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Abstract

We develop a general duality-theory framework for revenue maximization in additive
Bayesian auctions. The framework extends linear programming duality and complementarity
to constraints with partial derivatives. The dual system reveals the geometric nature of
the problem and highlights its connection with the theory of bipartite graph matchings.
We demonstrate the power of the framework by applying it to a multiple-good monopoly
setting where the buyer has uniformly distributed valuations for the items, the canonical
long-standing open problem in the area. We propose a deterministic selling mechanism called
Straight-Jacket Auction (SJA), which we prove to be exactly optimal for up to 6 items, and
conjecture its optimality for any number of goods. The duality framework is used not only
for proving optimality, but perhaps more importantly for deriving the optimal mechanism
itself; as a result, SJA is defined by natural geometric constraints.

1 Introduction

The problem of maximizing revenue in multidimensional Bayesian auctions is one of the most
prominent within the area of Mechanism Design. An auctioneer wants to sell a number of items
to some potential buyers (bidders). Each bidder has a value for every item; this is the maximum
price that she is willing to pay to get the item and it is a private information. The value of a
set of items is simply the sum of the values of the items in the set (additive valuations). The
buyers submit their bids and the auctioneer must decide, perhaps with randomization, what
items to allocate to each player and how much to charge each one of them for this transaction.
The seller has some prior (incomplete) knowledge about how much each player values the items,
captured by a (joint) probability distribution over the space of all possible valuations. However,
assuming standard selfish game-theoretic behavior, the players would lie about their true values
and submit false bids if this is to increase their personal gain. The goal is to design auction
protocols that maximize the total expected revenue of the seller, by also ensuring the truthful
participation of the bidders.

For the single-dimensional case where only one item is to be auctioned among the players,
the seminal work of Myerson [26] has completely settled the problem. His solution is simple
and elegant: the optimal auction is deterministic and easy to describe by a “virtual valuations”
transformation and reduction to a social welfare maximization problem which can be solved
using the well-studied VCG auction [27, 18].

Unfortunately, for the many-items setting these elegant properties and results do not hold
in general. It is very likely that there is no simple closed-form description of optimal revenue
auctions, especially in a unified way similar to Myerson’s solution. However, for the most
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commonly studied probability distributions, e.g., the uniform and normal, we would like to have
such clear, closed-form descriptions of the optimal auctions, or at least algorithms—preferably
simple and intuitive—that compute optimal auctions (their allocation and payment functions).
But we are far from such a goal. There exists no interesting continuous probability distribution
for which we know the optimal auction for more than three items. The difficulty of the problem
is illustrated by the lack of general results for the canonical case of uniform i.i.d. valuations
in the unit interval [0, 1] even for a single bidder. In this work, we resolve this case for up to
6 items. We give an exact, analytic and intuitive way of computing the optimal prices; the
solution is in closed-form, but involves roots of polynomials of degree equal to the number of
items. We do that as a special application of a much more general construction: a duality-theory
framework for proving exact and approximate optimality of many-bidder multi-item auctions
for arbitrary continuous distributions. We expect this framework to be essential for helping
generalizing Myerson’s solution to many-items settings, the holy grail of auction theory.

It is known that even in the simple case of one bidder, randomized auctions can perform
strictly better than deterministic ones [17, 16, 23, 30, 9]. Manelli and Vincent [23] provide some
sufficient conditions for deterministic auctions to be optimal, but these are quite involved, in
the form of functional inequalities that incorporate abstract partitions of the valuation space,
and admittedly difficult to interpret. They were able to instantiate them though for the case
of two and three uniform i.i.d. distributions and completely determine an optimal deterministic
auction. For more items, it is not known whether the optimal auction is a deterministic one.
Our results here show that the optimal auction for up to 6 items is indeed deterministic. We
conjecture that this is true for any number of items; we also conjecture that for more than one
bidder the optimal auction is not deterministic. Hart and Nisan [15] have provided a very simple
sufficient condition in the case of two i.i.d. items for the deterministic full-bundle auction to be
optimal and deploy it to show that this is the case for the equal-revenue distribution. Finally,
Daskalakis et al. [9] were also able to deal with the special case of two items and independent
(not necessarily identical) exponential distributions and give an exact solution, which in this
case is randomized. Essentially this is all that was known prior to our work regarding exact
descriptions of optimal auctions with continuous probability distributions,

Given the difficulty of designing optimal auctions, Hart and Nisan [15] study the performance
of the two most straightforward deterministic mechanisms for the single-buyer setting: the one
that sells all items in a full bundle and the one that sells each item independently. They provide
elegant approximation ratio guarantees (logarithmic with respect to the number of items) that
hold universally for all product (independent) distributions, without even assuming standard
regularity conditions (as, e.g., in [6, 23, 26]). Li and Yao [20] further improved their results.
The difficulty of providing exact optimal solutions for multi-item settings is further supported
by a recent computational hardness result by Daskalakis et al. [8], where it is shown that even
for a single buyer and independent (but not identical) valuations with finite support of size 2,
it is #P-hard to compute the allocation function of an optimal auction. However this does not
exclude the possibility of efficiently computing approximate solutions. In fact, Cai and Huang
[5] and Daskalakis and Weinberg [7] have presented PTAS (polynomial-time approximation
schemes) for i.i.d. settings.

Daskalakis, Deckelbaum, and Tzamos [9] have also published a duality approach to the
problem, inspired by optimal transport theory. With its use, they gave optimal mechanisms
for two-item settings for exponential distributions. Their approach assumes independent item
distributions that either have unbounded interval supports and decrease more steeply than
1/x2 or bounded ones but they vanish to zero at the right bound of the interval. Thus their
method cannot be directly applied to uniform valuations. Our aim is to provide a duality theory
framework for multi-item optimal auctions, which is as general and clean as possible for many
bidders and arbitrary joint distributions (not necessarily independent ones). For that reason, we
deploy a “proof-from-scratch” approach directly inspired by linear programming duality which is
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easily comprehensible and applicable, and with which the reader will immediately feel familiar.
At their core, the two duality frameworks are based on similar ideas; although we expect our
framework to have wider applicability, we also believe that there will be special cases in which
the framework of [9] will be more suitable to apply.

Finally, we mention some very recent developments after the initial conference version [13] of
our paper: in a ground-breaking work Babaioff et al. [3] showed that a constant approximation
of the optimal revenue can be achieved for the case of one bidder and independent items by very
simple deterministic mechanisms, using a core-tail decomposition technique inspired by [20], and
Yao [36] later generalized this idea to many-player settings.

1.1 Model and Notation

We denote the real unit interval by I = [0, 1], the nonnegative reals by R+ = [0,∞). We
consider auctions of n bidders who are interested in buying any subset of m items. For any
positive integer m we use the notation [m] = {1, 2, . . . ,m}. The value of bidder i for item
j is in interval Di,j = [Li,j , Hi,j ] ⊆ R+; we denote by Di =

∏m
j=1Di,j the hyperrectangle of

all possible values of bidder i, and by D =
∏n
i=1Di the space of all valuation inputs to the

mechanism. The seller knows some probability distribution over D with an almost everywhere1

(a.e.) differentiable density function f . Intervals Di,j need not be bounded; that is, we allow
Hi,j ∈ R ∪ {∞}.

Let 0m = (0, 0, . . . , 0) and 1m = (1, 1, . . . , 1) denote the m-dimensional zero and unit vec-
tors, respectively. We will drop subscript m whenever this causes no confusion. For two m-
dimensional vectors x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) we write x ≤ y as a shortcut
for xj ≤ yj for all j ∈ [m]. For any matrix x ∈ Rn×m, xi will denote its i-th (m-dimensional) row
vector. For a function f : Rn×m → R and i ∈ [n] we denote ∇if(x) ≡ (∂f(x)

∂xi,1
, ∂f(x)
∂xi,2

, . . . , ∂f(x)
∂xi,m

);
notice how only the derivatives with respect to the variables in row xi appear. Finally, we
use the standard game theoretic notation x−j = (x1, x2 . . . , xj−1, xj+1, . . . , xm) to denote the
resulting vector if we remove x’s j-th coordinate. Then, x = (x−j , xj). Similarly, x−(i,j) will
denote all values of the n×m matrix x when we remove the (i, j)-th entry. For a large part of
the paper we will restrict our attention to a single bidder. In this case, we drop the subscript i
completely; for example, we write Lj instead of L1,j .

1.1.1 Mechanisms and Truthfulness

In this paper we study auctions for selling m items to n bidders when bidder i ∈ [n] has a
nonnegative valuation xi,j ∈ Di,j for item j ∈ [m]. This is private information of the bidder,
and intuitively represents the amount of money she is willing to pay to get this item. The seller
has only some incomplete prior knowledge of the valuations x in the form of a joint probability
distribution F over D from which x is drawn.

A direct revelation mechanism (auction) M = (a,p) on this setting is a protocol which,
after receiving a bid vector x′i from each bidder i as input (the bidder may lie about her true
valuations xi and misreport x′i 6= xi), offers item j to bidder i with probability ai,j(x′) ∈ [0, 1],
and bidder i pays pi(x′) ∈ R. We assume that each item can only be sold to at most one bidder,
or equivalently

∑
i ai,j(x′) ≤ 1. The total revenue extracted from the auction is

∑
i pi(x′). If we

want to restrict our attention only to deterministic auctions, we take ai,j(x′) ∈ {0, 1}. Notice
also that we do not demand nonnegative payments p ≥ 0, i.e., we don’t assume what is known
as the No Positive Transfers (NPT) condition, since that is not explicitly needed for our results.
However, as argued, e.g., in [15, Sect. 2.1], assuming such a condition would be without loss of
generality for the revenue maximization problem.

1With respect to the standard Lebesgue measure µ in Rn×m.
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More formally, a mechanism consists of an allocation function a : D −→ In×m, which
satisfies

∑
i ai,j(x) ≤ 1 for all x ∈ D and all items j ∈ [m], paired with payment functions

pi : D −→ R. We consider each bidder having additive valuations for the items, her “happiness”
when she has (true) valuations xi and players report x′ = (x′−i,x′i) to the mechanism being
captured by her utility function

ui(x′|xi) ≡ ai(x′) · xi − pi(x′) =
m∑
j=1

ai,j(x′)xi,j − pi(x′), (1)

the expected sum of the valuations she receives from the items she manages to purchase minus
the payment she has to submit to the seller for this purchase. The player is completely rational
and selfish, wanting to maximize her utility, and that’s why she will not hesitate to misreport
x′i instead of her private values xi if this is to give her a higher utility in (1). On the other
hand, the seller’s happiness is captured by the total revenue of the mechanism

n∑
i=1

pi(x′) =
n∑
i=1

(
ai(x′) · xi − ui(x′|xi)

)
, (2)

which is a simple rearrangement of (1).
It is standard in Mechanism Design to ask for auctions to respect the following two proper-

ties, for any player i ∈ [n]:

• Individual Rationality (IR): ui(x|xi) ≥ 0 for all x ∈ D

• Incentive Compatibility (IC): ui(x|xi) ≥ ui((x−i,x′i)|xi) for all x ∈ D and x′i ∈ Di

The IR constraint corresponds to the notion of voluntary participation, that is, a bidder cannot
harm herself by truthfully taking part in the auction, while IC captures the fundamental prop-
erty that truthtelling is a dominant strategy2 for the bidder in the underlying game, i.e. she
will never receive a better utility by lying. Auctions that satisfy IC are also called truthful.
From now on we will focus on truthful IR mechanisms, and so we will relax notation ui(x|xi)
to just ui(x), considering bidder’s utility as a function ui : D −→ R+. The following is an
elegant, extremely useful analytic characterization of truthful mechanisms due to Rochet [31].
For proofs of this we recommend [15, 24].

Theorem 1. An auction M = (a,p) is truthful (IC) if and only if the utility functions ui that
induces have the following properties with respect to the i-th row coordinates, for all bidders i:

1. ui(x−i, ·) is a convex function

2. ui(x−i, ·) is almost everywhere (a.e.) differentiable with

∂ui(x)
∂xi,j

= ai,j(x) for all items j ∈ [m] and a.e. x ∈ D. (3)

The allocation function ai is a subgradient of ui.

Theorem 1 essentially establishes a kind of correspondence between truthful mechanisms
and utility functions. Not only does every auction induce well-defined utility functions for the
bidders, but also conversely, given nonnegative convex functions that satisfy the properties of
the theorem, we can fully recover a corresponding mechanism from expressions (3) and (2).

2In this work, we consider Dominant Strategy Incentive Compatibility (DSIC), the strongest notion of incentive
compatibility in which the bidders know all values.
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1.1.2 Optimal Auctions

In this paper we study the problem of maximizing the seller’s expected revenue based on his
prior knowledge of the joint distribution F , under the IR and IC constraints, thus (by Theorem 1
and (2))

sup
u1,...,un

n∑
i=1

∫
D

(∇ui(x) · xi − ui(x)) dF (x) (4)

over the space of nonnegative convex functions ui on D having the properties
n∑
i=1

∂ui(x)
∂xi,j

≤ 1 (zj(x))

∂ui(x)
∂xi,j

≥ 0 (si,j(x))

for a.e. x ∈ D, all i ∈ [n] and j ∈ [m].

1.1.3 Deterministic Auctions

Given the characterization of Theorem 1, in case one wants to focus on deterministic auctions
then it is enough to consider only utility functions that are the maximum of affine hyperplanes
with slopes either 0 or 1 with respect to any direction (see, e.g., [32]). So, for example, any
single-bidder (n = 1) deterministic and symmetric3 auction corresponds to a utility function of
the form

u(x) = max
J⊆[m]

∑
j∈J

xi − p|J |

 ,
where pr is the price offered to the buyer for any bundle of r items, r ∈ [m].

2 Outline of Our Work

We give here an outline of our work which bypasses many technical issues but brings out a
few central ideas. The reader may also find it helpful to revisit this outline during the more
technical exposition later on.

2.1 Duality for a Single Bidder

We first develop a general duality framework that applies to almost all interesting continu-
ous probability distributions (Section 3). We view the problem of maximizing revenue as an
optimization problem in which the unknowns are the utility functions ui(x) of the bidders (Pro-
gram (4)). There are two main restrictions imposed to these functions by truthfulness (see
Theorem 1): the convexity restriction (the utility function ui(x) must be convex with respect
to the private values xi of bidder i) and the gradient restriction (the derivatives of this function
must be nonnegative and they have to be at most 1 for every item).

We simplify things by dropping the convexity constraint and keep only the gradient con-
straints. Surprisingly, the convexity constraint can be recovered for free from the optimal
solution of the remaining constraints for a large class of distributions which includes the uni-
form distribution. We view the resulting formulation as an infinite linear program with variable
the utility function of the bidder. Its essential constraints (labeled by (zj) in (4)) are that the

3This means that the auction does not discriminate between items, i.e., any permutation of the valuations
profile x results to the same permutation of the output allocation vector a(x).
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derivatives for each item must be at most 1 and its objective is to maximize the expected value
of
∑
i∇iui(x) · x− ui(x). We carefully rewrite the integral in (4) to bring it into a form which

does not include any derivatives. Remarkably, Myerson’s solution for the special case of one
item is based on a different rewriting of the system in which the primal variables are the deriva-
tives of the utility, instead of the utility itself. In fact, since the allocation constraints involve
exactly the derivatives, this is the most natural choice of primal variables. Unfortunately such
an approach does not seem to work for the case of many items, since the partial derivatives
are not independent functions and, if we treat them as such, we run the risk of violating the
gradient constraints.

Having rewritten the original system in terms of the utility functions ui(x), we define a
proper dual system (Program (6)) with variables functions zj(x), one for every item, and func-
tions si,j(x), one for every pair of bidder and item. The dual constraints require that functions
zj − si,j take small values at the lower boundary of the domain and high values at the upper
boundary of the domain. Furthermore, the objective is to minimize the sum of z′js integrals
(Fig. 1). This would have been a trivial problem—for example, each zj could crawl at the
minimum possible value until it reached the upper boundary and then shoot up to the required
high value—had it not existed another constraint which requires that the sum of the derivatives
of these functions is bounded above (and therefore the functions have to start rising sooner, to
be able to reach the high value at the upper boundary).

Although the derivation of the dual program is natural and straightforward, there is no
guarantee that the dual optimal value matches the primal optimal value, since these are infinite,
indeed uncountable, linear programs. We directly show that the two systems satisfy the weak
duality property (Lemma 1). This gives a general framework to prove optimality of a mechanism,
by finding a dual solution and showing that their values match. Unfortunately, in most cases this
is extremely hard, since the optimal value may be very complicated (for example, it turns out
that the optimal value for the uniform distribution of m items consists of algebraic numbers of
degree m). Instead we prove a complementarity theorem, which allows one to prove optimality
by giving primal and dual solutions that satisfy the complementary slackness conditions. In
fact, we prove a generalization of complementarity (Lemma 2), which allows us later to seek
finite combinatorial solutions instead of continuous ones (Fig. 4).

A similar duality, limited to a single bidder and to a restricted set of probability distributions,
was used by Daskalakis et al. [9]. Their duality framework does not apply to the uniform
distribution, the canonical example of continuous probability. Our approach manages to handle
a much wider class of probability distributions, which includes the uniform distribution, by
taking care of the boundary issues.

2.2 Duality for the Uniform Distribution and a Single Bidder

Then, we zoom in to the canonical problem for revenue maximization: we consider uniform
distributions over [0, 1]m of m items and only one bidder. This may seem like a special case,
and in fact it is; however, despite being the canonical case of a very important problem, it
has been open since the work of Myerson [26], except for some specialized approaches which
successfully resolved the problem for two and three items (mostly using complicated necessary
conditions and rather involved computations). Our approach gives an elegant framework to
solve these cases and provides a natural description and understanding of the solution. It also
gives rise to beautiful problems; in particular, for the case of 2 items we know (but not include
here; see, e.g., [11]) at least five different solutions for the problem, each with its own merits.

