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We describe a variety of machine learning techniques that are being applied to social multi-user human-robot interaction,
using a robot bartender in our scenario. We first present a data-driven approach to social state recognition based on supervised
learning. We then describe an approach to social skills execution—i.e., action selection for generating socially appropriate
robot behaviour—which is based on reinforcement learning, using a data-driven simulation of multiple users to train execution
policies for social skills. Next, we describe how these components for social state recognition and skills execution have been
integrated into an end-to-end robot bartender system, and we discuss the results of a user evaluation. Finally, we present
an alternative unsupervised learning framework that combines social state recognition and social skills execution, based
on hierarchical Dirichlet processes and an infinite POMDP interaction manager. The models make use of data from both
human-human interactions collected in a number of German bars and human-robot interactions recorded in the evaluation of
an initial version of the system.
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1. INTRODUCTION

A robot interacting with humans in the real world must be able to deal with socially appropriate
interaction. In many scenarios it is not sufficient to achieve only task-based goals: the robot must
also be able to satisfy and manage the social obligations that arise during human-robot interaction.
Building a robot to meet these goals presents a particular challenge for input processing and interaction
management: the robot must be able to recognise, understand, and respond appropriately to social
signals from multiple humans on multimodal channels including body posture, gesture, gaze, facial
expressions, and speech. Since these signals tend to be noisy, an additional challenge is for the robot
behaviour to be robust to uncertainty.
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A:2 S. Keizer et al.

A customer attracts the bartender’s attention
ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.
Another customer attracts the bartender’s attention
ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]
ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
CUSTOMER 2: I’d like a pint of beer.
ROBOT: [Serves Customer 2]

Fig. 1. A socially aware robot bartender

In the JAMES project,1 we are investigating these challenges by developing a robot bartender
(Figure 1) which supports interactions with multiple customers in a dynamic setting. The robot
hardware consists of a pair of manipulator arms with grippers, mounted to resemble human arms,
along with an animatronic talking head capable of producing facial expressions, rigid head motion,
and lip-synchronised synthesised speech. The input sensors include a vision system which tracks the
location, facial expressions, gaze behaviour, and body language of all people in the scene in real time,
along with a linguistic processing system combining a speech recogniser with a natural-language
parser to create symbolic representations of the speech produced by all users.

The target bartending scenario incorporates a mixture of task-based aspects (e.g., ordering and
paying for drinks) and social aspects (e.g., managing simultaneous interactions, queuing, dealing
with arriving and departing customers). For the current version of the system, we support interactions
such as the one shown in Figure 1, in which two customers approach the bar, attract the robot’s
attention, and order a drink. In subsequent versions, we will support extended scenarios involving a
larger number of customers arriving and leaving, individually and in groups, and with more complex
drink-ordering transactions.

The architecture of the system is given in Figure 2: it includes components for audiovisual input
and output generation, along with the two higher-level components that are the focus of this paper:
the Social State Recogniser (SSR) and Social Skills Executor (SSE). The SSR processes an input
stream of observations from the vision system, as well as speech input events from the speech
recogniser and parser, to maintain a model of the social state. In Section 2, we discuss this component

1http://james-project.eu/
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in more detail, and show how it uses supervised learning as part of its processing. Whenever the
SSR determines that a relevant change in the social state has occurred—for example, a customer
approaches or leaves the bar, a new hypothesis arrives from the speech recogniser, or the robot finishes
serving a drink to a customer—it publishes the updated state to the SSE. The SSE then determines
how the the robot should respond to the updated state, resulting in specifications of communicative
and/or non-communicative actions, which are sent to the Output Planner and finally realised through
synthesised speech and/or actions of the robot head and arms (arrows to indicate the feedback signals
from the output modules sent back to the SSR have been omitted to keep the diagram readable). In
Section 3, we further discuss the Social Skills Executor and present an approach to automatically
learning strategies for selecting socially appropriate robot responses based on reinforcement learning.
This also includes a description of a data-driven multi-user simulation environment that was used for
training such strategies.

Real World

Visual
Processor

Speech
Recogniser

Parser

Social State
Recogniser

Output
Planner

Speech
Synthesiser

Speech
Synthesiser

Social Skills
Executor

Talking Head
Controller

Robot Arm
Controller

Fig. 2. Architecture of the robot bartender system

After presenting the data-driven approaches for both social state recognition and social skills
execution, we describe how these two components were integrated into the full robot bartender
system, and present the results of a real user evaluation of the integrated system, comparing the
data-driven version of each component with a hand-coded version (Section 4). In Section 5 we then
discuss an alternative unsupervised learning framework that combines social state recognition and
social skills execution, based on hierarchical Dirichlet processes and an infinite POMDP interaction
manager, as an alternative to the relatively traditional setup with separate components for state
monitoring and action selection. The paper is concluded in Section 6 with a summary of the work,
discussion of the results and directions for future work.
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2. SOCIAL STATE RECOGNITION2

In the context of the JAMES robot bartender, the role of the Social State Recogniser (SSR) is to turn
the continuous stream of sensor messages produced by the low-level input-processing components
into a discrete representation of the world, the robot, and all entities in the scene, integrating social,
interaction-based, and task-based properties [Petrick and Foster 2013]. The SSR constantly monitors
the state, and publishes a state-update event to the Social Skills Executor (SSE) every time there is
a change which might require a response from the system. In addition to storing and discretising
all of the low-level sensor information, the SSR also infers additional relations that are not directly
reported by the sensors. For example, it fuses information from vision and speech to determine which
user should be assigned a recognised spoken contribution, and estimates when customers are in a
group. Most importantly in the current scenario—where one of the main tasks is to manage multiple
simultaneous customers, as in Figure 1—the SSR must also inform the SSE every time a customer is
seeking to engage with the robot bartender.

To classify engagement-seeking behaviour in the context of the JAMES bartender system, the SSR
makes use of low-level sensor data published on two input channels. The computer vision system
[Baltzakis et al. 2012; Pateraki et al. 2013] tracks the location, facial expressions, gaze behaviour,
and body language of all people in the scene in real time, using a set of visual sensors including two
calibrated stereo cameras and a Microsoft Kinect depth sensor. The data from the vision system is
published as frame-by-frame updates multiple times a second. The other primary input modality in
the system is linguistic [Petrick et al. 2012], combining a speech recogniser with a natural-language
parser to create symbolic representations of the speech from all users. For speech recognition, we
use the Microsoft Speech API together with the directional microphone array of a second Kinect;
incremental hypotheses are published constantly, and recognised speech with a confidence above
a defined threshold is parsed using a grammar implemented in OpenCCG [White 2006] to extract
the syntactic and semantic information. For the current study, the following are the low-level sensor
features for each customer that are used for the task of determining whether that customer is currently
seeking to engage:

Location. The (x, y, z) coordinates in centimetres of the head, left hand, and right hand of the customer,
where (0, 0, 0) corresponds to the centre of the bar.

TorsoAngle. The angle in degrees of the customer’s body, where 0 degrees indicates that the customer
is facing directly forwards.

Speaking. Whether the customer is currently speaking, as determined by the source angle from the
speech-recognition system together with the location information from the vision system.

As in previous work, the SSR uses data-driven techniques to classify intended customer engagement
based on these multimodal sensor features. The use of such techniques in this context was pioneered
by Bohus and Horvitz [2009a; 2009b], who trained models designed to predict user engagement based
on information from face tracking, pose estimation, person tracking, group inference, and recognised
speech and touch-screen events. After training, their model was able to predict intended engagement
3–4 seconds in advance, with a false-positive rate of under 3%. A number of more recent systems
have also used machine learning to address similar classification tasks. For example, [Li et al. 2012]
estimated the attention state of users of a robot in a public space, combining person tracking, facial
expression recognition, and speaking recognition; the classifier performed well in informal real-world
experiments. [Castellano et al. 2012] trained a range of classifiers on labelled data extracted from
the logs of children interacting with a chess-playing robot, where the label indicated either high
engagement or low engagement. They found that a combination of game context-based and turn-based
features could be used to predict user level engagement with an overall accuracy of approximately
80%. [McColl and Nejat 2012] automatically classified the social accessibility of people interacting
with their robot based on their body pose, with four possible levels of accessibility: the levels

2This section is adapted from [Foster et al. 2013].
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estimated by their classifier agreed 86% of the time with those of an expert coder. Finally, [MacHardy
et al. 2012] classified the engagement states of audience members for an online lecture based on
information from facial feature detectors; the overall performance on this binary classification task
was around 72%.

2.1. Classification strategies

In the SSR we have implemented two strategies for estimating intended customer engagement using
the sensor data: the first is based on a simple, hand-crafted rule derived from the observation of
human-human interactions in a real bar, while the second was developed using supervised learning
on an annotated human-robot corpus. In the current section, we give the details of the two classifiers;
in the following section, we compare the performance of the two strategies through cross-validation
on labelled sensor data gathered in the robot lab.

2.1.1. Hand-coded rule. The initial engagement classifier makes use of guidelines derived from the
study of human-human interactions in real bars [Loth et al. 2013]. This analysis found two primary
signals used by bar customers to signal that they wanted to engage with the bartender: (1) standing
close to the bar, and (2) turning to look at the bartender. In a follow-up classification experiment
based on still images and videos drawn from the natural data, these two signals also proved both
necessary and sufficient for detecting intended customer engagement [Loth et al. 2013]. We therefore
defined the following simple rule, which classifies the engagement-seeking state of a customer C
based on these two features of the vision data. The particular thresholds used were determined
through informal empirical investigation in the robot bartender lab.

SeekingEngagement(C) := Location(C).head.z < 30cm
∧ abs(TorsoAngle(C)) < 10◦

In other words, a customer is classified to be seeking to engage with the bartender if (1) their head is
less than 30cm from the bar and (2) they are facing approximately forwards. Note that this rule is
similar to the baseline heuristic used by [Bohus and Horvitz 2009b] to estimate engagement during
online training.

