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Abstract 1. 

This report summarizes the experience of the au- 
thors in managing, designing, and implementing 
an object-oriented applications framework for 
orbital navigation analysis for the Flight Design 
and Dynamics Department of the Rockwell Space 
Operations Company in Houston, in support of the 
Mission Operations Directorate of NASA’s 
Johnson Space Center. The 8 person year project 
spanned 1.5 years and produced 30,000 lines of 
C++ code, replacing 150,000 lines of Fortran/C. 

We believe that our experience is important be- 
cause it represents a “second project” experience 
and generated teal production-quality code - it 
was not a pilot. The project successfully 
demonstrated the use of “continuous 
development” or rapid prototyping techniques. 
Use of formal methods and executable models 
contributed to the quality of the code. Keys to the 
success of the project were a strong architectural 
vision and highly skilled workers. 

Navigation is the process of taking measurements 

and using them to improve the knowledge of the 

position and velocity of one or more vehicles. The 

software system we were to build for analysis pur- 

poses had to be able to model the dynamics of 

physical systems, and simulate as well as process 

measurements from various sensors. The current 

system comprises 300,000 lines of mixed Fortran 

and C. In this first increment, we decided to 

replace approximately half of this code with a 

completely re-engineered system written in C++. 

This report focuses on process and methodology, 
and not on a detailed design description of the 
product. But the true importance of the object- 
oriented paradigm is its liberation of the developer 
to focus on the problem rather than the means 
used to solve the problem. 

2. Our solution 

There is no “right” way to do any particular 

project, and there is certainly no single way to do 

all projects. Indeed, the means must be determined 

by the end. However, we believe the methodology 

and process we used have shown themselves to be 

highly successful in our domain, with our people. 

2.1. Methodology 

At the outset. we were most heavily influenced by 

Booth, though we tried to remain goal-oriented 

and not become “methodology slaves.” The pri- 

mary changes we made were heavier use of model- 

ing and formal methods. 

The problem 

2.1 .I. Language choices 

We chose C++ as the language to implement the 
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final applications. Despite its general excellence, 

however, three problems plagued us: Strong 

typing, usually a blessing but sometimes causing 

us to write more code (possibly introducing more 

errors than it prevented); programmer-supplied 

memory-management; and the lack of a good 

macro facility. 

We also felt that a very-high-level language for 

modeling would be useful, primarily in support of 

requirements development. We chose Common 

Lisp, with the Common Lisp Object System 

(CLOS), as our modeling language for several rea- 

sons: It supports many programming paradigms, 

including object-oriented programming; it is 

(relatively) efficient; the implementation of 

Common Lisp we used (Macintosh Common Lisp) 

had a remarkably small footprint, allowing it to 

run on the 4 MB PowerBook we used for much of 

our modeling work; we had a long acquaintance 

and high comfort level with Lisp, particularly for 

object-oriented programming (Strom 1986); it is 

covered by an ANSI standard. 

2.1.2. Domain analysis - steal but formalize 

We were able to reuse much of the documentation 

on the existing system, primarily because of the 

relatively clean division that was maintained 

between “engineering” and “programming” 

documentation. The more fundamental analysis, 

however, was more difficult. This included the 

creation of classes describing space vehicles, the 

forces acting on them, transformations between 

reference frames, etc. Most advanced textbooks on 

classical mechanics (e.g., Goldstein 1980) take 

these concepts for granted. We therefore used a 

modem introductory text (Hestenes 1986) as the 

foundation for this analysis. We used algebraic 

specification techniques to capture the results of 

this domain analysis (as suggested in Srinivas 

1990) and recorded them in the software require- 

ments specification. 

2.1.3. Rapid prototyping 

From the outset we were convinced of the need to 

verify the integrity of the architecture with work- 

ing prototypes. We were also convinced that, if the 

change processes were controlled correctly, these 

prototypes did not have to be disposable. We 

could achieve evolutionary development if all 

subprocesses contributed to the ease of rapid 

prototyping. For example, configuration 

management facilitated the change process, rather 

than constricting it. We tracked, rather than 

restricted, the changes to our software. 

Rapid prototyping lowers the overall risk to the 

funding organization by providing almost imme- 

diate payback in the form of executable code. 

Here is a plot of the number of ultimately deliv- 
ered modules and lines of non-user interface code 

for our project, as a function of time: 

. Non-GUI 
modules 

Non-GUI 

2.1.4. The role of abstract dafa type uormal) 
speci@c&‘ons 

We previously worked in C with abstract data 

types. This experience led us to start this new pro- 

ject by focusing on structure. This approach was 

insufficient to properly describe the desired be- 

havior of a class, particularly under inheritance. 

For example, when we introduced forces, we 

wanted to be able to express the following design 

constraint: 

Structural descriptions could not do this. We 
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turned, therefore, to abstract data type, or alge- 

braic, specifications. The power of formal specifi- 

cations to describe the interface (including behav- 

ior) of a class became immediately apparent. 

