
ar
X

iv
:1

40
4.

39
13

v1
  [

cs
.D

C
] 

 1
5 

A
pr

 2
01

4

Analysis of Dynamic Scheduling Strategies for Matrix

Multiplication on Heterogeneous Platforms

Olivier Beaumont∗ Loris Marchal †

October 16, 2018

Abstract

The tremendous increase in the size and heterogeneity of supercomputers makes it very
difficult to predict the performance of a scheduling algorithm. Therefore, dynamic solutions,
where scheduling decisions are made at runtime have overpassed static allocation strategies.
The simplicity and efficiency of dynamic schedulers such as Hadoop are a key of the success of
the MapReduce framework. Dynamic schedulers such as StarPU, PaRSEC or StarSs are also
developed for more constrained computations, e.g. task graphs coming from linear algebra.
To make their decisions, these runtime systems make use of some static information, such
as the distance of tasks to the critical path or the affinity between tasks and computing
resources (CPU, GPU,. . . ) and of dynamic information, such as where input data are actually
located. In this paper, we concentrate on two elementary linear algebra kernels, namely
the outer product and the matrix multiplication. For each problem, we propose several
dynamic strategies that can be used at runtime and we provide an analytic study of their
theoretical performance. We prove that the theoretical analysis provides very good estimate
of the amount of communications induced by a dynamic strategy and can be used in order
to efficiently determine thresholds used in dynamic scheduler, thus enabling to choose among
them for a given problem and architecture.

1 Introduction

Recently, there has been a very important change in both parallel platforms and parallel appli-
cations. On the one hand, computing platforms, either clouds or supercomputers involve more
and more computing resources. This scale change poses many problems, mostly related to unpre-
dictability and failures. Due to the size of the platforms, their complex network topologies, the use
of heterogeneous resources, NUMA effects, the number of concurrent simultaneous computations
and communications, it is impossible to predict exactly the time that a specific task will take.
Unpredictability makes it impossible to statically allocate the tasks of a DAG onto the processing
resources and dynamic scheduling and allocation strategies are needed. As a consequence, in recent
years, there has been a large amount of practical work to develop efficient runtime schedulers. The
main characteristics of these schedulers is that they make their decisions at runtime, based on the
expected duration of the tasks on the different kind of processing units (CPUs, GPUs,...) and on
the expected availability time of the task input data, given their actual locations. Thanks to these
information, the scheduler allocates the task to the resource that will finish its processing as soon
as possible. Moreover, all these runtime systems also make use of some static information that
can be computed from the task graph itself, in order to decide the priority between several ready
tasks. This information mostly deals with the estimated critical path as proposed in HEFT [17]
for instance.

On the other hand, there has been a dramatic simplification of the application model in many
cases, as asserted by the success of the MapReduce framework [8] which has been popularized
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by Google. It allows users without particular knowledge in parallel algorithms to harness the
power of large parallel machines. In MapReduce, a large computation is broken into small tasks
that run in parallel on multiple machines, and scales easily to very large clusters of inexpensive
commodity computers. MapReduce is a very successful example of dynamic schedulers, as one of
its crucial feature is its inherent capability of handling hardware failures and processing capabilities
heterogeneity, thus hiding this complexity to the programmer, by relying on on-demand allocations
and the on-line detection of nodes that perform poorly (in order to re-assign tasks that slow down
the process). As we explained in a previous work [3], MapReduce, although tailored for linear
complexity operations (such as text parsing), is now widely used for non linear complexity tasks.
In this case, it induces a large replication of the data. For example, when MapReduce is used
to compute the outer product of two vectors a and b, the most common technique is to emit all
possible pairs of (ai, bj), so that many processors can be used to compute the elementary products.
This induces a large replication factor, since MapReduce is not aware of the 2-dimensional nature
of the data.

Our goal in this paper is to show how simple data-aware dynamic schedulers can be proven
efficient in a specific context. We concentrate here on two elementary kernels, namely the outer
product and the matrix multiplication. These kernels do not induce dependencies among their
tasks, but because of their massive input data reuse results, a straightforward MapReduce imple-
mentations of these kernels would involve a large replication overhead. Indeed, in both cases [3],
input vectors or input matrices need to be replicated when the kernel is processed by a large-scale
parallel platform, and basic dynamic strategies that allocate tasks at random to processors fail to
achieve reasonable communication volumes with respect to known lower bounds.

In the present paper, we first present and study a very simple yet efficient dynamic scheduler
for the outer product, that generates a communication volume close to the lower bound. Our
main contribution is to analyze the communication volume generated by the dynamic scheduler
as a continuous process that can be modeled by an Ordinary Differential Equation (ODE). We
prove that the analytic communication volume of the solution of the ODE is close to the actual
communication volume as measured using simulations. Moreover, we prove that this analysis
of the solution of the ODE can be used in order to optimize a dynamic randomized allocation
strategy, for instance, by switching between two strategies when the number of remaining tasks is
smaller than a given threshold, that is determined by the theoretical analysis. This simple example
attests the practical interest of the theoretical analysis of dynamic schedulers, since it shows that
the analytic solution can be used in order to incorporate static knowledge into the scheduler. After
presenting our method on the outer product (Section 3), we move to a more common kernel, the
matrix multiplication and show how the previous analysis can be extended in Section 4.

2 Related work

We briefly review previous works related to our study, which deals both with actual runtime
schedulers and with their theoretical studies.