2.1.2. Supervised learning. The engagement classifier described in the preceding section was
designed to support the simple scenario in Figure 1, and was based on a simple, deterministic,
hand-coded rule derived from the study of human-human interactions in the bartending domain. The
rule-based classifier had reasonable performance in a user evaluation of the initial simple scenario
[Foster et al. 2012]: no customer that was not seeking to engage with the bartender was incorrectly
addressed, and 104 of 109 customers that were seeking to engage eventually received a drink, although
some customers did have to wait some time or change position before the system detected them.

However, the robot bartender is currently being enhanced to support more complex scenarios,
involving more customers, in groups as well as alone, with more complex needs, engaged in longer and
more varied interactions: for the SSR, this will necessarily involve processing more complex messages
from the updated input and output components, taking into account the associated confidence scores,
and also dealing with the more complex state representations that are required by the updated high-
level reasoning system. As the domain becomes more complex, a simple deterministic rule is no
longer an appropriate method of mapping from low-level sensor data to high-level state properties.
Instead, as in previous work, we will make use of supervised learning techniques, training the
classifiers on annotated data gathered from humans interacting with both real and artificial bartenders.

In this study, we are primarily interested in evaluating the utility of supervised learning for social
state recognition in the robot bartender domain, and also in testing a range of classifier types to see
which performs best with the particular input and output data required by the bartender. We therefore
measure the off-the-shelf performance of a range of supervised classifiers on the same simple task
as that covered by the hand-coded classifier: detecting customers that are seeking to engage with
the bartender, based on the three low-level sensor properties listed above: location, torso angle and
speaking. The classifiers are all trained on an annotated multimodal corpus based on the the logs and

ACM Transactions on Interactive Intelligent Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:6 S. Keizer et al.

video recordings resulting from users interacting with the initial robot bartender, which made use of
the hand-coded engagement classifier described above.

Multimodal corpus. We based the multimodal corpus on the logs and video recordings of the first
user evaluation of the robot bartender [Foster et al. 2012]. The annotated multimodal corpus was
created by processing the video recordings using the ELAN annotation tool [Wittenburg et al. 2006].
For each interaction, we annotated the engagement state of each customer visible in the scene, using
the following three levels:

NotSeekingEngagement. The customer is visible, but does not need anything from the bartender.
SeekingEngagement. The customer is actively trying to engage with the bartender but has not been

acknowledged.
Engaged. The customer and the bartender are engaged in a drink-ordering transaction.

Note that after the bartender acknowledged a user’s bid for engagement, that user was labelled
as Engaged until the end of the interaction. For the current classification task—where we aim to
determine whether the system should attempt to engage with a customer—the Engaged state is not
relevant, so for the corpus we considered only the time spans annotated as either NotSeekingEn-
gagement or SeekingEngagement. The corpus was based on the frames published by the vision
system during every such time span. For each frame, we created a separate corpus instance for each
customer visible in the scene. An instance consisted of the relevant sensor data for that customer
(location, torso angle, speaking status), along with the time-aligned label from the annotation data.
This process resulted in a total of 5090 instances: 3972 in the category NotSeekingEngagement,
and 1118 labelled SeekingEngagement.

Classifiers. Using the Weka data mining toolkit [Hall et al. 2009], we experimented with a number
of different supervised-learning classifiers to see which performed the best on this particular labelling
task. Since we had no prior expectation about classifier performance, we chose a set of classifiers
designed to provide good coverage of the types supported by Weka (Bayesian, rule-based, tree-based,
functional, and instance-based), basing our selection on the classifiers used in the Weka primer.3 The
following classifiers were included:

CVR. Classifies using regression: the target class is binarised, and one regression model is built for
each class value [Frank et al. 1998].

IB1. A nearest-neighbour classifier that uses normalised Euclidean distance to find the closest training
instance [Aha et al. 1991].

J48. Classifies instances using a pruned C4.5 decision tree [Quinlan 1993].
JRip. Implements the RIPPER propositional rule learner [Cohen 1995].
LibSVM. Generates a Support Vector Machine using LIBSVM [Chang and Lin 2011].
Logistic. Multinomial logistic regression with a ridge estimator [le Cessie and van Houwelingen

1992].
NaiveBayes. A Naı̈ve Bayes classifier using estimator classes [John and Langley 1995].
ZeroR. Baseline classifier; always predicts the most frequent value.

Since the performance of the default Radial Basis Function kernel used by LIBSVM depends
heavily on the value of the γ parameter, which controls the width of the kernel [Hsu et al. 2010], we
included two versions of this classifier: one using the default value of 0 (LibSVM-0), and one where
γ was set to 0.0001 (LibSVM-1). All other classifiers were used in the default configuration provided
by Weka version 3.6.8.

2.2. Evaluation

We carried out an offline experiment to compare the performance of the trained classifiers with
each other and with that of the rule-based classifier. This study provides an indication of which

3http://weka.wikispaces.com/Primer/
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Table I. Cross-validation results, grouped by accuracy

Classifier Accuracy AUC Precision Recall F

IB1 0.960 0.932 0.957 0.958 0.957

LibSVM-1 0.931 0.871 0.931 0.932 0.930
J48 0.924 0.919 0.925 0.925 0.925
CVR 0.921 0.960 0.911 0.912 0.912
JRip 0.911 0.868 0.913 0.914 0.913

LibSVM-0 0.790 0.521 0.830 0.790 0.706
Logistic 0.780 0.739 0.727 0.781 0.710
ZeroR 0.780 0.500 0.609 0.780 0.684

NaiveBayes 0.669 0.656 0.726 0.662 0.685
Hand-coded rule 0.655 na 0.635 0.654 0.644

classification strategies are and are not suitable for the type of data included in the training corpus,
and also tests the performance of the rule-based classifier on that same data.

2.2.1. Cross-validation. We compared the performance of all of the classifiers through 10-fold
cross-validation on the training corpus. For each classifier, we computed the following measures:
the overall classification accuracy, the area under the ROC curve (AUC), along with the weighted
precision, recall, and F-measure. Note that the baseline accuracy score for this binary classification
task is the size of the larger class (NotSeekingEngagement): 3972/5090 = 0.78. The results of
this evaluation are presented in Table I, sorted by accuracy; the overall performance of the hand-
coded rule on the full training corpus is also included. The groupings in Table I reflect differences
among the accuracy scores that were significant at the p < 0.01 level on a paired T-test based on 10
independent cross-validation runs. In other words, the IB1 classifier had the highest performance
on this measure; the LibSVM-1, J48, CVR and JRip classifiers were statistically indistinguishable
from each other; the LibSVM-0, Logistic, and ZeroR classifiers were again indistinguishable (these
classifiers generally labelled all instances as NotSeekingEngagement); while the NaiveBayes classifier
and the hand-coded rule had the lowest overall accuracy by a significant margin. Note that the overall
ordering of classifiers is also similar when the other metrics are considered. Figure 3 shows the ROC
curves for all classifiers based on the SeekingEngagement class: as expected, the curves for all of the
high-performing classifiers are close to optimal, while those for the other classifiers are closer to the
chance performance of the baseline ZeroR classifier.

2.2.2. Attribute selection. The above cross-validation results made use of the full set of sensor
attributes included in the corpus; however, it is likely that not all of the sensor data is equally
informative for the classification task. To get a better assessment of which sensor data was most
relevant to the current classification task, we carried out two forms of attribute selection. We first
determined the sensor attributes that were the most informative for each of the individual classifiers,
using a wrapper method [Kohavi and John 1997] to explore the relationship between the algorithm and
the training data. We then analysed the corpus as a whole using Correlation-Based Feature Selection
(CBF) [Hall 2000], a general-purpose selection method known to have good overall performance
[Hall and Holmes 2003].

The results of this attribute selection process are shown in Table II. The main body of the table
indicates with a bullet (•) the attributes that were determined to be most informative for each of
the classifiers; for reference, the last row shows the two features that were used by the rule-based
classifier (z face location and body orientation). The final Acc column shows the cross-validation
accuracy of a classifier making use only of the selected attributes. As can be seen, most of the
high-performing classifiers made use of the full 3D location of the customer’s head, along with the
location of the hands—particularly the right hand—and the “speaking” flag. The accuracy of most
classifiers was very slightly better with the classifier-specific attribute subset when compared to the
results from Table I, but in no cases was this improvement statistically significant. The bottom row
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Fig. 3. ROC curves for SeekingEngagement class

Table II. Output of attribute selection

Face HandL HandR Ori Spk Acc
x y z x y z x y z

IB1 • • • • • • • • 0.963
LibSVM-1 • • • • 0.938

J48 • • • • • • • • • 0.932
CVR • • • • • • • • • 0.926
JRip • • • • • • • • 0.921

LibSVM-0 • • • 0.830
Logistic 0.780

ZeroR 0.780
NaiveBayes • • • • 0.786

Hand-coded rule • • 0.655

CBF • • • • • •

of the table shows the attributes that were found to be most informative by the CBF selector, which
were similar to those used by the high-performing classifiers: namely, the full 3D position of the
customer’s head, along with some of the hand coordinates.

2.3. Discussion

The cross-validation results indicate that nearly all of the trained classifiers significantly out-
performed the hand-coded rule. The best-performing classifier based on accuracy was the instance-
based IB1 classifier, which had an overall accuracy of 0.960 in frame-based cross-validation, and
also scored at or near the top on all other cross-validation measures. When we carried out feature
selection, it was found that the most informative features were the 3D position of the customer’s head,
along with some of the coordinates of their hands. It is notable that body orientation—which was
one of the two main engagement-seeking signals found in the human-human data, and which was
found to be necessary for making offline engagement judgements based on that same data [Loth et al.
2013]—was not determined to be at all informative by the feature selection process. This is most
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likely due to technical issues with the initial vision system which was used in the interactions making
up the corpus data: the body orientation was often either incorrect or not detected at all, making this
attribute unreliable for classification. The unreliability of this signal also likely had a negative impact
on the performance of the rule-based classifier on the cross-validation study. Note that most of the
classifiers preferred the data from the right hand to that from the left: this preference likely arises
from the tendency of right-handed customers to use that hand more often for gesturing, resulting in
more informative vision data for that hand than for the left.