Here is part of the current interface to the classes 

Particle and Material-particle: 

class Particle { 
public: 

Vector position_wrt(const Body&); 
Vector velocity wrt(const Body&); 
Vector acceleratio*_wrt(const Jkxiyh); 

protected: 
virtual Vector position(); 
virtual Vector velccity(); 
virtual Vector accelerationo; 

1; 

class Materialgarticle : public Particle { 
public: 

Vector sum~of~forces(const Body&); 
double mass(); 

protected: 
virtual vector accelerationo; 

// For all m in Materialmicle and 
// inertial reference frames b: 

// m.acceleration_wrt(b) = 
// m.sum of forces(b) / m.mass() I 

We had worried that algebraic specifications might 

be “too abstract” for users and developers. These 

fears proved to be unfounded. 

2.1.5. A rigorous definition of sofbvare archi- 
tecture and detailed design 

Consider the following apparently plausible design 

for a Force class, based on Hestenes 1986 (we use 

Harrel’s higraph extension of Venn diagrams, see 

Harrel 1988): 

n Force ) 

Planet, as a subclass of Material-particle, can func- 

tion as an agent. When Gravity is asked to com- 

pute the force on a material particle, it uses 

Newton’s law of universal gravitation, the mass of 

the material particle, and the gravitational 

parameter p stored in the agent (here a Planet). 

There is only one problem with this “design” - 

It cannot be implemented in C++! Static typing 

prevents the Gravity force from seeing the agent’s 

I’. This diagram should not be considered to be a 
“bad” design - it is simply not a design at all (for 
implementation in C++). (It could, however, be a 

design for a dynamically-typed language such as 

Smalltalk, CLOS, or Dylan.) (A related problem is 

that other forces, e.g., drag, may require properties 

of the particle being acted upon besides mass.) 

The tendency to postpone the greatest risk, 

namely, the software architecture, leads us to 

propose the following definition of software 

architecture - Software architecture is a 
description, in the implementation language, of 
the interfaces between the software components. 
This definition has several advantages: the inter- 

face can be compiled, providing a rigorous test for 

syntactic compatibility of the interfaces; it ad- 

dresses the greatest risk, i.e., implementability of 

the software architecture, early in the project. The 

software detailed design is the code. In accordance 

with IEEE Std 1016-1987, the design specification 

presents views of this design. Rapid prototyping is 

increasingly detailed elucidation of the software 

design. 
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2.2. Process 

The process we created for development of the 

Navigation Toolkit was driven by the problem we 

had to solve and the people we had to solve it. We 

held to the maxim that “Processes don’t write 

software - people write software.” Our intent was 

to balance the need to give our people the 

freedom to develop good solutions against the 

need to continuously monitor the progress of the 

project. 

2.2.1. Team organization 

We organized the team along orthogonal Work- 

type (or W-type) and Application-type (or A-type) 

lines (Swanson and Beath, 1990). The W-type or- 

ganization followed Booth 1994, Brooks 1975, 

and Stroustrup 1991. None of these roles was a 

full-time position. Instead, each team member was 

primarily a programmer. Most of the classes to be 

developed required considerable technical 
expertise, requiring the additional A-tY pe 
organization. 

Before initial delivery, the resulting team looked 

2.2.2. Macro and micro models 

The macro process model we adopted is the spiral 

model (Boehm 1988). The spiral model is risk 
driven and incorporates prototyping as a funda- 

mental component. It provides a rich set of project 

milestones and supporting documentation. We 

modeled the micro process with Meyer’s cluster 

model, in which a set of staggered waterfalls de- 

scribes the development of “clusters” (groups of 

closely related classes). 

3. Assessment 

Time to look back, to assess (sometimes painfully) 

how well the project went. 

3.1. cost 

How well did we do in predicting the course of the 

project? Here is a comparison of our predictions 

and the delivered lines of non-U1 code: 

Class category Predicted Actual I 
SLOC SLOC 

I 
1. Measurements 3000 1473 

2. Integrators 1000 762 

3. Environment 4000 4434 

4. Filter 4000 957 

5. Utilities 2000 2389 

6. Programs 5000 8148 

Total 19000 18163 L 
We also estimated that there would be 11,000 lines 

of UI code, or 30,000 lines of source code in all. 

Simple COCOMO, organic mode (Boehm 1981), 

predicted 85 person months of work. The actual 

cost of the project as a function of time is shown 

below: 

Actual Person Months 

1207 Estimated cost + unplanned work 

1;; 
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We exceeded our cost estimates. Most of this is 

attributable to unplanned work in late 1993, 

associated with coordination with another com- 

pany project. We expended 35 person months on 

this effort. Excluding this unplanned work, the 

cost of our project was extremely close to our 

original projection. This implies that COCOMO is 

a reasonably valid cost model for object-oriented 

projects. 

3.2. Quality metrics 

Here is the cyclomatic complexity (metric 16 in 

IEEE Std 982.1-1988) of the functions that 

comprise the Toolkit: 

Toolkit complexity 

1 IO 

Cyclomettc complexity 

100 

There was no observable correlation between cy- 

clomatic complexity and defect density in our 

code. 

