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ABSTRACT
A key question that arises in rigorous analysis of cyberphys-
ical systems under attack involves establishing whether or
not the attacked system deviates significantly from the ideal
allowed behavior. This is the problem of deciding whether or
not the ideal system is an abstraction of the attacked system.
A quantitative variation of this question can capture how
much the attacked system deviates from the ideal. Thus, al-
gorithms for deciding abstraction relations can help measure
the effect of attacks on cyberphysical systems and to develop
attack detection strategies. In this paper, we present a de-
cision procedure for proving that one nonlinear dynamical
system is a quantitative abstraction of another. Directly
computing the reach sets of these nonlinear systems are un-
decidable in general and reach set over-approximations do
not give a direct way for proving abstraction. Our proce-
dure uses (possibly inaccurate) numerical simulations and a
model annotation to compute tight approximations of the
observable behaviors of the system and then uses these ap-
proximations to decide on abstraction. We show that the
procedure is sound and that it is guaranteed to terminate
under reasonable robustness assumptions.

Keywords
cyberphysical systems, adversary, simulation, verification,
abstraction.

1. INTRODUCTION
Cyberphysical systems can take the form of anti-lock brak-

ing systems (ABS) in cars, process control systems in fac-
tories implemented over SCADA, all the way to city and
nation-scale networked control systems for traffic, water, and
power. Security breaches in cyberphysical systems can be
disastrous. Aside from the obvious social motivation, an in-
quiry into the security of cyberphysical systems is also pro-
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pelled by new scientific questions about architechting and
understanding computing systems that control the physical
world. As these computing systems are embedded in the
physical world (a) they require preservation of dynamical
properties that cannot be characterized purely in terms of
software state, and (b) they can be breached in ways that go
beyond vulnerabilities that are exploited in stand alone com-
puting systems. While the dynamical operation remains vul-
nerable to full-fledged attacks on its computing and the com-
munication components—for instance, a denial-of-service-
attack on the computers controlling the power grid can take
it down—it is also vulnerable to more elusive dynamics-
aware attacks that subtly change local behaviors in ways
that lead to instability, unsafe behavior, and a loss of avail-
ability of the system. In this paper, we present new results
that contribute towards our longer term goal of developing a
framework for analyzing security properties of cyberphysical
under different classes of attacks.

Role of Models and Abstractions. Design of control soft-
ware begins with a mathematical model for the underlying
physical process [21, 24]. which is usually described in the
language of ordinary differential equations (ODEs). Any
meaningful notion of attack, safety, resilience, availability,
and performance, therefore, has to be expressed in this lan-
guage. Indeed, our analysis framework is designed for ana-
lyzing models of cyberphysical systems that combine these
ODEs with automaton models that are used for representing
computations.

A model B is said to be an abstraction of another model
A if every observable behavior of A is also an observable
behavior of B [9, 20]. The abstract model B could capture
desired properties. Here are two example properties: “Alarm
must go off 6 seconds before car gets within 4m of obstacle
even if the position sensors are jammed” (safety), “Voltage
remains within the range B and eventually converges to the
smaller range B′” (invariance and progress). . Establishing
that it is an abstraction of A implies that all behaviors of A
satisfy these properties. This then enables us to substitute
A with B when we are analyzing a lager system (containing
A), in which only these properties of A are relevant. The
abstract model B has more behaviors and is typically sim-
pler to analyze than the concrete model A. In some extreme
cases, the abstract model lends itself to completely algorith-
mic analysis even though the concrete model does not (see,
for example [2,27,29]). This notion of abstraction is related
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to the notions of bisimilarity, equivalence, and implementa-
tion used elsewhere in the literature. Roughly, if A and B
are abstractions of each other then sometimes they are said
to be observationally equivalent.

For models with continuous dynamics, it is makes sense
to relax the notion of abstraction using a metric on the ob-
servable behaviors [14,26]. B is said to be a c-abstraction of
A, for some positive constant c, if every observable behav-
ior of A is within c distance of some observable behavior of
B, where the distance is measured by some metric on the
observables. In this paper we also look at time-bounded ver-
sions of abstraction. B is a c-abstraction of A up to time T ,
if every observable behavior of A of duration T is within c
distance of some observable behavior of B (also of duration
T ).

We can state properties about cyberphysical systems un-
der attack with this relaxed notion. Let B be the nominal
model (without any attack) and A1 be a model of the system
under attack 1. If we can prove that B is a c-abstraction
of A1 then it follows that none of the observable behaviors
deviate more that c under attack 1. This gives a systematic
way of classifying attacks with respect to their impact on
deviation from ideal behavior. If B is not a c-abstraction of
A2—the model of the system under attack 2—then it fol-
lows that attack 2 is worse than attack 1 in the sense that it
causes a larger deviation from the ideal. A c-abstraction re-
lation can also be used for reasoning about attack detectabil-
ity and distinguishability. If B is a c-abstraction of A1 but
our attack sensing mechanisms can only detect deviations
in observable behavior from B that are greater than c, then
attack 1 will go undetected. If B is also a c-abstraction
of A2, then the same detection mechanism will also fail to
distinguish the two attacks.