3. SOCIAL SKILLS EXECUTION

The task of social skills execution involves deciding what actions should be generated by the robot,
given the recognised current social state. Such actions include both communicative actions (i.e.,
dialogue acts, such as greeting or asking a customer for their order), social actions (such as managing
queuing), and non-communicative actions (typically, the physical handing over of a drink); the system
must also decide how communicative actions are realised, i.e., which combinations of modalities
should be used (speech and/or gestures). This decision-making process should lead to robot behaviour
that is both task-effective and socially appropriate. An additional challenge is to make this decision-
making robust to the generally incomplete and noisy observations that social state recognition is
based on. In this light, automatic learning of such social skills in the face of uncertainty is particularly
appealing.

Building on previous work on statistical learning approaches to dialogue management [Young
et al. 2010; Rieser and Lemon 2011], we therefore model social skills execution as a Markov
Decision Process (MDP) and use reinforcement learning for optimising action selection policies.
Action selection in our multi-modal, multi-user scenario is subdivided into a hierarchy of three
different stages with three associated policies. The first stage is concerned with high-level multi-
user engagement management; the second stage involves deciding on response actions within an
interaction with a specific user; and the final stage involves multimodal fission [Foster 2002], i.e.,
deciding what combination of modalities to use for realising any such response actions. Each of
the policies provides a mapping from states to actions, where the state space is defined by features
extracted from the recognised social state.

As in several reinforcement learning based approaches to dialogue management, we use simulation
techniques for effective and tractable policy optimisation. For this purpose, a multi-modal, multi-
user simulated environment has been developed in which the social skills executor can explore the
state-action space and learn optimal policies. The simulated users in the environment are initialised
with random goals (i.e., a type of drink to order), enter the scene at varying times, and then try to
order their drink from the bartender. At the end of a session, each simulated user provides a reward
in case they have been served the correct drink, and penalties for each time-step it takes them to get
the bartender’s attention, to place their order, and to be served. This reward function is based on the
behaviour of customers interacting with the initial prototype of the robot bartender, who responded
most strongly to task success and dialogue efficiency [Foster et al. 2012]. Policy optimisation in this
setting then involves finding state-action mappings that maximise the expected long-term cumulative
reward.

3.1. Social skills learning framework

Our learning framework consists of two main parts: 1) an Interaction Manager (IM), which pro-
cesses audio-visual input and generates multi-modal output actions for the system to execute, and 2) a
Multi-User Simulated Environment (MUSE). The architecture of the learning framework, shown
in Figure 4, is similar to the full system architecture (Figure 2), in which the Social State Recogniser
and Social Skills Executor together form the Interaction Manager, and the input and output modules
are replaced by the simulated environment.

Before a fully operative version of the robot system became available (featuring the Social State
Recogniser as described in Section 2), an initial version of the Interaction Manager was developed to
progress our work on automatic learning of strategies for social interaction. This IM consists of a
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Fig. 4. Architecture of the learning framework.

rule-based version of the SSR, which processes a stream of simulated vision observations and user
dialogue acts, and an SSE that selects response actions, all of this on a frame-by-frame basis. This
means that the SSR sends an updated social state to the SSE and the SSE selects a response action
based on this state in every time-frame4. In contrast, the event-based SSR described in the preceding
section only publishes a new state when it has decided that a relevant change has occurred. In this
section we will discuss the frame-based IM, including training and evaluation results in simulation.
In Section 4 we will present the event-based IM which was integrated into the full robot system, and
present results from an evaluation with real users.

3.1.1. SSR for simulation. The rule-based SSR incorporates an engagement model for coordinating
interactions with the (simulated) users in the scene, and a task model for interactions with individual
users. The input observations are interpreted in terms of communicative actions, which are taken
from a multi-dimensional dialogue act taxonomy underlying a recently developed ISO standard
for dialogue act annotation [Bunt et al. 2010]. In a multi-party, situated setting, agents need to be
able to initiate, maintain, and end engagements with other agents. For both the bartender system
and simulated users, we use a finite state engagement model driven by dialogue acts and gaze
behaviour (see Figure 5). If a user conveys an intention to engage with the system (i.e., bids for
the system’s attention), this is represented by the dialogue act attentionFeedbackElicitation,
which changes the engagement state from non -engaged to UsrSeekingEngagement. Only after
the system has accepted the bid for attention (through an attentionAutoPositive act), are the user
and system considered to be engaged. The system may however choose to continue an interaction
with another, engaged, user, and so the engagement state remains UsrSeekingEngagement,
unless the user stops seeking engagement and the state transitions back to non -engaged. This
makes the model different from Bohus and Horvitz’ engagement model, which only distinguishes
between the engaged and not-engaged states. Once an interaction is closed, the agents can simply
look away if they want to disengage. Note that in Section 2, the classification of engagement states
(ignoring that state in which the system is seeking attention) is performed directly on the basis of
input signals, without identifying an intermediate level of communicative engagement actions.

The maintained social state contains models for each user in the social scene. Every such user
model contains information about the user’s engagement state, their location (e.g., are they standing
at the bar?), the user goal (what kind of drink do they want?), and whether they have been served a
drink yet.

4The frames here are associated with the frames of the vision output, but can be generated faster than in real time; duration of
simulated actions is determined by numbers of frames.

ACM Transactions on Interactive Intelligent Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.



Machine Learning for Social Multi-Party Human-Robot Interaction A:11

Fig. 5. Finite state engagement model.

3.1.2. Social skills executor. The frame-based Social Skills Execution (SSE) component determines
the system’s behaviour, based on the current social context. The output actions include both abstract
communicative and non-communicative acts, as well as descriptions of their multi-modal realisations.
The generated communicative actions have the form of dialogue acts from the taxonomy mentioned
above [Bunt et al. 2010], and are associated with combinations of modalities to use for realisation,
for example, a greeting can be realised by combinations of speech (“Hello”) and nodding (robot head
movement). In the current system, non-communicative actions are limited to physically putting a
bottle with a particular type of drink in front of the user (as part of serving a drink). In Section 3.2
and Table VI, the supported actions are listed.

The decision-making process consists of three main stages: 1) social multi-user coordination:
managing the system’s engagement with the users present in the scene (e.g., accept a user’s bid for
engagement, or proceed with an engaged user), 2) single-user interaction: if deciding to proceed
with an engaged user, generating a high-level response to that user, in the form of a communicative
act or physical action (e.g., serving a drink) and 3) multi-modal fission: selecting a combination of
modalities for realising a chosen response (e.g., speech and/or head gestures). One advantage of
such a hierarchical design is that strategies for the different stages can be developed independently.
Another is that it makes automatic policy optimisation more scalable. Note that the hierarchy of
decision-making is followed in each time-frame, and that the realisation of an action has a certain
duration, measured as a number of time-frames. The IM therefore not only processes input signals
on a frame-by-frame basis, but also makes a decision about what to do in every frame. This is also
the case for the Simulated Environment discussed below.

3.1.3. Multi-user simulated environment. To provide a testing environment for the Interaction Man-
ager, we developed a multi-user simulated environment (MUSE). Not only can this environment be
used for testing and evaluating the IM; it can also be used for training action selection policies for
the Social Skills Execution (SSE) component of the IM. The MUSE allows us to rapidly explore
the large space of possible states in which the SSE will have to select actions. A reward function
that incorporates individual rewards from all simulated users in the environment is used to encode
preferred system behaviour in a principled way. A simulated user assigns a reward if they are served
the correct drink, and gives penalties associated with their waiting time and various other forms
of undesired system responses (see Section 3.2 for the definition of reward). All of this provides a
practical platform for evaluating different strategies for social behaviour and also paves the way for
automatic optimisation of policies, for example by using reinforcement learning techniques, as we
will discuss in Section 3.2.
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The simulation environment replaces the vision and speech processing modules in the actual
robot bartender system, which means that it generates 1) vision signals in every time-frame, and 2)
speech processing results, corresponding to sequences of time-frames where a user spoke. The vision
observations contain information about users that have been detected, where they are in the scene,
whether they are speaking, and where their attention is directed to. Speech processing results are
represented semantically, in the form of dialogue acts. The SSR fuses the vision and speech input,
for example to associate an incoming dialogue act with a particular user.

The simulated signals are the result of combining the output from the simulated users in the
environment. Each simulated user is initialised with a goal, enters the scene, and starts bidding
for attention. As with the SSE component, the simulated users also maintain a state and based on
that state, generate responses at an abstract level as well as lower-level multimodal realisations of
these responses; all of this activity takes place on a frame-by-frame basis. The high-level behaviour
is consistent with the typical human customer behaviour observed in a corpus of human-human
customer-bartender data [Loth et al. 2013]. For the simulation of lower-level multimodal realisations,
probabilities for different possible combinations of modalities (speech and/or gestures) for each
communicative action have been derived from the corpus.

Additionally, the simulated users start with a given patience level, which is reduced in every frame
that the user is bidding for attention or being served by the system. If a user’s patience has reduced to
zero, s/he gives up and leaves the bar. However, it is increased by a given fixed amount when the
system politely asks the user to wait, encoded as a pausing dialogue act.

MUSE also provides feedback about the execution of robot actions. Since the execution of actions
has a duration in this framework, it is relevant for the IM to know when actions have been completed
(or interrupted). This type of information simulates the feedback that is provided in the actual
bartender system by a robot controller.