Our dual formulation of the problem can be rephrased as follows (see Remark 1): In the
unit hypercube of m dimensions, we seek functions zj(x), one for each dimension; each zj starts
at value 0 on the edge (0,x−j) of the hypercube and rises up to value 1 at the opposite edge
(1,x−j) of the hypercube. Given that the functions cannot rise rapidly (more precisely, the sum
of their slopes cannot exceed m + 1 at each point of the hypercube), find the functions with
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minimum sum of integrals. Alternatively, we can view it as a problem in the m+ 1 hypercube:
each function zj defines a hypersurface which starts at the edge (0,x−j) of the hypercube, ends
at the opposite edge (0,x−j), and they collectively cannot grow rapidly; we seek to minimize
the sum of volumes beneath these surfaces (Fig. 1a). The remaining dual constraints sj do
not appear anywhere, since for this application to the case of uniform distribution, we make
the choice to relax even further the primal Program (4) by dropping the corresponding (si,j)
constraints that require the derivatives to be nonnegative; as we’ll see, this is again without loss
for the revenue optimality.

2.3 The Straight-Jacket Auction (SJA)

This dual system suggests in a natural way a selling mechanism, the Straight-Jacket Auction
(SJA). We explain the intuition behind the mechanism and give a formal definition in Section 4.
SJA is defined so that for every bundle of items A with |A| = r, the price pr for A is determined
by the requirement that the volume of the r-dimensional body in which the mechanism sells a
nonempty subset of A is exactly equal to r/(m+ 1).

The aim of the remaining and more technical part of the paper is to develop the toolkit to
prove that SJA is optimal for any number of items; however, we manage to prove optimality
only for up to 6 items.

The straightforward way for proving the optimality of SJA would be to find a pair of primal
and dual solutions that have the same value. Although we know such explicit solutions for the
case of two items, there does not seem to exist a natural solution of the dual program which can
be easily described for more that two items. How then can we show optimality in such cases?
We do not give an explicit dual solution, but we only show that a proper solution exists and rely
on complementarity to show optimality.

2.4 Proof of Optimality of SJA

A central notion in our development is the notion of deficiency: the k-deficiency of a body S
in m dimensions is |S| − k (

∑
j |S[m]\{j}|), where S[m]\{j} denotes the projection of S on the

hyperplane xj = 0 (this is an (m−1)-dimensional body). In particular, we are interested in the
deficiency of the subsets of U∅, the valuation subspace in which the auction sells a nonempty
bundle. The main tool for proving the optimality of SJA is the following: To show that the
SJA is optimal it suffices to show that no set S of points inside U∅ has positive 1

m+1 -deficiency
(Theorem 4).

The fact that this is sufficient is based mainly on the observation that finding a feasible dual
solution is, in disguise, a perfect matching problem between the hypercube and its boundaries
(taken with appropriate multiplicities). If Hall’s condition for perfect matchings (see, e.g.,
[22, Theorem 1.1.3]) could apply to infinite graphs, under some continuity assumptions the
sufficiency of the above would be evident. However, Hall’s theorem does not hold for infinite
graphs in general [1] and, even worse, the continuity assumptions seem hard to establish. We
bypass both problems by considering an interesting discretized version of the problem that
takes advantage of Hall’s theorem and the piecewise continuity; we then apply approximate
complementarity to prove optimality.

The technical core in our proof for the optimality of SJA consists of establishing that no
positive deficiency subset of U∅ exists. Let us call such a set a counterexample. To prove
that no counterexample exists, we first argue that such a counterexample would have certain
properties and then show that no counterexample with these properties exists. We first show
that we can restrict our attention to special types of counterexamples, those that are upwards
closed and symmetric (Lemma 7). Ideally, we would like to restrict our attention even fur-
ther to box-like counterexamples, those that are the intersection of an m-dimensional box and
U∅. This would restrict significantly the search of counterexamples, and in fact a well-known
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isoperimetric lemma by Loomis and Whitney [21] (see Lemma 9), and a generalization by Bol-
lobás and Thomason [4] show that this is actually true when we remove the restriction that the
counterexample must lie inside some fixed body (in our case, inside U∅). Unfortunately, we can
only establish this claim for 2 items. Instead, we prove a weaker version of it: we show that if a
counterexample exists, it must be closed under taking the convex hull of all symmetric images
of a point (Lemma 12). Furthermore, the requirement on deficiency provides a lower bound on
the volume of the counterexample (Lemmas 10 and 11).

By exploiting these properties, we show that no counterexample exists for 6 or fewer items
(Theorem 3). The case of 4 or fewer items is straightforward, but the case of 5 items is
qualitatively more challenging. The main reason for this difficulty is that the optimal mechanism
for 5 items never sells a bundle of 4 items (equivalently, the price for 4 items is equal to the
price of 5 items). The case of 6 items is similar to the case of 5 items; the optimal mechanism
does not sell any bundles of 5 items. However, all these cases are being treated in a unified way
in the proof of the theorem that avoids tiresome case analysis. We must point out here that
Theorem 3 is essentially the only ingredient of this paper whose proof does not work for more
than 6 items.

3 Duality

Motivated by traditional linear programming duality theory, we develop a duality theory frame-
work that can be applied to the problem (4) of designing auctions with optimal expected revenue.
By interpreting the derivatives as differences, we can view this as an (infinite) linear program
and we can find its dual. The variables of the primal linear program are the values of the func-
tions ui(x). The labels (zj(x)) and (si,j(x)) on the constraints of Program (4) are the analog
of the dual variables of a linear program.

To find its dual program, we first rewrite the objective function in terms of the ui’s instead
of their derivatives. In particular, by integration by parts we have∫

D

∂ui(x)
∂xi,j

xi,jf(x) dx =
∫
D−(i,j)

[ui(x)xi,jf(x)]xi,j=Hi,j

xi,j=Li,j
dx−(i,j) −

∫
D
ui(x)∂(xi,jf(x))

∂xi,j
dx

=
∫
D−(i,j)

[ui(x)xi,jf(x)]xi,j=Hi,j

xi,j=Li,j
dx−(i,j) −

∫
D
ui(x)f(x) dx−

∫
D
ui(x)xi,j

∂f(x)
∂xi,j

dx

to rewrite the objective of the primal program as
n∑
i=1

∫
D

(∇ui(x) · xi − ui(x)) dF (x) =
n∑
i=1

m∑
j=1

∫
D−(i,j)

Hi,j ui(Hi,j ,x−(i,j)) f(Hi,j ,x−(i,j)) dx−(i,j)

(5)

−
n∑
i=1

m∑
j=1

∫
D−(i,j)

Li,j ui(Li,j ,x−(i,j)) f(Li,j ,x−(i,j)) dx−(i,j)

−
n∑
i=1

∫
D
ui(x) ((m+ 1)f(x) + xi · ∇if(x)) dx.

Notice that some of the above expressions make sense only for bounded domains (i.e., when
Hi,j is not infinity), but it is possible to extend the duality framework to unbounded domains,
by carefully replacing these expressions with their limits when they exist or by appropriately
truncating the probability distributions. For the main results in this work we deal only with
bounded domains, but for completeness and future reference we provide a treatment of the
general case in Appendix C.

We also relax the original problem by replacing the convexity constraint by the much milder
constraint of absolute continuity; absolute continuity allows us to express functions as integrals of
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their derivatives. We can restate this as follows: truthfulness in general imposes two conditions
on the solution of allocating the items to bidders (see Theorem 1): the first condition is that
the utility is convex; the second one is that the allocations must be gradients of the utility.
It seems that in most cases, including the important Myersonian case of one item and regular
distributions, when we optimize revenue the convexity constraint is redundant. Later on, when
we will be applying the duality framework to the case of uniform distributions we will also
drop the constraints of nonnegative allocation probabilities (i.e., the (sj(x)) constraints in (4)).
In many cases, dropping these constraints might have no effect on the value of the program.
However, there are cases in which these constraints are essential. In particular, they are needed
even for the case of one item when the probability distributions are not regular. We give an
in-depth discussion of this topic in Appendix B.

To find the dual program, we have to take extra care on the boundaries of the domain,
since the derivatives correspond to differences from which one term is missing (the one that
corresponds to the variables outside the domain). This is a point where our approach differs
from that of Daskalakis et al. [9], which applies only to special distributions and in particular
it does not apply to the uniform distribution. Inside the domain, the dual constraint that
corresponds to the primal variable ui(x) is

∑
j
∂zj(x)
∂xi,j

≤ (m+ 1)f(x) + xi · ∇if(x).
So, the dual program that we propose is

inf
z1,...,zm

∫ m∑
j=1

zj(x) dx (6)

subject to

m∑
j=1

(
∂zj(x)
∂xi,j

− ∂si,j(x)
∂xi,j

)
≤ (m+ 1)f(x) + xi · ∇if(x) (ui(x))

zj(Li,j ,x−(i,j))− si,j(Li,j ,x−(i,j)) ≤ Li,jf(Li,j ,x−(i,j)) (ui(Li,j ,x−(i,j)))
zj(Hi,j ,x−(i,j))− si,j(Hi,j ,x−(i,j)) ≥ Hi,jf(Hi,j ,x−(i,j)) (ui(Hi,j ,x−(i,j)))

zj(x), si,j(x) ≥ 0

The above intuitive derivation of this dual is used only for illustration and for explaining
how we came up with it. None of the results rely on the actual way of coming up with the dual
problem. However, the derivation is useful for intuition and for suggesting traditional linear
programming machinery for these infinite systems; for example, although we don’t directly use
any results from the theory of linear programming duality, we are motivated by it to prove
similar connections between our primal and dual programs.

One can interpret this dual as follows: For the sake of clarity, assume a single bidder and
drop the si,j constraints; we seek m functions zj defined inside the hyperrectangle [L1, H1] ×
· · · × [Lm, Hm] such that

• in the j-th direction, function zj starts at value (at most) Ljf(Lj ,x−j) and ends at value
(at least) Hjf(Hj ,x−j); this must hold for all x−j .

• at every point of the domain, the sum of the derivatives of functions zj cannot exceed
(m+ 1)f(x) + x · ∇f(x).

• the sum of the integrals of these functions is minimized.

For a significant portion of this paper, we materialize this duality framework by applying it
to the case of i.i.d. uniform distributions over the unit interval Im. Therefore, let’s clearly state
our dual constrains for ease of reference:

9



(a) Feasible solutions z1, z2 to the two-items dual pro-
gram. Each function zj has to start at 0 on the en-
tire axis xj = 0 and rise to 1. At no point of the
2-dimensional cube the sum of their slopes is allowed
to exceed 3, and the objective is to keep them as low as
possible, i.e., minimize the volume under their curves.

feasible

optimal

z(x)

1

x10 1/2

sl
op
e
=
2

(b) For the special case of a single item, the dual feasi-
ble function z has to start at 0 and rise to 1 or higher
when x = 1, with a slope of at most 2. The optimal
function minimizes the area below it. It is not difficult
to see that the optimal solution is to remain at value
0 until x = 1/2 and then increase steadily to 1; the
optimal dual objective is equal to the gray area. This
corresponds exactly to the well-known optimal solution
of Myerson with reserve price of 1/2.

Figure 1: Geometric interpretation of the dual Program (6) for the case of a single bidder and m = 1, 2 uniform
i.i.d. items.

Remark 1 (Duality for Uniform Domains). The dual constraints (in Program (6)) for the single-
bidder m-items uniform i.i.d. setting over Im become

m∑
j=1

∂zj(x)
∂xj

≤ m+ 1 (u(x))

zj(0,x−j) = 0 (u(0,x−j))
zj(1,x−j) ≥ 1 (u(1,x−j))

zj(x) ≥ 0

A geometric interpretation of this dual for the case of one and two items, based on the previous
discussion, can be found in Fig. 1.

Let us also mention parenthetically that one can derive Myerson’s results by selecting as
variables not the utilities ui(x), but their derivatives. In fact, since the allocation constraints
involve exactly the derivatives, this is the natural choice of primal variables. Unfortunately,
such an approach does not seem to work for more than one item because the derivatives are
not independent functions. If we treat them as independent, we lose the power of the gradients
constraint.

3.1 Duality and Complementarity

The way that we derived the dual system does not yet provide any rigorous connection with
the original primal system. We now prove that this is indeed a weak dual, in the sense that

10



the value of the dual minimization Program (6) cannot be less than the value of the primal
program.

Lemma 1 (Weak Duality). The value of every feasible solution of the primal Program (4)
does not exceed the value of any feasible solution of the dual Program (6).

Proof. The proof is essentially a straightforward adaptation of the proof of traditional weak
duality for finite linear programs. Take a pair of feasible solutions for the primal and the dual
programs and consider the difference between the dual objective (6) and the primal objective (5):

m∑
j=1

∫
D
zj(x) dx +

n∑
i=1

∫
D
ui(x) ((m+ 1)f(x) + xi · ∇if(x)) dx (7)

−
n∑
i=1

m∑
j=1

∫
D−(i,j)

Hi,j ui(Hi,j ,x−(i,j)) f(Hi,j ,x−(i,j)) dx−(i,j)

+
n∑
i=1

m∑
j=1

∫
D−(i,j)

Li,j ui(Li,j ,x−(i,j)) f(Li,j ,x−(i,j)) dx−(i,j)

Using the constraints of the programs, the first two terms of this expression can be bounded
from below by

m∑
j=1

∫
D
zj(x)

n∑
i=1

∂ui(x)
∂xi,j

dx−
n∑
i=1

m∑
j=1

∫
D
si,j(x)∂ui(x)

∂xi,j
dx

+
n∑
i=1

∫
D
ui(x)

 m∑
j=1

∂zj(x)
∂xi,j

−
m∑
j=1

∂si,j(x)
∂xi,j

 dx (8)

which equals
n∑
i=1

m∑
j=1

∫
D

∂ [(zj(x)− si,j(x))ui(x)]
∂xi,j

dx.

Similarly, the other two terms of the expression can be bounded from below by

−
n∑
i=1

m∑
j=1

∫
D−(i,j)

ui(Hi,j ,x−(i,j))
(
zj(Hi,j ,x−(i,j))− si,j(Hi,j ,x−(i,j))

)
dx−(i,j)

+
n∑
i=1

m∑
j=1

∫
D−(i,j)

ui(Li,j ,x−(i,j))
(
zj(Li,j ,x−(i,j))− si,j(Li,j ,x−(i,j))

)
dx−(i,j) (9)

and they cancel out the first two terms. Bringing everything together, the difference of the dual
and primal objectives is bounded from below by zero.

We can use weak duality to show optimality: it suffices to have a pair of feasible primal and
dual solutions that give the same value. In many cases, such as the case of uniform distributions,
computing the optimal value is not easy or it may not even be expressible in a closed form.
In such a case, a useful tool to prove optimality is through complementarity. In fact, we will
prove a slight generalization of traditional Linear Programming complementarity which will
allow us later to discretize the domain and consider approximate solutions. Specifically, instead
of requiring the product of primal and corresponding dual constraints to be zero, we generalize
it to be bounded above by a constant:
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Lemma 2 (Complementarity). Suppose that ui(x) is a feasible solution of the primal Pro-
gram (4) and zj(x), si,j(x) is a feasible solution of the dual Program (6). Fix some param-
eter ε ≥ 0. If the following complementarity constraints hold for all i ∈ [n], j ∈ [m] and
a.e. x ∈ D,

ui(x) ·

(m+ 1)f(x) + xi · ∇if(x)−
m∑
j=1

∂zj(x)
∂xi,j

+
m∑
j=1

∂si,j(x)
∂xi,j

 ≤ εf(x)

ui(Li,j ,x−(i,j)) ·
(
Li,jf(Li,j ,x−(i,j))− zj(Li,j ,x−(i,j)) + si,j(Li,j ,x−(i,j))

)
≤ εf(Li,j ,x−(i,j))

ui(Hi,j ,x−(i,j)) ·
(
zj(Hi,j ,x−(i,j))− si,j(Hi,j ,x−(i,j))−Hi,jf(Hi,j ,x−(i,j))

)
≤ εf(Hi,j ,x−(i,j))

zj(x) ·
(

1−
n∑
i=1

∂ui(x)
∂xi,j

)
≤ εf(x)

si,j(x) · ∂ui(x)
∂xi,j

≤ εf(x),

then the primal and dual objective values differ by at most (n+m+ 3nm)ε. In particular,
if the conditions are satisfied with ε = 0, both solutions are optimal.

Proof. We take the sum of all complementarity constraints and integrate in the domain:

n∑
i=1

∫
D
ui(x)

(m+ 1)f(x) + xi · ∇if(x)−
m∑
j=1

∂zj(x)
∂xi,j

+
m∑
j=1

∂si,j(x)
∂xi,j

 dx

+
n∑
i=1

m∑
j=1

∫
D−(i,j)

ui(Li,j ,x−(i,j))
(
Li,jf(Li,j ,x−(i,j))− zj(Li,j ,x−(i,j)) + si,j(Li,j ,x−(i,j))

)
dx−(i,j)

+
n∑
i=1

m∑
j=1

∫
D−(i,j)

ui(Hi,j ,x−(i,j))
(
zj(Hi,j ,x−(i,j))− si,j(Hi,j ,x−(i,j))−Hi,jf(Hi,j ,x−(i,j))

)
dx−(i,j)

+
m∑
j=1

∫
D
zj(x)

(
1−

n∑
i=1

∂ui(x)
∂xi,j

)
dx +

n∑
i=1

m∑
j=1

∫
D
si,j(x) · ∂ui(x)

∂xi,j
dx ≤ (n+m+ 3nm)ε

It suffices to notice that the left-hand side is just the sum of (7), (8) and (9), so by using the
same transformations that we used to prove the Weak Duality Lemma 1, it is equal to the dual
objective minus the primal objective.

4 The Straight-Jacket Auction (SJA)

In the rest of the paper we demonstrate the power and usage of the duality framework developed
in Section 3, by applying it to the canonical open problem of revenue maximization in the
economics literature: that of a single bidder setting where item valuations come i.i.d. from a
uniform distribution over [0, 1]. Recall that now the general dual Program (6) takes the simple
form shown in Remark 1, where the si,j variables do not appear since we have chosen to relax
even further the primal Program (4) by dropping the nonnegative derivatives constraint; this
will end up being without loss to optimality.

