
SIGForth ‘9C1

Common Sense and Real Time Executives

William E. Drissel
CyberScribe Associates, Inc., 805 NW 9th, Grand Prairie, Tx 75050

ABSTRACT:

Commercial real-time operating systems are complex and feature-laden. Size and complexity

require extensive adaptation and long learning times. For the most common real-life requirements,

one can write a real-time executive in one afiernoon in any language.

Figures 1 and 2 contrast two views of the world

of real time systems - that of the operating

system salesman and that of the author.

Commercial products must have every known

feature: pre-emptive scheduler, native OS file

access, time slicing, message passing, dynamic

task creation, priorities, memory allocation, event

queues and flags, semaphores, mailboxes, time

and calendar functions, etc.

Adaptation to your system is required to prevent

the kernel from occupying all available mem-

ory. This means sysgening and mastering yards

of documentation in which ordinary words are

used with extraordinary precision and there are

significant penalties for misunderstanding.

Contempcmq products may have over 50 “system

calls” - each requiring register setups and/or a

communication block with manifold parame-

ters and options.

Horror stories abound of hundreds of man-hours

spent in study of manuals, adaptation and cus-

Permisaion h. copy without fee ail or part of this material is
granted, provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given
that copying is by p+mniasion of the Association for Computing
Machine~. To copy otherwise, or to repubhsh, rquires a fee

and/or spec~lc perndasion.
@1991 ACM 0-89791-462-7/90/0200-0001 $1.50

tomizing without reaching a stable, useful foun-

dation for development of the real system.

The principal gain we seek from the employ-

ment of a real time executive is multi-tasking. I

suspect that this term is poorly understood even

among programmers. If you have a uniproces-

sor, its program location counter can be at only

one location at any time. Consequently, for

some people multi-tasking is a deep mystery.

Stripped to its simplest terms, multi-tasking is

the ability of a computer program to do more

than one thing at a time whe,n observed from

outside the computer using human time scale,

Consider, for example, a simple multi-tasking

system which polls a telemetry link, prints alarms

on a logging printer and updates a wallboard

display. When the telemetry link doesn’t have

input ready, the CPU must be made available to

the part of the program which sends characters

to the logger. When the printer is busy printing

a line, the CPU must be available to update the

wallboard. Now, to a human watching the

system, all three things seem to be progressing at

once even though in a microsecond time scale

only one task is occupying the CPU.

If this is the only reason you need a real time ex-

ecutive, you can write your own in one after-
noon in any language.

-1-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F259965.259978&domain=pdf&date_stamp=1991-03-07

SIGl?orth ’90
The simplest realtime executive, round-robin,

run-til-done:

CALL CLDSTRT
1 CONTINUE

CALLONE
CALLTWO
etc.
GOTO1

In FORTH:

: EXECUTIVE
COLD
BEGIN

TASK1TASK2TASK3 etc.
AGAIN

#

The typical task begins with “why am I here?”

case statement:

SUBROUTINETHREE
GOTO(100,200,300,etc.), ISTATE3

or in Forth:

: STATE_MACHINE (n task_table–)
@ SWAP@CELLS+@EXECUTE

CREATETASKl_TABLE
‘ ACTION1 ,
‘ ACTION2 , etc.

:TASK1
STATE1TASKl_TABLE
STATE_MACHiNE

:ACTIONn
READY_FOR_THIS
IF performaction THEN

100 CONTINUE
IF (.NOT,READY(WALLBORD))RETURN
codeto tfpdatewallboard

...
RETURN

Usually the programmer writing task code knows

best when a task is ready to run but some people

object to the executive jumping into any code

which is not ready to run. This leads us to the

idea of a demand scheduler.

1 CONTINUE
IF (NEEDED1)CALLONE
IF (NEEDED2)CALLTWO
etc.
GOTO1

In FORTI+

: EXECUTIVE
BEGIN

NEEllED_l
IFTASK1 THEN
NEEDED_2
IFTASK2 THEN
etc.

AGAIN;

Typical action tests to see if the world is ready:

-2-

If a programmer believes priorities are abso-

lutely necessary, the maybe accomplished in the

following manner:

1 CONTINUE
IF (NEEDED1)

CALLONE
GOTO 1

ENDIF

THEN

IF (NEEDED2)THEN
CALLTWO
GOTO1

ENDIF
etc.

In FORTH:

: EXECUTIVE
BEGIN

NEEDED_l
IF TASK1
ELSE

NEEDED_2
IF TASK2 etc.
THEN

THEN
AGAIN

In 68020 assembler code:

EXEC: BFFFO NEEDED{O:31},D0Findfirstonebit
* andputbitoffsetinDO

JMP indirectthrutableafterlongword
● indexingbyDO
TABLE:ADDR TASK1

ADDR TASK2
....
ADDR EXEC Jumpbackif nooneisready

This last example reaches task code in two in-

structions! A similar structure can be used to

maintain the state machine for a task. If ready to

run can be determined by looking at a bit in a

command/status register and a conditional branch,

the total overhead for cycling through an un-

SIGForth ’901

ready task or reaching action code is six instruc-

tions. It would be interesting to compare this

complexity with the executive table maintainence

and environment restoration code of a commer-

cial real time operating system,

The ideas of priority and demand scheduling

combine in a obvious way.