3.2. Policy optimisation in social interaction

To set up automatic optimisation of strategies for social interaction, we designed two Markov Decision
Processes (MDPs), corresponding to the social multi-user coordination and single-user interaction
stages, discussed in Section 3.1.2. Both MDPs have their own state spaces S1 and S2, each defined
by a set of state features, extracted from the social state that was estimated by the SSR, see Tables III
and V. They also have their own action sets A1 and A2, corresponding to the range of decisions
that can be made at the two stages, see Tables IV and VI, and two policies π1 : S1 → A1 and
π2 : S2 → A2, mapping states to actions.

Table III. State features for the social multi-user coordination policy. For each user, 4 features
are included in the state space, which means that there are 4 · 3 · 22 = 48 states for 1 user,
increasing to 2304 states for 2 users and 110,592 states for 3 users.

Index State feature (values)

4 · (i − 1) Interaction status of user i (nonEngaged / usrBidAtt / sysBidAtt / engaged)

4 · (i − 1) + 1 Location of user i (notPresent / awayFromBar / atBar)

4 · (i − 1) + 2 User i has been served a drink (no / yes)

4 · (i − 1) + 3 User i is currently communicating (no / yes)

The two MDPs share the same reward function, which specifies the reward received from the
environment in every time-frame, and is the sum of the rewards Ri defined for each individual user i:

Ri = 350 · TCi − 2 ·Wi − TOi − S Pi (1)

where TCi (Task Complete) is a binary variable indicating whether the user was able to order a drink
and the drink was served, Wi (Waiting) is a binary variable indicating whether the user i is ready
to order, but not yet engaged with the system, TOi (Task Ongoing) is a binary variable indicating
whether the user is interacting with the system, but has not been served the correct drink yet, and S Pi
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Table IV. Actions for the social multi-user coordination policy.

Index Action

0 do nothing

3 · (i − 1) + 1 Accept bid for attention from user i

3 · (i − 1) + 2 Tell user i to wait

3 · (i − 1) + 3 Proceed interaction with (engaged) user i

Table V. State features for the single-user interaction policy. In this case, there are 4 · 7 = 28 states.

Index State feature (values)

0 Reactive pressure (thanking / greeting / apology / none)

1 Status of user goal (unknown / drinkServed / usrInf / sysExpConf / sysImpConf / grounded / other)

Table VI. Actions for the single-user interaction policy, which
correspond to possible dialogue acts, except for disengaging and
serving a drink. The specific drink types required for two of the
actions are extracted from the fully specified user goal in the
social state maintained by the IM.

Index Action Example

0 acceptThanking() “You’re welcome”

1 returnGreeting() “Hello”

2 autoPositive() “Okay”

3 autoNegative() “Sorry?”

4 setQuestion(drink) “What would you like?”

5 propQuestion(drink=x) “Do you want x?”

6 serveDrink(x) (serve drink of type x)

7 disengage() (look away)

(Social Penalties) represents various social penalties, such as when the system turns his attention to
another user while user i is still talking to him. The weights on each of these rewards are currently
determined manually by the system designer. An alternative, more data-driven, approach would be to
use previously recorded evaluation data to derive a reward function that optimally correlates with
user satisfaction, measured using a questionnaire [Rieser and Lemon 2011].

The policies are encoded as functions that associate a value to each state-action pair; these so-
called Q-values are estimates of the long-term discounted cumulative reward (based on the immediate
rewards received in every time-frame). Given the current state, the policy selects the action with the
highest Q-value:

π(s) = arg max
a

Q(s, a) (2)

Using a Monte-Carlo Control algorithm [Sutton and Barto 1998], the policies are optimised by
running the IM against the MUSE and using the received reward signal to update the Q-values after
each interaction sequence.

3.3. Evaluation

To evaluate this learning methodology, we ran 10 policy optimisations in interaction with the MUSE
running two simulated users. Each optimisation was carried out over 250k iterations, starting with an
exploration rate of ε = 0.2, discounted after every 1000 iterations with a factor 0.98. Each iteration
corresponds to one session, by which we mean a complete scenario in which the two users enter the
scene and attempt to order a drink, successfully or not. When updating the Q-function with the total
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reward obtained at the end of a session, a discount factor of γ = 0.995 is applied. In traditional turn-
based interactions, smaller discount factors (e.g. γ = 0.95) are more usual, but for the frame-based
interactions considered here, the trajectories are relatively long, and so a relatively high discount
factor is more appropriate. After every 1000 iterations, the learned policy was saved and evaluated by
running 2000 sessions with the MUSE, using the fully discounted exploration rate of ε = 0.001.
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Fig. 6. Results from a 2 user SSE policy optimisation in terms of average reward, showing learning curves for the best policy
(t07) as well as the average over 10 optimisations, and the performance levels of the strategies that use random policies for
one or both of the decision stages (rnd1, rnd2, and rnd ), and of a hand-coded strategy (hdc).

Figure 6 shows the training results in terms of average reward. The learning curve of the best policy
found is shown (t07), as well the average performance over the 10 optimisations at different stages
of training (avg). In addition to the learned policies, we also evaluated the system when running a
random policy for one (rnd1 and rnd2) or both (rnd ) of the action selection stages, and finally, a fully
hand-crafted version of the SSE (hdc).

Table VII. Performance of SSE strategies in terms of Success Rate (SR) and
Average Reward (AR) with 95% confidence intervals (CI), evaluated over 5000
sessions.

Strategy Description SR AR (CI)
hdc hand-coded using pausing acts 93% 456.72 (±4.24)
hdcNP hand-coded without pausing acts 87% 446.01 (±5.08)
t07 best trained policy 100% 630.19 (±1.47)
rnd both policies random 7% −774.44 (±7.06)
rnd1 1st stage policy random 28% −527.75 (±9.86)
rnd2 2nd stage policy random 46% −17.72 (±13.81)

The results indicate that the optimisation is effective and on average converges after about 60k
iterations. After about 5000 iterations, the learned policies on average start to outperform the hand-
coded system. In noise-free conditions and high user patience levels (250 frames), the hand-coded
system achieves a 100% success rate, which is equalled by the performance level of a policy that
is optimised under these conditions. As the patience levels are reduced (to 175 frames), it becomes
more difficult to hand-code an effective strategy for managing the users’ patience. The overall results
are summarised in Table VII, in which we also listed an alternative hand-coded policy (hdcNP). In
contrast to hdc, this policy does not include asking a second user to wait, before continuing to serve
a user that it was already interacting with. In this particular setting of the MUSE, the hdc strategy
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is more successful (93% vs 87%). In an alternative setting where the impact of a pausing act by
the system on the users’ patience levels is reduced (from 40 to 15 frames to be added to a user’s
patience level upon receiving a pausing act), the success rate of the hdc strategy has dropped to 81%
and so the the alternative strategy hdcNP is more successful (87% vs 81%). Using a policy that
can be optimised, the best strategy for managing user patience is found automatically and generally
outperforms the hand-coded strategies. In terms of success rate, the optimised strategy t07 achieves a
relative improvement of 15% over hdcNP and 7.5% over hdc.

We also carried out an experiment in which noise was added to the speech input by confusing
the speech act types at various rates. Figure 7 shows the performance of three strategies at semantic
confusion rates5 varying from 0% to 40%: the hand-coded (hdc) and trained (t07) policies from
before, and in addition a policy tra25 that was trained at a confusion rate of 25%. The latter strategy
clearly outperforms both hdc and t07 at higher confusion rates, and is only slightly worse than t07 at
the lowest confusion rates. Note that none of the compared policies use explicit actions for handling
uncertainty, such as clarifications; this was a preliminary experiment merely to show that by simply
retraining the policy in noise one can automatically find a robust strategy, whereas additional (and
potentially rather tedious) handcrafting is required to improve the initial hand-coded strategy. This
advantage is expected to be even stronger if the system would include dedicated actions for handling
uncertainty. The trained policy would then have an optimised strategy for when to clarify something
and when to trust its most likely input hypotheses.
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Fig. 7. Sensitivity of SSE strategies to noise (speech only).

3.4. Discussion

The experiments on policy optimisation described here have demonstrated the feasibility of this
approach in an MDP setup, i.e., under the assumption that the recognised social states are correct. The
trained strategies perform at least as well as a hand-coded strategy, which achieves a 100% success
rate in noise-free conditions when using simulated users which are very patient (i.e., they keep trying
to make an order until the session is ended externally by the simulated environment). The trained
system starts to outperform the hand-coded system when the simulated users are set to be less patient
(i.e., they give up after a maximum number of time-steps) and/or when noise is added to the input.

An important current goal is to make more use of collected human-human and human-machine
data to make the user simulation as realistic as possible, and therefore to ensure that the trained social
skills executor is more likely to perform well in interaction with real users. In Section 4 we give an
initial analysis of the coverage of the simulation, based on data from a real user evaluation of the

5The confusion rate in our case refers to the probability of changing the type of the true speech act to simulate noisy speech
input.
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trained system. A further goal is to explicitly represent the uncertainty underlying the social state
recognition process, and to exploit this uncertainty in a POMDP framework for more robust social
skills execution.

The approach described in this section is the first approach to human robot interaction that supports
automatic learning of strategies for multi-user social interactions using an MDP framework. There
has been some prior research on using machine learning techniques in human-robot interaction,
though not for multi-user interactions. One such approach involved modelling the interaction as a
Semi-Markov Decision Process (SMDP) and using Hierarchical Reinforcement Learning (HRL) for
optimising decision-making [Cuayáhuitl and Dethlefs 2011; Cuayáhuitl et al. 2010]. An alternative
approach to using multiple policies within a dialogue manager has also incorporated POMDP models,
but still focused on single-user interactions [Lison 2011]. A non-statistical, rule-based approach to
multi-user human robot interaction has been developed and demonstrated with a Nao robot [Klotz
et al. 2011].