2.1 Runtime dynamic schedulers

As mentioned in the introduction, several runtime systems have been recently proposed to schedule
applications on parallel systems. Among other successful projects, we may cite StarPU [1], from
INRIA Bordeaux (France), DAGuE and PaRSEC [7, 6] from ICL, Univ. of Tennessee Knoxville
(USA) StarSs [16] from Barcelona Supercomputing Center (Spain) or KAAPI [10] from INRIA
Grenoble (France). Most of these tools enable, to a certain extent, to schedule an application
described as a task graph (usually available in the beginning of the computation, but sometimes
generated and discovered during the execution itself), onto a parallel platforms. Most of these
tools allow to harness complex platforms, such as multicores and hybrid platforms, including
GPUs or other accelerators. These runtime systems usually keep track of the occupation of each
computing devices and allocate new tasks on the processing unit that is expected to minimize its
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completion time. Our goal in this paper in to provide an analysis of such dynamic schedulers for
simple operations, that do not involve tasks dependencies but massive data reuse.

2.2 Theoretical studies of dynamic systems

Many studies have proposed to use queuing theory [11] to study the behavior of simple parallel
systems and their dynamic evolution. Among many others, Berten et al. [5] propose to use such
stochastic models in order to model computing Grids, and Mitzenmacher [14] studies how not-to-
date information can lead to bad scheduling decisions in a simple parallel system.

Recently, mean field techniques [9, 4] have been proposed for analyzing such dynamic processes.
They give a formal framework to derive a system of ordinary differential equations that is the limit
of a Markovian system when the number of objects goes to infinity. Such techniques have been
used for the first time in [13] where the author derives differential equations for a system of
homogeneous processors who steal a single job when idle.

3 Randomized dynamic strategies for the outer-product

We present here the analysis of a dynamic scheduler for a simple problem from linear algebra,
namely the outer-product of two vectors.

3.1 Problem definition

We consider the problem of computing the outer-product abt of two large vectors a and b of size
N , i.e. to compute all values ai × bj , ∀1 ≤ i, j ≤ N . The computing domain can therefore be seen
as a matrix. For granularity reasons, we will consider that a and b are in fact split into N/l blocks
of size l and that a basic operation consists in computing the outer product of two (small) vectors
of size l.

As stated above, we target heterogeneous platforms consisting of p processors P1, . . . , Pp, where
the speed of processor Pi, i.e. the number of outer products of size l vectors that Pk can do in one
time unit, is given by sk. We will also denote by rsk the relative speed of rsk = sk∑

i
si
. Note that

the randomized strategies that we propose are agnostic to processor speeds, but they are demand
driven, so that a processor with a twice larger speed will request work twice faster.

In the following, we assume that a master processor coordinates the work distribution: it is
aware of which a and b blocks are replicated on the computing nodes and decides which new blocks
are sent, as well as which tasks are allocated to the nodes. After completion of their allocated
tasks, computing nodes simply report to the master processor, requesting for new tasks.

We will assume throughout the analysis that it is possible to overlap computations and com-
munications. This can be achieved with dynamic strategies by uploading a few blocks in advance
at the beginning of the computations and then to request work as soon as the number of blocks to
be processed becomes smaller than a given threshold. Determining this threshold would require
to introduce a communication model and a topology, what is out of the scope of this paper, and
we will assume that the threshold is known. In practice, the number of tasks required to ensure
a good overlap has been observed to be small in [12, 15] even though a rigorous algorithm to
estimate it is still missing.

As we observed [3], performing a non linear complexity task such as a Divisible Load or a
MapReduce operation requires to replicate initial data. Our objective is to minimize the overall
amount of communications, i.e. the total amount of data (the number of blocks of a and b)
sent by the master node initially holding the data, or equivalently by the set of devices holding
the data since we are interested in the overall volume only, under the constraint that a perfect
load-balancing should be achieved among resources allocated to the outer product computation.
Indeed, due to data dependencies, if we were to minimize communications without this load-
balancing constraint, the optimal (but very inefficient) solution would consist in making use of a
single computing resource so that each data block would be sent exactly once.
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3.2 Design of randomized dynamic strategies

As mentioned above, vectors a and b are split into N/l data blocks. In the following, we denote
by ai the ith block of a (rather than the ith element of a) since we always consider elements by
blocks. As soon as a processor has received two data blocks ai and bj , it can compute the block
Mi,j = (abt)i,j = aib

t
j. This elementary task is denoted by Ti,j . All data blocks are initially

available at the master node only.
One of the simplest strategy to allocate computational tasks to processors is to distribute tasks

at random: whenever a processor is ready, a task Ti,j is chosen uniformly at random among all
available tasks and is allocated to the processor. The data corresponding to this task that is not
yet on the processor, that is one or two of the ai and bj blocks are sent by the master. We denote
this strategy by RandomOuter. Another simple option is to allocate tasks in lexicographical
order of indices (i, j) rather than randomly. This strategy will be denoted as SortedOuter.

Both previous algorithms are expected to induce a large amount of communications because
of data replication. Indeed, in these algorithms, there is no reason why the data sent for the
processing of tasks on a given processor Pk may be re-used for upcoming tasks. This is why
dynamic data-aware strategies have been introduced. In the runtime systems cited above, such
as StarPU, the scheduler is aware of the locality of the data and uses this information when
allocating tasks to processors: it is much more beneficial, when allocating a new task on Pk, to
take advantage of the a and b data already present on the processor, and to compute for example
all possible products aib

t
j′ before sending new blocks of data. We propose such a strategy, denoted

DynamicOuter, in Algorithm 1: when a processor Pk receives a new pair of blocks (ai, bj), all
possible products aib

t
j′ and ai′b

t
j are also allocated to Pk, for all data blocks ai′ and bj′ that have

already been transmitted to Pk in previous steps.