The duality conditions are not only useful in establishing optimality; they can in fact suggest
the optimal auction in a natural way. We illustrate this by considering the case of 2 items.
Starting from Fig. 1a, we need to find two functions z1 and z2 that satisfy the boundary
constraints and the slope constraint. If we had only one function, say z1, the solution would
be obvious and similar to the solution for one item (Fig. 1b): z1(x) would be 0 up to x1 = 2/3
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x2

x10 1

1

p1

p2 − p1

p2 − p1

p1

U{1,2}

U∅

U{1}

U{2}

x1 + x2 = p2

Figure 2: The allocation spaces of the optimal SJA mechanisms for m = 2 and m = 3 items. The payments
are given by p1 = m

m+1 , p2 = 2m−
√

2
m+1 , and p3 = 3− 7.0971

m+1 . The mechanism sells at least one item within the gray
areas U∅, and all items within the dark gray areas U[m]. If we flip around these dark gray areas by x 7→ 1 − x,
so that 1 is mapped to the origin 0, they are exactly the SIM-bodies defined in Section 6.1, for k = 1

m+1 . These
SIM-bodies can be seen in Figs. 3a and 3b, respectively.

and then increase with a maximum slope of 3. But if we do the same for both functions z1 and
z2, we obtain an infeasible solution: in the square [2/3, 1] × [2/3, 1] the total slope would be
6 instead of 3. This implies that the functions need more space to grow; in fact, the area of
growth needs to be at least equal to the area of the square [2/3, 1]× [2/3, 1]. The natural way
to get this space is to add a triangle of area 1/9 in the way indicated in the left part of Fig. 2
(the triangle defined by the lines xj = p1 = 2/3, j = 1, 2, and x1 + x2 = p2). We then seek a
dual solution in which only zj grows in area U{j} and both functions grow in U{1,2} (Fig. 2).
The corresponding primal solution is that only item j is sold in U{j} and both items are sold in
U{1,2}.

The remarkable fact is that the optimal mechanism is completely determined by the obvious
requirement that the area of the triangle must be (at least) equal to 1/9. To put it in another
way: suppose that we knew that the optimal mechanism is deterministic; then the dual program
requires that

• the price p1 for one item must satisfy p1 ≤ 2/3 so that z1 has enough space to grow from
0 to 1 with the maximum slope 3

• the price p2 for the bundle of both items must be such that the area of the region U∅ =
U{1} ∪U{2} ∪U{1,2}, in which the mechanism allocates at least one item, is at least 2/3 so
that both functions have enough space to grow to 1

The central point of this work is that these necessary conditions (which we call slice conditions)
are also sufficient. This intuition naturally extends to more items: the price for a bundle of r
items is determined by the slice condition that the r-dimensional volume in which the mechanism
sells at least one item of the bundle is exactly equal to r/(m+ 1).

Using this intuition, we define here the Straight-Jacket Auction (SJA). This selling mech-
anism is deterministic and symmetric; as such, it is defined by a payment vector p(m) =
(p(m)

1 , . . . , p
(m)
m ); p(m)

r is the price offered by the mechanism to the bidder for every subset
of r items, r ∈ [m]. We will drop the superscript when there is no confusion about the number
of available items. The utility of the bidder is then given by u(x) = maxJ⊆[m]

(∑
j∈J xj − p|J |

)
.

The prices are defined by the slice conditions. For a subset of items J ⊆ [m], let Pr(J,x−J)
be the probability that at least one item in J is sold when the remaining items have values
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x−J . The r-th dimensional slice condition is that for every J with |J | = r and every x−J :
Pr(J,x−J) ≥ |J |/(m + 1). The SJA is the deterministic mechanism which satisfies the slice
conditions for all dimensions as tightly as possible (hence its name), in the following sense:
determine the prices p1, p2, . . . , pm in this order so that, having fixed the previous ones, select
pr as large as possible to satisfy all r-dimensional slice conditions. In particular, this guarantees
that the m-dimensional slice is tight, or equivalently, that the probability that at least one item
is sold is m/(m+ 1).

Definition 1 (Straight-Jacket Auction (SJA)). SJA for m items is the deterministic sym-
metric selling mechanism whose prices p(m)

1 , . . . , p(m)
m , where p(m)

r is the price of selling a
bundle of size r, are determined as follows: for each r ∈ [m], having fixed p

(m)
1 , . . . , p(m)

r−1,
price p(m)

r is selected to satisfy

Prx∼Um

 ∧
J⊆[r]

∑
j∈J

xj < p
(m)
|J |

 = 1− r · k, (10)

where k = 1
m+1 . In words, p(m)

r is selected so that the probability of selling no item when
r values are drawn from the uniform probability distribution (and the remaining values of
the m− r items are set to 0) is equal to 1− r · k. We will refer to constraints (10) as slice
conditions.

If we take the complement of the above probability, an equivalent definition would be to ask for
the probability of selling at least one of items [r], when all other bids for items [r + 1...m] are
fixed to zero, to be rk. That is, if for any dimension m and positive α1, α2, . . . , αm we define

V (α1, . . . , αm) ≡

x ∈ Im
∣∣∣∣∣∣
∨

J⊆[m]

∑
j∈J

xj ≥ α|J |

 , (11)

the volume of the r-dimensional body V (p(m)
1 , . . . , p

(m)
r ), let’s denote it by v(p(m)

1 , . . . , p
(m)
r ),

must be rk (for all r ∈ [m]). Notice also that it is not immediate that SJA is in general
well-defined for any dimension m: there should exist prices p(m)

r that satisfy (10).
The specific value on the right-hand side of (10) depends on the parameter k, which, in

turn, depends on the total number of items m; the exact dependence arises from the specific
values of the primal and dual program. It is, however, useful in providing a unifying approach
to carry out the discussion and analysis for an arbitrary (albeit small, k ≤ 1

m+1) parameter k
and to plug in the specific value k = 1/(m+ 1) only when this is absolutely necessary.

The main technical result of this work is showing that the SJA mechanism is optimal for
m ≤ 6:

Theorem 2. The Straight-Jacket Auction is a revenue optimal mechanism for selling up
to 6 goods to a single additive buyer having uniformly i.i.d. valuations over [0, 1].

Our proof of this theorem relies significantly on the geometry of these mechanisms. We
conjecture that the theorem holds for any number of items:

Conjecture. The Straight-Jacket Auction is a revenue optimal mechanism for selling any num-
ber of goods to a single additive buyer having uniformly i.i.d. valuations over [0, 1].

Here is how to use the slice conditions (10) to compute the prices of SJA: The 1-dimensional
condition on a 1-dimensional hypercube simply means that p(m)

1 = 1 − 1/(m + 1), because
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we only have condition x1 < p
(m)
1 . The 2-dimensional condition on a 2-dimensional boundary

requires that the region {x : x1 + x2 < p2 and x1 < p1 and x2 < p1} inside the unit square
must have area equal to 1− 2/(m+ 1). In other words, we want to find where to move the line
x1 + x2 = p2 so that the area that it cuts satisfies the slice condition (in the left part of Fig. 2,
U{1}, U{2}, and U{1,2} have total volume 2/(m+ 1)); this gives p2 = 2− (2 +

√
2)/(m+ 1). We

can proceed in the same way to higher dimensions: fix some dimension m and an order r > 1.
If the prices p1, p2, . . . , pr are such that pj − pj−1 is a nonnegative and (weakly) decreasing
sequence, then

v (p1, . . . , pr) =
∫ pr−pr−1

0
v (p1, . . . , pr−1) dt+

∫ pr−1−pr−2

pr−pr−1
v (p1, . . . , pr−2, pr − t) dt

+ . . .+
∫ p1

p2−p1
v (p2 − t, . . . , pr−1 − t, pr − t) dt+

∫ 1

p1
1 dt. (12)

This is a recursive way to compute the expressions for the volumes v (p1, . . . , pr). In case that
the sequence p1, p2, . . . , pr of the prices up to order r breaks the requirement to be increasing
at the last step, i.e. pr < pr−1, then simply v (p1, . . . , pr) = v (p1, . . . , pr−2, pr, pr) and we can
still deploy the previous recursion.

An exact, analytic computation of these values for up to r = 6 using the above recursion is
given in Appendix D, but we also list them below for quick reference. In the following we will
often use the transformation

pr = r − µr
m+ 1 (13)

so that prices will be determined with respect to some parameters µr. It will be algebraically
convenient to also assume p0 = 0.

• For r ≤ 4 and any number of items m ≥ r:

p1 = m

m+ 1 p2 = 2m−
√

2
m+ 1 p3 ≈ 3− 7.0972

m+ 1 p4 ≈ 4− 11.9972
m+ 1 (14)

µ1 = 1 µ2 = 2 +
√

2 µ3 ≈ 7.0972 µ4 ≈ 11.9972

• For r = 5, 6:

p
(5)
5 ≈ 1.9856 p5 ≈ 5− 18.0843

m+ 1 (m ≥ 6) p
(6)
6 ≈ 2.3774 (15)

µ
(5)
5 ≈ 18.0865 µ5 ≈ 18.0843 (m ≥ 6) µ

(6)
6 ≈ 25.3585

4.1 Optimality of SJA

In this section we gather the key elements that form the backbone of our proof for the optimality
of the SJA mechanism.

Definition 2. We denote by U
(m)
J the subdomain in which SJA allocates exactly the bundle

J ⊆ [m] of items:

U
(m)
J ≡

x ∈ Im
∣∣∣∣∣∣
∧

L⊆[m]

∑
j∈J

xj − p(m)
|J | ≥

∑
j∈L

xj − p(m)
|L|

 . (16)

Let U (m)
J

∣∣∣
−J :t

denote the |J |-dimensional slice of U (m)
J when we fix the values of the remain-

ing [m] \ J items to t:
U

(m)
J

∣∣∣
−J :t

= {xJ : (xJ , t) ∈ UJ}.
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For example, the slices of U (m)
{1} are the horizontal (1-dimensional) intervals; when J = [m], U (m)

J

has only one slice: itself. Figure 2 shows the various subdomains U (m)
J for m = 2, 3.

We next define the notion of deficiency of a body, which is one of the key geometric in-
gredients in this paper. It captures how large an m-dimensional body A is with respect to its
(m− 1)-dimensional projections, which are denoted by A[m]\{j} (see the beginning of the next
section for a formal definition). The k-deficiency is the difference of the volume |A| of the body
A minus the volumes k

∣∣∣A[m]\{j}

∣∣∣ of each m-dimensional prism that results when we extend a
(m−1)-dimensional projection by height k. This is inspired by the deficiency notion in bipartite
graphs defined by Ore [28].

Definition 3 (Deficiency). For any k > 0, we will call k-deficiency of an m-dimensional body
A ⊆ Rm+ the quantity

δk(A) ≡ |A| − k
m∑
j=1

∣∣∣A[m]\{j}

∣∣∣ . (17)

From now on we will sometimes drop the subscript in the deficiency notation δk whenever it
is clear from the context what k we are referring to, or if we want to make a general statement
that holds for all values of parameter k (see, e.g., Lemma 4).

Definition 4 (SIM-bodies). For positive α1 ≤ · · · ≤ αr, let

Λ(α1, . . . , αr) ≡

x ∈ Rr+

∣∣∣∣∣∣
∧
J⊆[r]

∑
j∈J

xj ≤
r∑

j=r−|J |+1
αj

 . (18)

We call these SIM-bodies4. We will also use the following notation:

q · Λ(α1, . . . , αr) ≡ Λ(q · α1, . . . , q · αr)

for any positive real q.

It turns out that SIM-bodies (see Fig. 3) are essentially the building blocks of the allocation
space of SJA:

Lemma 3. Every nonempty slice U (m)
J

∣∣∣
−J :t

of SJA is isomorphic to the SIM-body k·Λ(λ(m)
1 , . . . , λ

(m)
|J | ),

where k = 1/(m+ 1). The parameters λ(m)
r depend on the payments of SJA as follows:

λ(m)
r ≡ µ(m)

r − µ(m)
r−1, (19)

where µ(m)
r is defined in (13).

This essentially establishes a correspondence between SJA subdomains U (m)
J and SIM-bodies

Λ(λ(m)
1 , . . . , λ

(m)
|J | ), for every J ⊆ [m]. The main geometric property of SJA is captured by the

following theorem, the proof of which appears in Section 7.

Theorem 3. For m ≤ 6 and for the λ’s defined in (13), no SIM-body Λ(λ(m)
1 , . . . , λ

(m)
|J | ) corre-

sponding to a nonempty subdomain U
(m)
J contains positive 1-deficiency sub-bodies.

Using this geometric property, we prove in Section 7 the optimality of SJA:

Theorem 4. If for every nonempty subdomain U (m)
J of SJA the corresponding SIM-body Λ(λ(m)

1 , . . . , λ
(m)
|J | )

contains no sub-bodies of positive 1-deficiency, then SJA is optimal.

Notice that the last theorem applies to any number of items, but the proof of optimality is
restricted to 6 items by Theorem 3. The rest of the paper focuses in formalizing these notions
and proving the above theorems.

4The naming is inspired by the familiar, characteristic shape of mobile phone SIM cards; see Fig. 3a for the
apparent resemblance in 2-dimensional space.
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5 Bodies and Deficiencies

In this section we develop the geometric theory that captures the critical structural properties of
SJA mechanisms and use this to prove our main result, Theorem 2, that shows their optimality.
First we will need to establish some notation and formally define some notions.

For any positive integer m, an m-dimensional body A is any compact subset of the nonnega-
tive orthant A ⊆ Rm+ . We will denote its volume simply by |A| ≡ µ(A) (where µ is the standard
m-dimensional Lebesgue measure). For any index set J ⊆ [m], the projection of A with respect
to the J coordinates is defined as

A[m]\J ≡ {x−J | x ∈ A}

and is the remaining body of A if we “delete” coordinates J . For any r ∈ [m], index set J ⊆ [m]
with |J | = m − r and t ∈ Rm−r+ we define the slice of A above the point t with respect to
coordinates J as

A|J :t ≡ {x−J | x ∈ A ∧ xJ = t} .

It is the remaining of the body A if we fix a vector t at coordinates J . The operations of
projecting and slicing bodies commute with each other, that is, A[m]\I

∣∣∣
J :t

= (A|J :t)[m]\I for all
disjoint sets of indices I, J ⊆ [m] and |J |-dimensional vector t.

For any set of points S ⊆ Rm+ we denote their convex hull by H(S) and for any vector x we
will denote by P(x) the set of all permutations of x. We will say that a body A is downwards
closed if, for any point of A, all points below it are also contained in A: y ∈ A for all y ∈ Rm+
with y ≤ x ∈ A. Body A will be called symmetric if it contains all permutations of its elements:
P(x) ⊆ A for all x ∈ A. If an m-dimensional body A is symmetric then one can define its width
to be the length of its projection towards any axis: w(A) ≡ |A{j}| for any j ∈ [m]. In a similar
way, if A ⊆ S we will say that A is upwards closed (with respect to S) if, for any x ∈ A, we
have y ∈ A for any x ≤ y ∈ S. For any set of points S ⊆ Rm+ , its downwards closure is defined
to be all points below it: D(S) =

{
x ∈ Rm+ | ∃y ∈ S : x ≤ y

}
. Finally, we describe a property

that will play a key role in the following:

Definition 5 (p-closure). We will say that a body A is p-closed if it contains the convex hull
of the permutations of any of its elements. Formally: H(P(x)) ⊆ A for all x ∈ A.

Notice that any p-closed body must be symmetric (but not necessarily convex) and that any
convex symmetric body is p-closed.

A useful, trivial to prove property of the deficiency function (see Definition 3) is that it is
supermodular :

Lemma 4. For any bodies A1, A2,

δ(A1 ∪A2) + δ(A1 ∩A2) ≥ δ(A1) + δ(A2).

The next lemma tells us that “leaving gaps” between the points of bodies and the orthant’s
faces can only reduce the deficiency.

Lemma 5. For any bodies A,B such that B ⊆ A and A is downwards closed, there exists a
downwards closed sub-body B̃ ⊆ A such that δ(B̃) ≥ δ(B).

Instead of proving this lemma, we provide a stronger construction, given by the following
Lemma 6.

Lemma 6. Let Am be the set of m-dimensional bodies and Km ⊆ Am be the set of downwards
closed ones. There is a mapping χ : Am → Km such that for any A,B ∈ Am:

1. |χ(A)| = |A| and, for every J ⊆ [m], |χ(A)J | ≤ |AJ |.
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2. χ(A) ∪ χ(B) ⊆ χ(A ∪B). Equivalently, A ⊆ B implies χ(A) ⊆ χ(B).

3. if A ∈ Km then χ(A) = A.

It is straightforward to see how Lemma 6 implies Lemma 5, by taking B̃ = χ(B). Then, B̃
has the same volume as B and (weakly) smaller projections (Property 1). This directly implies
that δ(B̃) ≥ δ(B). It is also a subset of A (by Property 2): B̃ = χ(B) ⊆ χ(A) = A; the last
equality follows from the fact that A is already downwards closed and thus invariant under χ
(Property 3).

Proof of Lemma 6. The lemma is proved by induction on m. For m = 1 it is trivial: χ(A) is
the interval starting at 0 with length equal to |A|.

Fix now a coordinate j ∈ [m] and consider the (m−1)-dimensional slices A|{j}:t of A, ranging
over t. Apply the lemma recursively (that is, use function χ by the induction hypothesis from
the previous dimension) to each such slice to obtain a body A′. Let χ′ be this map from Am
to Am, i.e. χ′(A) = A′. Notice that A′ may not be downwards closed, but we argue that χ′
satisfies all three properties.

Indeed, for Property 1, we have two cases: If j ∈ J then, by using Property 1, we get

∣∣A′J ∣∣ =
∫
t

∣∣∣A′J ∣∣{j}:t∣∣∣ =
∫
t

∣∣∣(A′∣∣{j}:t)J ∣∣∣ =
∫
t

∣∣∣(χ′(A|{j}:t))J ∣∣∣ ≤
∫
t

∣∣∣(A|{j}:t)J ∣∣∣ =
∫
t

∣∣∣AJ |{j}:t∣∣∣ = |AJ | .