4. USER EVALUATION

In the previous section we described a framework for training and evaluating strategies for social
multi-user interaction in simulation. In this version, the communication of social state updates from
the Social State Recogniser (SSR) to the Social Skills Executor (SSE) happened on a frame-by-frame
basis. For the full robot bartender system, however, the event-based SSR as described in Section 2 was
used, which only publishes new social states if a relevant change occurred. The learning framework
was therefore been adapted to incorporate this new SSR, and the SSE is hence triggered by state
update events, and—as described in more detail in [Keizer et al. 2013a]—new policies for this setup
were trained using MUSE.

Once the components were integrated into the overall system, we carried out a user evaluation
designed to compare the trained versions of the SSR and the SSE to their hand-coded counterparts.
Full details of the user study are presented in [Foster et al. 2013; Keizer et al. 2013a]; in summary,
each of the sessions carried out involved two customers approaching the bartender and trying to order
a drink. After each interaction, the subjects filled out the short questionnaire shown in Figure 8.

Q1: Did you successfully order a drink from the bartender? [Y/N]

Please state your opinion on the following statements:
[ 1:strongly disagree; 2:disagree; 3:slightly disagree; 4:slightly agree; 5:agree; 6:strongly agree ]

Q2: It was easy to attract the bartender’s attention [1–6]
Q3: The bartender understood me well [1–6]
Q4: The interaction with the bartender felt natural [1–6]
Q5: Overall, I was happy about the interaction [1–6]

Fig. 8. Questionnaire from the user study.

37 subjects took part in this study, resulting in a total of 58 recorded drink-ordering interactions: 29
that used the hand-coded SSE strategy, and 29 that used the trained strategy. The SSR policy was
also manipulated, so that 26 interactions used the rule-based classifier, while 32 used the trained IB1
classifier (which had the highest performance on the cross-validation study in Section 2). There was
no significant interaction between these two manipulations, so in the remainder of this section, we
present the results for the two comparisons separately. At the end, we also discuss how the distribution
of states in the user study compares to the distribution found in the simulated environment.

4.1. Comparison of SSR classifiers

To compare the SSR classifiers, we computed several objective measures specifically addressing
the interactive performance of the engagement classifiers, in addition to the overall subjective
questionnaire. We collected the following objective measures:
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Detection rate. How many of the customers detected in the scene were classified as seeking to
engage.

Initial detection time. The average delay between a customer’s initial appearance in the visual scene
and the time that they were considered to be seeking engagement.

System response time. The average delay between a customer’s initial appearance in the visual scene
and the time that the system generated a response to that customer.

Drink serving time. The average delay between a customer’s initial appearance in the visual scene
and the time that the system successfully served them a drink.

Number of engagement changes. The average number of times that the classifier changed its estimate
of a user’s engagement-seeking state over the course of an entire experiment run.

Table VIII summarises the objective results, divided by the classifier type. We analysed the data
using a linear mixed model, treating the participant identifier as a random factor, with the classification
strategy and all demographic features included as fixed factors. This analysis found that the effect
of the classification strategy on the number of changes in estimated engagement was significant at
the p < 0.05 level; however, while the numbers in Table VIII suggest that the trained classifier was
somewhat more responsive, none of those differences were found to be significant. These results are
difficult to interpret, for two main reasons: (1) all of the customers were explicitly instructed to seek
the attention of the bartender, so the classifiers were not tested with any true negative examples, and
(2) the ground-truth data about the customers’ actual engagement behaviour was not available, so
it is impossible to know which of the classifiers actually a better job of estimating engagement in
practice.

Table VIII. Objective results for the SSR comparison (significant difference
highlighted)

Measure Rule-based SSR (sd) Trained SSR (sd)
Detection rate 0.98 (0.10) 0.98 (0.09)

Time to first detection 5.4 (7.9) 4.0 (9.7)

Time to system response 7.0 (7.9) 6.4 (10.4)

Time to drink served 62.2 (22.2) 53.7 (14.0)

* Num. engagement changes 12.0 (10.2) 17.6 (7.6)

4.2. Comparison of SSE policies

Table IX. Overview of system performance results from the experiment. In the leftmost column SSE-TRA
and SSE-HDC refer to the trained and hand-coded SSE versions; the column NS indicates the number
of sessions; the columns PSucc (perceived success), PAtt (perceived attention recognition), PUnd
(perceived understanding), PNat (perceived naturalness), and POv (perceived overall performance) give
average scores resulting from the 5 respective questionnaire questions; NDSrvd indicates the average
number of drinks served per session (out of 2 maximum – the percentage is given in brackets); NST
indicates the average number of system turns per session; while NBAsr indicates the average number
of cases where the user speech was ignored because the ASR confidence was below a predefined
threshold. The marked column indicates that the difference between the two SSE versions was significant
at the p < 0.05 level.

System NS PSucc* PAtt PUnd PNat POv NDSrvd NST NBAsr
SSE-TRA 29 97% 4.10 4.21 3.00 3.83 1.97 (98.5%) 7.38 3.14
SSE-HDC 29 79% 4.14 3.83 2.93 3.83 1.76 (88.0%) 6.86 3.82

TOTAL 58 88% 4.12 4.02 2.97 3.83 1.86 (93.0%) 7.12 3.48

The results from the SSE comparison are summarised in Table IX. Again, we analysed the results
using a linear mixed model, treating the SSE policy as a fixed factor and the subject ID as a random
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factor. The subjective scores suggest a slight preference for the trained SSE, though this is only
statistically significant in terms of perceived success (p < 0.05). The interactions with the trained
SSE took slightly longer than the ones with the hand-coded SSE in terms of the number of times the
SSE was triggered during an interaction and selected a response action. This is probably due to the
fact that with the trained strategy the system always explicitly asked the user for their order, whereas
the hand-coded strategy would randomly decide between letting the user take the initiative to order,
and directly asking for the user’s order.

4.3. Validation of simulated environment

As an initial analysis of the validity of the simulated environment, we compared the distribution over
states generated by the simulation with that of the observed human user evaluation data. In terms of
coverage, we found that only 46% of all states encountered in the real data were also encountered
during training. However, many of these states occurred very rarely, and many of them do not require
any action by the robot; we can deal with such cases by setting a default policy decision of taking no
action. If we only include states that have been encountered at least 20 times, the coverage increases
to over 70%, and full coverage is obtained when only considering states that were encountered at
least 58 times, though admittedly this covers only the 10 most frequently encountered states. The
similarity of the two distributions can be quantified by computing the KL-divergence, but since such
a number is hard to interpret in itself, this will only be useful if there were a state distribution from
an alternative simulator or an improved version of MUSE for comparison.

5. AN UNSUPERVISED LEARNING FRAMEWORK

As an alternative to the supervised approaches to social state recognition and social skills execution,
which both require labelled data for training, we have also developed a non-parametric Bayesian
framework for automatically inferring social states in an unsupervised manner [Wang and Lemon
2012], which can be viewed as a natural fusion of multimodal observations. Furthermore, existing
POMDP-style interactive systems are usually turn-based, where belief state updates are only consid-
ered following explicit system actions, and without taking into account implicit user state transitions.
This simplification underestimates the complexity of multimodal communication, where humans can
autonomously generate important state transitions without intervening system actions.

Head Gesture

Hand Gesture

Speech

Attention

nod
one hand

speaking inform(drink)

to bartender to object (task relevant)

00:00:19.3 00:00:22.1

Fig. 9. Example of a multi-channel observation stream from a corpus of human-human interactions.

Figure 9 shows an example of multiple input streams observed in a corpus of human-human
multimodal interactions in our robot bartender domain [Loth et al. 2013]. A human agent could
start from a miscellaneous state without attempting to be involved in an interaction with the robot
bartender. Then at some point, they may decide to request the bartender’s attention to start an
interaction (e.g. to order a drink). In this case, there must be a mechanism in the system to allow
(belief) state updates even though no explicit system action is performed. Traditional approaches
could rely on predefined trigger events to handle this situation. However, as discussed in Section 2,
in Human-Robot Interaction (HRI) the observations are multimodal: i.e. as well as speech inputs, a
user’s intention could also be realised by various nonverbal behaviours, such as hand gestures, body
postures, facial expressions, and/or gaze, which the robot controller would receive from a vision
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system frame-by-frame as an event stream. Unlike in traditional turn-based spoken dialogue systems,
where the boundary of a user state can be identified by observing silence durations above a certain
length in the speech input (i.e. the“end of speech” signal), the trigger events to segment user states in
such multimodal observations are more difficult to recognise. For example, the user state “request for
engagement” can be realised by “looking at the bartender” until a system response is received, which
means that the state duration varies and there may not be an obvious boundary for such a state to
trigger the system’s action planner. Hence, the timing of system actions is also a non-trivial issue
in such a real-world HRI task. Although incremental methods with belief tracking [Selfridge et al.
2012] could address the above issues, in the multimodal interaction case there is a further question of
how many states would be adequate to yield good planning performance. It is not generally possible
to establish the optimal number of states a priori.

Therefore, in this work, we adopted the infinite POMDP (iPOMDP) model [Doshi-Velez 2009]
that does not require prior knowledge of the size of the state space, but rather lets the model grow
to accommodate the data, and developed an extended version of it, in order to better address state
persistence, implicit state transitions, and timing issues. The resulting “sticky” iPOMDP is biased
towards self-transitions for implicit null system actions. The proposed approach works on frame-
based observations and offers a unified framework to jointly solve the state persistence, implicit
transition, and time-dependent action selection problems.