Halstead’s complexity metrics (metric 14 in IEEE 

Std 982.1- 1988), derived from information-theo- 

retical concerns, appear to have more utility for 

our code. Here is a histogram of the Halstead dif- 

ficulty of the Toolkit modules: 

Toolkit Complexity 

Halstead dlffkulty 

The modules with higher Halstead difficulty 

turned out to be those which had been extensively 

optimized, and have exhibited a higher number of 

defects than modules with lower Halstead 

difficulty. 

Defects are usually tracked beginning with the 

completion of integration testing. We began 

tracking defects following unit test to demonstrate 

that the code that emerged from unit testing was of 

production quality. This contention is born out by 

the density of discovered defects (metric 2 in 

IEEE Std 982.1-1988): 

Discovered Defect Density 

It seems likely that the defect density will stabilize 

at well under 5 defects per KSLOC. Again, it must 

be emphasized that this is counting defects follow- 
ing unit rest. Rational has reported a defect density 

of 2.21 defects per KSLOC for the Beta 1 iteration 

of their Rose CASE tool (Walsh 1992). The qual- 

ity of our code, measured in defect density, is on a 

par with the best industry standards. 
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2.2. Process 

The process we created for development of the 

Navigation Toolkit was driven by the problem we 

had to solve and the people we had to solve it. We 

held to the maxim that “Processes don’t write 

software - people write software.” Our intent was 

to balance the need to give our people the 

freedom to develop good solutions against the 

need to continuously monitor the progress of the 

project. 

2.2.1. Team organization 

We organized the team along orthogonal Work- 

type (or W-type) and Application-type (or A-type) 

lines (Swanson and Beath, 1990). The W-type or- 

ganization followed Booth 1994, Brooks 1975, 

and Stroustrup 1991. None of these roles was a 

full-time position. Instead, each team member was 

primarily a programmer. Most of the classes to be 

developed required considerable technical 

experti se, requiring the additional A-tY pe 
organization. 

Before initial delivery, the resulting team looked 
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2.2.2. Macro and micro models 

The macro process model we adopted is the spiral 

model (Boehm 1988). The spiral model is risk 

driven and incorporates prototyping as a funda- 

mental component. It provides a rich set of project 

milestones and supporting documentation. We 

modeled the micro process with Meyer’s cluster 

model, in which a set of staggered waterfalls de- 

scribes the development of “clusters” (groups of 

closely related classes). 

3. Assessment 

Time to look back, to assess (sometimes painfully) 

how well the project went. 

3.1. cost 

How well did we do in predicting the course of the 

project? Here is a comparison of our predictions 

and the delivered lines of non-U1 code: 

Class category Predicted Actual 

1. Measurements 3000 1473 

2. Integrators 1000 762 

3. Environment 4000 4434 

4. Filter 4000 957 

5. Utilities 2000 2389 

6. Programs 5000 8148 

Total 19000 18163 

We also estimated that there would be 11,000 lines 

of UI code, or 30,ooO lines of source code in all. 

Simple COCOMO, organic mode (Boehm 1981), 

predicted 85 person months of work. The actual 

cost of the project as a function of time is shown 

below: 

Actual Person Months 

1207 Estimated cost + unplanned work 
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We exceeded our cost estimates. Most of this is 

attributable to unplanned work in late 1993, 

associated with coordination with another com- 

pany project. We expended 35 person months on 

this effort. Excluding this unplanned work the 

cost of our project was extremely close to our 

original projection. This implies that COCOMO is 

a reasonably valid cost model for object-oriented 

projects. 

3.2. Quality metrics 

Here is the cyclomatic complexity (metric 16 in 

IEEE Std 982. I-1988) of the functions that 

comprise the Toolkit: 

Toolkit complexity 

1 10 

Cyclomstlc complexity 

100 

There was no observable correlation between cy- 

clomatic complexity and defect density in our 

code. 

Halstead’s complexity metrics (metric 14 in IEEE 

Std 982.1-1988), derived from information-theo- 

retical concerns, appear to have more utility for 

our code. Here is a histogram of the Halstead dif- 

ficulty of the Toolkit modules: 

Toolkit Comphaxlty 

The modules with higher Halstead difficulty 

turned out to be those which had been extensively 

optimized, and have exhibited a higher number of 

defects than modules with lower Halstead 

difficulty. 

Defects are usually tracked beginning with the 

completion of integration testing. We began 

tracking defects following unit test to demonstrate 

that the code that emerged from unit testing was of 

production quality. This contention is born out by 

the density of discovered defects (metric 2 in 

IEEE Std 982.1-1988): 

Discovered Defect Density 
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It seems likely that the defect density will stabilize 

at well under 5 defects per KSLOC. Again, it must 

be emphasized that this is counting defects follow- 

ing unit test. Rational has reported a defect density 

of 2.21 defects per KSLOC for the Beta 1 iteration 

of their Rose CASE tool (Walsh 1992). The qual- 

ity of our code, measured in defect density, is on a 

par with the best industry standards. 
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