The above discussion illustrates that many questions re-
lated to security and attacks can be formulated in terms
of whether or not a model B is an (relaxed) abstraction
of another model A. A building-block for our analytical
framework is a semi-decision procedure for answering pre-
cisely this type of queries. The procedure is sound, that
is, whenever it terminates with an answer (c-abstraction or
not) the answer is correct. It is a semi-decision procedure
because it is guaranteed to terminate, whenever the pair of
models satisfy or violate the query robustly. Specifically, our
contributions are:

(a) We formalize this quantitative notion of abstraction for
models of dynamical systems as the maximum distance
from any trace of the concrete model A1 to some trace
of the abstract model A2.

(b) For nonlinear ODE models, we present a semi-decision
procedure for deciding ifA2 is a c-abstraction ofA2 up to
a time bound, for any positive constant c. We show that
the procedure is sound and it is guaranteed to terminate
if either A2 is at least a c

2
-abstraction of A1 or if there

exists a trace of A1 that is more than 2c distance away
from all traces of A2.

(c) This semi-decision procedure and some of our earlier
works for reachability [13] use representations of reach
sets of models. One of the contributions of this paper
is the formalization of a natural data structure called
pipes to represent simulation traces and reachable sets
and identifying some of its key properties.

(d) We present a procedure for computing over-approximations
of unbounded time reach sets of individual models.

Checking equivalence of two finite state machines—arguably
the simplest class of models—is well-known to be decid-
able. The problem was shown to be decidable for determin-
istic push-down automata in the celebrated paper [28]. The
same problem becomes undecidable for finite state transduc-
ers [16] and nondeterministic pushdown automata. For in-
finite state models that naturally capture computation and
physics, such as timed and hybrid automata [1, 20, 29], not
only is equivalence checking undecidable, but so is the con-
ceptually simpler problem of deciding if a single state can
be reached by a given automaton. For models described
by nonlinear ODEs, exactly computing the state reached
from a single initial state at a given time is itself a hard
problem. A sequence of recent results [6, 10, 11, 13, 18, 19]
circumvent these negative results by taking a more prac-
tical view of the reachability problem. Specifically, they
aim to compute over-approximations of the reach set over a
bounded-time horizon. Although some of these procedures
require additional annotations of the models and provide
weaker soundness and completeness guarantees, they point
towards a practical way forward in automatically analyzing
reachability properties of moderately complex cyberphysical
systems. The key characteristic of these approaches is that
they combine static model information (e.g. the differential
equations and the text of the program, and not solutions or
program runs) with dynamic information (e.g., possibly in-
accurate numerical simulations or data from runtime logs),
to compute precise over-approximations of bounded time
reach sets. This static-dynamic analysis approach takes ad-
vantage of both static analysis techniques like propagating
reach sets with dynamically generates information.

This paper takes this static-dynamic analysis approach
to checking abstraction relations. If an over-approximation
of the reach set of A is close the an over-approximation of
the reach set of B this means that every behavior ν of A
is close to some over-approximation of B, but not this does
not imply that u is close to some actual behavior of B. Our
procedure (Algorithm 1) therefore has to take into account
the precision of the over-approximations of A and B in de-
ciding that each behavior of A is indeed close to some (or
far from all) behavior(s) of B. We also present a fixpoint
procedure (Algorithm 2) which uses this static-dynamic ap-
proach to compute unbounded time reach sets. For the sake
of simplifying presentations, in this paper we presented the
results for models of nonlinear dynamical systems, but these
results can be extended to switched systems [22] in a more or
less straightforward fashion. Switched systems can capture
commonly used time-triggered control systems which cover a
large fraction of practical cyberphysical systems. Analogous
extensions for reachability algorithms have been presented
in [13]. The extension to hybrid models which can capture
event-triggered interaction of software and continuous dy-
namics will be presented in a future paper.

1.1 The Science

“I have observed stars of which the light, it can
be proved, must take two million years to reach
the earth.” —Sir William Herschel, British as-
tronomer and telescope builder, having identified
Uranus (1781), the first planet discovered since



antiquity.

This paper presents a piece of mathematical machinery
(the semi-decision procedure) that is needed for rigorous
analysis of cyberphysical systems under different attacks.
This procedure can be seen as a scientific instrument that
enables new types of attack impact measurements. As we
discussed above, abstraction is a central concept in any for-
mal reasoning framework. Abstraction relations in their
quantitative form can be used to bound the distance from
the set of observable behavior of one system to the set of ob-
servable behaviors of another (ideal) system. Thus, abstrac-
tions can give approximate measures of the deviation of an
implementation from an idealized specification. Such mea-
sures can aid in the systematic evaluation of the effects of
an attack and in gaining understanding of different classes of
attacks. In summary, the static-dynamic analysis techniques
and specifically the semi-decision procedure presented in this
paper can be seen as humble measuring instruments, but
ones that could catalyze the science of security for CPS.

2. DYNAMICAL SYSTEMS
In this section, we present the modeling framework and

some technical background used throughout the paper. Some
of the standard notations are left out for brevity. We refer
the reader to the Appendix A for details.

In this paper, we focus on models of dynamical systems
with no inputs. Such models are also called autonomous
or closed. An autonomous dynamical system is specified by
a collection of ordinary differential equations (ODEs), an
output mapping, and a set of initial states.