5.1. Hierarchical Dirichlet Process, HDP-HMM and Infinite POMDP

The Dirichlet Process (DP) is a measure on measures, used in Bayesian nonparametric mixture
models for clustering data. Denoted by DP(α0,G0), it has two parameters, a scaling parameter α0 > 0
and a base probability measure G0. A draw from a DP G ∼ DP(α0,G0) is a discrete distribution and
has the form G =

∑∞
k=1 βkδφk , where φk are independent random variables distributed according to G0,

δφk is an atom at φk, and βk are random weights drawn from a stick-breaking process parameterised
by α0 [Sethuraman 1994]. The Hierarchical Dirichlet Process (HDP) [Teh et al. 2006] extends the
DP to address the problem of sharing clusters among multiple related data groups. If one assumes
that the data are subdivided into a number of groups, and within each group i, it can be modelled
by a distribution Gi drawn from a group-specific DP, then a HDP links those group-specific DPs by
letting them share a common base measure G0 as Gi ∼ DP(α0,G0), where G0 itself is drawn from a
DP (i.e. G0 ∼ DP(γ,H), where γ > 0 is a scalar parameter and H is the global base measure).

Due to the recursive definition, HDPs can be further extended to multiple hierarchical levels, for
which a useful example application is the infinite Hidden Markov Model (iHMM, also known as
HDP-HMM) [Beal et al. 2002; Teh et al. 2006]. Letting the observations given a state be drawn from
a mixture model, HDP-HMM is a nonparametric Hidden Markov Model (HMM) defined by simply
replacing the set of conditional finite mixture models underlying the classical HMM with an HDP
mixture model. The HDP-HMM has been proven to be a powerful tool for inferring generative models
from sequential data. It is a natural adaptation to apply techniques developed for HMMs to infer
the hidden states and model parameters of POMDPs [Chrisman 1992]. Doshi-Velez [2009] directly
extends the iHMM to model the transition and observation probabilities in a POMDP, yielding the
infinite POMDP.

5.2. The Multimodal “Sticky” Infinite POMDP

To adapt the iPOMDP to the multimodal case, one essential challenge is to construct a joint distribution
function for the multiple channels of observations. Such observations are usually presented using
different representations. For example, a common representation for speech inputs is an n-best list of
parsed dialogue acts, each with a normalised confidence score [Williams and Young 2007; Thomson
and Young 2010]. However, gesture and facial expression recognisers tend to provide continuous
(frame-based in practice) streams of events with discrete values. On the other hand, the gaze, face
orientation and position (3D coordinates) information of a human agent can be in the form of streams
with continuous values. Therefore, we have to define a distribution for every observation channel and
let the joint observation distribution be their tensor products. This setting essentially assumes that the
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observation channels are independent of each other, hence the conditional observation probability
for each channel (conditioned on every state) can be modelled separately, and the joint observation
probabilities are computed simply as the product of the observation probabilities of each channel.

Distributions of different forms can be utilised to capture different representations of observations.
For example, the Bernoulli distribution that has a conjugate Beta prior is a natural choice to model
binary discrete events, such as gesture occurrences. When generalised to the multivariate case, it
also models the occurrences of events in n-best lists, where respective Beta distributions can be used
conjunctively to draw the associated (normalised) confidence scores. (Although Beta likelihood does
not have a conjugate prior, one can either employ Metropolis-Hastings algorithms [Metropolis et al.
1953; Hastings 1970] to seek a target posterior [Hamada et al. 2008], or perform a Bernoulli trial
to choose one of its two parameters to be 1 and apply a conjugate Gamma prior for the other one
[Masada et al. 2010].) Finally, to model streams of events, multinomial or multivariate Gaussians
can be used to draw the respective discrete or continuous observation in each frame, for which
conjugate priors are the well-known Dirichlet distribution and Normal-Inverse-Wishart distribution,
respectively.

As mentioned above, handling state persistence and implicit state transitions is an inevitable issue
in real-world multimodal interactions. A common way of modelling such phenomena is to assume
that hidden state sequence exhibits semi-Markov chain dynamics. Johnson and Willsky [2010]
proposed an HDP-based Hidden Semi-Markov Model (HDP-HSMM), of which the adaptation to
learn POMDP parameters is also straightforward. The essential work is to draw a duration parameter
for each state, and assume the observations to be generated frame-by-frame independently within
each state duration. In addition, since in the POMDP case observed system actions partially bounded
the state segmentations, one can force the known state boundaries to be fixed, and only allow the
model to infer those implicit transitions between every two system actions.

However, such a semi-Markov extension of the iPOMDP still relies on trigger rules to enable the
action selection process. A more natural strategy to model a “timing-sensitive” POMDP would be
explicitly defining a “null” action (or a “wait” action in other words) and allowing the system to
select an action (including the “null” action) at every unit timestamp. This requires the iPOMDP
to infer the hidden user states frame-by-frame. However, as an HDP, the iPOMDP tends to cluster
observations into states, which suggests that changes among the observations over time might result
in them being clustered to many different states. Especially in the multimodal interaction case, this
issue can become more serious due to the joint effect of multiple observation channels. Therefore, if
directly applied here, the standard iPOMDP may experience unexpected fast state switches (see the
experimental results in Section 5.5). Therefore, to better model the state persistence, we give a bias
to self state transitions when the system performs a “null” action, with the assumption that the user
tends to stay in the same state if no system action is explicitly performed, but the probabilities for
implicit state transitions are still preserved. This idea directly follows the sticky HDP-HMM [Fox
et al. 2011], but in the iPOMDP context, self-transitions are only biased for “null” actions and should
be eliminated for explicit system actions. In the remainder of the paper, we will refer to this approach
as the “sticky” iPOMDP. A concrete definition of the sticky iPOMDP can be found in Appendix A.

Note here, although the semi-Markov setting has the advantage of avoiding the restriction to
geometric state durations [Johnson and Willsky 2010] in comparison to the self-transition bias, the
latter enables time-dependent action selection, which is a more appealing feature in the POMDP
planning domain. Furthermore, according to our preliminary experiments, slightly higher uncertainty
in the state inference procedure of an iPOMDP will not significantly affect the overall system
performance, since the final system decisions are not deterministically generated according to the
states but are tuned based on the belief states.

5.3. Sampling Inference

Similar to [Fox et al. 2011], the inference procedure of the proposed sticky iPOMDP can be carried
out based on either a modified direct assignment Rao-Blackwellized Gibbs sampler [Teh et al. 2006]
or a blocked Gibbs sampler [Ishwaran and James 2001] that takes the advantage of the forward-
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Fig. 10. State inference on synthetic data: Black solid lines are generated randomly from underlying multinomials to represent
stream events with discrete values; Green solid lines are generated from Gaussians representing a stream of continuous
observations; Magenta circles are generated from multivariate Bernoulli distributions and simulate n-best lists of recognised
events (e.g. dialogue acts from parsed speech recogniser hypotheses) with their radii generated from corresponding Beta
distributions representing confidence scores.

backward algorithm for HMM to jointly sample the hidden state sequence, transition probabilities, and
observation parameters. Fox et al. [2011] suggested that the blocked Gibbs sampler with truncations
can offer faster mixing rates and less posterior uncertainty in sampling such Markov chain problems
with “sticky” transitions. Hence, in this work we follow their approaches and adapt the weak limit
approximation method [Ishwaran and Zarepour 2002] to infer our model parameters.

Firstly, we approximate the HDP transition prior by a finite L-dimensional Dirichlet distribution.
(Although such a degree L weak limit approximation reduces a nonparametric Dirichlet process to
a parametric Dirichlet mixture model, Ishwaran and James [2001] proved that it converges almost
surely to a true Dirichlet process.) Then the HMM forward-backward procedure can be employed to
jointly sample the state sequence given the observation sequence and action sequence. After this, we
can sample the auxiliary variables to update the global transition distribution, and re-sample new
transition distributions for each state. Finally, conditioning on those sampled states, the posterior
parameters for observations and rewards can be sampled. Note that since self-transitions are ruled out
for explicit system actions in the sticky iPOMDP, geometric auxiliary variables need to be sampled
for transitions conditioned on explicit actions to complete the data to allow conjugate inference,
as suggested in [Johnson and Willsky 2010], whereas binomial override auxiliary variables similar
to [Fox et al. 2011] are required for transition parameters depending on “null” actions. A detailed
inference algorithm for the proposed sticky iPOMDP can be found in Appendix B.

5.4. Planning

Due to the possibly infinitely large (continuous) observation space as well as the model uncertainty
raised by HDP, seeking a model-based solution to our sticky iPOMDP via value iteration techniques
is intractable. Nevertheless, since the proposed method only differs from the standard iPOMDP in
model parameterisations, the forward search method proposed in [Doshi-Velez 2009] for iPOMDPs
directly applies here, where we sample a set of models to compute a weighted-averaged Q-value, and
only maintain a finite set of observations generated by Monte-Carlo sampling at each node of the
search tree.

5.5. Evaluation

We evaluated the performance of state inference of the proposed sticky iPOMDP as well as its actual
planning effects in comparison with the standard iPOMDP based on a synthetic data sequence as
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Fig. 11. State transitions in the transcribed corpus: Vertices are user/customer states and edges are bartender/system actions.
We define a common start state s0 for all interaction sequences, and force them to finish at pay states.

well as a transcribed and manually annotated human-human interaction corpus [Loth et al. 2013].
In addition, on the second data set, a supervised learning based POMDP model is also trained as a
baseline system.

5.5.1. State Inference on Synthetic Data. Figure 10 illustrates the state inference performance of
the sticky iPOMDP in comparison with the standard iPOMDP on an artificially synthesised data
sequence. The sequence consists of 1000 data points generated based on 4 hidden states, 2 explicit
actions (red and blue dash lines), and 3 multimodal observation channels.