In particular, the above holds with equality when J = [m]. Otherwise, if j 6∈ J , we have

∣∣A′J ∣∣ =
∣∣∣∣∣
(⋃

t

A′
∣∣
{j}:t

)
J

∣∣∣∣∣ =
∣∣∣∣∣
(⋃

t

χ′
(
A|{j}:t

))
J

∣∣∣∣∣ ≤
∣∣∣∣∣
(
χ′
(⋃

t

A|{j}:t

))
J

∣∣∣∣∣ ≤
∣∣∣∣∣
(⋃

t

A|{j}:t

)
J

∣∣∣∣∣ = |AJ | ,

the first inequality holding due to Property 2 and the second one due to the inequality at
Property 1.

Property 2 is also satisfied because, if A ⊆ B, then for every t it is A|{j}:t ⊆ B|{j}:t, and
thus by induction χ′(A|{j}:t) ⊆ χ′(B|{j}:t), therefore

x ∈ χ′(A) =⇒ x−j ∈ χ′(A|{j}:xj
) =⇒ x−j ∈ χ′(B|{j}:xj

) =⇒ x ∈ χ′(B).

Property 3 is satisfied, since if A is already downwards closed, its slices are also downwards
closed and, by induction, they will remain unaffected by χ′.

If A is downwards closed with respect to some coordinate i ∈ [m], then χ′(A) will remain
closed downwards with respect to i: It is obvious by induction that χ′ preserves downwards
closure for every coordinate i 6= j. For coordinate i = j, it suffices to notice that downwards
closure of A is equivalent to A|{j}:t ⊆ A|{j}:t′ for all t ≥ t′. Since χ′ satisfies Property 2, the
same holds for their images: χ′(A|{j}:t) ⊆ χ′(A|{j}:t′).

Map χ′ is not the desired map because if A is not already downwards closed with respect
to j, the result may not be downwards closed. However, we can select another coordinate
j′ 6= j to create another map χ′′ similar to χ′. Since χ′′ will satisfy all properties and preserve
the downwards closure of coordinate j′, we conclude that χ = χ′′ ◦ χ′ has all the desired
properties.

The supermodularity of deficiency functions (Lemma 4) immediately implies that if bodies
A1, A2 ⊆ S are of maximum deficiency (within S), then both their union and intersection are
also of maximum deficiency. Based on this, the following can be shown:

Lemma 7. For any downwards closed and symmetric body A, there is a maximum volume
sub-body of A of maximum deficiency, which is also downwards closed and symmetric.
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Proof. Let B ⊆ A be of maximum deficiency. Then, by Lemma 5 there exists a downwards
closed B̃ ⊆ A such that δ(B̃) ≥ δ(B), and, due to the maximum deficiency of B, it must be that
δ(B̃) = δ(B). Now, let B̃1, B̃2, . . . , B̃m! be all possible permutations of the body B̃ (within the
m-dimensional space) and take their union B̂ =

⋃m!
i=1 B̃i. This new body B̂ is clearly symmetric.

Also, because of the symmetry of A, all B̃i remain within A, so B̂ ⊆ A.
Now notice that all Bi’s have δ(B̃i) = δ(B̃), so they also have maximum deficiency within A.

Remember that the deficiency function is supermodular (Lemma 4), so the union of maximum
deficiency sets must also be of maximum deficiency. Thus, B̂ is indeed of maximum deficiency.
Finally, it is not difficult to see that union preserves downwards closure and also, trivially,
|B̂| ≥ |B̃|.

The next lemma describes how global maximum deficiency implies also a kind of local one:

Lemma 8. Let A ⊆ S be a maximum deficiency body (within S). Then, every slice of A must
have nonnegative deficiency and must not contain subsets with higher deficiency.

Proof. To get to a contradiction, suppose that there exists such a slice B = A|J :t of A, such that
δ(B) < 0. Then, let’s remove the entire slice B above t from body A, to get a new body A′. This
(m− 1)-dimensional slice though is of measure 0 in the larger m-dimensional space, so what we
should really do is to remove an ε-neighborhood of B (around t) within A, of “parallel” slices.
This neighborhood has a volume of positive measure and is arbitrarily close to the slice5. This
section removed from the body had the property of having volume strictly less than k times its
projections with respect to the coordinates not in J , i.e., the “active” coordinates in B (because
we are working close to B for which δ(B) < 0). Regarding the other remaining projections
with respect to the coordinates in J , by removing points they cannot possibly be increased.
Since volumes have positive sign effect at the expression (17) of the deficiency function, and
projections have negative, we can deduce that the resulting body has strictly higher deficiency
than A, which contradicts the maximum deficiency of A within S.

The proof for subsets of the slice with higher deficiency is similar: replace the entire slice
with its subset of higher deficiency, and the total deficiency must increase.

As a consequence of Lemma 8 we get the following properties of maximum deficiency sub-
bodies, which imply that these bodies must be “large enough” (Lemmas 10 and 11) and also
demonstrate some kind of “symmetric convexity” (p-closure Lemma 12, Definition 5). But first
we will need an inequality that brings together volumes and projections of bodies, due to Loomis
and Whitney [21]. An easy proof of this can be found in [2].

Lemma 9 (Loomis–Whitney). For any m-dimensional body A,

|A|m−1 ≤
m∏
j=1

∣∣∣A[m]\{j}

∣∣∣ .
Lemma 10. Let A 6= ∅ be an m-dimensional body with nonnegative k-deficiency. Then

|A| ≥ (km)m.

As a consequence, if A is also symmetric and downwards closed, its width must be at least

w(A) ≥ km.
5For ease of presentation, in the following we will use that procedure without making explicit mention to the

underlying technicalities.
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Proof. Since δk(A) ≥ 0, we know that |A| ≥ k
∑m
j=1

∣∣∣A[m]\{j}

∣∣∣ , or equivalently

m∑
j=1

∣∣∣A[m]\{j}

∣∣∣ ≤ |A|
k
. (20)

Also, by the Loomis–Whitney inequality (Lemma 9), |A|m−1 ≤
∏m
j=1

∣∣∣A[m]\{j}

∣∣∣; so, by using the

arithmetic-geometric means inequality we can derive that |A|m−1 ≤
(

1
m

∑m
j=1

∣∣∣A[m]\{j}

∣∣∣)m, or
equivalently

m∑
j=1

∣∣∣A[m]\{j}

∣∣∣ ≥ m |A|m−1
m . (21)

Combining (20) and (21) we get m |A|
m−1

m ≤ |A|
k , which completes the proof of the lemma

(since |A| 6= 0). The inequality involving the body’s width follows immediately from the obser-
vation that every symmetric and downwards closed body A is included in the m-dimensional
hypercube with edge length w(A).

Lemma 11. If A is a nonempty, symmetric, downwards closed body with nonnegative k-
deficiency then it must contain the point (k, 2k, . . . ,mk). More generally, it must contain the
point (k, 2k, . . . , (m− 1)k,w(A)).

Proof. We will recursively utilize Lemmas 8 and 10 to show that points

(mk,0m−1), (mk, (m− 1)k,0m−2), . . . , (mk, (m− 1)k, . . . , k)

belong to Â, where Â is a symmetric, downwards closed sub-body of A of maximum deficiency
(see Lemma 7). By Lemma 10 it must be that that w(Â) ≥ mk, thus (mk,0m−1) ∈ Â by
downwards closure. For the next dimension, consider the slice Â

∣∣∣
{j}:mk

(for some j ∈ [m]). It
is (m − 1)-dimensional, of nonnegative deficiency by Lemma 8, and so it must have width at
least (m − 1)k (Lemma 10). That means that point (mk, (m − 1)k,0m−2) must be in Â. We
can continue like this all the way down to single-dimensional lines.

Lemma 12 (p-closure). Let A ⊆ S be a maximum volume sub-body of S of maximum deficiency
and let S be p-closed and downwards closed. Then every slice of A (including A itself) must be
p-closed (see Definition 5).

Proof. Without loss (by Lemma 7) A can be assumed to be symmetric and downwards closed.
We need to prove that, for any r ∈ [m] (r is the dimension of the slice) and any r-dimensional
vector x and z ∈ H(P(x)) in the convex hull of its permutations,

for all t : (x, t) ∈ A =⇒ (z, t) ∈ A.

The proof is by induction on r. For the base case of r = 1, it is H(P(x)) = {x} so the
proposition follows trivially. For the induction step, assume the proposition is true for some
r ≤ m− 1 and we will prove it for r+ 1. So, take (r+ 1)-dimensional vectors x and z such that
z ∈ H(P(x)) and fix some t ∈ Rm−r−1

+ . To complete the proof we need to show that the slice
of A above x, with respect to the first r + 1 coordinates, is included within the one above z,
i.e. A|[r+1]:x ⊆ A|[r+1]:z. For simplicity, let’s abuse notation for the remaining of this proof and
just use Ax and Az for these slices.

So, to arrive at a contradiction, let’s assume that, Ax \ Az 6= ∅. First notice that since
Ax ∩ Az ⊆ Ax and Ax is a slice of a maximum deficiency body, by Lemma 8 it must be that
δ(Ax ∩Az) ≤ δ(Ax). So, by the supermodularity of deficiencies (Lemma 4) we get that

δ(Ax ∪Az) ≥ δ(Az).
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This means that if we replace (an ε-neighborhood around z of) slice Az by its superset Ax ∪Az
and we can also show that no new projections are created with respect to the first r + 1
coordinates, then the overall deficiency of the body would not decrease and its volume would
increase strictly (since we have assumed that Ax \ Az 6= ∅), which is a contradiction to the
maximum deficiency of A within S. Notice a subtle point here: How do we know that this
extension can fit within S above point z? It does, because we have assumed S to be p-closed
and the new elements added are convex combinations of permutations of elements already known
to be in S. The remainder of the proof is dedicated to proving that this extension indeed does
not create new projections with respect to the first r + 1 coordinates.

Without loss, due to symmetry, we can take x1 ≤ x2 ≤ · · · ≤ xr+1. We argue that, if we
remove any one of the coordinates of the vector z, it can be dominated by a convex combination
of permutations of the vector x−1 (i.e., the vector x if we remove its smallest coordinate). To see
that, remember that z is at the convex hull of the permutations of x, so there exist nonnegative
real parameters {ξπ} such that

z =
∑

π∈P(x)
ξππ and

∑
π∈P(x)

ξπ = 1.

But that means that
z−j =

∑
π∈P(x)

ξππ−j (22)

for any coordinate j.
Let’s define a transformation φ over all vectors {π−j | π ∈ P(x) and j ∈ [r + 1]} such that

φ(π−j) = π−j if the j-th coordinate removed from π to get π−j was x1, and otherwise φ(π−j)
is the r-dimensional vector that we get if we replace x1 in π−j by the coordinate πj that was
removed. It follows that for all j

π−j ≤ φ(π−j) and φ(π−j) ∈ P(x−1),

so by (22),
z−j ≤

∑
π∈P(x)

ξπφ(π−j) ∈ H(P(x−1)).

By the induction hypothesis and downwards closure for A it can be deduced that

(x−1, 0, t) ∈ A =⇒ (z−j , 0, t) ∈ A for all j ∈ [r + 1].

Thus in particular for every t ∈ Ax, due to symmetry of A, we have that ((z−j , 0), t) ∈ A,
which means that indeed every projection of (z, t) with respect to a coordinate in [r + 1] was
already included in A.

6 Decomposition of SJA into SIM-bodies

6.1 SIM-bodies

Remember that in Definition 4 we introduced the notion of a SIM-body Λ(α1, . . . , αr): for
parameters α1 ≤ · · · ≤ αr, it is the set of all vectors x ∈ Rr+ satisfying conditions

∑
j∈J xj ≤∑r

j=r−|J |+1 αj for all J ⊆ [r].
The geometry of the allocation space of the SJA mechanisms (see Fig. 2) naturally gives

rise to this family of bodies. Their importance and connection with the structure of the SJA
mechanisms will become evident in Section 6.2, where we prove Lemma 3. The intuition behind
the naming becomes obvious if one looks at Fig. 3a. By the way SIM-bodies are defined, one
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can immediately see that they are downwards closed, symmetric, and convex polytopes. Thus,
they are also p-closed. Each one of its faces corresponds to a defining hyperplane∑

j∈J
xj = αr+1−|J | + · · ·+ αr

for some J ⊆ [r] or, of course, to a side of the r-dimensional positive orthant Rm+ .
SIM-bodies demonstrate some inherently recursive and symmetric properties, captured by

the following lemma. They are made clear in Fig. 3.

Lemma 13. For any SIM-body Λ = Λ(α1, . . . , αr):

1. w(Λ) = αr

2. Λ = D(H(P(α1, . . . , αr)))

3. Λ|{j}:αr
= Λ(α1, . . . , αr−1) for any j ∈ [r]

4. Λ[r]\{j} = Λ(α2, . . . , αr) for any j ∈ [r]

5. δq·k(q · Λ) = qr · δk(Λ) for any q, k > 0

Proof. Property 1 is trivial: by the definition of SIM-bodies (18), a point (x,0r−1) ∈ Λ if and
only if x ≤ αr ∧ · · · ∧ x ≤ α1 + · · ·+ αr, i.e., x ≤ αr.

For Property 2, let E be the set of the extreme points of the polytope Λ. It is convex, thus
Λ = H(E). But it is also downwards closed, so we can just focus on the extreme points E ⊆ E
that belong to the “full” facet of the hyperplane x1 + . . . xr = α1 + · · · + αr, since the entire
polytope can be recovered as the downwards closure Λ = D(H(E)). By taking intersections
with the other hyperplanes and keeping in mind that the αj ’s are nondecreasing, we get that
these extreme points in E are (α1, α2, . . . , αr) and all its permutations. So, we can recover the
entire SIM-body as Λ = D(H(P(α1, . . . , αr))).

For Property 3, notice that an (r − 1)-dimensional vector x belongs in the slice Λ|{j}:αr
if

and only if (x, αr) ∈ Λ, which by using (18) is equivalent to

∧
J⊆[r−1]

(∑
i∈J

xi ≤ αr+1−|J | + · · ·+ αr

)
and

∧
J⊆[r−1]

(
αr +

∑
i∈J

xi ≤ αr−|J | + · · ·+ αr

)
.

The second set of conditions can be rewritten simply as∧
J⊆[r−1]

∑
i∈J

xi ≤ αr−|J | + · · ·+ αr−1, (23)

which makes the first set of constraints redundant since αr−|J |+ · · ·+αr−1 ≤ αr+1−|J |+ · · ·+αr
from the monotonicity of the sequence of αr’s. The constraints (23) that we are left with,
exactly define Λ(α1, . . . , αr−1) (see (18)).

Property 4 can be shown in a very similar way: due to downwards closure, any projection
Λ[r]\{j} is just the slice Λ|{j}:0.

Finally, Property 5 is a result of scaling: q · Λ and Λ are similar by a scaling factor of q, so
the ratio of their volumes is qr and the ratio of their projections is qr−1. In formula (17) that
defines deficiencies, the volumes of the projections are also multiplied by the parameter k of the
deficiency, resulting in an overall ratio of qr between the two deficiencies.
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x2

x1

Λ(λ1, λ2)

λ2

λ2

(λ2, λ1)

(λ1, λ2)

x1 + x2 = µ2

0

Λ(λ1)

Λ(λ1)

(a) The 2-dimensional SIM-body Λ(λ1, λ2) (b) The 3-dimensional SIM-body Λ(λ1, λ2, λ3)

Figure 3: SIM-bodies for dimensions m = 2, 3. Notice the recursive nature of these constructions: a SIM-body
encodes in it the SIM-bodies of lower dimensions as extreme slices (Property 3 of Lemma 13). In this figure,
these 1-dimensional critical bodies are denoted by thick lines (blue in the color version of the paper) and the
2-dimensional ones in light gray.

6.2 Decomposition of SJA

In this section we bring together all the necessary elements needed to prove Lemma 3. We
study the structure of the allocation space of SJA that reveals an elegant decomposition which
demonstrates that the SIM-bodies essentially act as building blocks for SJA.

First of all, we need to get a closer look at SJA’s payments and demonstrate some of their
interesting characteristics. The way in which the SJA payments are constructed makes them
satisfy a kind of “contraction” property:

Lemma 14. The prices of the SJA mechanism have nonincreasing differences, i.e.,

p(m)
r − p(m)

r−1 ≤ p
(m)
r−1 − p

(m)
r−2

for all r = 2, . . . ,m.

Proof. Fix some dimensionm and assume that we have computed prices of SJA up to p1, p2, . . . , pr−1
for some 2 ≤ r ≤ m. First we will show that

(r − 1)pr ≤ rpr−1, (24)

i.e., that the price pr must be in [0, r
r−1pr−1]. We will do that by showing that otherwise this

price would be redundant, in the sense that for any pr > r
r−1pr−1 the sub-body of Ir defined by∧

J⊆[r]

∑
j∈J

xj < p|J |,

and whose volume must be exactly 1− rk in Definition 1, would remain unchanged and equal
to the one defined by ∧

J⊆[r]
|J |≤r−1

∑
j∈J

xj < p|J |. (25)
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Indeed, the body defined from (25) is a downwards closed, symmetric convex polytope
and for the newly inserted hyperplane x1 + · · · + xr = pr to have any effect on it, i.e., to
have a nonempty intersection with it, it must be that this hyperplane’s “symmetric point”
(pr/r, . . . , pr/r) belongs already to the interior of the body in (25) (this is due to the symmetry
and convexity of the body). So, this point must satisfy the (r − 1)-dimensional condition
x1 + · · ·+ xr−1 ≤ pr−1, thus (r − 1)(pr/r) ≤ pr−1 which is exactly property (24).

To show that pr − pr−1 ≤ pr−1 − pr−2 for all 2 ≤ r ≤ m, or equivalently pr ≤ 2pr−1 − pr−2,
by (24) it is enough to show that r

r−1pr−1 ≤ 2pr−1−pr−2. But this is equivalent to (r−1)pr−2 ≤
(r − 2)pr−1 which we know holds, also from (24).

Normalized payments By the procedure of defining SJA payments (Definition 1), it can
be the case that price pr is smaller than pr−1, i.e., pr ∈ [pl, pl+1] for some l ≤ r − 2. This is
perfectly acceptable, and it just means that essentially we render older prices that are above
pr redundant, in the sense that setting pj ← pr for all j < r with pj ≥ pr would not have
an effect on the sub-body

∧
J⊆[r]

∑
j∈J xj < p|J | of Ir used in the definition of SJA in (10).