Definition 1. An (n,m)-dimensional autonomous dynam-
ical system A is a tuple 〈Θ, f, g〉 where

(i) Θ ⊆ Rn is a compact set of initial states; Rn is the
state space and it’s elements are called states.

(ii) f : Rn → Rn is a Lipschitz continuous function called
the dynamic mapping.

(iii) g : Rn → Rm is a Lipschitz continuous function called
the output mapping. The output dimension of the sys-
tem is m.

For a given initial state x ∈ Θ, and a time duration
T ∈ R≥0, a solution (or trajectory) of A is a pair of func-
tions (ξx, νx): a state trajectory ξ : [0, T ] → Rn and an
output trajectory ν : [0, T ]→ Rm, such that (a) ξx satisfies
(a) ξx(0) = x, (b) for any t ∈ [0, T ], the time derivative of
ξx at t satisfies the differential equation:

ξ̇x(t) = f(ξx(t)), (1)

And, (b) at each time instant t ∈ [0, T ], the output trajec-
tory satisfies:

νx(t) = g(ξx(t)). (2)

Under the Lipschitz assumption (iii), the differential equa-
tion (1) admits a unique state trajectory defined by the
initial state x which in turn defines the output trajectory.
When the initial state is clear from context, we will drop the
suffix and write the trajectories as ξ and ν. Given a state
trajectory ξ over [0, T ], the corresponding output trajectory
or trace is defined in the obvious way as ν(t) = g(ξ(t)), for

Figure 1: Reachable states and traces of the dynamical sys-
tem in Example 1.

each t ∈ [0, T ]. The same trace ν, however, may come from
a set of state trajectories. The set of all possible state tra-
jectories and output trajectories of A (from different initial
states in Θ) are denoted by ExecsA and TracesA, respectively.
A state x ∈ Rn is said to be reachable if there exists x′ ∈ Θ
and t ∈ R≥0 such that ξx′(t) = x. The set of all reach-
able states of A is denoted by ReachA. Variants of these
notations are defined in the Appendix A.

Example. We define a (2, 2)-dimensional dynamical sys-
tem. The set of initial states is defined by the rectangle
Θ = [0.9, 0.95] × [1.5, 1.6]. The dynamic mapping is the
nonlinear vector valued function:

f(x1, x2) = [1 + x2y − 2.5x,−x2y + 1.5x].

And the output mapping is the vector valued identity func-
tion g(x1, x2) = [x1, x2]. An over-approximation of the set
of reachable states upto 10 time units (computed using the
algorithm describes in [13]) is shown in Figure 1.

Trace metrics. We define a metric on d the set of traces of
the same duration and dimension. Given two traces ν1, ν2

of duration T and dimension m, we define

d(ν1, ν2) = sup
t∈[0,T ]

|ν1(t)− ν2(t)|.

The distance from a set of traces N1 to another set N2 (with
members of identical duration and dimension) is defined by
the one-sided Hausdorff distance dH from N1 to N2.

Definition 2. Given two autonomous dynamical systems
A1 and A2 of identical output dimensions, a positive con-
stant c > 0 and a time bound T > 0, A2 is said to be c-
abstraction of A1 upto time T , if

dH(TracesA1(T ),TracesA2(T )) ≤ c.

We write this as A1 �c,T A2.

Thus, if A2 is a c-abstraction of A1, then for every output
trace ν1 of A1 there exists another output trace of A2 which
is differs from ν1 at each point in time by at most c. Since,
the definition only bounds the one-sided Hausdorff distance,



every trace of A2 may not have a neighboring trace of A1.
With c = 0, we recover the standard notion of abstraction,
that is, TracesA1 ⊆ TracesA2 . The next set of results follows
immediately from the definitions and triangle inequality.

Proposition 2.1. Let A1, A2 and A3 be dynamical systems
of identical output dimensions and c, c′, T be positive con-
stants.

1. If A1 �c,T A2 then for any c1 ≥ c and T1 ≤ T
A1 �c1,T1 A2.

2. If A1 �c,T A2 and A2 �c′,T A3 then A1 �c+c′,T A3.

The decision problem. The decision problem we solve in
this paper takes as input a pair of autonomous dynamical
systems A1 and A2 with identical output dimensions, an-
notations for these systems (namely, discrepancy functions
which are to be defined in what follows), a constant c and
a time bound T , and decides if A1 �c,T A2. The compu-
tations performed by our algorithm uses pipes to represent
sets of executions and traces. In the next subsection, we
define tubes and their properties.

2.1 Working with Pipes
Pipes are used to represent sets of bounded traces and ex-

ecutions. Syntactically, an n-dimensional pipe is a sequence
of segments

Π = (P0, t0), (P1, t1), . . . , (Pk, tk),

where in each segment Pi is a subset of Rn and ti ∈ R+ and
ti > ti−1. The duration of the pipe is Π.dur = tk and its
length is the number of segments Π.len = k + 1.

The semantics of a tube Π is defined once we fix a dynam-
ical system A. It is the set of executions (or traces) of A of
duration tk defined as:

[[Π]]A = {ξ ∈ ExecsA | ∀ t ∈ [0, t0], ξ(t) ∈ P0,

∀ 1 ≤ i ≤ Π.len, t ∈ [ti−1, ti], ξ(t) ∈ Pi}.