Algorithm 1: DynamicOuter strategy.

while there are unprocessed tasks do

Wait for a processor Pk to finish its tasks
I ← {i such that Pk owns ai}
J ← {j such that Pk owns bj}
Choose i /∈ I and j /∈ J uniformly at random
Send ai and bj to Pk

Allocate all tasks of {Ti,j} ∪ {Ti,j′ , j
′ ∈ J} ∪ {Ti′,j, i

′ ∈ I} that are not yet processed to
Pk and mark them processed

Note that the DynamicOuter scheduler is not computationally expensive: it is sufficient to
maintain a set of unknown a and b data (of size O(N/l)) for each processor, and to randomly pick
an element of this set when allocating new blocks to a processor Pk.

We have compared the performance of previous schedulers through simulations on Figure 1.
Processor speeds are chosen uniformly in the interval [10, 100], which means a large degree of
heterogeneity. Each point in this figure and the following ones is the average over 10 or more
simulations. The standard deviation is always very small, typically smaller than 0.1 for any point,
and never impacts the ranking of the strategies. It is thus not depicted for clarity reasons. All
communication amounts are normalized with the following lower bound:

LB = 2N
∑

k

√
rsk = 2N

∑

k

√

sk
∑

i si
,

where sk is the speed of processor Pk and rsk its relative speed.
Indeed, in a very optimistic setting, each processor is dedicated to computing a “square” area

of M = abt, whose area is proportional to its relative speed, so that all processors finish their
work at the same instant. In this situation, the amount of communications for Pk is proportional
to the half perimeter of this square of area N2rsk. Note that this lower bound is not expected
to be achievable (consider for instance the case of 2 heterogeneous processors). The best known
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Figure 1: Comparison of random and data-aware dynamic strategies, for vectors of size N/l = 100
blocks

static algorithm (based on a complete knowledge of all relative speeds) has an approximation
ratio of 7/4 [2]. This algorithm computes an allocation scheme based on the computing speeds of
the processors. As outlined in the introduction, such an allocation mechanism is not practical in
our context, since our aim is to rely on more dynamic runtime strategies, but can be used as a
comparison basis.

As expected, we notice on Figure 1 that data-aware strategies induce significantly less com-
munication than purely random strategies.

OurDynamicOuter allocation scheme suffers some limitation: when the number of remaining
blocks to compute is small, the proposed strategy is inefficient as it may send a large number of a
and b blocks to a processor Pk before it is able to process one of the last few available tasks. Thus,
we propose an improved version DynamicOuter2Phases in Algorithm 2: when the number
of remaining tasks becomes smaller than a given threshold, we switch to the basic randomized
strategy: any available task Ti,j is allocated to a requesting processor, without taking data locality
into account. The corresponding data ai and bj are then sent to Pk if needed.

Algorithm 2: DynamicOuter2Phases strategy.

while the number of processors is larger than the threshold do

Wait for a processor Pk to finish its tasks
I ← {i such that Pk owns ai}
J ← {j such that Pk owns bj}
Choose i /∈ I and j /∈ J uniformly at random
Send ai and bj to Pk

Allocate all tasks of {Ti,j} ∪ {Ti,j′ , j
′ ∈ J} ∪ {Ti′,j, i

′ ∈ I} that are not yet processed to
Pk and mark them processed

while there are unprocessed tasks do

Wait for a processor Pk to finish its tasks
Choose randomly an unprocessed task Ti,j

if Pk does not hold ai then send ai to Pk if Pk does not hold bj then send bj to Pk

Allocate Ti,j to Pk

As illustrated on Figure 2, for a well chosen number of tasks processed in the second phase,
this new strategy allows to reduce further the amount of communications. However, this requires
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to accurately set the threshold, depending on the size of the matrix and the relative speed of the
processors. If too many tasks are processed in the second phase, the performance is close to the
one of RandomOuter. On the contrary, if too few tasks are processed in the second phase,
the behavior becomes close to DynamicOuter. The optimal threshold corresponds here to a few
percent of tasks being processed in the second phase. In the following, we present an analysis of the
DynamicOuter2Phases strategy that both allows to predict its performance and to optimally
set the threshold, so as to minimize the amount of communications.
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Figure 2: Communication amount of DynamicOuter2Phases and comparison to the other
schedulers for different thresholds (for a given distribution of computing speeds with 20 processors
and N/l = 100).

3.3 Theoretical analysis of dynamic randomized strategies

In this section, our aim is to provide an analytical model for Algorithm DynamicOuter2Phases.
Analyzing such a strategy is crucial in order to assess the efficiency of runtime dynamic strategies
and in order to tune the parameters of dynamic strategies or to choose among different strategies
depending on input parameters.

In what follows, we assume that N , the size of vectors a and b, is large and we consider
a continuous dynamic process whose behavior is expected to be close to the one of Dynamic-

Outer2Phases. In what follows, we concentrate on processor Pk whose speed is sk. At each
step, DynamicOuter2Phases chooses to send one data block of a and one data block of b, so
that Pk knows the same number of data blocks of a and b. As previously, we denote by M = abt

the result of the outer product and by Ti,j the tasks that corresponds to the product of data blocks
ai and bj

We denote by x = y/N the ratio of elements of a and b that are known by Pk at a given time
step of the process and by tk(x) the corresponding time step. We concentrate on a basic step of
DynamicOuter2Phases during which the fraction of data blocks of both a and b known by Pk

goes from x to x+ δx. In fact, since DynamicOuter2Phases is a discrete process and the ratio
known by Pk goes from x = y/N to x+ l/N = y/N + l/N . Under the assumption that N is large,
we assume that we can approximate the randomized discrete process by the continuous process
described by the corresponding Ordinary Differential Equation on expected values. The proof of
convergence is out of the scope of this paper but we will show that this assumption provides very
good results through simulations in Section 3.4.