This because x1 + · · · + xr ≤ pr =⇒ x1 + · · · + xj ≤ pj (since j < r and pr ≤ pj), so old
conditions x1 + · · · + xj ≤ pj have become useless. In particular, notice how this is the case
for the full-bundle price p

(m)
m when m = 5, 6: from Eqs. (14) and (15) we see that indeed

p
(5)
5 ≈ 1.9856 < 2.0005 ≈ p(5)

4 and p
(6)
5 ≈ 2.3774 < 2.4165 ≈ p(6)

6 . This means that no bundle of
m− 1 items is ever going to be sold under the SJA mechanism for m = 5 or m = 6:

U
(5)
[4] = U

(6)
[5] = ∅. (26)

Furthermore, by the nonincreasing differences property of the SJA payments (Lemma 14),
every new payment after r will continue to fall below the previous one. So, at the end the
situation will be in the form of

p1 ≤ · · · ≤ pl ≤ pm ≤ . . . (27)

for some l < m and, as we discussed above, there will be absolutely no effect on the mechanism
if we update all older payments that have ended up above pm to “collapse” to pm, i.e.,

p1 ≤ · · · ≤ pl ≤ pm = pm−1 = pm−2 = · · · = pl+1. (28)

Rigorously, we redefine

p
(m)
j ← p(m)

m for all j ∈ [m− 1] with pj ≥ pm.

While this normalization has no effect on the SJA mechanism itself, it makes sure that payments
are now given in a nondecreasing order, which is an elegant property that will simplify our
exposition later on.

An important observation is that this normalization of payments does not break the property
of the nonincreasing differences of the payments of SJA, i.e. Lemma 14 continues to hold: having
a look at the transition before and after the normalization process from (27) to (28) we see that
all the differences up to the l-th payment remain unchanged, pl+1 − pl can only decrease and
all differences above the (l + 1)-th payment have just collapsed to 0.

From now on and for the remaining of this paper we will assume that SJA payments are
normalized. The only difference that this makes, for up to m = 6 dimensions, to the values of
the payments we have already computed at Eqs. (14) and (15) in Section 4 is that for m = 5, 6
we have that

p
(5)
4 ← p

(5)
5 and p

(6)
5 ← p

(6)
6 ,

which gives by (13) that also the µ(m)
r parameters are updated to µ(m)

m−1 ← µ
(m)
m − (m+ 1):

µ
(5)
4 ≈ 12.0865 µ

(6)
5 ≈ 18.3585.
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Recall the definition λr ≡ µr − µr−1 from (19). These are the critical parameters of the
SIM-bodies used in all the key theorems for the optimality of SJA. Equation (19) is equivalent
to saying that µr = λ1 + · · ·+ λr. Taking the µ(m)

r values into account (see (13)) the λ(m)
r ’s for

up to m = 6 items are, for m ≤ 4,

λ1 = 1 λ2 = 1 +
√

2 λ3 ≈ 3.6830 λ4 ≈ 4.9000 (29)

and for m = 5, 6 the only modifications are

λ
(5)
4 ≈ 4.9894 λ

(5)
5 = 6 λ

(6)
5 ≈ 6.3613 λ

(6)
6 = 7. (30)

The nonincreasing differences property of the SJA payments makes these parameters mono-
tonic:

Lemma 15. The λ(m)
r parameters are nondecreasing and upper-bounded by m+ 1, i.e.,

λ
(m)
r−1 ≤ λ

(m)
r ≤ m+ 1,

for all r = 2, . . . ,m.

Proof. Using the transformations (13) and (19) we have

pr − pr−1 ≤ pr−1 − pr−2 =⇒ µr−1 − µr−2 ≤ µr − µr−1 =⇒ λr−1 ≤ λr

and
pr−1 ≤ pr =⇒ µr − µr−1 ≤ m+ 1 =⇒ λr ≤ m+ 1,

which concludes the proof since the SJA payments are nondecreasing with nonincreasing differ-
ences (Lemma 14).

An algebraic manipulation of (16), using the nonincreasing differences property of the SJA
payments, can give us the following characterization:

Lemma 16. For any subset of items J ⊆ [m],

U
(m)
J =

x ∈ Im
∣∣∣∣∣∣
∧
L⊆J

∑
j∈L

xj ≥ p(m)
|J | − p

(m)
|J |−|L|

∧
L⊆[m]\J

∑
j∈L

xj ≤ p(m)
|J |+|L| − p

(m)
|J |

 .
Proof. Fix some positive integer m, J ⊆ [m] and an arbitrary x ∈ Im. We need to show that
x satisfies the constraints in the description of set U (m)

J at the statement of Lemma 16 if and
only if it satisfies the constraints in (16). To be more precise, and after moving all xj ’s in the
constraints of (16) at the left side of the inequalities and deleting the ones that cancel out, we
need to show that ∑

j∈J\L
xj −

∑
j∈L\J

xj ≥ p|J | − p|L| for all L ⊆ [m] (31)

if and only if ∑
j∈L1

xj ≥ p|J | − p|J |−|L1| for all L1 ⊆ J (32)

and ∑
j∈L2

xj ≤ p|J |+|L2| − p|J | for all L2 ⊆ J̄ , (33)

where for simplicity we drop the superscript (m) from the prices and denote J̄ = [m] \ J .
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Indeed, first assume that x satisfies (31) and pick any L1 ⊆ J , L2 ⊆ J̄ . Then, since
J \ (J \ L1) = L1 and (J \ L1) \ J = ∅, by using L← J \ L1 in (31) we get∑

j∈L1

xj ≥ p|J | − p|J\L1| = p|J | − p|J |−|L1|,

which proves that x satisfies (32). In a similar way, since J \ (J ∪L2) = ∅ and (J ∪L2)\J = L2,
if we use L← J ∪ L2 in (31) we get

−
∑
j∈L2

xj ≥ p|J | − p|J∪L2| = p|J | − p|J |+|L2|,

which is the same as (33).
For the opposite direction, assume now that x satisfies (32) and (33), and pick any L ⊆ [m].

Since J \ L ⊆ J and L \ J ⊆ J̄ , if we use L1 ← J \ L and L2 ← L \ J in (32) and (33),
respectively, we get ∑

j∈J\L
xj ≥ p|J | − p|J |−|J\L|,

∑
j∈L\J

xj ≤ p|J |+|L\J | − p|J |.

By subtracting these inequalities and taking into consideration that |J | − |J \ L| = |J ∩ L| and
|J |+ |L \ J | = |J ∪ L| we have∑

j∈J\L
xj −

∑
j∈L\J

xj ≥ 2p|J | − p|J∩L| − p|J∪L|.

So, in order to show that (31) holds and conclude the proof of the lemma, it is enough to show
that p|J | − p|J∩L| − p|J∪L| ≥ −p|L|, or equivalently that

p|J∪L| − p|J | ≤ p|L| − p|J∩L|.

But since |J ∪ L| − |J | = |L| − |J ∩ L| (they are both equal to |L \ J |) and |J ∪ L| ≥ |L|, the
above inequality indeed holds due to the nonincreasing differences property of the SJA payments
(Lemma 14).

Notice here that, due to symmetry, every slice U
(m)
J

∣∣∣
−J :t

with |J | = r ≤ m is isomorphic

to U
(m)
[r]

∣∣∣
[r+1...m]:t

and so, from the characterization in Lemma 16, this slice is invariant with
respect to the specific value of the ((m−r)-dimensional) vector t. In particular, if it’s nonempty,
then

U
(m)
J

∣∣∣
−J :t

= U
(m)
J

∣∣∣
−J :0m−|J|

. (34)

The following lemma essentially gives an alternative definition of SJA, in terms of the deficiencies
of its allocation components U (m)

J . In particular, it requires every |J |-dimensional slice of any
subdomain U

(m)
J to have zero deficiency:

Lemma 17. Every slice U
(m)
J

∣∣∣
−J :t

of SJA has zero k-deficiency, where k = 1
m+1 .

Proof sketch. Fix some dimension m and let k = 1/(m+ 1). By the definition of SJA (10), the
domain U∅ where at least one item is sold must have volume m/(m + 1): the probability of
selling at least an item is mk = m/(m + 1) which corresponds to the volume of this domain
because the valuations’ space is the unit cube Im. Every projection (U∅){j} of this body towards
any coordinate j ∈ [m] has volume 1: it is the (m−1)-dimensional side of the cube; just set the
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valuation of item j to xj = 1 and trivially notice that, no matter what the remaining valuations
x−j ∈ Im−1 are, at least one item is being sold by SJA, namely item j, since xj = 1 ≥ p1.
Bringing the above together, this means that the k-deficiency of U∅ is m/(m+ 1)−k ·m ·1 = 0.

This valuations subdomain U∅ where at least one item is sold can be decomposed in its
various components UJ , where ∅ 6= J ⊆ [m]. Its volume is just the sum of the volumes of
these components. Also, its projections (i.e. the sides of the unit cube Im) can be covered by
taking the projection of any such component UJ with respect to its “active” coordinates in J .
This tells us that the deficiency of the entire body U∅ is essentially reduced to the sum of the
deficiencies of its subdomains. But this body has zero k-deficiency, so all its components must
also have zero deficiencies (by using an inductive argument).

A complete, formal proof of this characterization can be found in Appendix A.

Now we are ready to prove Lemma 3, which makes rigorous the correspondence between the
various components U (m)

J of the allocation space of SJA and SIM-bodies. It is the motivation
behind introducing SIM-bodies in the first place. Essentially, the entire allocation space of SJA
is made up by slices of SIM-bodies:

Lemma (Lemma 3). Every nonempty slice U (m)
J

∣∣∣
−J :t

is isomorphic to the SIM-body k·Λ(λ(m)
1 , . . . , λ

(m)
|J | ),

where k = 1
m+1 .

Proof. Let |J | = r. Then, due to symmetry, the slice UJ |−J :t is isomorphic to U[r]

∣∣∣
[r+1...m]:t

.
An r-dimensional vector y belongs to this slice if and only if (y, t) ∈ U[r], which by Lemma 16
means that y ∈ Ir and ∧

L⊆[r]

∑
j∈L

yj ≥ pr − pr−|L|.

By (13) this can be written as ∧
L⊆[r]

∑
j∈L

yj ≥ |L| − (µr − µr−|L|)k.

So this slice is an upwards closed body within the r dimensional unit-hypercube Ir, and if we
apply the isomorphism y 7→ 1r − y it is flipped around and mapped to the downwards closed
body around the origin 0r defined by y ∈ Ir and

∧
L⊆[r]

∑
j∈L yj ≤ (µr − µr−|L|)k. By taking

into consideration (19) this becomes∧
L⊆[r]

∑
j∈L

yj ≤ λr−|L|+1k + · · ·+ λrk. (35)

It is easy to see that the extra condition y ∈ Ir can be replaced by the weaker one y ∈ Rr+,
since the upper bounds yj ≤ 1 are already captured by (35): for L = {j} it gives

yj ≤ λrk = λr
m+ 1 ≤ 1,

the last inequality holding from Lemma 14. So, we end up with exactly the definition of
Λ(kλ1, . . . , kλr). We must note here that this SIM-body is well-defined, since the λr’s are
nondecreasing (Lemma 14).

7 Proof of Optimality

In this section we conclude the proof of our main result about the optimality of SJA (Theorem 2).
We do that by showing Theorems 3 and 4.

In addition to the SIM-bodies Λ(λ1, . . . , λr) being essentially the building blocks of the
allocation space of the SJA, the particular choice of the λr parameters makes them satisfy
another property: they have zero 1-deficiency:
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Lemma 18. For any dimension m, if a subdomain U
(m)
J of SJA is nonempty then the corre-

sponding SIM-body Λ(λ(m)
1 , . . . , λ

(m)
|J | ) has zero 1-deficiency.

Proof. Fix some m and let k = 1/(m + 1). For any nonempty subdomain UJ , the slice
UJ |−J :0m−|J|

is nonempty (by downwards closure), so by Lemma 17 it has zero k-deficiency.

But from Lemma 3 it is also isomorphic to the SIM-body k · Λ(λ(m)
1 , . . . , λ

(m)
r ), thus δk(k ·

Λ(λ(m)
1 , . . . , λ

(m)
r )) = 0. By Property 5 of Lemma 13, this means that indeed δ1(Λ(λ(m)

1 , . . . , λ
(m)
r ))

= 0.

Now we are ready to prove Theorem 3. It is essentially the only ingredient of this paper whose
proof does not work for more than 6 items (condition (38), specifically). In a way it demonstrates
the maximality of the deficiency of the particular critical SIM-bodies Λ(λ1, . . . , λr), in the sense
that they cannot contain subsets that have greater deficiency than themselves.

Theorem (Theorem 3). For up to m ≤ 6, no SIM-body Λ(λ(m)
1 , . . . , λ

(m)
r ) corresponding to a

nonempty subdomain U
(m)
[r] contains positive 1-deficiency sub-bodies.

Proof. We will prove the stronger statement that for all r ≤ m ≤ 6 no SIM-body Λ(λ(m)
1 , . . . , λ

(m)
r )

contains a sub-body with nonnegative 1-deficiency greater than its own, i.e.,

∅ 6= A ⊆ Λ(λ(m)
1 , . . . , λ(m)

r ) ∧ δ1(A) ≥ 0 =⇒ δ1(A) ≤ δ1(Λ(λ(m)
1 , . . . , λ(m)

r )) (36)

This is enough to establish the theorem, because of Lemma 18. We will use induction on r. At
the basis, whenever r = 1, for any number of items m the SIM-body is just the line segment
Λ(λ(m)

1 ) = [0, λ(m)
1 ] and it is easy to see that every (nonempty) subset of it will have smaller

volume but the same projection, resulting in smaller deficiency.
Moving on to the inductive step, for simplicity denote Λ = Λ(λ(m)

1 , . . . , λ
(m)
r ) and let A ⊆ Λ

be a maximum volume sub-body of maximum nonnegative deficiency within Λ. Without loss
(by Lemma 7) A can be assumed to be symmetric and downwards closed. By Lemma 12, this
tells us that every slice of it must be p-closed (since A is within Λ which is a SIM-body and
thus p-closed). We will prove that A = Λ which is enough to establish (36).

We start by showing that the outmost (r − 1)-dimensional slice of A, namely A|{1}:w(Λ),
cannot be empty. Notice that, by Property 1 of Lemma 13, w(Λ) = λ

(m)
r . The choice of

coordinate 1 here is arbitrary; due to symmetry any slice A|{j}:w(Λ) with j ∈ [r] would work
in exactly the same way. If this slice was empty, we could add in this free space of A (an
ε-neighborhood of) the (r − 1)-dimensional SIM-body B defined by

B = Λ(λ(m′)
1 , . . . , λ

(m′)
r−1 ) where m′ =

r − 1, if U (m)
[r−1] = ∅,

m, otherwise.
(37)

Observe here, that by taking into consideration the values of the λ(m)
j parameters of the SJA

mechanism (see Eqs. (29) and (30)) we can see that the following properties are satisfied for all
r ≤ m ≤ 6:

λ
(m′)
j ≤ λ(m)

j and λ
(m′)
j ≤ j + 1, for all j ∈ [r − 1] (38)

and
λ

(m)
j ≤ j + 1, for all j ∈ [r − 2]. (39)

In particular, for m = r = 6, notice that although λ
(m)
r−1 = λ

(6)
5 ≈ 6.3613 > 6 = (r − 1) + 1

(and that is why Property (39) above cannot be extended to j = r− 1), it’s still the case6 that
6Due to the fact that U (6)

[5] = ∅ (see (26)) and the definition of m′ in (37).
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λ
(m′)
r−1 = λ

(r−1)
r−1 = λ

(5)
5 = 6 = (r − 1) + 1 and so (38) holds. So, it must be that

B ⊆ Λ(λ(m)
1 , . . . , λ

(m)
r−1) = Λ|{1}:λ(m)

r
,

the first inclusion being a result of (38) and the last equality being from Property 3 of Lemma 13.
This means that B indeed fits in the exterior space Λ at distance x1 = λ

(m)
r , which is exactly

where we put it.
We will now show that this addition caused no decrease at the 1-deficiency of A, which

would contradict the maximality of the volume of A. Equivalently, we need to show that the
increase we caused in the volume by extending A was at least equal to the increase in the total
volume of its projections. First, we show that no new projections were created with respect to
coordinate 1, i.e., B was already included in A[r]\{1} = A|{1}:0. Indeed, it is

B = D(H(P(λ(m′)
1 , . . . , λ

(m′)
r−1 ))) ⊆ D(H(P(2, . . . , r))) ⊆ A|{1}:0 .

The first equality comes from Property 2 of the SIM-bodies in Lemma 13, the second inclusion
is from (38), and the last inclusion is by Lemma 11 and the p-closure of A|{1}:0. What is left to
show is that the sum of the new projections created with respect to the remaining coordinates
[2...r] was at most equal to the increase in the volume. But this comes directly from the fact
that the slice B we added has zero 1-deficiency: it is a SIM-body corresponding to a subdomain
U

(m′)
[r−1] 6= ∅ (see Lemma 18).

So, in the following we can indeed assume that body A ⊆ Λ is of maximum width w(A) =
λ

(m)
r . Then we will show that, at x1 = w(A), A must in fact include the entire correspond-

ing slice of Λ. This slice is Λ|{1}:λm
r

= Λ(λ(m)
1 , . . . , λ

(m)
r−1), so that would mean that the

extreme point (λ(m)
1 , . . . , λ

(m)
r−1, λ

(m)
r ) is in A, and thus by p-closure (Lemma 12) the body

D(H(P(λ(m)
1 , . . . , λ

(m)
r ))) must be included within A. But from Property 2 of Lemma 13 this

body is exactly the entire external body Λ, which concludes the proof. So let’s show that indeed
A|{1}:λm

r
= Λ|{1}:λm

r
. It is enough to show that removing this slice of A and replacing it with

the full slice of Λ would result in a non-decrease of the 1-deficiency: that would contradict the
maximality of the volume of A.

