then type more -

to go on the prediction.

pEi@i3
I

(EExiEc<TAB> <TAB>abc
<TAB> <TAB> <TAB> N

‘IEEE%E3
“=

1
L!wzE!L<TAB> <TAB>sbc

<TAB> <TAB> <TAB> <TAB> ;;

m},::::: I

@iEE@ @igi%iF]

~ s%%:) E%=%t)
==

F==J E-&q\end{itemize) x

mm
\end itemize ~

Figure 4: Qualitative and quantitative prediction.

We can go even further to extend the meanings of =

and (=3, and use them as mode-specific prediction keys

which correspond to quantitative and qualitative prediction,

respectively. Figure 4 shows how [-~ and = can

be used when writing L$T# documents with this kind of

extension.

All together, the functions of - and [m) are shown

in Figure 5. When m is pressed, the system goes

to state SRI and dynamic macro is executed. If ~-$

is pressed there, the system goes to state SP2, undo the last

prediction, and performs another new prediction. Various

other prediction schemes can be tried based on the state tran-

sition shown in Figure 5,

Actions taken by [-j and m

Figure 2: Changing the prediction scheme using @@@.

We can go further by extending the semantics of (@@@

as follows: if it is pressed after - or (~-’, execute

the same prediction scheme again; otherwise, predict the

next string using the dynamic macro technique. With this

extension, users can first select the prediction strategy using

=> and then apply it repeatedly by =. Figure 3
shows an example of using this technique.

C@EzEYl“’c” “’de’)
Ez223il— -,

Ikiiam
v

joiEEii3
[6789 AB:::

I ~ s – mostwobable undo p
rxediction scheme S +— next probable

1
prediction scheme

-~ :: ;I:gj , p * P(s,c)

q ,.0
execute p .‘ - -‘ ~P1 ‘- -- ~p2~-, r Y R(S,C)

. j execute p,/
, $,

S ~ dynamic macro ‘;,,,’ ‘

m
p — Hs,c) ~ ~! ~p ; P+r

r + R(S,C)

execute p fd;;i:,execu’ep

S: prediction scheme C current context P,R: prediction functions

p,n sequences of operations SPI ,SP2,%I ,SR2: prediction states

Figure 5: Actions by - and -.

REFERENCES
[1]

[2]

Cypher, A., Ed, Watch What I Do – Programming by

Demonstration, The MIT Press, Cambridge, MA 02142,

1993.

Myers, B. A. Demonstrational interfaces: A step be-

yond direct manipulation. IEEE Computer 25,8 (August
1992), 61–73.

Figure 3: Select and repeat prediction strategies.

32


