
Feature Checklists in HCI:
some basic results

Edward A. Edgerton, Stephen W. Draper, Stephen B. Barton
GIST (Glasgow Interactive Systems eenTre)

University of Glasgow, Glasgow, U.K.
steve@psy.glasgow. ac.uk

Abstract

Feature checklists are a method of measuring the usage of
commands by exploiting users’ memories. The pereeived
usefulness of commands ean also be measure~ as cart
awareness of their existertee and functions. Experiments
found that their accuracy (validity) was greater than 80% in
all cases. Increased visual rezilism of the presentation may
increase this still further. Extensions to bugs and to task
desaiptions are discussed.

Introduction
There are at least 3 different meanings for “checklist” even
in the human factors area A checklist in itself is just a list
of items that maybe checked (t.ickd) off.
1. Preflight checklist To support behaviour by
being an external menory aid e.g. airaaft pilots use one for
preflight checks, to supplement recall of a lmge set or list
(sequence) of items. me items are familiar and are instantly
and reliably recognise& the checklist is @ ensure none are
forgotten. Each item is a cue for recall of an action to take.
2. Usability checklist To elicit information, not
from the respondent’s memory but via their behaviour i.e. a
checktist of information-getting behaviour, the results of
which are recorded. E.g. Ravden & Johnson’s (1989)
checklist for usability evaluation is intended for use by
those not familiar with it eaeh item is not remgnised but
contains a full description of what to look for.
3. Feature checklist To elicit information from the
respondent’s memory: the checklist lists features (e.g.
commands) of the machine (unlike (2)), and gathers
information from a human mernoxy.

This paper concerns feature checklists (FCs). They consist
of a list of cxmmands or otier features of a user interface,
which it is hoped the subject will immediately recognise and
remember, used as a cue for asking questions about them.
Thus the usual layout is a long list of features, against
which are a few columns eaeh asking a question about each
feature. In that sense, they area speciahd questionnaire.
T%e questions asked might rnclude whether the command is
usti how frequently, whether it is useful. This depends on
people having no trouble remembering the commands in an
interface, an assumption we set out to te.s~

The main application of FCS is to measure which
commands are use4 and how frequently. They are thus an
alternative to eartmand logging (@trnW@g) systems built
into the software. Ideally perhaps they would be
unnecessary since it might be argued that all interface

software should have such logging built in. In reality
however, we are often asked to evaluate software which does
not have such logging available, or for which it was not
turned on in the period prior to the study. IWs use people’s
memorie$ which do not suffex from such drawbacks. The
question is: am they sufficiently accurate?

In fact logging methods also have intrinsic weaknesses, and
should in principle also be tested for accuracy. They record
user actions not intentions and therefore record commands
actually invoked, including those accidentally and even
unknowingly invoked (e.g. by the mouse slipping on a
pulldown menu). Thus they cannot be wholly trusted for
ealculat.ions of which commands are lmown by a user, or
which are useful. Some logging systems have other
problems. Some record at a low level (e.g. mouse
positions) and so create huge log files (and a translation
problem) for a small amount of information at the command
level. Others, such as Unix’ acct, record processes which
have a wmiable and indirea retat.ionship to user commands.

Finally feature checklists can be used to ask other per-
command questions such as whether the command is useful
(or vital, or of incidental convenience), whether users know
about it (but just hasn’t used it because it is useless, or on
the contrary would use it if only they had known about it).
Thus IWs w not only provide usage &equency dam which
is useful to designers and evaluators in a number of ways,
but also data on knowledge and usefulness of commands,
and so em address several design problems such as feature
overload (a high ratio of commands provided to commands
wed and found useful), information delivery problems
(commands judged useful but not known about) and
reminding problems (commands said to be useful, known
about when querid ye-tIIOt u@.

Basic results
Four studies were done, with the basic aim of measuring the
validity of feature ckdd.ists for HCI. The ukirnate goal is
to measure the command use and knowledge of experienced
users. However the only unquestionable check on validity
is behavioumk obsewing users using commands. Thus the
fmt study compared direct observation with both FCS and
software logging, and had therefore to use new users. It also
compared the validity of checklists witJI that of open-ended
questionnaires in order to replieate in the HCI domain the
only prevtous study we M found (Etelsort & Duncan 1%2).
It tried the two instruments in both orders (on two groups of
subjects), so otdex effects could be observed while also Ning

189

http://crossmark.crossref.org/dialog/?doi=10.1145%2F259964.260200&domain=pdf&date_stamp=1993-04-01


able to compare fit ins~ent ZWcies across subjects.
It studied new users of the Word editor. The FC, when
issued fm~ achieved 85V0 accuracy, while the open-ended
questionnaire achieved 48% at best (and that was only when
issued after the FC).