Let us remark that during the execution of DynamicOuter2Phases, tasks Ti,j are greedily
computed as soon as a processor knows the corresponding data blocks of ai and bj . Therefore,
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Figure 3: Illustration for the proof of Lemma 1. The top-left blue rectangle represents the data
owned by the processor at time tk(x) (a permutation of the rows and columns has been applied
to have it in the upper left corner). The new elements δx are depicted in red, as well as the
corresponding available tasks. Note that some tasks (in black) corresponding to the combination
of δx with the known elements have already been processed by other processors.

at time tk(x), all tasks Ti,j such that Pk knows data blocks ai and bj have been processed and
there are x2N2/l2 such tasks. Note also that those tasks may have been processed either by Pk

or by another processor Pj since processors compete to process tasks. Indeed, since data blocks
of a and b are possibly replicated on several processors, then both Pk and Pℓ may know at some
point both ai and bj. In practice, the processor which computes Ti,j is the one that learns both
ai and bj first.

Figure 3 depicts the computational domain during the first phase of DynamicOuter2Phases

from the point of view of a given processor Pk (rows and columns have been reordered for the sake
of clarity). The top-left square (in blue) corresponds to value of a and b that are known by Pk, and
all corresponding tasks have already been processed (either by Pk or by another processor). The
remaining “L”-shaped area (in grey) corresponds to tasks Ti,j such that Pk does not hold either
the corresponding value of a, or the corresponding value of b, or both. When receiving a new value
of a and b (in red), Pk is able to process all the tasks (in red) from the two corresponding row and
column. Some elements from this row and this column may be already processed (in black).

In what follows, we denote by gk(x) the fraction of tasks Ti,j in the previously described “L”-
shaped area that have not been computed yet. We also assume that the distribution of unprocessed
tasks in this area is uniform, and we claim that this assumption is valid for a reasonably large
number of processors. Our simulations below show that this leads to a very good accuracy.

Based on this remark, we are able to prove the following Lemma

Lemma 1. gk(x) = (1 − x2)αk , where αk =
∑

i6=k
si

sk
.

Proof. Let us consider the tasks that have been computed by all processors between tk(x) and
tk(x+ δx). As depicted on Figure 3, these tasks can be split into two sets.

• The first set of tasks consists in those that can be newly processed by Pk between tk(x) and
tk(x+δx). Pk has the possibility to combine the δxN new elements of a with the xN already
known elements of b (and to combine the δxN new elements of b with the xN already known
elements of a). There is therefore a total of 2 x δx N2 such tasks (at first order). Among
those, by definition of g, the expected number of tasks that have not already been processed
by other processors is given by 2 x δx g(x) N2. Therefore, the expected duration of this

step is given by tk(x+ δx)− tk(x) =
2 x δx g(x) N2

sk
.
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• The second set of tasks consists in those computed by other processors Pi, i 6= k. Our
assumption states that we are able to overlap communications by computations (by uploading
data blocks slightly in advance), so that processors Pi, i 6= k will keep processing tasks

between tk(x) and tk(x+ δx) and will process on expectation 2 x δx g(x) N2
∑

i6=k
si

sk
tasks.

Therefore, we are able to estimate how many tasks will be processed between tk(x) and tk(x+ δx)
and therefore to compute the evolution (on expectation) of gk. More specifically, we have

gk(x + δx)
(

1− (x+ δx)2
)

N2 =

gk(x) (1 − x2) N2 − 2 x δx g(x) N2 − 2 x δx g(x) N2

∑

i6=k si

sk
,

which gives at first order

gk(x + δx)− gk(x) = gk(x) δx
−2 x αk

1− x2
,

where αk =
∑

i6=k
si

sk
.

Therefore, the evolution of gk with x is given by the following ordinary differential equation

g′k(x)

gk(x)
=
−2 x αk

1− x2

where both left and right terms are of the form f ′/f , what leads to

ln(gk(x)) = αk ln(1 − x2) +K

and finally to
gk(x) = exp(K)(1− x2)αk ,

where exp(K) = 1 since gk(0) = 1. This achieves the proof of Lemma 1.

Remember that tk(x) denotes the time necessary for Pk to know x elements of a and b. Then,

Lemma 2. tk(x)
∑

i si = N2(1 − (1− x2)αk+1).

Proof. We have seen that some of the tasks that could have been processed by Pk (tasks Ti,j such
that Pk knows both ai and bj) have indeed been processed by other processors. In order to prove
the lemma, let us denote by hk(x) the number of such tasks at time tk(x). Then

hk(x+ δx) = hk(x) + 2 x δx (1− gk(x))N
2

by definition of gk so that, using Lemma 1,

h′
k(x) = N2(2x− 2x(1− x2)αk)

and

hk(x) = N2(x2 +
(1− x2)αk+1

αk + 1
+K)

and since hk(0) = 0,

hk(x) = N2(x2 +
(1− x2)αk+1

αk + 1
− 1

αk + 1
).

Moreover, at time tk(x), all the tasks that could have been processed by Pk have

• either been processed by Pk and there are exactly tk(x)sk such tasks since Pk has been
processing all the time in this area,

8



• or processed by other processors and there are exactly hk(x) such tasks by definition of hk.

Therefore,
x2N2 = hk(x) + tk(x)sk

and finally

tk(x)
∑

i

si = N2(1− (1− x2)αk+1),

which achieves the proof of Lemma 2.