Note that two implicit state transitions happen here, between point 300 and point 400 and around
point 500. The initial results suggest that the sticky iPOMDP achieves a better alignment between the
inferred and true states than the standard iPOMDP, whereas the former only makes a small amount
of mistakes around point 850, but the latter suffers from frequent state switches, as can be seen
in Figure 10. This figure is based on the results after 2000 Gibbs samples, but according to our
experiments, after 10000 Gibbs iterations, the state sequence sample path of the standard iPOMDP
still experiences very rapid dynamics, which suggests that the sticky transitions offer a much faster
mixing rate.

5.5.2. Planning Performance on Transcribed Corpus. The planning performance of the proposed
model was also evaluated based on a human-human interaction corpus [Loth et al. 2013], which
contains 50 interaction sequences between customers and a bartender, manually transcribed and
annotated from 50 video clips recorded in a real German bar. There are 6 user states, 4 explicit system
(bartender) actions, and 4 observation channels in the data. The observation channels consist of
speech, hand gestures, head gestures, and attention information. The last three types of observations
are all in the form of streams of discrete events. However, to simulate the situation one can normally
expect in an HRI setting with vision systems and a standard speech recogniser, we split the speech
channel into two sub-channels as follows. Firstly, when a customer starts talking, the system will
keep observing a speaking event. After this, only in the last frame of the speaking stream, a dialogue
act will be received. Note here that since the data is manually transcribed there is no uncertainty in
the observations. However, the uncertainty comes from the state inference. Without losing generality,
noisy observations can be fed into our models in real HRI applications. The interactions are illustrated
in Figure 11. Note here, the true user states are annotated in this corpus, but this information is
reserved when training our models, and is only used for training a baseline system and designing the
evaluation metric.

The evaluation metric is designed as follows. We conduct a leave-one-out test for each interaction
sequence. In each state, we feed the observations frame-by-frame from the beginning of that state
into a model trained on the remaining 49 examples, until an expected action is output by the planner
or the state finishes. Then we move to the next state and repeat this procedure. Note here, due to the
limited data (i.e. no data on user reactions to unusual bartender actions) we assume that if the system
outputs an incorrect action the user will ignore that action and remain in the same state continuing
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Table X. Accuracy of planning evaluated based on transcribed real-world interaction sequences, where P
stands for precision, R stands for recall, F stands for F-score, and the numbers in brackets denote the total
numbers of occurrences of the corresponding actions.

BaR (47) Br (6) BgAd (7) BgsO (50) AllModel
P R P R P R P R P R F

Sticky iPOMDP 0.94 1.0 0.20 1.0 1.0 0.71 1.0 0.96 0.74 0.96 0.84
Standard iPOMDP 0.92 1.0 0.14 1.0 1.0 1.0 0.98 0.96 0.71 0.98 0.82

Supervised POMDP 0.94 0.98 0.13 0.50 1.0 0.43 0.95 0.82 0.78 0.85 0.81

Table XI. Relative timing (s) of planning evaluated based on
transcribed real-world interaction sequences.

BaR Br BgAd BgsO
Sticky -1.6±1.4 -0.7±1.4 0 -0.1±0.3

Standard -1.3±1.5 -0.6±1.3 +0.1±0.0 -0.1±0.3
Supervised -1.5±1.6 -0.6±1.3 0 -0.1±0.2

what he/she is doing. This is by necessity a preliminary simulation of real users, since we only have
an offline corpus available.

We take the transcription chunk corresponding to every 0.1s video clip as a frame to generate the
training data, based on which the sticky and standard iPOMDPs are trained. Degree 50 weak-limit
approximations are utilised as described in Section 5.3, and the sampling procedures are run for
200 iterations. After this, a forward search Monte-Carlo planner is employed for each of the two
iPOMDPs, where 5 POMDP models are sampled from the posterior, and the search depth and number
of (joint multimodal) observations sampled for each search node are set to 3 and 10 respectively.

In addition, the reward distributions in both cases are constructed as follows. Firstly, a three-
dimensional Dirichlet distribution with the concentration parameter [1, 0.01, 0.01] is used as the prior
for all (s, a) pairs, where the three corners of the simplex correspond to reward values -10, 0 and
10 respectively. Then after the state inference procedure, an observed state-action pair is assigned
a reward 0 if the action is null and 10 otherwise. Hence, the reward distributions drawn from the
posterior will tend to reward the explicit state-action pairs that have been seen during the sampling,
penalise those unseen state-action combinations, and stay neutral for null actions.

We also train a baseline POMDP model using the annotations in our corpus, where the transition
probabilities and observation probabilities are estimated in a supervised manner (frequency-based
probabilities with add-one smoothing), and the reward function is designed by simply assigning a
positive reward 10 to the explicit state-action pairs observed in the corpus, 0 reward to state-null-
action pairs, and a negative reward -10 to those unseen state-action combinations. A leave-one-out
test is also performed for the baseline model, and in each round its policy is optimised offline using
Perseus [Spaan and Vlassis 2005]. Note that the supervised model will naturally achieve a bias on self
state transitions, as it is trained on frame-based state sequences, where state persistence is frequently
seen.

To determine the extent to which the actions selected by the POMDPs are comparable to those
gold-standard human bartender actions, we measure four quantities: Precision – the percentage of
the planned explicit actions agreeing with the human actions, Recall – the percentage of the human
actions recovered by the planner, F-score – the harmonic mean of precision and recall, and Relative
Timing - the average amount of time in seconds by which those correctly planned actions are ahead
of or behind the human actions (note that human action timing may not be optimal).

The results for the first three quantities are shown in Table X. It can be found that all the models
can produce satisfactory plans highly agreeing with the human bartenders’ decisions. But to justify
whether precision or recall is more important in this task will depend on the effect of each individual
action. One may regard the recall as more important for the BaR, BgAd and BgsO system actions, since
they correspond to the satisfaction of user’s requests in different stages (bidding for attention, asking
for advice, and requesting a drink). On the other hand, the recall on Br could be less important, since it
does not directly affect the task completion. It can be found that the sticky iPOMDP can significantly
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avoid those unnecessary greeting back (Br) actions while achieving the same recall as the standard
iPOMDP, however it missed two giving advice (BgAd) actions at the same time. Nevertheless, it
outperforms the standard iPOMDP in overall F-score. In addition, interestingly and surprisingly, the
two unsupervised methods achieve precision comparable to the supervised baseline with optimised
policies, and even slightly outperform the supervised baseline. (The results are statistically significant
based on approximate randomisation tests [Noreen 1989], with the significance level p < 0.01.)
This suggests that the states inferred by the iPOMDPs can capture more information than the rather
general state annotations. The action timing performance of the three systems is shown in Table XI,
where the findings indicate that the timing decisions of our methods are also close to the human
bartender’s action timing, with some actions (especially BaR) selected reasonably faster than the
human bartender.

5.6. Discussion

Time-dependent POMDP planning problems have previously been discussed in [Broz 2008], where
the timing issue was solved by explicitly defining a time-indexed state representation in the POMDP.
We argue that our sticky iPOMDP offers a more flexible solution in comparison with his work, due
to its potential ability in modelling large state duration variance.

As mentioned in Section 2, Bohus and Horvitz [2009b; 2009a] introduced a multimodal dialogue
system that utilises supervised learning techniques to classify multiparty engagement states and make
corresponding decisions. In their work, the timing issue is handled by modelling state transitions based
on a dynamic graphical model with explicitly defined variable dependencies among the features for
engagement states and observations. An important advantage of their approach is that the model can
be trained based on automatically collected observations and state labels without explicit developer
supervision. To address several real-world situations similar to those discussed in [Bohus and Horvitz
2009b; Bohus and Horvitz 2009a], this section has proposed an alternative approach employing recent
advances in unsupervised machine learning, where no state labels or domain-specific knowledge is
required at all.

6. SUMMARY AND FUTURE WORK

In this paper, we have presented a range of machine learning techniques used to explore the challenges
of multi-modal, multi-user, socially aware human-robot interaction. The models have all been either
trained directly on, or at least informed by, data collected from natural human-human interactions as
well as recordings of users interacting with the system. We have also presented evaluation results for
each of the approaches which demonstrate that they all perform well at their particular target task. In
addition, we carried out a user evaluation of a robot bartender system in which two of these machine
learning techniques come together.

In Section 2, we presented two approaches to the task of social state recognition: the first version
used a hand-coded rule based on findings from human-human behaviour in a bar, while for the
second version, a range of supervised-learning classifiers were trained, using a multimodal corpus
based on user interactions with the initial system. In a cross-validation study using real sensor data,
the classifiers significantly outperformed the hand-coded rule. The results of the user evaluation
suggest that the trained classifier was faster at detecting initial intended user engagement, while the
rule-based classifier was more stable. However, these results are difficult to interpret, for two main
reasons: (1) all of the customers were explicitly instructed to seek to engagement with the bartender,
so the classifiers were not tested with any true negative examples, and (2) the ground-truth data about
the customers’ actual engagement-seeking behaviour was not available, so it is impossible to know
which of the classifiers actually did a better job of estimating desired engagement in practice. We
are therefore carrying out another evaluation of the classifiers, making use of a newly recorded test
corpus which addresses the above limitations.

This initial experiment with supervised classifiers has confirmed that, as in other similar domains,
data-driven techniques are a suitable mechanism for social state recognition for the robot bartender.
However, this study has two main limitations: it addressed only a single, simple, binary classification
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task, and the classifiers considered only a subset of the available properties from the input sensors,
and did not make any use of either the confidence measures associated with input properties or the
history of the interaction. The immediate next task in this work is to annotate the user behaviour in
the video recordings of the interactions from the user study. In addition to allowing more detailed
analysis of the user behaviour, these annotations can also form the basis of a more sophisticated
multimodal corpus incorporating state features such as the hypotheses from the speech recogniser
and the history of the interaction, along with additional vision properties such as the customers’ face
orientations, facial expressions, and body gestures. The labels in this corpus will also incorporate
richer high-level customer features such as group membership; new models based on these corpora
will be trained and integrated into the system, and their performance will be assessed through further
user evaluations.