Our algorithms use tubes with finite representation—the
sets Pi’s are compact sets represented by polyhedra.

We define dia(Π) = maxi∈[Π.len] dia(Pi) as the maximum
diameter of any of the segments. We say that two pipes
Π and Π′ are comparable if they have the same duration,
length, and dimension and furthermore, for each i ∈ [Π.len],
ti = t′i. For two comparable pipes Π,Π′, we say that Π
is contained in Π′, denoted by Π ⊆ Π′, iff for each i ∈
[Π.len], Pi ⊆ P ′i . The distance from Π to Π′ is defined in
the natural way by taking the maximum distance from the
corresponding segments of Π to those of Π′.

dH(Π,Π′) = max
i∈[Π.len]

dH(Pi, P
′
i ).

Obviously, Π ⊆ Π′ implies that dH(Π,Π′) = 0.
We say that two pipes are disjoint , denoted by Π ∩ Π′ =

∅, if and only if for each i ∈ [Π.len], the corresponding
segments are disjoint. That is, Pi ∩ P ′i = ∅. The following
straightforward propositions relate properties of pipes and
the sets of executions (or traces) they represent.

Proposition 2.2. Consider two comparable pipes Π1,Π2. If
Π1 ⊆ Π2 then for any dynamical system A [[Pi1]]A ⊆ [[Pi2]]A.

Proposition 2.3. Consider two comparable pipes Π1,Π2.
If dH(Π1,Π2) ≥ c then for any two automata A and B,
dH([[Pi1]]A, [[Pi2]]B) ≥ c.

2.2 Discrepancy Functions
Our decision procedure for c-abstractions will use numeri-

cal simulations (defined in Section 3) and model annotations
called discrepancy functions. Here we recall the definition
of discrepancy functions which were introduced in [13]. In
that earlier paper we showed that with discrepancy func-
tions and numerical simulators we can obtain sound and
relatively complete decision procedures for safety verifica-
tion of nonlinear and switched dynamical system. Moreover,
the software implementation of this approach proved to be
scalable [12] .

Informally, a discrepancy function gives an upper bound
on the distance between two trajectories as a function of the
distance between their initial states and the time elapsed.

Definition 3. A smooth function V : R2n → R≥0 is called
a discrepancy function for an (n,m)-dimensional dynamical
system if and only if there are functions α1, α2 ∈ K∞ and
a uniformly continuous function β : R2n × R → R≥0 with
β(x1,x2, t) → 0 as |x1 − x2| → 0 such that for any pair of
states x1,x2 ∈ Rn:

x1 6= x2 ⇐⇒ V (x1,x2) > 0, (3)

α1(|x1 − x2|) ≤ V (x1,x2) ≤ α2(|x1 − x2|)and (4)

∀ t > 0, V (ξx1(t), ξx2(t)) ≤ β(x1,x2, t), (5)

A tuple (α1, α2, β) satisfying the above conditions is called
a witness to the discrepancy function V . By discrepancy
function of a dynamical system we will refer to V as well
as its witness interchangeably. Note that the output di-
mension m has no bearing on the discrepancy function of
the system. The first condition requires that the function
V (x1,x2) vanishes to zero if and only if the first two ar-
guments are identical. The second condition states that the
value of V (x1,x2) can be upper and lower-bounded by func-
tions of the `2 distance between x1 and x2. The final, and
the more interesting, condition requires that the function V
applied to trajectories of A at a time t from a pair of initial
states is upper bounded and converges to 0 as x1 converges
to x2.

For linear dynamical systems, discrepancy functions can
be computed automatically by solving Lyapunov like equa-
tions, and in [13] several strategies for proposed for nonlin-
ear systems. Existing notions such as and Lipschitz con-
stants, contraction metrics [23], and incremental Lyapunov
functions [3, 4, 15] all yield discrepancy functions of varying
quality.

3. A SEMI-DECISION PROCEDURE FOR
ABSTRACTION

Our semi-decision procedure for c-abstractions will use
numerical simulations of the dynamical systems. Given a
closed dynamical system A and a particular initial state
x ∈ Θ, for a step size τ > 0, validated ODE solvers (such
as [7, 8, 25]) compute a sequence of boxes (more generally
polyhedra) R0, R2, . . . , Rk ⊆ Rn, such that for each j ∈ [k],
t ∈ [(k − 1)τ, kτ ], ξx(t) ∈ Rk. For a desired error bound
ε > 0, by reducing the step size τ , the diameter of Rk can
be made smaller than ε. We define such simulations in terms
of pipes below.

Definition 4. Given a dynamical system A, an initial state
x, a time bound T , an error bound ε > 0, and time step



τ > 0, a (x, T, ε, τ)-simulation pipe is a finite sequence φ =
(R0, t0), (R1, t1), . . . , (Rk, tk) where

(i) t0 = 0, tk = T , and ∀ j ∈ [k], tj − tj−1 ≤ τ ,

(ii) ∀j ∈ [k] and ∀t ∈ [tj−1, tj ], ξx(t) ∈ Rj, and

(iii) ∀j ∈ [k], dia(Rj) ≤ ε.