First, notice that A|{1}:λm
r

is within Λ|{1}:λm
r

, where Λ|{1}:λm
r

is the SIM-body Λ(λ(m
1 , . . . , λ

(m)
r−1)

and also slice A|{1}:λm
r

must have nonnegative deficiency (by Lemma 8). So, by the induction
hypothesis it must be that the full slice Λ|{1}:λm

r
has at least the deficiency of the slice A|1:λm

r

it replaces. That means that, taking into consideration only projections in the directions [2...r],
the overall change in the deficiency is indeed nonnegative. So, to conclude the proof it is enough
to show that no new projections with respect to coordinate 1 are created by this replacement,
i.e. that Λ(λ(m

1 , . . . , λ
(m)
r−1) was already included in A[r]\{1} = A|{1}:0. Indeed,

Λ(λ(m
1 , . . . , λ

(m)
r−1) = D(H(P(λ(m)

1 , . . . , λ
(m)
r−1)))

⊆ D(H(P(λ(m)
1 , . . . , λ

(m)
r−2, λ

(m)
r )))

⊆ D(H(P(2, . . . , r − 1, w(A)))),

by (39) and the fact that w(A) = λ
(m)
r , which concludes the proof since slice A|{1}:0 is p-

closed and (2, . . . , r − 1, w(A)) belongs to it, because (1, 2, . . . , r − 1, w(A)) belongs to A by
Lemma 11.

We now present our main tool to prove that SJA is optimal. It utilizes the fact that the
allocation space of SJA has no positive deficiency subsets in a combinatorial way.

Theorem (Theorem 4). If for every nonempty subdomain U (m)
J of SJA the corresponding SIM-

body Λ(λ(m)
1 , . . . , λ

(m)
|J | ) contains no sub-bodies of positive 1-deficiency, then SJA is optimal.
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Figure 4: Proper colorings of the allocation space U∅ of the SJA mechanism for m = 2 items and different
discretization factors N = 18 (left) and N = 105 (right). Blue corresponds to the direction of the horizontal axis
and red to the vertical axis. The zero region U∅ where no item is allocated (white region in Fig. 2) is colored in
yellow. Notice how the entire region U{1} is colored blue and the entire U{2} red. The critical and technically
involved part of the coloring for two items is the one of region U{1,2} where both items are allocated. Interpreting
this in the realm of the dual program and the language of the proof of Theorem 4, blue is color 1 and corresponds
to the points where function z1 increases with “full” derivative m + 1 = 3 (with respect to the coordinate x1)
while z2 remains constant (with respect to coordinate x2). Red is color 2 and denotes the reverse situation where
z2 increases with derivative 3 (with respect to coordinate x2) and z1 remains constant (with respect to variable
x1). Yellow is color 0 where both z1 and z2 are constant.

Proof. The proof of Theorem 4 is done via a combinatorial detour to a discrete version of
the problem, which is interesting in its own right and highlights the connection of the dual
program with bipartite matchings. The nonpositive deficiencies property allows us to utilize
Hall’s marriage condition. Let us denote by Ij ≡ {(x−j , 1) | x ∈ Im } the side on the boundary
of the Im cube which is perpendicular to axis j, for j ∈ [m].

We start by restricting the search for an appropriate feasible dual solution to those functions
zj(x) that have the following form:

Fix some integer N which is a multiple of m+ 1 and let ε′ = 1/N . We discretize the
space by taking a fine grid partition of the hypercube Im into small hypercubes of
side ε′ and we require that inside each small hypercube the derivatives ∂zj(x)/∂xj
are constant and take either value 0 or value m+ 1.

We must point out here that this discretization is used only in the analysis and it is not part of
the optimal selling mechanism which is given just by its prices p(m)

r .
With the discretization, the combinatorial nature of the dual solutions emerges: a dual

solution is essentially a coloring of all the ε′-hypercubes of Im into colors 0, 1, . . . ,m. The
interpretation of the coloring is the following: the derivative ∂zj(x)/∂xj has a positive value
m+ 1 if and only if the corresponding hypercube (at which x belongs to) has color j, otherwise
it is zero (i.e., zj(x) is constant with respect to the direction of the j-axis); color 0 is used
exactly for the points where all zj functions are constant. A feasible dual solution corresponds
to a coloring in which every line of hypercubes parallel to some axis, say axis j, contains at
least N/(m+ 1) hypercubes of color j. To see this, notice that function zj(x) must increase in
a fraction of (at least) 1/(m+ 1) of those small hypercubes (because it starts at value 0 and has
to increase to a value of at least 1; see the dual constraints in Remark 1). Figure 4 illustrates
such a coloring for m = 2 items.

To formalize this let us discretize the unit cube Im in ε′-hypercubes [(i1−1) ·ε′, i1 ·ε′]×· · ·×
[(im− 1) · ε′, im · ε′], where ij ∈ [N ] for all j ∈ [m] (see Fig. 5). To keep notation simple, we will
sometimes identify hypercubes by their center points, i.e., refer to the ε′-hypercube x instead
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of the cube [x1− ε′/2, x1 + ε′/2]× · · · × [xm− ε′/2, xm + ε′/2]. In that way, Im is essentially an
m-dimensional lattice of points(

(i1 − 1) · ε′ + ε′/2, . . . , (im − 1) · ε′ + ε′/2
)
, ij ∈ [N ], j ∈ [m].

Based on this, for any S ⊆ Im we will denote by ∆(S) the set of lattice points in S.
Next, consider the subdomain UJ where SJA sells exactly the items that are in J ⊆ [m].

For any one of these “active” coordinates j ∈ J take UJ ’s boundary at side Ij of the unit cube
and “inflate” it to have a width of k = 1/(m+ 1). Formally, for all J ⊆ [m] and j ∈ J define

BJ,j ≡ {(t,x−j) | x ∈ UJ ∧ t ∈ [1, 1 + k]} . (40)

BJ,j is isomorphic to (UJ)[m]\{j}× [0, k]. For any subset of items J ⊆ [m] denote BJ =
⋃
j∈J BJ,j

and B =
⋃
J⊆[m]BJ the entire external layer on all sides.

Notice that U∅ cannot be perfectly discretized: the small hypercubes do not fit exactly
inside U∅ because its boundaries are not rectilinear7. To fix this, we will take a cover U∗∅ of
U∅ which can be partitioned into ε′-hypercubes. More precisely, define U∗∅ to be the union of
all ε′-hypercubes of Im that intersect U∅. Finally, let’s also extend the boundary region B by
adding on top of every boundary component BJ,j a thin strip

B∗J,j = {(t,x−j)
∣∣ x ∈ UJ ∧ t ∈ [1 + k, 1 + k + g(m) · ε′]}, (41)

where g(m) = d
√
m + 1e, and extend notation in the obvious way: B∗J =

⋃
j∈J B

∗
J,j and B∗ =⋃

j B
∗
j .

Now it’s time to fully reveal the combinatorial structure of our construction by defining a
bipartite graph G(∆(U∗∅) ∪∆(B ∪ B∗), E), which has as nodes the ε′-hypercubes of the cover
U
∗
∅ and the boundary B∪B∗ (see Fig. 5). Intuitively, the edges E will connect all lattice points

of a subdomain UJ with the nodes of its corresponding boundary BJ ∪B∗J that agree on m− 1
coordinates; each UJ is projected onto the sides Ij of the cube that correspond to active items
j ∈ J . To be precise, for any x ∈ ∆(U∗∅) and y ∈ ∆(B ∪B∗),

(x,y) ∈ E ⇐⇒ x−j = y−j for some j ∈ J , J ⊆ [m], with ε′-hypercube x intersecting UJ

Another way to view this is that edges start from a node on a side j of the external layer
B ∪B∗, are perpendicular to that side of the unit cube (i.e., parallel to axis j) and run towards
its interior body U∗∅, excluding the areas where j is not sold.

By this construction, a bipartite matching of graph G that matches completely the initial
boundary ∆(B) corresponds to a proper coloring of the ε′-hypercubes of Im: an internal cube
matched to a node in side Bj is assigned color j and all unmatched cubes are assigned color 0;
every line parallel to an axis j ∈ [m] contains at least k/ε′ = N/(m+ 1) distinct hypercubes in
the boundary Bj .

We will use standard graph-theoretic notation and for any set of nodes X, N(X) will denote
its set of neighbors, i.e., N(X) = {y | (x, y) ∈ E for some x ∈ X }. Hall’s condition tells us
that in any bipartite graph G = (X ∪ Y,E) there is a matching that completely matches X if
and only if

|S| ≤ |N(S)| for all S ⊆ X. (Hall’s condition)

What does the nonpositive 1-deficiency property of all SIM-bodies Λ(λ1, . . . , λr), r ≤ m, tell
us about graph G? Remember (Lemma 3) that these SIM-bodies correspond to slices UJ |−J :t

7The solution of partitioning the unit hypercube into small simplices instead of small hypercubes does not
work either; although simplices have more appropriate boundaries, we cannot guarantee that there exists an ε′

for which all the boundaries of U∅ coincide with some boundaries of the small simplices.
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U{1}
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U∅
⋆
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Figure 5: The discretization of the allocation space and the structure of graph G used in the proof of Theorem 4,
for m = 2 items. The space U∅ where SJA sells at least one item (colored gray) does not properly align with
the ε′-discretization grid so we have to take a cover U∗∅ (outlined with the thick line, green in the color version
of this paper). The boundaries Bj ∪ B∗j have width k + g(m)ε′. The one on the right (perpendicular to the
vertical axis) consists of ε′-cubes holding color 1 (blue at the color version of the paper) and the one at the top
color 2 (red). Edges run from every internal ε′-cube, vertically towards the red exterior and horizontally towards
the blue exterior. Notice, however, how the cube within the allocation subspace U{1} has only horizontal (blue)
edges running out of it, since it is not allowed to use color 2 (red). That is due to the fact that item 2 is not sold
within U{1}.

32



of the allocation space, so (using also Property 5 of Lemma 13) for any J ⊆ [m], t ∈ Rm−|J |+
and S ⊆ UJ |−J :t:

|S| ≤ k
∑
j∈J
|Sj | , (42)

where Sj ≡ S[m]\{j}. Using the fact that every such slice UJ |−J :t has zero k-deficiency (Lemma 17),
if we take complements S = UJ |−J :t \S and Sj =

(
UJ |−J :t

)
[m]\{j}

\Sj the above relation gives

k
∑
j∈J

∣∣∣Sj∣∣∣ ≤ ∣∣∣S∣∣∣ . (43)

First we will show that there is a matching on the bipartite graph G we defined, which
completely matches all nodes in ∆(U∅). By (42) and the fact that every (UJ)[m]\{j} × [0, k]
is isomorphic to BJ,j , Hall’s theorem tells us that we can completely match ∆(UJ |−J :t) into
∆(BJ). By the way we have constructed the edge set E, this directly means that there is a
complete matching of ∆(U∅) into ∆(B). So, to extend this into a complete matching of the
cover ∆(U∗∅), using this time additional points in the extended thin-stripe boundary B∗ at the
other side of the bipartite graph G, it is enough to show that the extra lattice points in U∗∅ \U∅
of any line parallel to some axis j are at most g(m), the number of neighbors in B∗. Indeed,
any point in U

∗
∅ cannot have distance more than

√
mε′ ≤ g(m)ε′ from a point in U∅, because

every ε′-hypercube of U∗∅ intersects with U∅ and the diameter of such a hypercube (with respect
to the Euclidean metric) is exactly

√
mε′. We will now show that there is also a complete

matching of ∆(B) into ∆(U∗∅). By the way we constructed the edge set, it is enough to show
that every slice ∆(BJ |−J :t) of the boundary can be completely matched into the corresponding
internal slice ∆(U∗∅|−J :t). Fix some nonempty J ⊆ [m] and t ∈ Rm−|J |+ . By Hall’s theorem it
is enough to prove that, for any family of sets of {Tj}j∈J of lattice points Tj ⊆ ∆(BJ,j |−J :t),∑
j∈J |Tj | ≤ |

⋃
j∈J N(Tj)|. We will prove the stronger

∑
j∈J |Tj | ≤ |

⋃
j∈J N(Tj)∩U∅|−J :t|; that

is, we will just count neighbors in the initial set U∅ and not the cover U∗∅. The continuous
analogue of this is to take Tj ’s be subsets of BJ,j |−J :t and consider the natural extension of the
neighbor function N when we now have a infinite graph of edges{

(x,y)
∣∣∣ x ∈ UJ |−J :t ∧ y ∈ BJ |−J :t ∧ x−j = y−j for some j ∈ J

}
Let S = UJ |−J :t \

⋃
j∈J N(Tj) be the set of points not being neighbors of any node in

⋃
j∈J Tj

of the boundary. Then by (43) it is enough to show that
∑
j∈J |Tj | ≤ k

∑
j∈J

∣∣∣Sj∣∣∣, where
Sj = S[m]\{j}. Every point in the boundary BJ,j |−J :t that has neighbors in

⋃
j∈J N(Tj) projects

(with respect to j) inside Sj . But, for any point y in Tj the only other points that can have
the same projection with respect to coordinate j are all points of the line segment of BJ,j |−J :t
which is parallel to the j-axis and passes through y, and this segment has length k.

Combining the existence of the above two matchings, a straightforward use of the classic
Cantor–Bernstein theorem from Set Theory ensures the existence of a matching in graph G that
completely matches both ∆(U∗∅) and ∆(B). But, as we discussed before, this means that U∗∅
is properly colorable and thus this coloring induces a feasible dual solution. Let’s denote this
solution by zj(x), j ∈ [m] and also let u(x) be the primal solution given by SJA, i.e., u is the
utility function of the SJA mechanism. To prove the optimality of u, we will take advantage of
the approximate complementarity: we claim that this primal-dual pair of solutions satisfies the
approximate complementarity conditions in Lemma 2 for ε = g(m)m(m+ 1) · ε′:

u(x) ·

m+ 1−
∑
j∈[m]

∂zj(x)
∂xj

 ≤ ε (44)

−u(0,x−j) · zj(0,x−j) ≤ ε (45)
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u(1,x−j) · (zj(1,x−j)− 1) ≤ ε (46)

zj(x) ·
(

1− ∂u(x)
∂xj

)
≤ ε. (47)

If that is true, then the proof of Theorem 4 is complete, since by the approximate complementar-
ity Lemma 2 the primal and dual objectives differ by at most (3m+ 1)ε = (3m+ 1)g(m)m(m+
1)ε′, and if we take the limit of this as ε′ → 0, these values must be equal. So let’s prove that
(44)–(47) indeed hold.

Condition (45) is satisfied trivially, since both the primal and the dual variables are nonneg-
ative. Regarding (46), for any line parallel to some axis j the length of its segment intersecting
the boundary B ∪ B∗ (which is the one contributing the critical colors j to that direction) is
k + g(m)ε′. So, given that the derivative of zj(x) in sections colored with j is m + 1 we can
upper-bound the value of zj(1,xj) by (k+g(m)ε′)(m+1) = 1+g(m)(m+1)ε′. This means that
zj(1,xj)− 1 ≤ g(m)(m+ 1)ε′, and given the fact that the utility function has the property that
u(x) ≤ m (because its derivatives are at most 1 at every direction), we finally get the desired
u(1,x−j) · (zj(1,x−j)− 1) ≤ g(m)m(m+ 1)ε′ = ε.

For condition (44), assume that u(x) > 0 (otherwise it is satisfied). That means that SJA
sells at least one item, thus x ∈ U∅ ⊆ U

∗
∅; but U∗∅ is completely matched, thus all points of U∗∅

are colored with some color in [m] (not with color 0); this is equivalent to the fact that some
derivative of the zj functions is m+ 1 and all others are zero, meaning that the corresponding
slack variable m+ 1−

∑
j∈[m] ∂zj(x)/∂xj is zero.

Finally, for condition (47), fix some direction j ∈ [m] and assume that ∂u(x)/∂xj 6= 1
(otherwise the condition is satisfied). SJA is deterministic, so it must be that ∂u(x)/∂xj = 0,
i.e., item j is not allocated. That means that x belongs to a subdomain UJ with j /∈ J , and the
same is true for all points before it parallel to axis j (that is, all points (t,x−j) with t ∈ [0, xj ]).
Thus, by the way that the edge set E of the graph G was defined, x’s ε′-hypercube, as well
as all hypercubes before it and parallel to axis j, cannot have been colored with color j unless
they happen to intersect with a neighboring subdomain UJ∗ with j ∈ J∗. But it is a simple
geometric argument to see that point (xj−ε′m,x−j) is at distance at least ε′m√

|J∗|
≥ ε′m√

m
=
√
mε′

below the boundary
∑
j∈J∗ xj = p|J∗| of UJ∗ (since we already know that x is below it), which

is exactly the diameter of the ε-hypercubes. So, at most m such hypercubes below x’s could
intersect with UJ∗ , and thus be colored with color j, meaning that zj(x) cannot have increased
more than (m+1)ε′ ·(m+1) from zero. This proves that indeed zj(x)(1−∂u(x)/∂xj) = zj(x) ≤
(m+ 1)2ε′ ≤ ε.

8 Conclusion

Our main goal in this paper was to design revenue maximizing auctions when many heteroge-
neous items are to be sold to a buyer whose values are independently, uniformly distributed
over the unit interval [0, 1]. This is the “canonical” multidimensional monopolist problem in
Economics that still remains unsolved, four decades after the seminal work of Myerson [26]
for the special case of a single item. We design and analyze a natural mechanism (SJA), and
prove its optimality for up to 6 items. Interestingly, it turns out that the optimal mechanism is
deterministic. Prior to our work only solutions for 2 or 3 items were known [23, 29], and they
were achieved mostly through a direct, case-specific optimization approach rather than a clear,
unifying viewpoint that could help us towards a more fundamental understanding of multi-item
auction settings.

The cornerstone of our approach is the use of duality and complementarity. Towards this
end, we present a much more general weak duality theory framework that can be formulated
for many buyers and arbitrary joint distributions which we hope will prove useful in future
attacks on generalizations of our problem: After the conference version of this paper, our
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duality framework has already successfully been applied to deal with rather general classes of
distributions [14, 10] and in the domain of approximately optimal auctions as well [12]. Our
solution illuminates the rich geometric ideas underlying the problem, and in the process we
formally develop some novel geometric machinery that might be of independent interest.