Above equations well describe the dynamics of DynamicOuter2Phases as long as it is pos-
sible to find blocks of a and b that enable to compute enough unprocessed tasks. On the other
hand, at the end, it is better to switch to another algorithm, where unprocessed tasks Ti,j are
picked up randomly, which possibly requires to send two blocks ai and bj . In order to decide when
to switch from one strategy to the other, we introduce an additional parameter β.

As presented above, a lower bound on the communication volume received by Pk (if perfect
load balancing is achieved) is given by LB = 2N

∑

k

√
rsk. We will switch from the Dynamic-

Outer to the RandomOuter strategy when the fraction of tasks x2
kN

2 for which Pk owns the
input data is approximately β times what it would have computed optimally, that is, when x2

k is
close to β sk∑

i
si

= βrsk, for a value of β that is to be determined. For the sake of the analysis, it

is important that we globally define the instant at which we switch to the random strategy, and
that it does not depend on the processor Pk. In order to achieve this, we look for x2

k as

x2
k = (βrsk − αrs2k)

and we search α such that tk(xk) does not depend on k at first order in 1/rsk, where rsk is of
order 1/p and p is the number of processors.

Lemma 3. If α = β2/2, then

tk(xk)
∑

i

si = N2(1− e−β(1 + o(rsk))).

Proof. Since tk(xk)
∑

i si = N2(1− (1− x2
k)

αk+1, then

tk(xk) =
N2

∑

i si
(1− e

1

rsk
ln(1− βrsk + αrs2k))

=
N2

∑

i si
(1− e

1

rsk
(−βrsk + αrs2k − (βrsk)

2/2))

(at first order)

=
N2

∑

i si
(1− e−β(1 + o(rsk))).

which achieves the proof of Lemma 3.

One remarkable characteristics of the above result is that it does not depend (at least up to

order 2) on k anymore. Otherwise stated, at time T = N2

∑
i
si
(1 − eβ), each processor Pk has

received
√

(βrsk − β2/2rs2k)N
2 =

√
βrsk(1 − βrsk/4)N data, to be compared with the lower

bound on communications for processor Pk:
√
rskN .

Using both these results, it is possible to derive the ratio between the overall amount of
communication induced by the first phase with respect to the lower bound as a function of β.
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Lemma 4. Let us denote by VPhase1 the volume of the communications induced by Phase 1 and by
LB = 2N

∑

k

√
rsk the lower bound for the communications induced by the whole outer product,

then
VPhase1
LB

≤
√

β +
β3/2

∑

i rs
3/2
k

4LB
(at first order).

Proof. The proof is obtained by replacing VPhase1 by
∑

k

√
βrsk(1 − βrsk/4)N .

Lemma 4 provides the evaluation of the expected communication volume induced by the first
phase of DynamicOuter2Phases with respect to the lower bound. In the following, we will
establish a similar result for the second phase in Lemma 5.

Lemma 5. Let us denote by VPhase2 the volume of the communications induced by Phase 1 and by
LB = 2N

∑

k

√
rsk the lower bound for the communications induced by the whole outer product,

then
VPhase2
LB

≤ e−βN
1−√β∑k rs

3/2
k

∑

k rs
1/2
k

(at first order).

Proof. During Phase 2, when a processor Pk requests some work, a random task is sent among
those that have not been processed yet. This task Ti,j induces either the communication of one
data block (if either ai or bj is already know at Pk) or 2 data blocks (but not 0 by construction).

More precisely, since tasks are sent at random and since Pk knows a fraction xk =
√
βrsk(1−

βrsk/4) of the elements of a and b at the end of Phase 1,

• a task induces the communication of one block with probability 2xk

1+xk

,

• a task induces the communication of two blocks with probability 1−xk

1+xk

.

so that the expected number of communications per task for Pk is

2xk

1 + xk
× 1 +

1− xk

1 + xk
× 2 =

2

1 + xk
.

Moreover, since Phase 2 starts at the same instant on all processors and since processors are
continuously processing tasks, Pk processes a fraction rsk of the e−βN2 remaining tasks. The
overall communication cost induced by Phase 2 is therefore given (on expectation and at first
order) by

VPhase2 = e−βN2

(

1−
√

β
∑

k

rs
3/2
k

)

,

which achieves the proof of Lemma 5.

Theorem 6. The ratio of the overall volume of communications to the lower bound if we switch
between both phases when e−βN2 tasks remain to be processed is given by

√

β +
β3/2

∑

k rs
3/2
k

4
∑

k rs
1/2
k

+ e−βN2 1−
√
β
∑

k rs
3/2
k

∑

k rs
1/2
k

.

Theorem 6 is a direct consequence of Lemma 4 and Lemma 5. Therefore, in order to minimize
the overall amount of communications, we numerically determine the value of β that minimizes
the above expression and then switch between Phases 1 and 2 when e−βN2 tasks remain to be
processed.
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3.4 Assessing the validity of the analysis through simulations

We have performed simulations to study the accuracy of the previous theoretical analysis, that
is a priori valid only for large values of p and N/l, and to show how it is helpful to compute
the threshold for DynamicOuter2Phases. The simulations have been done using an ad-hoc
event based simulation tool, where processors request new tasks as soon as they are available,
and tasks are allocated based on the given runtime dynamic strategy. Again, processor speeds are
chosen uniformly in the interval [10, 100]. This degree of heterogeneity may seem excessive but we
show in Section 3.5 that using a different heterogeneity model does not significantly impact the
results. The communication amount of each strategy is normalized by the lower bound computed
in Section 3.3. Figure 4 presents the results for vectors of 100 blocks and Figure 5 does the same
for vectors of 1000 blocks.
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Figure 4: Communication amounts of all outer-product strategies for vectors of size N/l = 100
blocks ((N/l)2 tasks).
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In both figures, the analysis is extremely close to the performance of DynamicOuter2Phases

(which makes them indistinguishable on the figures) and proves that our analysis succeed to accu-
rately model our dynamic strategy, even for relatively small values of p and N/l. Moreover, we can
see in Figure 5 that it is even more crucial to use a data-aware dynamic scheduler when N is large,
as the ratio between the communication amount of simple random strategies (RandomOuter

and SortedOuter) and dynamic data-aware schedulers (such as DynamicOuter2Phases) can
be very large.