In a second and third study (mainly aimed at exploring the
effect of visual realism — see below) accuracy levels were

80%- 84%, and 89-95%

A fourth study used experienced users (though not on an
HCI task but on usage of Glasgow’s underground railway).
It therefore could not do direct behavioral validity checks of
remembered use. It was mainly designed to extend validity
checks to other columns for feature checklists, however
distracter items were used as a validity check for memory of
the existence of features, while the other measures were
vali&ted agtinst interviews. We found 87% accuracy for

existence of features, and 84% for tie question of whether
the subject knew what a feature was for.

In summary, we found FCs to have at least an 80% accuracy
across these four studi~ and often higher.

Visual realism
The most obvious reason why FCs are so successfid is that
they require only recognition, while the questionnaires
required recall. A further reason may be that subjtxxs were
performing a similar task to that encountered in the rd life
situation, i.e. recognizing the command in the context of
the same list of possibie alternatives. Could accuracy be
further improved by increasing the degree of visual realism
of the cue? In our standard FCs, commands were simply
referred to by their name: the same name as appeared on the
actual menus, but not in the same typeface and without the
same spatial layout and other screen cues. Our second and
third studies compared our standard FC layout with pMted
screen dumps and with allowing users to refe$ to the actual
application on screen. Perhaps because the standard layout
is already near to the ceiling of performatt~ we achieved a
statistically significant improvement onIy after the data
from an outlier subject had been excluded. Our present
belief is that it is possible to obtain a small increase in
accuracy by increasing the visual realism of checkJist
format.

Further variations
We are in the process of extending this technique from
commands to bugs in the interface. While thinkaloud
protccols are effective fcx discovering the existence of bugs,
design teams must often limit their efforts at remediation to
the most serious problems. To make these dedsion~ data
on frequency and severity are necessary. Provided bugs can
be described on a checklist in a readily recognizable way,
checklists might be U@ to gather this data

“Semantic” checklists
A variation we have already tested is to present as a cue, not
the name and appwance of a command but a description or
paraphrase of its function or effect. This reduces to zero the
visual realism of the prompg but might Ix expected to
match more closely the conditions of actual use. This is
because when using a command a user presumably starts
from an internal, mental description of the effezt (or task, or
goal) they wish to accomplish and from that retrieve (in
conjunction with screen prompts) the display “name” of the
command i.e. retrieve and use a task-> action mapping.
This form of checklist thus abandons visual realism, but
tries to match more closely the normal (ask conditions of
command use. l%ese checklists might be called “semantic”
since they attempt to remind users of their own internal
meanings for commands. Their potential drawback is
whether users can recognise the paraphra.ws at atI — these
require comprehension of a new description which
recognition of disptay names does not.

We ran a study comparmg (among other conditions)
“semantic” with our normal feature checklists, to see
whether they would achieve a comparable accuracy. For

many commands they dia but the pattern of the results
suggests that this is actually the wrong question to ask.
There is evidence that where subjects answered the
“semantic” checklist “wrongly” they were actually reporting
that they did know how to achieve that effec~ though not by
the dwect command in bet present in the interface. In other
words, these “semantic” checldists seem to be a powerful
instrument for detecting functions which the user needs and
achieve% but for which they have not discovered the optimal
command. Further development and laboratory work is
n+ but it now looks as if the best insmtments may use
both visual and “semantic” cues, and that comparison of
answers will nxeal not only what is used but what would be
used if information delivery were improved in that interface.

Acknowledgements
The work summarised here was supported by a grant
“Measurement of user interface performance” from IED

(Infomtion Engi.n*g Directorate) and SERC (Science
and Engineering Research Council) ref.: GR/F 39171 /
lED4/1/l 109. Our colleagues on the projec~ particularly
Pat Jordan and Paddy ODtmneLI, have been closely involved
in this work+ and are partly responsible for any mexit it may
contain.

References
Belson, W. & Duncan, J.A. (1962) “A comparison of the

check-list and the open response questioning systems”
AppIied StiitiStiCS VOL 1 I pp. 120-132

RavdetL S. & Johnson, G. (1989) Evaluating usability of
human-computer interfaces: a practical method (Ellis
Horwocd Chichester)

190


