
SUPPORTING IMPLEMENTATION OF SEMANTIC-LEVEL
USER INTERACTION PARADIGMS

Peter Aberg and Robert Neches

University of Southern California, Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

aberg@isi.edu; neches@isi.edu

ABSTRACT

Many computer applications present their users with Iasge
information spaces that are difficult to understand and
navigate. One class of solutions to this problem relies on
allowing users to easily explore the information space,
guided by continuous feedback provided by the system.
Unfortunately, instantiating such a paradigm for a new
application often requires a great deal of effort on the part
of the developer. We are currently working on a shell
environment that merges a model-based user interface
development system with a proven interaction paradigm (a
generalization of re(rieval by reforwudalion) to assist
developers in Utis task.

lNTRoDucnoN
A large body of recent work on human-computer
interaction (~ for instance [2, 5]) focuses on ways of
making complex information systems, such as very large
databases, more accessible to inexperienced users. This
research has shown that users of such systems are faced
with two major problems. The first is being able to
mentally grasp the scope and stsucture of the information
spaces presented by the systems. The second is
formulating commands to navigate through such
information spaces to locate items of interest. These Lwo
problems are aggravated by the difficulty for users of
understanding the terminology used by the systems, which
unavoidably differs from their own.

Both these problems cart be reduced by building user
interfaces that allow users to conduct explorative
navigation through the information space. One such
technique lets users iteratively refine a description of the
items sought after, permitting them to elaborate and
experiment with the problem at hand to determine the
precise information needed. The viability of this paradigm
of user interaction, called specification by reformulation
(or, in its more limited form, retrieval by reformulation),
has been demonstrated in systems such as RABBIT [4],
HELGON [1], and three versions of our own BACKBORD
[5] syslem.

Specification by reformulation is based on the technique of
solufion by successive approm”mations. Users find items
they are searching for by successively ~fining a partial
description of the items, guided by feedback provided in
the form of example items matching the description as it
appears at each iteration. These examples also help users
overcome mismatches between the system’s terminology
and their own, as well as play an inspirational role by
showing what it is possible to talk about.

Unfortunately, instantiating the specification by
reformulation paradigm for a new application requires a
great deal of ceding. Despite the fact that the systems
mentioned above share a common user interaction
pamdigm, they shase no code. To promote the use of the
specification by reformulation paradigm, we decided to
investigate the possibility of using a model-based User
Interface Development System (UIDS) for our application
development By defining a number of building blocks that
implement the core elements of the paradigm using the
UIDS, we can create a shell-like environment for
developers to work with, thereby reducing the amount of
work required to put together a specification by
reformulation-based user interface for an application.

IMPLEMENTING SEMANTM2-LEVEL PARADIGMS

Model-based UIDSS, such as the HUMANOID system [3],
provide application developers with an environment that
allows them to work at a higher level of abstraction than if
they were using widget toolkits or most other conventional
UIDSS. Rather than forcing developers to begin design of a
new application by putting effort into determining screen
appearances and writing tedious event-callback code,
HUMANOID permits design to begin by defining behaviors
and presentations in a terminology much closer to that of
the application. Instead of talking about bttitons and
scrolling lists, HUM ANOI D operates at the level of
application commands and command input alternatives.
Once developers have laid down the basic functionality of
the application, they may proceed to tweak prewntation
details and lower-level command functionality if so
desired.

Model-based UIDSS also allow an application’s
presentations and behaviors to be determined at run-time,
according to context-sensitive criteria such as the type of
data being presented or the current task.

The specification by reformulation p~digm k especially
suitable for implementation using a model-based UIDS

163

http://crossmark.crossref.org/dialog/?doi=10.1145%2F259964.260175&domain=pdf&date_stamp=1993-04-01


such as HUMANOID. As opposed to many other, lower-
Ievel interaction paradigms, specification by reformulation
does not focus on issues such as screa layouts and the
appearances of widgets such as command buttons. Instead,
the paradigm operates at a higher, semantic level
corresponding to dialogs and dialog acts.

We have already developed a new implementation of our
.spi!ication by reformulation-based BACKBORD system
using HUMANOID. This BACKBORD version has been
incorporated into a large-scale knowledge base
development environment, as well as a logistics
management system, with positive results.