Our algorithm makes subroutine calls to a Simulate func-
tion with these parameters which then returns a pipe with
the above properties.

The simulation pipe is then bloated using the discrepancy
function of the dynamical system as follows.

Definition 5. Let sim = (R0, t0), (R1, t1), . . . , (Rk, tk) be a
(x, T, ε, τ)-simulation pipe for a dynamical system A. Sup-
pose V be a discrepancy function of A with witness (α1, α2, β).
Then, for δ > 0, Bloat(sim, δ, V ) is defined as the pipe
(P0, t0), . . . , (Pk, tk) such that for each j ∈ [k],

Pj = {x1 |∃ x2 ∈ Rj ∧ V (x1,x2) ≤ ej},

where

ej = sup
t∈[tj−1,tj ],x′∈Bδ(x)

β(x,x′, t).

In other words, ej is an upper-bound on the value of V for
two executions ξx and ξx′ starting from within Bδ(x) over
the time interval [tj−1, tj ]. And Pj bloats Rj to include all
states x1 for which there exists a state x2 in Rj with the
discrepancy function bounded by ej . Our algorithm makes
subroutine calls to a Bloat function which takes a simulation
pipe, the function β and the constant δ and returns the pipe
(P0, t0), . . . , (Pk, tk) defined above.

Algorithm 1: Deciding c-abstractions.

input: A1, V1,A2, V2, T, c
1 Init ← Θ1;
2 δ ← δ0; τ ← τ0; ε← ε0;
3 while Init 6= ∅ do
4 X1 ← Partition(Init , δ);
5 X2 ← Partition(Θ2, δ);
6 for x10 ∈ X1,x20 ∈ X2 do
7 sim[x10]← Simulate(A1,x10, ε, T, τ);
8 pipe[x10]← Bloat(sim[x10], δ, V1);
9 sim[x20]← Simulate(A2,x20, ε, T, τ);

10 pipe[x20]← Bloat(sim[x20], δ, V2);

11 end
12 foreach x10 ∈ X1 do
13 if ∃ x20 ∈ X2, dH(pipe[x10], pipe[x20]) ≤ c

Lg

∧dia(pipe[x10]) ≤ c
2Lg
∧dia(pipe[x20]) ≤ c

2Lg

then
14 Init ← Init \Bδ(x01);
15 else if ∀ x20 ∈ X2, dH(pipe[x10], pipe[x20]) ≥ c

Sg

∧dia(pipe[x10]) ≤ c
2Sg

then

16 return COUNTEREX x10, δ ;
17 else
18 δ ← δ

2
; τ ← τ

2
; ε← ε

2
;

19 end

20 end

21 end
22 return c-ABSTRACTION

3.1 Description of the Algorithm
Inside the while loop, first, two δ-covers are computed for

Init—a subset of the initial states Θ1 of A1, and the set of
initial states Θ2 of A2 Next, in the first for loop, for each of
the states x10 ∈ X1 and x20 ∈ X2 in the respective covers, a
(xi0, T, ε, τ)-simulation pipe sim[xi0] is computed. Then this
pipe is bloated with the parameter δ and the corresponding
discrepancy function Vi. The following proposition summa-
rizes the main property of the bloated pipes.

Proposition 3.1. For the dynamical system Ai, i ∈ {1, 2}
and constants δ, ε, τ and T , ExecsAi(Bδ(xi0), T ) ⊆ [[pipe[xi0]]].

Proof. Let sim[xi0] = (R0, t0), . . . , (Rk, tk) and pipe[xi0] =
(P0, t0), . . . , (Pk, tk). We fix an initial state x′ ∈ Bδ(xi0),
and show that for any t ≤ tk, the state ξ′x(t) is contained
in the set Pj , where tj−1 ≤ t ≤ tj . Let us fix t, which
also fixes tj−1 and tj . From the definition of the Simulation
(Definition 4) function we know that ξx0(t) ⊆ Rj . And
from Definition 5, we know that since x′ ∈ Bδ(xi0), the
V (ξx′(t), ξxi0(t)) ≤ β(x′,xi0, t) and therefore ξx′(t) ∈ Pj .

Corollary 3.2. For the dynamical system Ai, i ∈ {1, 2} and
constants δ, ε, τ and T ,

ReachAi(Θi, T ) ⊆
⋃

xi0∈Xi

⋃
j∈[T/τ ]

pipe[xi0].Pj ,

here we use pipe[xi0].Pj to denote the subset of Rn in the
jth segment of the pipe pipe[xi0].

Every time a new set of bloated simulation pipes are com-
puted, pipe[x10] for each x10 ∈ Init and pipe[x20] for each
x10 ∈ X2, the algorithm performs the following checks.
If there exists a pipe[x10] and a pipe[x20], both less than
c/2Lg in diameter and within c/Lg distance then Bδ(x10)
is eliminated from init . Here Lg is the Lipschitz constant
and Sg is the sensitivity constant of the common output
function g. If there exists a pipe[x10] such that for all the
pipe[x20]’s, x20 ∈ X2, the diameter of the first is less than
c/2Sg and they are at least c/Sg distance away from each
other, then x10 (and δ) is produced as a counter-example to
the c-abstraction. The while loop ends when Init becomes
empty.