Our second objective is to show that the theoretical analysis that we propose can be used in
order to accurately compute the threshold of DynamicOuter2Phases, i.e., that the β parameter
computed earlier is close to the best one. To do this, we compare the communication amount of
DynamicOuter2Phases for various values of the β parameter. Figure 6 shows the results for
20 processors and N/l = 100. This is done for a single and arbitrary distribution of computing
speeds, as it would make no sense to compute average values for different distributions since they
would lead to different optimal values of β. This explains the irregular performance graph for
DynamicOuter2Phases. This figure shows that in the domain of interest, i.e. for 3 ≤ β ≤ 6,
the analysis correctly fits to the simulations, and that the value of β that minimizes the analysis
(here β = 4.17) lies in the interval of β values that minimize the communication amount of
DynamicOuter2Phases. To compare to Figure 2, this corresponds to 98.5% of the tasks being
processed in the first phase.
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Figure 6: Communication amounts of DynamicOuter2Phases and its analysis for varying value
of the β parameter which defines the threshold.

3.5 Impact of the heterogeneity

The speed distribution used in the previous experiments (speeds taken in the interval [10, 100])
may seem too heterogeneous to reasonably model actual computing platforms, where heterogeneity
comes either from the use of a few classes of different processors (new and old machines, processor
equipped with accelerators or not, etc.) or from the fact that machines are not dedicated, which
implies stochastically variable processor speed. It is natural to ask whether the speed distribution
impacts the ranking of the previous heuristics, or the accuracy of our analysis.

Figure 7 presents the behavior of all previous heuristics for a varying range of heterogeneity.
A heterogeneity of 0 means perfectly homogeneous computing speeds, while a heterogeneity of
100 means that the ratio between the smallest and the largest speeds is large. In this figure and
the following one, error bars represents the standard deviations with 50 tries. We notice that
the heterogeneity degree has very little impact on the relative amounts of communication of the
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Figure 7: Behavior of the heuristics for outer product for different values of heterogeneity (p = 20
processors and N/l = 100 blocks). For a given value h of heterogeneity, processor speeds are taken
uniformly at random in the interval [100− h, 100 + h].

studied heuristics.
In Figure 8, we study the same heuristics using different scenarios:

• Scenarios unif.1 and unif.2 corresponds to the previous setting, with speeds taken uniformly
at random in intervals [80, 120] (unif.1) and [50, 150] (unif.2).

• Scenarios set.3 and set.5 corresponds to the case when there are a few classes of processors
with different speed. The speeds are then taken uniformly from the set of possible speeds:
(80, 100, 150) for set.3 or (40, 80, 100, 150, 200) for set.5.

• Scenarios dyn.5 and dyn.20 corresponds to very simple dynamic settings. Each computing
speed is first taken uniformly at random in interval [80, 120]. Then, after computing a task, a
processor sees its computing speed randomly changed by up to 5% (dyn.5) or 20% (dyn.20).

This figure shows that neither the speed distribution nor the dynamic evolution of the speeds
notably affect the performance of the heuristics.

3.6 Runtime estimation of β

In order to estimate the β parameter in the DynamicOuter2Phases strategy, it seems necessary
to know the processing speed, as β depends on

∑

k

√

sk/
∑

i si. However, we have noticed a very
small deviation of β with the speeds. For example, in Figure 6, the value of β computed when
assuming homogeneous speeds (4.1705) is very close to the one computed for heterogeneous speeds
(4.1679).

For a large range of N/l and p values (namely, p in [10, 1000] and N/l ∈ [max(10,
√
p), 1000]),

for processor speeds in [10, 100], the optimal value for β goes from 1 to 6.2. However, for fixed
values of N/l and p, the deviations among the β values obtained for different speed distributions
is at most 0.045 (with 100 tries). Our idea is to approximate β with βhom computed using a
homogeneous platform with the same number of processors and with the same matrix size. The
relative difference between βhom and the average β of the previous set is always smaller than
5%. Moreover, the error on the communication volume predicted by the analysis when using
homogeneous speeds instead of the actual ones is at most 0.1%. These figures are derived with the
most heterogeneous speed distribution (speeds in [10, 100]) and thus hold for the other distributions
of Section 3.5 as well.
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Figure 8: Behavior of the heuristics for outer product for different scenarios of heterogeneity
(p = 20 processors and N/l = 100 blocks).

This proves that even if our previous analysis ends up with a formula for β that depends
on the computing speeds, in practice, only the knowledge of the matrix size and of the number
of processors are actually needed to define the threshold β. Our dynamic scheduler Dynamic-

Outer2Phases is thus totally agnostic to processor speeds.

4 Matrix Multiplication

We adapt here the previous dynamic algorithm and its theoretical analysis to a more complex
problem: the multiplication of two matrices.