In Section 3, we then presented a novel framework for automatically optimising social skills
execution in multi-user, multi-modal interactions. The main part of the framework is the Interaction
Manager (IM), which processes audio-visual input on a frame-by-frame basis, and generates high-
level communicative and non-communicative actions as well as combinations of modalities for
realising them. The other component is the Multi-User Simulated Environment (MUSE), which
provides a simulated audio-visual input stream, generated from the behaviour of multiple simulated
users. The simulated environment was developed both to test and evaluate the IM, as well as to
automatically optimise action selection policies of the IM. This optimisation is based on the behaviour
of the simulated users, including the reward/penalty signals they provide. In the user evaluation, a
system using the trained action-selection policy had higher task performance than one using the
hand-coded policy, with similar subjective scores.

The social skills decision-making process features a hierarchy of two MDPs with two policies that
can be optimised using reinforcement learning. The policy optimisation results in this setting show
that the method is effective and that learned strategies generally outperform hand-coded strategies
on simulated data. When making the conditions of the interactions more challenging, for example
by lowering the patience level of the simulated users or by adding noise to the input observations,
the hand-crafted system starts to fail more frequently, and is outperformed by policies trained under
these modified conditions. For the system to be more robust to noise, both in vision and speech input,
information about the uncertainty in the state estimation should be taken into account. Our plan is to
extend the MDP framework for social skills execution to a POMDP framework along the lines of
work in dialogue management research [Young et al. 2010]. With regard to the multi-user simulation,
this requires further developing the error model for the audio-visual input to the IM. Another future
direction is investigating other hierarchical models for supporting multi-user interactions, such as
Semi-Markov Decision Processes with Hierarchical Reinforcement Learning.

Finally, in Section 5, we presented an alternative, unsupervised learning approach that replaces
the components for social state recognition and social skills execution with a single, nonparametric
Bayesian POMDP model. This approach addresses several issues that commonly exist in real-world
multimodal HRI tasks, but have rarely been discussed in previous work. The main advantages of
the proposed technique over previous approaches using POMDPs are its abilities in modelling state
persistence and implicit transitions, in seeking proper action timing, and in employing unsupervised
learning. Satisfactory results are obtained in evaluations for both the state inference and the planning
procedures, where the proposed method selects system actions agreeing with the true human actions
in 74% of cases, and with a reasonable timing. Moreover, this unsupervised technique outperforms a
supervised model at statistically significant levels, which demonstrates its feasibility and potential
application in addressing multimodal interaction problems.

An important issue in social robotic systems that has not been addressed in our current version of
the sticky iPOMDP is managing multi-party interactions. A possible direction could be employing a
two-level hierarchical POMDP [Pineau et al. 2001], with an observation channel defined for each user,
and letting the higher-level system action determine which user to interact with and the lower-level
system actions execute the actual behaviours. In Section 3, a similar hierarchical approach in a
standard (PO)MDP framework was described. In addition, the Partially Observable Semi-Markov
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Decision Process (POSMDP) [Mahadevan 1998] would be another useful technique for real-world
HRI applications, which is aimed at addressing problems where system actions take certain durations
and observations can still be received during the action executions. In this work, we have simplified
the situation by assuming that our action executions are immediate. The possibility of integrating
POSMDP into our models will require further investigation. The issues of applying the sticky
iPOMDP in physical robotic systems and different domains are left open at this stage, but will be
investigated in our future research.

In the future, we will compare the unsupervised POMDP based approach with the combination
of supervised learning and reinforcement learning. In addition to making use of the robot bartender
shown in Figure 1, we have also created an alternative robot system using a Nao robot platform
[Keizer et al. 2013b] for use in further experimentation and data collection.
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A. DEFINITION OF THE “STICKY” INFINITE POMDP

The “sticky” infinite POMDP utilises an HDP to define a prior over POMDPs as follows. To generate
a model from the prior, we:

— Draw the state distribution prior β ∼ GEM(λ)
— For each state-action pair (s, a):

— Draw a transition parameter
— If a = null: Ts,a ∼ DP(α + κ, αβ+δsκ

α+κ
)

— Otherwise: Ts,a ∼ DP(α, β)
— Draw a reward parameter Θs,a ∼ HR

— For each state s:
— For each observation channel k:

— Draw an observation parameter Ωk
s ∼ Hk

Ω

where κ > 0 is a hyperparameter to weight the self-transition bias, HΩ and HR are the respective prior
distributions for Ωs and Θs,a, and GEM(λ) stands for the stick-breaking construction procedure with
a concentration parameter λ. Note that here, we will assume that the observation function Ω(y|s) is
independent of the previous system action a. This is because if the original definition Ω(y|s, a) is
utilised, the HDP tends to cluster state-action pairs based on their observations, according to our
experiments, which can confuse the planning process.

After this, for an interaction sequence consisting of a trajectory of N observations and actions
{(z1, a1), (z2, a2), . . . , (zN , aN)}, where we assume zi = y1:K

i is a multimodal observation consist of
sub-observations from K channels, the generative process is defined as:

— For i = 1, . . . ,N:
— Draw a transition si ∼ PT(·|si−1, ai)
— Draw multimodal emissions

— For each observation channel k: yk
i ∼ PΩk (·|si)

— Draw a reward ri ∼ PΘ(·|si, ai+1)

where the reward function R(s, a) is rewritten as PΘ(r|s, a), a conditional distribution describing the
probability of observing reward r on state-action pair (s, a). Note here, in the interaction case, that
when a system performs an action, the user normally would not remain in the same state as the
previous one. So self-transitions should be eliminated, which can be done by setting PT(s|s, a) = 0
and renormalise PT(·|s, a) every time a transition distribution is drawn.
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B. PSEUDO-CODE OF THE INFERENCE ALGORITHM FOR THE “STICKY” INFINITE POMDP

Algorithm B.1: Degree L Weak-Limit Sampler for the Sticky iPOMDP
Given a set of parameters β(t−1), T(t−1), T̃(t−1), Ω(t−1), Θ(t−1) learned in iteration t − 1,

(1) Set β = β(t−1), T = T(t−1), T̃ = T̃(t−1) Ω = Ω(t−1), and Θ = Θ(t−1);
(2) For i = N − 1, . . . , 0, and s ∈ {1, . . . , L}, compute the backward messages mi,i−1(s):

mi,i−1(s) =
∑L

s′=1 mi+1,i(s′)PT(s′|s, ai)
∏K

k=1 PΩk (yk
i |s
′);

(3) Initialise, ns,a,s′ = 0 and ζs,a,r = 0 for each s, s′ ∈ {1, . . . , L}, a ∈ A, and r ∈ R;
(4) Initialise xk,s = ∅, for each s ∈ {1, . . . , L}, and k ∈ {1, . . . ,K};
(5) Sample state assignments sequentially forward, for j = 1, . . . ,N,

(a) Sample s j ∼
∑L

s=1
∏K

k=1 PΩk (yk
j |s)PT(s|s j−1, a j)m j+1, j(s)δ(s, s j);

(b) Increment ns j−1,a j,s j and ζs j,a j+1,r j ;
(c) For each k ∈ {1, . . . ,K}, update xk,s j = xk,s j ∪ yk

j ;
(6) For each s, s′ ∈ {1, . . . , L} and a ∈ A,

(a) If a = null,
i. Sample auxiliary variable ωs,a,s′ ∼

Γ(αβs′+κδ(s,s′))
Γ(αβs′+κδ(s,s′)+ns,a,s′ )S (ns,a,s′ , ω) (αβs′ + κδ(s, s′))ω;

ii. If s = s′, sample override variable ρs ∼ Bin
(
ωs,a,s,

κ
αβs+κ

)
, and set ωs,a,s = ωs,a,s − ρs;

(b) Otherwise,
i. If s = s′, for i = 1 : ns,a,·, sample ρs,i ∼ Geo(1 − PT̃(s|s, a)), then set ns,a,s =

∑
i ρs,i;

ii. Sample auxiliary variable ωs,a,s′ ∼
Γ(αβs′ )

Γ(αβs′+ns,a,s′ )S (ns,a,s′ , ω) (αβs′ )ω;
where S (n, ω) are unsigned Sterling numbers of the first kind, and we define S (0, 0) = S (1, 1) = 1,
S (n, 0) = 0 for n > 0 and S (n, ω) = 0 for ω > n.

(7) Update the global transition base by sampling β ∼ Dir( λL + ω·,·,1, . . . ,
λ
L + ω·,·,L);

(8) For each s ∈ {1, . . . , L} and a ∈ A, sample new transition and reward parameters,
(a) If a , null, T̃s,a ∼ Dir(αβ1 + ns,a,1, . . . , αβL + ns,a,L), set Ts,a = T̃s,a, Ts,a(s) = 0 and re-

normalise Ts,a;
Otherwise, Ts,a ∼ Dir(αβ1 + ns,a,1, . . . , αβs + κ + ns,a,s, . . . , αβL + ns,a,L);

(b) Θs,a ∼ Dir(µ + ζs,a,1, . . . , µ + ζs,a,|R|);
(9) For each s ∈ {1, . . . , L} and k ∈ {1, . . . ,K}, sample observation parameter Ωk

s from its respective
conjugate posterior estimated based on xs,k if applicable, otherwise if non-conjugate prior is
utilised, estimate Ωk

s using the Metropolis-Hastings algorithm;
(10) Set β(t) = β, T(t) = T, T̃(t) = T̃, Ω(t) = Ω, and Θ(t) = Θ;
(11) Optionally, sample hyperparameters λ, α and κ according to [Teh et al. 2006; Fox et al. 2011].
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