3.2 Soundness and Termination of Algorithm
In this section, we prove the correctness of the algorithm.

We assume that the output mappings (the function g) is the
same for the two models.

Theorem 3.3. For automata with identical observation map-
pings, the algorithm is sound.
That is, if the output is c-ABSTRACTION , then, A2 is
a c-abstraction of A1 upto time T , and if the output is
(COUNTEREX ,x10, δ) then A2 is not a c-abstraction of A1.
In the latter case, all the traces of A1 corresponding to ex-
ecutions starting from Bδ(x0) are at least c distance away
from any trace of A2.

Proof. For the first part, assume that the algorithm returns
c-ABSTRACTION and we will show that for any initial
state x ∈ Θ1, there exists an initial state x′ ∈ Θ2 such that
d(νx, ν

′
x′) ≤ c. Here νx is the output trace of A1 from x and

ν′ is the output trace of A2 from x′.



The algorithm returns c-ABSTRACTION only when Init
becomes empty. This occurs when each initial state x ∈ Θ1

of A1 is in the δ-ball of some state x10 ∈ Θ1 such that x10 is
in a coverX1 and satisfies the condition in Line 13. It suffices
to show that this condition dH(pipe[x10], pipe[x20]) ≤ c/Lg
implies that there exists x′ ∈ Θ2, d(νx, ν

′
x′) ≤ c.

From Proposition 3.1 it follows that for any x′ ∈ Bδ(x20),
and for any t ∈ [0, T ], |ξx(t) − ξ′x′(t)| ≤ c/Lg. Let us fix a
x′ ∈ Bδ(x20). Then, the distance between the corresponding
traces is:

d(νx, ν
′
x′) = sup

t∈[0,T ]

|νx(t)− ν′x′(t)|

= sup
t∈[0,T ]

|g(ξx(t))− g(ξ′x′(t))|

≤ Lg sup
t∈[0,T ]

|ξx(t)− ξ′x′(t)|

≤ Lg
c

Lg
= c.

Here we have used the assumption that the two systems
have the same output mapping g and recall that Lg is the
Lipschitz constant of this mapping.

For the second part, we assume that the algorithm returns
COUNTEREX and show that there exists a trace νx10 of
A1 which is at least c distance away from all traces of A2.
Examining the algorithm, output of COUNTEREX occurs
if there exists a constant δ > 0 and x10 ∈ Θ1, such that for
any initial state x20 of A2,

dH(pipe[x10], pipe[x20]) ≥ c

Sg
,

where Sg is the sensitivity of the output mapping. From
Proposition 2.3 it follows that for any x′ ∈ Θ2, for all t ∈
[0, T ], ξx10(t) − ξ′x′(t) ≥ c

Sg
. Now, consider the distance

between the corresponding traces:

d(νx10 , ν
′
x′) = sup

t∈[0,T ]

|g(ξx10(t))− g(ξ′x′(t))|

≥ sup
t∈[0,T ]

Sg|ξx0(t)− ξ′x′(t)|

≥ Sg
c

Sg
= c.

Thus, the traces are at least c apart, and A2 is not a c-
abstraction of A1. Here again we have used the assumption
that the two systems have the same output mapping g Sg is
the Lipschitz constant of this mapping.

Next, we prove that the algorithm terminates provided
either (a) A1 � c

2
,T A2 or (b) dH(TracesA1 ,TracesA2) > 2c.

Theorem 3.4. The c-abstraction algorithm terminates ei-
ther if A2 is a c1-abstraction of A1 for any c1 <

c
2

or if there
exists a trace of A1 which is c2 distance away from all traces
of A2, for some c2 > 2c.

Proof. Assume without loss of generality that Lg < 2Sg. For
the first part, assume that the A2 is a c

2
-abstraction of A1.

First, we will show that Line 15 returning a counter-example
is never executed. For the sake of contradiction, let us as-
sume that this line is executed. Then dia(pipe[x]) ≤ c

2Sg
.

Also, for any execution ξx of A1 there exists an execution
ξ′x′ of A2 such that for any t ∈ [0, T ], |ξx(t)− ξ′x′(t)| < c

2Sg

(this is because A1 � c
2
,T A2). Thus, from any pipe con-

taining ξx, the distance to any pipe containing any ξ′x′ is
less than c

Sg
. This violates the precondition for returning a

counter-example.
It suffices to show that every initial state x ∈ Θ1 is even-

tually removed from Init in Line 13. Let us fix an execution
ξ′x′ of A2 such that for any t ∈ [0, T ], |ξx(t) − ξ′x′(t)| <
c

2Sg
. Under the above conditions, in each iteration of the

while loop, δ, τ , and ε are halved in Line 18. From the
Definition 4 the diameter dia(sim[x10]) ≤ ε for x10 with
|x10 − x| ≤ δ. Similarly, the diameter dia(sim[x20]) ≤ ε for
x20 with |x20 − x′| ≤ δ. Notice that as these parameters
decrease, from the definition of the discrepancy function,
βi(x,x

′, .) → 0. Thus, the distance between the bloated
tubes containing ξx and ξ′x′ also converge to c