The most obvious direction for future work is validating the conjecture that SJA is indeed
optimal for any number of items and not just up to 6. Another fundamental open problem is that
of finding exact optimal solutions, like the ones provided in this paper, for more than one bidder:
for example, the seemingly simple case of two items and two buyers with i.i.d. uniform valuations
over [0, 1] is still wide open. Is determinism still powerful enough for revenue maximization when
multiple bidders are involved? And if not, how well can deterministic auctions that generalize
SJA approximate the optimal revenue?
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A Full Proof of Lemma 17

Recall the definition of body V (p(m)
1 , . . . , p

(m)
r ) in (11). By the definition of SJA in (10), the

volume of this body must be equal to rk. Then, as we discussed in the proof sketch of Lemma 17
in Section 6.2, this translates to its deficiency being zero:

δ 1
m+1

(V (p(m)
1 , . . . , p(m)

r )) = 0 for all r ≤ m. (48)

Before giving the formal proof of Lemma 17, we will need the following lemma that shows how
the deficiency of any such subdomain of the valuation space is the sum of the deficiencies of its
“critical” subslices of lower dimensions:
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Lemma 19. For any subset of items J ⊆ [m], the k-deficiency of any slice of the subdomain
where at least one of the items in J is sold, when all other items’ bids are fixed to zero, is the
sum of the k-deficiencies of all its sub-slices (U (m)

L |−J :0)|J\L:t, where ∅ 6= L ⊆ J and k = 1
m+1 .

Formally,

δk(V (p(m)
1 , . . . , p

(m)
|J | )) =

∑
∅6=L⊆J

∫
I|J|−|L|

δk

((
U

(m)
L

∣∣∣
−J :0

)∣∣∣∣
J\L:t

)
dt.

Proof. Fix some m. For the sake of clarity we will prove the proposition for J having full
dimension J = m. All the arguments easily carry on to the more general case where J ⊆ [m] if
one takes all valuations of items not in J to be 0, i.e., “slicing” ( · )|−J :0, since they are valid
for any selling mechanism with nonincreasing price differences and SJA specifically; essentially,
the case of |J | = m′ ≤ m directly translates to the case of an m′-dimensional mechanism.

So, it is enough to show that

|V | =
∑

∅6=L⊆[m]

∫
Im−|L|

∣∣∣UL|−L:t

∣∣∣ dt (49)

∣∣∣V[m]\{j}

∣∣∣ =
∑

∅6=L⊆[m]
j∈L

∫
Im−|L|

∣∣∣∣(UL|−L:t

)
[m]\{j}

∣∣∣∣ dt for all j ∈ [m], (50)

where for simplicity we have denoted the space V (p1, . . . , pm) where mechanism allocates at
least one item with V . Equation (49) is a result of the fact that V can be decomposed as
V =

∑
∅6=L⊆[m] UL and every allocation subspace UL is isomorphic to the disjoint union of all

its slices UL|−L:t. In a similar way, to prove that (50) holds, it is enough to show that for some
fixed j ∈ [m], the projection V[m]\{j} can be covered by the union of all the projections of the
subspaces UL with respect to coordinate j and that all these projections (UL)[m]\{j} are disjoint
almost everywhere, i.e., they can only intersect in a set of measure zero.

For the former, let x−j ∈ V[m]\{j}. Then (x−j , 1) ∈ V (by only increasing the components
of a valuation profile, items that were sold to the buyer are still going to be sold). So, there
is a nonempty set of items L ⊆ [m] such that (x−j , 1) ∈ UL and j ∈ L (item j is sold since
xj = 1 ≥ p1), meaning that indeed x−j ∈ (UL)[m]\{j} with j ∈ L. For the latter, consider distinct
sets L,L′ ⊆ [m] with j belonging to both L and L′, and let a valuation profile x ∈ UL ∩ UL′ .
Then, by the characterization in Lemma 16 it must be that∑

l∈L′\L
xl ≥ p|L′| − p|L′|−|L′\L| and

∑
l∈L′\L

xl ≤ p|L|+|L′\L| − p|L|,

the first inequality being from the fact that x ∈ UL′ and the second from x ∈ UL, taking into
consideration that L′ \ L ⊆ L′ and L′ \ L 6⊆ L. As a result, the sum

∑
l∈L′\L xl can range at

most over only a single value, namely p|L′| − p|L′|−|L′\L| = p|L|+|L′\L| − p|L| (and only if these
two values are of course equal), otherwise by merging these two inequalities together we would
have gotten that

p|L′| − p|L′|−|L′\L| < p|L|+|L′\L| − p|L|,

which contradicts the nonincreasing payment differences property, since both differences are
between payments that differ at exactly |L′ \ L| “steps” but |L|+ |L′ \ L| ≥ |L′|.

Lemma (Lemma 17). Every slice U
(m)
J

∣∣∣
−J :t

of SJA has zero k-deficiency, where k = 1
m+1 .

Proof. Fix some m and let k = 1/(m + 1). We use induction on the cardinality of J . At the
base of the induction |J | = 1, and due to symmetry it is enough to prove the proposition for
slices of the form U{1}

∣∣∣
[2...m]:t

. By (34) this is equal to the slice U{1}

∣∣∣
[2...m]:0m−1

, which is the

single-dimensional interval [p1, 1], thus having k-deficiency 1− p1 − 1
m+1 · 1 = m

m+1 − p1 = 0.
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For the inductive step, fix some r ≤ m and assume the proposition holds for all J ⊆ [m] with
|J | ≤ r − 1. We will show that it is true also for |J | = r. Again, due to symmetry, it is enough
to prove that the k-deficiency of slice U[r]

∣∣∣
[r+1...m]:0m−r

is zero (taking into consideration (34)).
By Lemma 19 we deduce that the subdomain where at least one of items [r] is sold, given that
the remaining [r + 1...m] bids are fixed to zero, has

δk(V (p1, . . . , pr)) =
∑

∅6=L⊆[r]

∫
Ir−|L|

δk

((
UL|[r+1...m]:0

)∣∣∣
[r]\L:t

)
dt

= δk

(
U[r]

∣∣∣
[r+1...m]:0

)
+

∑
∅6=L⊆[r]
|L|≤r−1

∫
Ir−|L|

δk
(
UL|[m]\L:(t,0)

)
dt

= δk

(
U[r]

∣∣∣
[r+1...m]:0

)
,

by the induction hypothesis. But from the definition of SJA, and in particular (48), we have
that δk(V (p1, . . . , pr)) = 0, which concludes the proof.

B Convexity and Duality

In this section we discuss the convexity constraint of the utility functions. For clarity, we focus
on the simple case of a single bidder and a single item. We show that the convexity constraint is
not necessary for regular8 distributions. And in the opposite direction, we exhibit a nonregular
distribution for which the convexity constraint cannot be dropped without affecting optimality.

The primal Program (4) (taking into consideration (5)) for this case is

sup
u

u(H)Hf(H)− u(L)Lf(L)−
∫ H

L
u(x)(f(x) + (xf(x))′) dx

subject to

u′(x) ≤ 1 (z(x))
u′(x) ≥ 0 (s(x))
u′′(x) ≥ 0 (w(x))
u(x) ≥ 0

Notice that there is no reason to include u(L) = 0 since this holds for the optimal solution;
that is because if u(x) and u(x) − c are both feasible solutions and c is a positive constant,
then the corresponding objectives differ by cHf(H) − cLf(L) −

∫H
L c(f(x) + (xf(x))′) dx =

−c(H · F (H)− L · F (L)) < 0; this shows that the optimal solution has u(x) = 0 for some x.
In our treatment of the subject in the main text of the paper, we dropped the constraints

labelled by the dual variables w(x) and for the most part we also dropped the ones corresponding
to s(x). We did this to keep the primal and dual systems simple. More importantly, there is a
strong reason for ignoring the constraints corresponding to w(x) for multi-parameter domains:
the convexity constraints ∇2u(x) � 0 (that is, the Hessian of u being positive semidefinite) are
not linear in u (unlike the one-dimensional case, in which the constraint u′′(x) ≥ 0 is linear in
u).

In the rest of this subsection, we investigate when the simplified systems are optimal. We
first drop the constraints corresponding to convexity to get the dual

inf
z,s

∫ H

L
z(x) dx

8A distribution is called regular when x− 1−F (x)
f(x) is nondecreasing.
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subject to

z′(x)− s′(x) ≤ f(x) + (xf(x))′ (u(x))
z(H)− s(H) ≥ Hf(H) (u(H))
z(L)− s(L) ≤ Lf(L) (u(L))
z(x), s(x) ≥ 0.

Lemma 20. For regular distributions, the above primal and dual programs give the optimal
value.

Proof. We have three linear programs here: the original primal program, the relaxed primal
program in which we dropped the constraints labeled w(x), and the dual program. The values
of the three programs are clearly in a nondecreasing order, due to relaxation and weak duality.

Therefore, it suffices to give a feasible dual solution which achieves the same value with the
original primal problem. From Myerson [26], we know that the original primal program has
value

∫H
L max(0, ϕ(x))f(x) dx, where ϕ(x) = x− 1−F (x)

f(x) is the virtual value function. Since we
consider regular distributions, ϕ(x) is nondecreasing. We define the following dual solution:

z(x) = max(0, ϕ(x))f(x)
s(x) = −min(0, ϕ(x))f(x).

We first show that this constitutes a feasible dual solution. Clearly z(x) and s(x) are nonnegative
and z(x)− s(x) = ϕ(x)f(x). This gives,

z′(x)− s′(x) = (ϕ(x)f(x))′ = f(x) + (xf(x))′

z(H)− s(H) = ϕ(H)f(H) = Hf(H)
z(L)− s(L) = ϕ(L)f(L) = Lf(L)− 1 ≤ Lf(L),

which shows that it is a feasible dual solution. The lemma follows by observing that the dual
objective is

∫H
L z(x) dx =

∫H
L max(0, ϕ(x))f(x) dx, equal to the value obtained by Myerson’s

optimal mechanism.

We now exhibit a (nonregular) distribution for which the relaxed primal and the dual give
suboptimal solutions. Consider the probability distribution with cdf

F (x) = 1− (1− x)(1 + x(2.7x− 2.9)) = x(2.7x2 − 5.6x+ 3.9),

over the unit interval I. Distribution F is drawn on the left part of Fig. 6; it is not regular and
its revenue function R(x) = x(1 − F (x)) is not concave. The revenue curve is shown on the
right part of the figure. The points x0, x2, and x3 are extrema; the point x1 induces the same
revenue with x3.

Figure 7a shows the optimal solutions. The optimal primal solution is u(x) = max(0, x −
x0) and corresponds to the deterministic mechanism with reserve price x0. The figure also
shows z(x) of the corresponding dual solution. This was computed by taking the dual program
including the w(x) constraints corresponding to convexity; showing how we computed this z(x)
is beyond the scope of this appendix note and we only provide it so that the reader can compare
it with the relaxed solution in the right part of the figure.

Figure 7b shows the optimal solutions for the relaxed primal program and its dual. The
dual solution has z(x) = max(0, ϕ(x))f(x) and s(x) = −min(0, ϕ(x))f(x). As it was shown
in the proof of the above lemma, this is a feasible dual solution. It corresponds to the primal
solution shown in the figure.
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Figure 6: The probability distribution in (a) is not regular and does not have concave revenue curve, i.e.,
F (x) + xf(x)− 1 is not monotone (increasing). Its revenue curve is shown in (b). The points x0, x2, and x3 are
extrema; the point x1 has the same revenue with x3.

The value of the dual solution is∫ 1

0
z(x) dx =

∫ x2

x0
−R′(x) dx+

∫ 1

x3
−R′(x) dx = R(x0)−R(x2)+R(x3)−R(1) = R(x0)−R(x2)+R(x3).

It is straightforward to verify that the indicated primal solution gives the same value, which
shows that they are both optimal. However, the primal solution is not convex. Furthermore,
its value R(x0) − R(x2) + R(x3) is strictly higher than the value R(x0) of the valid optimal
solution, because R(x3) > R(x2). Therefore the convexity constraint is essential to obtain the
optimal solution.

C Duality for Unbounded Domains

As we mentioned in the presentation of the duality framework in Section 3, for it to make sense
as it is we need the integrals in the basic transformation of the primal revenue-maximization
objective in expression (5) to be well-defined. This is definitely the case when we have bounded
domains, i.e., when the upper-boundary Hi,j of each interval Di,j = [Li,j , Hi,j ] is finite: all
integrals in (5) are finite and the integration by parts is valid. This of course includes the
special case of uniform distributions which is the main topic in this paper. We will now discuss
how one can still use this duality framework in cases where the domain D is not bounded.

For the sake of clarity, let’s assume for the remaining of this section that we have a single
bidder and that item valuations are i.i.d. from some distribution F with pdf f over an interval
[L,H], L ≥ 0. First notice that, even for unbounded domains where H =∞, the critical integral

∫
D−j

Hj u(Hj ,x−j) f(Hj ,x−j) dx−j = Hf(H)
∫

[L,H]m−1
u(H,x−j)

∏
l 6=j

f(xl) dx−j (51)

in (5) may still converge as H →∞. In such a case, the duality framework from Section 3 can be
applied as it is: one just has to take the limit of H →∞ wherever H appears, and in particular
the Weak Duality Lemma 1 is still valid if one replaces condition zj(H,x−j) ≥ Hf(H,x−j) by
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Figure 7: Figure (a) shows the optimal solutions for the distribution of Fig. 6. The function z(x) is part of the
optimal dual solution when we include the convexity constraint. Figure (b) shows the optimal solutions when we
drop the convexity constraint.

its natural limiting version of

lim
H→∞

zj(H,x−j)−Hf(H)
∏
l 6=j

f(xl)

 ≥ 0.

For example, a sufficient condition for distributions with unbounded support to still induce
bounded values in (51) is to have finite expectation. This is a rather natural assumption to
make and is standard for example in the works of Myerson [26] and Krishna [19]. To see
why (51) is finite, it can be rewritten as Hf(H)Ex−j∼Fm−1 [u(H,x−j)] and so, due to the
derivatives constraint ∇u(x) ≤ 1m, it is upper-bounded by Hf(H)Ex−j∼Fm−1

[
H +

∑
l 6=j xj

]
=

H2f(H)+(m−1)Hf(H)E[X]. Now, if we take into consideration that any bounded-expectation
distribution must have f(x) = o(1/x2) since E[X] =

∫
xf(x) dx must converge, then it is easy

to see that this expression converges as H →∞, and in fact vanishes to zero.
However, this might not be true for distributions with infinite expectation, for example the

equal revenue distribution where f(x) = 1/x2 over the interval [1,∞). In such a case, we can
follow a different path in order to use our duality framework. One can take the truncated version
of the distribution within a finite interval, i.e., consider the distribution Fb(x) ≡ 1

F (b)F (x) over
the interval [L, b] for any b ≥ L, apply the duality theory framework in this finite case, and then
study the behavior as b→∞. As the next Theorem 5 proves, this process will be without loss.

In the following we will use the notation Rev(F ) from [15] to denote the optimal revenue
when item valuations follow the joint distribution F . One last remark before stating the theorem
is that, whenever one deals with a specific case of the optimal revenue problem, he has to make
sure that it is well-defined, i.e., that Rev(F ) < ∞ for the particular distributional priors
F . This might seem obvious, but let us note here that it is not the case for any probability
distribution. For example, if we consider i.i.d. valuations from the Pareto distribution f(x) =
1
2x
−3/2 , x ∈ [1,∞), the expected (Myerson) revenue by selling a single item at a price of t is

t(1−F (t)) = t(1−1+t−1/2) = t1/2 which tends to infinity. Some simple sufficient conditions for
bounded optimal revenue in the i.i.d. case where the valuations come from a product distribution
Fm are the bounded expectation of the distribution F , since by individual rationality (IR) one
trivially gets the bound Rev(Fm) ≤ mE[X], and the bounded Myerson revenue Rev(F ) for the
single-item case, since from the work of Hart and Nisan [15] we know that there exists a constant
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c > 0 such that c
log2 m

Rev(Fm) ≤ SRev(Fm), where SRev denotes the optimal revenue by

selling the items independently, so we get Rev(Fm) ≤ m log2 m
c Rev(F ). The former condition

is stronger. For example, the equal revenue distribution does not have finite expectation but it
does induce a finite Myerson revenue of 1.

Theorem 5. Let F be a probability distribution over [a,∞), a ≥ 0, such that Rev(Fm) <∞.
Then, if Fb denotes the truncation of F in [a, b], b ≥ a, and limb→∞Rev(Fmb ) converges, it
must be that

lim
b→∞

Rev(Fmb ) = Rev(Fm).

Proof. Let u be the utility function of an optimal selling mechanism when valuations are drawn
i.i.d. from F . The restriction of u in [a, b] is a valid utility function for the setting where
valuations are drawn i.i.d. from Fb and also we know that F (x) = F (b)Fb(x) for all x ∈ [a, b].
Combining these we get

Rev(Fm) =
∫

[a,∞)m
x · ∇u(x)− u(x) dFm(x)

=
∫

[a,b]m
x · ∇u(x)− u(x) dFm(x) +

∫
[a,∞)m\[a,b]m

x · ∇u(x)− u(x) dFm(x)

= Fm(b)
∫

[a,b]m
x · ∇u(x)− u(x) dFmb (x) +

∫
[a,∞)m\[a,b]m

x · ∇u(x)− u(x) dFm(x)

≤ Fm(b)Rev(Fmb ) +
∫

[a,∞)m\[a,b]m
x · ∇u(x)− u(x) dFm(x).

Next, for any b ≥ a, let ub be the utility function of an optimal selling mechanism when
valuations are drawn i.i.d. from Fb. This utility function can be extended to a valid utility
function ub over the entire interval [a,∞) in the following way:

ub(x) = ub(γb(x)) + (x− γb(x)) · ∇ub(γb(x)), x ∈ [a,∞)m,

where γb(x) the pointwise minimum of x and (b)m, i.e., is the m-dimensional vector whose j-th
coordinate is min{xj , b}.

Since ub is a convex function with partial derivatives in [0, 1], so is the extended ub. This
means that we immediately get

Fm(b)Rev(Fmb ) ≤ Rev(Fm).

Now the theorem follows from the facts that limb→∞ F
m(b) = 1 and

lim
b→∞

∫
[a,∞)m\[a,b]m

x · ∇u(x)− u(x) dFm(x) = 0.