A SHELL ENVIRONMENT
Our goal in providing application developers with a
specif~tion by reformulation-basd shell environment is
to raise the level of abstraction they work with by yet
another notch, to that of dialog components. To do this,
we w HUMANOID to create customizable building blocks
from which user interfaces for application programs can be
assembled. Each building block corresponds to one
component of the interaction paradigm.

We define three building blocks. The fkst is a description
module, the main focus of interaction for users, where they
create and modify the partial description used to generate
feedback. This includes a generator component that
produces feedback based on the description, and afil[ering
component used to filter fedback before it is passed on to
the example list. The second is the exampIe list module,
which displays a list (in some form) of items matching the
description. ‘Ile third is an example viewer module, used
to display individual examples selected by the user from
the example list in order to provide inspiration for possible
changes to the description. This viewer enables users to
copy components of iterns directly from the example to the
panial description. It can also function as the link to the
application, allowing users to apply application-specific
commands to its contents (such as editing them, sending
them off as art e-mail message, etc.)

Putting together a user interface for a new application is a
matter of configuring each module described above. This
procedure involves mapping the paradigm’s components
onto the terminology of the application. There are six basic
steps to performing this mapping.

●

✎

●

164

Es@blish the topic of the partial &scription. What is it
users are trying to find or accomplish?

Deterw”ne what operators are relevant to rejIning the
description. The paradigm defines a few generic
operators for modifying descriptions, such as adding or
deleting parts to it. Developers need to determine how,
and if, these can be instantiated, and then decide what
application domain specific operators are neded as
weU.

Deciak what kina3 offeedback can be generaled based
on dte parlial description. A list of items matching the
description is a minimum requirement. Other forms of
feedback are possible as well, for instance a Iisl of
syntactical y correct completions of the description.

●

✎

●

Determ”ne how to convert the &scription 10 a form

suitable for generating feedback. For instance, this
might mean constructing a database query from the
&scription.

Deci& how feedback should be presented. 1s there a
need for filtering the feedback, or for converting it into
another form? Numerical data may, for instance, be
converted into graphs.

Delermine in what form user gm”dance can be provided
from dwfeedback. Allowing users to look at, and work
with, example items return~ as feedback is one form
of guidance.

Each of these steps involves writing small functions (in
LISP) to hook into the shell’s modules. ‘llese functions
should be no more than a few line-s of code in most cases,
since much of the functionality required by the modules
probably aheady is used in other parts of the application
itself and therefore already exists.

HUMANOID provides default presentations and interaction
methods for each component. These can be specialized by
the developer if necessary. Each component can also have
associated help functions to assist users of the completed
application. These can also be specialized according to
need.

CONCLUSIONS
We hope to show that by implementing a shell, rather than
instantiating the paradigm from scratch for each new
,application that comes along, we will promote software
reuse, consistency of the user interface, and reduction of
the development burden for new applications.

We also believe that coupling the use of model-based
UIDSS with a high-level interaction paradigm provides
more supfmrt to both users and developers than using a
high-level paradigm alone.

REFERENCES
1. Fischer, G., Nieper-Lernke, H. HELGON Extending

the Retrieval by Reformulation Paradigm. In
Proceedings of CHI ’89, ACM, 1989, pp. 357-362.

2. Fischer, G., Stevens, C, Information Access in
Complex, Poorly Structural Information Spaces. In
Proceedings of CH1 ’91, ACM, 1991, pp. 63-70.

3. Szekely, P., Luo, P., Neches, R. Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design. In
Proceedings of CHI ’92, ACM, 1992, pp. 507-515.

4. Tou, F. N., Williams, M. D., Fikes, R., Henderson, A.,
Malone, T. RABBIT An Intelligent Database
Assistant. In Proceedings of AAAI-82, 1982, pp. 314-
318.

5. Yen, J., Neches, R., DeBellis, M., Szekely, P., Aberg,
P. BACKBORD: An Implementation of Specification
by Reformulation. In Intelligent User JnterJaces,
Sullivan, J. W., Tyler, S. W. (E&.), ACM Press, 1991,
pp. 421444.