2Sg
. With

the assumption that Lg < 2Sg, it follows that eventually
two points x10 ∈ X1 and x20 ∈ X2 will satisfy the condi-
tion (dH(pipe[x10], pipe[x20]) ≤ c

Lg
) in Line 13 with x′ ∈

Bδ(x20), and more importantly, x ∈ Bδ(x10).
For the second part, suppose there exists a trace νx of A1

such that for any trace ν′x′ of A2, d(νx, νx) > 2c. Then we
know that for each t ∈ [0, T ], |ξx(t)−ξ′x′(t)| > 2c/Lg. For the
sake of contradiction, let us assume that x is eliminated from
Init in Line 13. Then there must exist pipe[x10] containing
ξx pipe[x20] containing ξ′x′ with dia(pipe[x10]) ≤ c/2Lg and
dia(pipe[x20]) ≤ c/2Lg. Then, dH(pipe[x10], pipe[x10]) >
2c/Lg − c/2Lg − c/2Lg = c/Lg which contradicts the first
condition in Line 13.

So, x is never eliminated from Init . Analogous to the ar-
gument presented for the first part, the pipe computed con-
taining ξx become smaller and smaller in diameter as τ, ε
and δ are reduced and the pipes computed containing all
the executions of A2 starting from Θ2, including ξ′x′ also be-
come smaller. Eventually, dH(pipe[x10], pipe[x20]) > 2c/Lg
as for each d(ξx, ξ

′
x′ | > 2c/Lg. At this point the condi-

tion in Line 15 becomes true and x is produced with the
COUNTEEX output.

Thus, there is a range of values of the distance between
the sets of traces dH(TracesA1 ,TracesA2) in [ c

2
, 2C] where

the algorithm is not guaranteed to terminate. This range
can be made arbitrarily small by choosing small values of c.

4. UNBOUNDED TIME EXTENSION
In the previous section, we presented a semi-decision pro-

cedure for reasoning about bounded-time abstraction rela-
tions between models of cyberphysical systems. Since cyber-
physical systems typically run for long time horizons, ideally
we would like to perform unbounded time analysis. The fol-
lowing procedure uses bound-time simulations and attempts
to compute an over-approximation of the unbounded-time
reach set of a dynamical system.

The algorithm adapts a standard fixpoint procedure to
now work with our simulation-based technique for comput-
ing reach set approximations. The set newreach stores the
newly discovered reachable states and reach accumulates all
the reachable states. Both are initialized to Θ. The while
loop iterates until no newly reachable states are discovered;
at that point reach is produced as the output. Inside the
while loop, newreach is δ-partitioned. Then, as in Algo-
rithm 1, an array of (x1, kτ, ε, τ)-simulations sim[x1] are
computed for each x1 ∈ X1 and they are bloated to com-



pute the array of pipes pipe[x1]. The union of the segments
in all these pipes give the set post and the newreach set is
obtained by subtracting reach from post .

Algorithm 2: Unbounded time reachability.

input: A, V, k, τ, δ, ε
1 newreach ← Θ;
2 reach ← Θ;
3 while newreach 6= ∅ do
4 X1 ← Partition(newreach, δ);
5 for x1 ∈ X1 do
6 sim[x1]← Simulate(A,x1, ε, kτ, τ);
7 pipe[x1]← Bloat(sim[x1], δ, V );

8 end
9 post ← ∪i∈[k] ∪x1∈X1 pipe[x1].Pi ;

10 newreach ← post \ reach;
11 reach ← reach ∪ newreach;

12 end
13 return reach

The following theorem states that if the above algorithm
returns a set of statesR then this set is an over-approximation
of the unbounded reach set of the dynamical system A.

Theorem 4.1. If Algorithm 2 returns a set of states R then
ReachA(Θ) ⊆ R.

Proof sketch. From Corollary 3.2 it follows that in each it-
eration of the while loop ReachA(newreach, kτ) ⊆ post , that
is the set computed using simulations and bloating in Line 9.
The set newreach is updated to be an over-approximation
of the states that are reached for the first time in the cur-
rent iteration. A simple induction on the number of itera-
tions show that at the ith iteration, reach contains all states
that are reachable from Θ in i(kτ) time. The computa-
tion halts in an iteration when no new reachable states are
discovered and the corresponding output reach is the least
fixpoint of the algorithm containing Θ and therefore it over-
approximates the unbounded-time reach set from Θ.

5. DISCUSSIONS
The simulation-based reachability algorithms [5,10,13,17,

19] have provided a general and scalable building-block for
analysis of nonlinear, switched, and hybrid models. Since
simulation-based analysis can be made embarrassingly par-
allel, these approaches can scale to real-world models with
dozens and possibly hundreds of continuous dimensions. This
paper takes this static-dynamic analysis approach to check-
ing abstraction relations. As we discussed in the introduc-
tion, computing reach set over-approximations are not suffi-
cient for reasoning about abstraction relations. Our proce-
dure takes into account the precision of the over-approximations
in deciding that each behavior of A is indeed close to some
behavior of B or that there exits a behavior of A that is far
from all behaviors of B. For the sake of simplifying presen-
tations, in this paper we presented the results for models
of nonlinear dynamical systems, but these results can be
extended to switched systems [22] in a more or less straight-
forward fashion (see [13] for analogous extensions for reach-
ability algorithms). This work suggests several directions
for future research in developing new notions of abstraction,

corresponding decision procedures, and in extending them
to be applicable to broader classes of models that arise in
analysis of cyberphysical systems under attacks.