4.1 Notations and dynamic strategies

We first adapt the notations to the problem of computing the product of two matrices C = AB.
As in the previous section, we consider that all transfers and computations are performed using
blocks of size l × l, so that all three matrices are composed of N2/l2 blocks and Ai,j denotes the
block of A on the ith row and the jth column. The basic computation step is a task Ti,j,k, which
corresponds to the update Ci,j ← Ci,j + Ai,kBk,j . To perform such a task, a processor has to
receive the input data from A and B (of size 2l2), and to send the result (of size (N/l)2) back to
the master at the end of the computation. Thus, it results in a total amount of communication
of 3 (N/l)2. As previously, in order to minimize the amount of communications, our goal is to
take advantage of the blocks of A, B and C that have already been sent to a processor Pu when
allocating a new task to Pu. Note that at the end of the computation, all Ci,js are sent back
to the master that computes in turn the final results by adding the different contributions. This
computational load is much smaller than computing the products Ti,j,k and we will neglect it in
what follows.

As we assume that processors work during the whole process, the load imbalance, i.e. the
difference between the amount of work processed by Pi and what it should have processed given
its speed is at most one block. Thus, a maximal block size l can easily be derived from a maximal
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load imbalance. The value of l must also be large enough to overlap communications of size 3l2

with computations of size l3. As usual, the block size should also be large enough to benefit from
BLAS effect and small enough so as to fit into caches. We assume that the optimal block size l is
computed by the runtime environment.

The simple strategies RandomOuter and SortedOuter translate very easily for matrix
multiplication into the strategiesRandomMatrix and SortedMatrix. We adapt theDynamic-

Outer strategy into DynamicMatrix as follows. We ensure that at each step, for each processor
Pu there exist sets of indices I, J andK such that Pu owns all values Ai,k, Bk,j , Ci,j for i ∈ I, j ∈ J
and k ∈ K, so that it is able to compute all corresponding tasks Ti,j,k. When a processor becomes
idle, instead of sending a single block of A, B and C, we choose a tuple (i, j, k) of new indices
(with i /∈ I , j /∈ J and k /∈ K) and send to Pu all the data needed to extend the sets I, J,K with
(i, j, k). This corresponds to sending 3× (2|I|+ 1) data blocks to Pu (note that |I| = |J | = |K|).
In fact, blocks of C are not send by the master to the processor, but on the contrary will be sent
back to the master at the end of the computation; however, this does not change the analysis since
we are only interested in the overall volume of communications. Then, processor Pu is allocated
all the unprocessed tasks that can be done with the new data. Algorithm 3 details this strategy.

Algorithm 3: DynamicMatrix strategy.

while there are unprocessed tasks do

Wait for a processor Pu to finish its task
I ← {i such that Pu owns Ai,k for some k}
J ← {i such that Pu owns Bk,j for some k}
K ← {i such that Pu owns Ai,k for some i}
Choose i /∈ I , j /∈ J and k /∈ K uniformly at random
Send the following data blocks to Pu:

• Ai,k′ for k′ ∈ K ∪ {k} and Ai′,k for
i′ ∈ I ∪ {i}

• Bk,j′ for j
′ ∈ J ∪ {j} and Bk′,j for

k′ ∈ K ∪ {k}

• Ci,j′ for j
′ ∈ J ∪ {j} and Ci′,j for

i′ ∈ I ∪ {i}

Allocate all tasks {Ti′,j′,k′with i′ = i or j′ = j or k′ = k} that are not yet processed to
Pu and mark them processed

As in the case of the outer product, when the number of remaining blocks to be processed
becomes small,RandomMatrix strategy outperforms the DynamicMatrix strategy. Therefore,
we introduce the intermediate DynamicMatrix2Phases strategy that consists into two phases.
During Phase 1, the DynamicMatrix strategy is used. Then, when the number of remaining
tasks becomes smaller than e−βN3 for a value of β that is to be determined, we switch to Phase
2 and use strategy RandomMatrix. As in the case of the outer product, the theoretical analysis
proposed in the next section will help us to determine the optimal value of β, i.e. the instant
when to switch between phases in order to minimize the overall communication volume in the
DynamicMatrix2Phases strategy.

4.2 Theoretical analysis of dynamic randomized strategies

In this section, our aim is to provide an analytical model for AlgorithmDynamicMatrix2Phases

similarly to what has been done for Algorithm DynamicOuter in Section 3.3. The analysis of
both processes is in fact rather similar, so that we will mostly state the corresponding lemmas,
the proofs being similar to those presented in Section 3.3.
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In what follows, we will assume that N , the size of matrices A, B and C, is large and we
will consider a continuous dynamic process whose behavior is expected to be close to the one of
DynamicMatrix2Phases. In what follows, as in Section 3.3, we will concentrate on processor
Pk whose speed is sk and relative speed rsk = sk∑

i
si
. We will also denote by C = A×B the result

of the matrix multiplication. Note that throughout this section, Ai,k denotes the element of A on
the ith row and jth column.

Let us assume that there exist 3 index sets I, J and K such that

• Pk knows all elements Ai,k, Bk,j and Ci,j for any (i, j, k) ∈ I × J ×K.

• I, J and K have size y.

In Algorithm DynamicMatrix2Phases, at each step, Pk chooses to increase its knowledge
by increasing y by l, which requires to receive (2y + 1)l elements of each A, B and C. As we did
in Section 3.3, we will concentrate on x = y/N , and assuming that N is large, we will change the
discrete process into a continuous process described by an ordinary differential equation depicting
the evolution of expected values and we will rely on extensive simulations to assert that this
approximation is valid.

In this context, let us consider that an elementary task T (i, j, k) consists in computing Ci,j ←
Ci,j + Ai,kBk,j . There are N3 such tasks. In what follows, we will denote by gk(x) the fraction
of elementary tasks that have not been computed yet at the instant when Pk knows x2 elements
of A,B and C respectively, in the computational domain that does not include the tasks T (i, j, k)
such that (i, j, k) ∈ I × J × K (this domain is equivalent to the “L”-shaped area for the outer
product in Section 3.3). The following lemma enables to understand the dynamics of gk (all proofs
are omitted because they are very similar to those of Section 3.3).