The last equality is due to the fact that
∫

[a,∞)m x ·∇u(x)−u(x) dFm(x) is bounded by assump-
tion.

D Exact Computation of the Prices for up to 6 Dimensions.

To decongest notation, we will drop the subscript (m) because it will be clear in which dimension
we are working in and we denote v(α1, . . . , αr) = |V (α1, . . . , αr)| where this body is defined
in (11) and, as we mentioned after Definition 1, we can use the equivalent to (10) condition

v(p1, . . . , pr) = rk

to determine the SJA payments. Also, we set k = 1
m+1 throughout this section.
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• r = 1 and any m: As we said before, it is easy to see that for any dimension m,

v(p1) = 1− p1. (52)

From this, and applying the transformation (13), we solve

v(p1) = 1 · k ⇐⇒ 1− (1− µ1k) = k ⇐⇒ µ1 = 1.

So
p

(m)
1 = m

m+ 1 and µ1 = 1.

For higher orders r > 1 we can utilize the recursive way of computing the expressions for the
volumes vr, given by formula (12) and the initial condition (52).

• r = 2 and any m: Using the recursive formula (12) and (52) we can compute that for every
p2 such that 0 ≤ p2 − p1 ≤ p1 it would be

v(p1, p2) =
∫ p2−p1

0
v(p1) dt+

∫ p1

p2−p1
v(p2 − t) dt+

∫ 1

p1
dt = p2

1 + p2
2

2 − 2p1p2 + 1

and by applying the transformation (13) and plugging in the already computed value
µ1 = 1 from the previous order r = 1, we get

v(1− µ1k, 2− µ2k) = 2k ⇐⇒ µ2
2 − 4µ2 + 2 = 0 (53)

If we pick the largest root of this equation µ2 = 2 +
√

2 we can see that indeed condition
0 ≤ p2 − p1 ≤ p1 is respected (it is equivalent to 0 ≤ k ≤ 1/(1 +

√
2) which holds since

k ≤ 1
r+1 and r ≥ 2), so we have computed that for any m

p
(m)
2 = 2m−

√
2

m+ 1 and µ2 = 2 +
√

2 ≈ 3.41421.

• r = 3 and any m: In the same way, using again recursive formula (12) and the volume
of the previous order r = 2 from (53) we can compute that for every p3 such that 0 ≤
p3 − p2 ≤ p2 − p1 it would be

v(p1, p2, p3) =
∫ p3−p2

0
v(p1, p2) dt+

∫ p2−p1

p3−p2
v(p1, p3− t) dt+

∫ p1

p2−p1
v(p2− t, p3− t) dt+

∫ 1

p1
dt

= 1
6
(
−3p3

1 + 9p2
1p3 + 9p1

(
2p2

2 − 4p2p3 + p2
3

)
− 6p3

2 + 9p2
2p3 − p3

3 + 6
)

(54)

and by applying the transformation (13) and plugging in the already computed values for
µ1 = 1 and µ2 = 2 +

√
2 from the previous orders, we get

v(1− µ1k, 2− µ2k, 3− µ3k) = 3k ⇐⇒ µ3
3 − 9µ2

3 + 9µ3 + 12
√

2 + 15 = 0 (55)

If we pick the largest again root of this equation

µ3 =
3
√

6− 6
√

2 + 6i
√

3 + 2
√

2 + 62/3

3
√

1−
√

2 + i
√

3 + 2
√

2
+ 3 ≈ 7.09717

we can see that indeed condition 0 ≤ p3 − p2 ≤ p2 − p1 is respected (it is equivalent to
0 ≤ k ≤ 0.271521 which holds since k ≤ 1

r+1 and r ≥ 3), so we have computed that for
any m

p
(m)
3 ≈ 3− 7.09717

m+ 1 and µ3 ≈ 7.09717.
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• r = 4 and any m: Continuing up the same way, we compute that for every p4 such that
0 ≤ p4 − p3 ≤ p3 − p2 it is

v(p1, p2, p3, p4) =
∫ p4−p3

0
v(p1, p2, p3) dt+

∫ p3−p2

p4−p3
v(p1, p2, p4 − t) dt

+
∫ p2−p1

p3−p2
v(p1, p3 − t, p4 − t) dt+

∫ p1

p2−p1
v(p2 − t, p3 − t, p4 − t) dt+

∫ 1

p1
dt

which equals

1
24
(
4p4

1 − 16p3
1p4 − 24p2

1

(
3p2

3 − 6p3p4 + 2p2
4

)
− 16p1

(
3p3

2 − 9p2
2p4 − 9p2

(
2p2

3 − 4p3p4 + p2
4

)
+6p3

3 − 9p2
3p4 + p3

4

)
+ 18p4

2 − 48p3
2p4 − 36p2

2

(
2p2

3 − 4p3p4 + p2
4

)
+ 12p4

3 − 16p3
3p4 + p4

4 + 24
)
.

(56)

By applying the transformation (13), plugging in the already computed values for µ1 = 1
and µ2 = 2 +

√
2 and using the fact that µ3 is the root of Equation (55), we get that

equation v(1− µ1k, 2− µ2k, 3− µ3k, 4− µ4k) = 4k is equivalent to

µ4
4 − 16µ3

4 + 24µ2
4 + 96

√
2µ4 + 128µ4 + 72µ2

3 − 144
√

2µ3 − 288µ3 + 48
√

2 + 88 = 0. (57)

If we pick the largest again root µ4 ≈ 11.9972 of this equation we can see that indeed
condition 0 ≤ p4 − p3 ≤ p3 − p2 is respected (it is equivalent to 0 ≤ k ≤ 0.204082 which
holds since k ≤ 1

r+1 and r ≥ 4), so we have computed that for any m

p
(m)
4 ≈ 4− 11.9972

m+ 1 and µ4 ≈ 11.9972.

• r = 5 and m = 5: At this point we need to modify a little bit our procedure of computing
the volumes in the usual recursive way, and consider the case where the new p5 price is
such that p3 ≤ p5 ≤ p4 instead of p5 ≥ p4 (and in fact the even stronger condition that
p5 − p4 ≤ p4 − p3). This is again a straightforward calculation, since as we argued before,
v(p1, p2, p3, p4, p5) = v(p1, p2, p3, p5, p5) and so

v(p1, p2, p3, p4, p5) =
∫ p5−p3

0
v(p1, p2, p3, p5 − t) dt+

∫ p3−p2

p5−p3
v(p1, p2, p5 − t, p5 − t) dt

+
∫ p2−p1

p3−p2
v(p1, p3 − t, p5 − t, p5 − t) dt+

∫ p1

p2−p1
v(p2 − t, p3 − t, p5 − t, p5 − t) dt+

∫ 1

p1
dt

which equals

1
120

(
−5p5

1 + 25p4
1p5 − 50p3

1p
2
5 + 50p2

1

(
6p3

3 − 18p2
3p5 + 18p3p

2
5 − 5p3

5

)
+ 25p1

(
4p4

2 − 16p3
2p5

+24p2
2p

2
5 − 16p2

(
3p3

3 − 9p2
3p5 + 9p3p

2
5 − 2p3

5

)
+ 18p4

3 − 48p3
3p5 + 36p2

3p
2
5 − 3p4

5

)
− 2

(
20p5

2

−75p4
2p5 + 100p3

2p
2
5 − 50p2

2

(
3p3

3 − 9p2
3p5 + 9p3p

2
5 − 2p3

5

)
+ 30p5

3 − 75p4
3p5 + 50p3

3p
2
5 − 2p5

5 − 60
))
(58)

By applying the transformation (13), plugging in the already computed values for µ1 = 1
and µ2 = 2 +

√
2 and using the fact that µ3 is the root of Equation (55), we get that

equation v(1− µ1k, 2− µ2k, 3− µ3k, 5− µ5k, 5− µ5k) = 5k is equivalent to

4µ5
5−225µ4

5 +4350µ3
5 +800

√
2µ2

5−34950µ2
5 +900µ5µ

2
3−1800

√
2µ5µ3−3600µ5µ3−14600

√
2µ5

+ 121175µ5 + 720
√

2µ2
3 − 14220µ2

3 + 22680
√

2µ3 + 49680µ3 + 41080
√

2− 161215 = 0
(59)
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If we pick the second largest root µ5 ≈ 18.0865 of this equation we can see that indeed
condition p3 ≤ p5 ≤ p4 is respected (it is equivalent to 0.16422 ≤ k ≤ 0.181994 which
holds since k = 1

m+1 and m = 5), so we have computed that for m = 5

p
(5)
5 ≈ 5− 18.0865

6 = 1.98558 and µ
(5)
5 ≈ 18.0865.

• r = 5 and any m ≥ 6: We can compute that for every p5 such that 0 ≤ p5 − p4 ≤ p4 − p3
it is

v(p1, p2, p3, p4, p5) =
∫ p5−p4

0
v(p1, p2, p3, p4) dt+

∫ p4−p3

p5−p4
v(p1, p2, p3, p5 − t) dt

+
∫ p3−p2

p4−p3
v(p1, p2, p4 − t, p5 − t) dt+

∫ p2−p1

p3−p2
v(p1, p3 − t, p4 − t, p5 − t) dt

+
∫ p1

p2−p1
v(p2 − t, p3 − t, p4 − t, p5 − t) dt+

∫ 1

p1
dt

which equals

1
120

(
−5p5

1 + 25p4
1p5 + 50p3

1

(
4p2

4 − 8p4p5 + 3p2
5

)
+ 50p2

1

(
6p3

3 − 18p2
3p5 − 18p3

(
2p2

4

−4p4p5 + p2
5

)
+ 16p3

4 − 24p2
4p5 + 3p3

5

)
+ 25p1

(
4p4

2 − 16p3
2p5 − 24p2

2

(
3p2

4 − 6p4p5 + 2p2
5

)
−16p2

(
3p3

3 − 9p2
3p5 − 9p3

(
2p2

4 − 4p4p5 + p2
5

)
+ 6p3

4 − 9p2
4p5 + p3

5

)
+ 18p4

3 − 48p3
3p5

−36p2
3

(
2p2

4 − 4p4p5 + p2
5

)
+ 12p4

4 − 16p3
4p5 + p4

5

)
− 40p5

2 + 150p4
2p5 + 200p3

2

(
3p2

4

−6p4p5 + 2p2
5

)
+ 100p2

2

(
3p3

3 − 9p2
3p5 − 9p3

(
2p2

4 − 4p4p5 + p2
5

)
+ 6p3

4 − 9p2
4p5 + p3

5

)
−60p5

3 + 150p4
3p5 + 200p3

3p
2
4 − 400p3

3p4p5 + 100p3
3p

2
5 − 20p5

4 + 25p4
4p5 − p5

5 + 120
)

(60)

By applying the transformation (13), plugging in the already computed values for µ1 = 1
and µ2 = 2 +

√
2 and using the fact that µ3 is the root of Equation (55) and µ4 is the

root of (57), we get that equation v(1 − µ1k, 2 − µ2k, 3 − µ3k, 4 − µ4k, 5 − µ5k) = 5k is
equivalent to

µ5
5 − 25µ4

5 + 50µ3
5 − 100µ2

5µ
3
3 + 900µ2

5µ
2
3 − 900µ2

5µ3 − 800
√

2µ2
5 − 950µ2

5 − 150µ5µ
4
3 + 400µ5µ

3
3µ4

+ 1200µ5µ
3
3− 3600µ5µ

2
3µ4− 900µ5µ

2
3 + 3600µ5µ3µ4− 25µ5µ

4
4 + 400µ5µ

3
4− 600µ5µ

2
4 + 2400

√
2µ5µ4

+2800µ5µ4−1600
√

2µ5−2225µ5+60µ5
3−150µ4

3−200µ3
3µ

2
4−400µ3

3µ4−1900µ3
3+1800µ2

3µ
2
4+3600µ2

3µ4

−1800µ3µ
2
4−3600µ3µ4 +1800µ3 +20µ5

4−275µ4
4−1200

√
2µ2

4−800µ2
4−2400

√
2µ4−2800µ4 +8960

√
2

+ 12185 = 0. (61)

If we pick the largest again (real) root µ5 ≈ 18.0843 of this equation we can see that
indeed condition 0 ≤ p5 − p4 ≤ p4 − p3 is respected (it is equivalent to 0 ≤ k ≤ 0.16428
which holds since k ≤ 1

m+1 and m ≥ 6), so we have computed that for any m ≥ 6

p
(m)
5 ≈ 5− 18.0843

m+ 1 and µ
(m)
5 ≈ 18.0843.

• r = 6 and m = 6: If the new p6 price is such that p4 ≤ p6 ≤ p5, similar to the case of
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r = m = 5, we have that v(p1, p2, p3, p4, p5, p6) = v(p1, p2, p3, p4, p6, p6) and so

v(p1, p2, p3, p4, p5, p6) =
∫ p6−p4

0
v(p1, p2, p3, p4, p6− t) dt+

∫ p4−p3

p6−p4
v(p1, p2, p3, p5− t, p5− t) dt

+
∫ p3−p2

p4−p3
v(p1, p2, p4 − t, p6 − t, p6 − t) dt+

∫ p2−p1

p3−p2
v(p1, p3 − t, p4 − t, p6 − t, p6 − t) dt

+
∫ p1

p2−p1
v(p2 − t, p3 − t, p4 − t, p6 − t, p6 − t) dt+

∫ 1

p1
dt

which equals

1
720

(
6p6

1 − 36p5
1p6 + 90p4

1p
2
6 − 120p3

1

(
10p3

4 − 30p2
4p6 + 30p4p

2
6 − 9p3

6

)
− 90p2

1

(
10p4

3 − 40p3
3p6

+60p2
3p

2
6 − 40p3

(
3p3

4 − 9p2
4p6 + 9p4p

2
6 − 2p3

6

)
+ 60p4

4 − 160p3
4p6 + 120p2

4p
2
6 − 11p4

6

)
− 36p1

(
5p5

2

−25p4
2p6 + 50p3

2p
2
6 − 50p2

2

(
6p3

4 − 18p2
4p6 + 18p4p

2
6 − 5p3

6

)
− 25p2

(
4p4

3 − 16p3
3p6 + 24p2

3p
2
6

−16p3
(
3p3

4 − 9p2
4p6 + 9p4p

2
6 − 2p3

6

)
+ 18p4

4 − 48p3
4p6 + 36p2

4p
2
6 − 3p4

6

)
+ 2

(
20p5

3 − 75p4
3p6

+100p3
3p

2
6 − 50p2

3

(
3p3

4 − 9p2
4p6 + 9p4p

2
6 − 2p3

6

)
+ 30p5

4 − 75p4
4p6 + 50p3

4p
2
6 − 2p5

6

))
+ 5

(
15p6

2

−72p5
2p6 + 135p4

2p
2
6 − 120p3

2

(
6p3

4 − 18p2
4p6 + 18p4p

2
6 − 5p3

6

)
− 45p2

2

(
4p4

3 − 16p3
3p6 + 24p2

3p
2
6−

16p3
(
3p3

4 − 9p2
4p6 + 9p4p

2
6 − 2p3

6

)
+ 18p4

4 − 48p3
4p6 + 36p2

4p
2
6 − 3p4

6

)
+ 40p6

3 − 144p5
3p6 + 180p4

3p
2
6

−80p3
3

(
3p3

4 − 9p2
4p6 + 9p4p

2
6 − 2p3

6

)
+ 30p6

4 − 72p5
4p6 + 45p4

4p
2
6 − p6

6 + 144
))

(62)

By applying the transformation (13), plugging in the already computed values for µ1 = 1
and µ2 = 2+

√
2 and using the fact that µ3 is the root of Equation (55) and µ4 is the root

of (57) , we get that equation v(1− µ1k, 2− µ2k, 3− µ3k, 4− µ4k, 6− µ6k, 6− µ6k) = 6k
is equivalent to

µ6
6−36µ5

6 +270µ4
6−160µ3

6µ
3
3 +1440µ3

6µ
2
3−1440µ3

6µ3−1200
√

2µ3
6−2160µ3

6−180µ2
6µ

4
3 +720µ2

6µ
3
3µ4

+ 2160µ2
6µ

3
3 − 6480µ2

6µ
2
3µ4 − 7560µ2

6µ
2
3 + 6480µ2

6µ3µ4 + 6480µ2
6µ3 − 45µ2

6µ
4
4 + 720µ2

6µ
3
4 − 1080µ2

6µ
2
4

+ 4320
√

2µ2
6µ4 + 5040µ2

6µ4 + 4320
√

2µ2
6 + 5760µ2

6 + 144µ6µ
5
3− 720µ6µ

3
3µ

2
4− 2880µ6µ

3
3µ4− 8640µ6µ

3
3

+ 6480µ6µ
2
3µ

2
4 + 25920µ6µ

2
3µ4 + 12960µ6µ

2
3 − 6480µ6µ3µ

2
4 − 25920µ6µ3µ4 − 6480µ6µ3 + 72µ6µ

5
4

−900µ6µ
4
4−1440µ6µ

3
4−4320

√
2µ6µ

2
4−720µ6µ

2
4−17280

√
2µ6µ4−20160µ6µ4 +8928

√
2µ6 +13104µ6

− 40µ6
3 − 144µ5

3 + 1440µ4
3 + 240µ3

3µ
3
4 + 1440µ3

3µ
2
4 + 2880µ3

3µ4 + 10560µ3
3 − 2160µ2

3µ
3
4 − 12960µ2

3µ
2
4

− 25920µ2
3µ4 − 7560µ2

3 + 2160µ3µ
3
4 + 12960µ3µ

2
4 + 25920µ3µ4 − 2160µ3 − 30µ6

4 + 288µ5
4 + 1440µ4

4

+ 1440
√

2µ3
4 + 1680µ3

4 + 8640
√

2µ2
4 + 5760µ2

4 + 17280
√

2µ4 + 20160µ4 − 42048
√

2− 58344 = 0
(63)

If we pick the second largest root µ6 ≈ 25.3585 of this equation we can see that indeed
condition p4 ≤ p6 ≤ p5 is respected (it is equivalent to 0.137473 ≤ k ≤ 0.149686 which
holds since k = 1

m+1 and m = 6), so we have computed that for m = 6

p
(6)
6 ≈ 6− 25.3585

7 = 2.37736 and µ
(6)
6 ≈ 25.3585.
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