5.1 Future Research Directions

Switched system models and models with inputs. The
switched system [22] formalism is useful where it suffices
to view the software or the adversary as something that
only changes the continuous dynamics. They are useful for
modeling time-triggered control systems and timing-based
attacks. A switched system is described by a collection of
dynamical systems (Definition 1) and a piece-wise constant
switching signal that determines which particular ODE from
the collection that governs the evolution of the system at
a given time. A timing attack can be modeled as altered
switching signal (as well as the changed dynamics). One nice
property of switched system models is that the executions
ξ are continuous functions of time just like ODEs. If all
the ODEs are equipped with discrepancy functions, then we
show in [13] that it is possible to compute reach set over-
approximations for a set of switching signals by partitioning
both the initial set and the set of switching signals. This
technique essentially works also for analyzing abstraction
relation between switched models.

Switched and ODE models with inputs will enable us to
model open cyberphysical systems and adversaries that feed
bad inputs to such systems. The main challenge here is
reasoning about the distance between trajectories that start
from different initial states, as well as, experience different
input signals. In our recent paper [18] we have used an
input-to-state discrepancy function to reason about reacha-
bility of such models and a similar approach can work for
abstractions.

Nondeterministic models. All of the above models are de-
terministic once the initial states, the switching signal, and
the input signal are specified. In order to apply out ana-
lytical framework to a broader class of system models and
attacks, we have to develop decision procedures for hybrid
model with nondeterministic transitions as well as nonde-
terministic dynamics. For the latter case, the results for
reach set over-approximation presented in [17] could provide
a starting point.

APPENDIX
A. BASIC DEFINITIONS AND NOTATIONS

For a natural number n ∈ N, [n] is the set {1, 2, . . . , n}.
For a sequence A of objects of any type with n elements, we
refer to the ith element, i ≤ n by Ai. For a real-valued vector
x, |x| denotes the `2-norm unless otherwise specified. The
diameter of a compact set R ⊆ Rn, dia(R) is defined as the
maximum distance between any two points in it: dia(R) =
supx,x′∈R|x− x′|.

Variable valuations. Let V be a finite set of real-valued
variables. Variables are names for state and input compo-
nents. A valuation v for V is a function mapping each vari-
able name to its value in R. The set of valuations for V
is denoted by Val(V ). Valuations can be viewed as vec-

tors in R|V | dimensional space with by fixing some arbitrary



ordering on variables. Bδ(v) ⊆ Val(V ) is the closed ball of
valuations with radius δ centered at v. The notions of conti-
nuity, differentiability, and integration are lifted to functions
defined over sets of valuations in the usual way.

For any function f : A → B and a set S ⊆ A, f d S
is the restriction of f to S. That is, (f d S)(s = f(s)
for each s ∈ S. So, for a variable v ∈ V and a valuation
v ∈ Val(V ), v d v is the function mapping {v} to the value
v(v). A function f : A → R is Lipschitz if there exists a
constant L ≥ 0—called the Lipschitz constant—such that
for all a1, a2 ∈ A |f(a1) − f(a2)| ≤ L|a1 − a2|. We define
a function f to have sensitivity of Sf if for all a1, a2 ∈ A
|f(a1) − f(a2)| ≥ Sf |a1 − a2|. A continuous function α :
R≥0 → R≥0 is in the class of K functions if α(0) = 0 and
it is strictly increasing. Class K functions are closed under
composition and inversion. A class K function α is a class
K∞ function if α(x)→∞ as x→∞. A continuous function
β : R≥0×R≥0 → R≥0 is called a class KL function if for any
t, β(x, t) is a class K function in x and for any x, β(x, t)→ 0
as t→∞.

Trajectories. Trajectories model the continuous evolution
of variable valuations over time. A trajectory for V is a
differentiable function τ : R≥0 → Val(V ). The set of all
possible trajectories for V is denoted by Traj(V ). For any
function f : C → [A → B] and a set S ⊆ A, f ↓ S is the
restriction of f(c) to S. That is, (f ↓ S)(c) = f(c) d S
for each c ∈ C. In particular, for a variable v ∈ V and a
trajectory τ ∈ Traj(V ), τ ↓ v is the trajectory of v defined
by τ .

Dynamical systems. The set of all trajectories of A with
respect to a set of initial states Θ′ ⊆ Val(X) and a set of
is denoted by Traj(A,Θ′). The components of dynamical
system A and Ai are denoted by XA,ΘA, fA and Xi,Θi, fi,
respectively. We will drop the subscripts when they are clear
from context. The set of all possible state trajectories and
output trajectories of A (from different initial states in Θ)
are denoted by ExecsA and TracesA, respectively. The set
of executions (and traces) from the set of initial states Θ
and upto time bound T is denoted by ExecsA(Θ, T ) (and
TracesA(Θ, T ), repectively). A state x ∈ Rn is reachable if
there exists and execution ξ and a time t such that ξ(t) = x.
The set of reachable states from initial set Θ within time T
is denoted by ReachA(Θ, T ).
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