None of the structures above support task sus-

pension (variously called pausing, sleeping,

relinquishing). Some people feel that suspen-

sion is necessary to allow programmers to main-

tain a continuity of coding across delays for I/O

completion, resow ce availability, etc. Since sus-

pension has a considerable cost in complexity, it

is worth mentioning that the necessity for sus-

pension can be avoided by task organization.

When a task reaches a point where useful con-

tinuation isn’t possible and control needs to be

relinquished to other tasks, the task could sim-

ply end. Continuation can be accomplished by

another task.

If task suspension is required, we must abandon

the simple high-level language approaches shown

above. At the moment when a call is made into

the suspension code in most modern machines,

the stack contains the return address and parent

stack frames of the suspending program. These

stack frames and the entire environment of the

task to be suspended must be preserved while

other tasks run and restored before the sus-

pended task is resumed.

The suspension code pushes all the registers and

environment (or pointers to environment tables)

onto the stack, then saves the stack pointer in an

executive queue. To activate the next task, the

executive must switch environments by grab-

bing the next task’s stack pointer from one of its

queues, restoring registers and environment and

issuing a return from subroutine instruction which

should resume the task at the instruction beyond

the call to the suspension program.

-3-

SIGForth ’90
The current fashion of providing even small

process control machines with floating point

chips and mappers (Motorola 68040 and Intel

80486) greatly increases the amount of environ-

ment which must be saved when a task suspends.

Some FORTH systems have been built which

use task control blocks containing all the infor-

mation necessary to resume a task (including

USER variables). The fwst part of the TC!B

contains a jump instruction to the TCB of the

next task when the task is inactive. When the

task is ready to run, a subroutine jump, call

instruction or interrupt replaces the jump. The

call instruction (or alternative) stacks the ad-

dress of the rest of the TCB and the executive

uses this to restore the stack pointer and environ-

ment of the task to be resumed. Some machine

dependent features can make this very fast and

elegant.

To suspend, a task executes one of the executive

words provided for this purpose, (typically

PAUSE). The executive saves the environment

of the calling task in its TCB and then jumps to

the TCB of the next task. This chain of jumps

eventually finds a call instruction and restores

the environment of the task and resumes it.

So far, in the author’s practice, suspension has

not been found to be worth the trouble.

Since this is a paper about common sense, the

next roll-your-own real time executive is men-

tioned with some hesitation, because its simplic-

ity, elegance and speed might tempt practioners

to use it.

This is the interrupt-to-interrupt executive. All

tasks except possibly one are connected to inter-

rupts. To switch to a higher priority task, trigger

its interrupt. (Incidentally, this provides a sus-

pension mechanism). If you trigger the inter-

rupts of lower priority tasks, they run when the

triggering task is finished.

The last sentences contain an important distinc-

tion: higher priority tasks seem to run between

the trigger instruction and the one which fol-

lows; lower priority tasks run after the trigger-

ing task completes. Unless the design is perfect

the first time, interrupt priorities have to be

shuffled and behavior of completed code then

becomes unpredictable.

If (nay, when) things get dark and quiet, there -

are no executive tables to prowl through to de-

termine the active task or which tasks are ready

to run because this information is contained in

inaccessible flip-flops in the computer. Missing

a single interrupt can cause a task (or chain of

tasks) to stall. Looking with the debuggers after

the fact is no help. All the interrupt catchers are

waiting with open arms. There just doesn’t

seem to be anything for them to do. In spite of

its seeming advantages, the development proc-

ess which involves the interrupt-to-interrupt

executive is chaotic.

In this penultimate paragraph, let us dispose of

several advertised features which the author

perceives to confer little advantage. The first of

these is use of mappers to separate tasks. The

typical real time system has to work, so there is

little need for protection from green code — no

one plays Star Wars, or develops new code, on

the embedded computer which controls the re-

finery.

The second feature is time-slicing. If time is

really pressing, pre-emptive task schedulers and

time-slicing take too much time.

The third feature is sometimes called determin-

istic scheduling. It confers the advantage of

being able in some fine-grained sense to say

when a task will start. If external reality forces

inputs or outputs at specific times, these time

marks should cause synchronizing interrupts. The

typical computer can respond to such signals in

-4-

SIGl?orth ’90

far less time than an executive can run thru the Reference:

code to select a task pointer, restore the environ- lP.J. Plauger, Evaluating Real Time Operat-

ment and branch to the task. ing Systems. Embedded Svstems Promam-

11.@, February 1990.
This last paragraph contains more common sense

in fewer words about the speed of real time “

systems than anything else I have read. P J

Plauger* says people worry about the wrong

things:

* Those who worry about disk swapping de-

lays should use locked, resident tasks

* Those who worry about task switching times

should do more in interrupts

* Those who worry about interrupt latency

should use DMA

-5-