Lemma 7. gk(x) = (1 − x3)αk , where αk =
∑

i6=k
si

sk
.

Let us now denote by tk(x) the time step such that index sets I, J and K have size x. Then,

Lemma 8. tk(x)
∑

i si = 1−N2(1 − (1− x3)αk+1).

Above equations well describe the dynamics of DynamicMatrix2Phases as long as it is
possible to find elements of A, B and C that enable to compute enough unprocessed elementary
tasks. On the other hand, as in the case of DynamicOuter2Phases, at the end, it is better to
switch to another algorithm, where unprocessed elementary tasks T (i, j, k) are picked up randomly,
what requires possibly to send all three values of Ai,k, Bk,j and Ci,j . In order to decide when to
switch from one strategy to the other, let us introduce the additional parameter β.

As in the outer-product problem, a lower bound on the communication volume received by
Pk can be obtained by considering that each processor has a cube of tasks Ti,j,k to compute,
proportional to its relative speed. The edge-size of this cube is thus N 3

√
rsk. To compute all tasks

in this cube, Pk needs to receive a square of each matrix, that is 3N2rs
2/3
k .

In order to determine when we should switch between Phase 1 and Phase 2, we can observe
that if x3

k = βrsk − β2/2rs2k, then

tk(xk)
∑

i

si = N2(1− e−β(1 + o(rsk))),

so that at first order, tk(xk) is independent of k. The instant t =
N2

∑
i
si
(1−e−β) is therefore chosen

to switch between Phases 1 and 2.
As in the context of the outer product, we need to find the value of β that minimizes the

volume of communications. If the switch occurs at time t = N2

∑
i
si
(1− e−β), then

• the volume of communications during Phase 1 is given by

3N2β2/3
∑

k

rs
2/3
k − 3N2β5/3

∑

k

rs
5/3
k ,
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• the volume of communications during Phase 2 is given by

e−βN3

(

1− β2/3
∑

k

rs
5/3
k

)

,

so that the total amount of communications with respect to the lower bound 3N2
∑

rs
2/3
k is given

by

β2/3 − β5/3

∑

k rs
5/3
k

∑

k rs
2/3
k

+
e−βN
∑

k rs
5/3
k

(

1− β2/3
∑

k

rs
5/3
k

)

.

4.3 Simulation Results

We have conducted extensive simulations to compare the performance of the dynamic strategies
with the previous analysis. Figure 9 presents the results for matrices of size 40x40 and Figure 10
presents the results for matrices of size 100x100. As in previous simulations, processor speeds are
chosen uniformly at random in the interval [10, 100] and all amounts of communications have been

normalized using the lower bound 3N2
∑

k rs
2/3
k on communications presented in the previous

section.
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Figure 9: Communication amounts of all strategies for matrices of size N/l = 40 blocks (N3/l3 =
64, 000 tasks).

As for the outer-product problem, we notice that data-aware strategies largely outperform sim-
ple strategies, and that DynamicMatrix2Phases is able to reduce the communication amount
even more than DynamicMatrix. When the number of processors is large enough (i.e. in our
simulation setting, p ≥ 50), our previous analysis is able to very accurately predict the performance
of DynamicMatrix2Phases.

We also performed simulations of DynamicMatrix2Phases with varying values of β to check
if the optimal value determined in the theoretical analysis actually minimizes the amount of
communications. This is illustrated in Figure 11, for 100 processors, N/l = 40 and a fixed
distribution of computing speeds. As for the outer product, we notice that the analysis accurately
models the amount of communications of DynamicMatrix2Phases in the range of values of
interest of β, and that the optimal value of β for the analysis (2.95) allows to obtain an amount of
communications that is close to optimal. This corresponds to 94.7% of the tasks to be processed
by the first phase of the algorithm. As for the outer product, we also notice that the value of β
given by an analysis which is agnostic to processor speeds and assumes homogeneous speeds is
very close to the optimal value (2.92 on this example).
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Figure 10: Communication amounts of all strategies for matrices of sizeN/l = 100 blocks (N3/l3 =
1, 000, 000 tasks).

N
o
rm

a
li
ze
d
co
m
m
u
n
ic
a
ti
o
n
a
m
o
u
n
t

8 10

Value of β

2

2.5

3

3.5

4

4.5

5

2 4 6

Analysis
DynamicOuter2Phases

DynamicOuter

Figure 11: Communication amount of DynamicMatrix2Phases and its analysis for varying
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5 Conclusion and perspectives

The contributions of this paper follow two directions. First, we have proposed randomized dynamic
scheduling strategies for the outer product and the matrix multiplication kernels. We have proved
that dynamic scheduling strategies that aim to place tasks on processors such that the induced
amount of communications is as small as possible perform well. Second, we have been able to
propose an Ordinary Differential Equation (ODE) whose solution describes very well the dynamics
of the system. Even more important, we prove that the analysis of the dynamics of the ODE can
be used in order to tune parameters and to inject some static knowledge which is useful to increase
the efficiency of dynamic strategies.

A lot remains to be done in this domain, that we consider as crucial given the practical and
growing importance of dynamic runtime schedulers. First, it would be of interest to be able to
provide analytical models for a larger class of dynamic schedulers even in the case of independent
tasks, and to analyze their behavior also in dynamic environments (when the performance of the
resources is unknown and varies over time). Then, it would be very useful to extend the analysis
to applications involving both data and precedence dependencies. Extending this work to regular
dense linear algebra kernels such as Cholesky or QR factorizations would be a promising first step
in this direction.
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