
Precise Behavioral Specifications In 00 Information Modeling

Report by:
Haim Kilov (Bellcore)

Bill Harvey (Robert Morris College)

Workshop Co-Chairs:
Haim Kilov (Bellcore, haim@cc.bellcore.com)

Bill Harvey (Robert Morris College, harvey@rmcnet.robert-morrkedu)
Hafedh Mili (University of Quebec at Montreal, mili@aicha.info.uqam.ca)

“De ene oorzaak van ellende is dat door verweving
met (vermoede) economische belangen het veld van
de slogans, reclamekreten, misleidende termen en
valse beloften is vergeven: Expert Systems, Learning
Machines, Teaching Machines, Automatic Program-
ming, Higher-Order Languages, Visual program-
ming, Program Animation, Software Engineering,
het is allemaal humbug.” (E.W.Dijkstra [9])’

Workshop Purpose and Goals
The purpose of this workshop was to explore behav-
ioral modeling in the context of object-oriented models,
with an emphasis towards:

1) modeling the collective behavior of objects, with a
particular interest in declarative constructs, and

2) modeling viewpoints, both along the lines of ODP’s
viewpoints (e.g., enterprise and information viewpoints
versus computational viewpoint [1,5]), and in terms of
different aspects of object behavior being of interest to
different kinds of users within an organization (different
domain experts, analysts, developers) or a la [2].

The presentations and discussions at the workshop pro-
vided both a snapshot of the state of the art and practice,

‘The one cause of misery is that, because of (apparent) involvement
of economic interests, the field abounds with catchphrases, advertis-
ing slogans, misleading terms and false promises: Expert Systems,
Learning Machines, Teaching machines, Automatic Programming,
Higher-Order Languages, Visual Programming, Program Anima-
tion, Software Engineering, all of it is humbug. (E.W. Dijkstra)
[Translated by Ed de Moel.]

including standardization activities, and an outline of
open theoretical and practical questions that need to be
addressed to advance the state of the art and practice
of 00 information modeling.

The object-oriented paradigm has solved many problems
related to software packaging, but has created its own.
With most 00 modeling methodologies, especially data-
driven ones, a functional glue has to be grafted back
onto object models using additional constructs (e.g.
various kinds of contracts). With traditional 00 “A&D”
methodologies, a dogmatic adherence to 00 concepts
as they are often used in programming precludes us
from seeing different user viewpoints separately, and
lacks the means to describe their interactions formally.
The past few years have witnessed two emerging trends
in 00 modeling: a “refunctionalization” of data models,
and a “subjectification” of objects. Blind faith in the
object ideal is making room for healthy multi-
paradigmatic cynicism (see e.g. [4] and activities related
to collective behavior in generalized object models).

Our workshop builds on two previous- very popular!--
OOPSLA workshops. All three workshops attracted
wide international participation, including well-known
00 experts. The first workshop dealt with the basics
of information modeling concepts [6] and identified
two major directions: unification of definitions and no-
tations in behavioral modeling, by contrast to the rel-
atively mature static modeling (no surprise there); and
modeling inter-object behavior declaratively and early
in the lifecycle. The second workshop [3] took up where
the first left off, and the issue of viewpoints came up
under different forms, some of which are addressed
below. It also brought some bread and butter issues
back on the table: how to acquire and express behavioral
requirements (e.g., business rules) in a way that domain
experts can understand and validate, and in a way that
modelers can verify and map to an object information
model. A number of participants expressed a strong
desire to continue at OOPSLA’94, and this workshop
had a more pragmatic flavor than the first two.

Addendum to the Proceedings OOPSLA ‘94 137

http://crossmark.crossref.org/dialog/?doi=10.1145%2F260060.260186&domain=pdf&date_stamp=1994-10-01

The following major conclusions of the second work-
shop provided an appropriate framework for continuity:

Precise declarative (formal) definitions of concepts (like
events, operations, roles, actions, triggers, etc.) and
specifications of systems based on these concepts are
essential for system speciJication understanding, val-
idation, and unambiguous interpretation.

Collective behavior is essential for information system
modeling. It should not be reduced to isolated object
speci$cations.

An appropriate frame of reference is essential for un-
derstanding (e.g., business rules should be separated
from computer-based implementation). Relations be-
tween frames of reference should be explicit.

Diflerent modeling approaches should be reconciled
using a small set offundamental common concepts.

The submissions to this OOPSLA’94 workshop show
that precise and rigorous (if not formal.. .) behavioral
specifications of collective behavior are being very se-
riously considered and successfully used in industry,
both for requirement specification and for program de-
velopment. This industrial experience is encouraging:
as shown in the Proceedings of this Workshop [lo],
such diverse application areas as telecommunications,
document management, financial applications, etc., as
well as international standardization documents, suc-
cessfully (re)use the same small set of fundamental
concepts. These concepts provide a good framework
for precise and abstract specification of the collective
state (invariants) and collective behavior (pre- and post-
conditions for operations) of several objects. “The great-
er concern with methodology is the consequence of the
fact that computing science is one of the less knowledge-
oriented branches of applied mathematics” [7]. The ap-
proaches discussed at this year’s workshop will therefore
help to substantially reduce the amount of reinvention’
- and corresponding frustration!

The following quote set the stage for the workshop:
“...many students don’t want to be shown effective pat-
terns of reasoning, they want to be told what to do.
They have been trained to expect another mathematical
cookbook, automatically read general guidelines as rec-
ipes that are supposed to suffice for the next exercise
(something they - of course - rarely do). They expect a

‘exemplified by a rephrased excerpt from an otherwise superb
nameless paper: the 00 paradigm is excellent for modeling self-

contained objects, but cannot be applied for modeling persistent

relations.. . In this paper, we present a new model.. . Fortunately,
the situation is substantially better: quite a few papers in these
Proceedings successfully apply the 00 concepts for specifying per-
sistent relationships; and an IS0 standard [8] does just that!

so-called complete methodology, with each next exer-
cise carefully tailored to the potential of the preceding
example and complain when they don’t get what only
the quack can provide. [We just addressed a bunch of
industrial computing scientists, and the above phenom-
enon was alarmingly pronounced.]” (E.W.Dijkstra.
Management and mathematics)

The organizers have structured the contributions into
“Approaches , ” “Enterprise understanding”, “Abstrac-
tion by specification”, “Standards”, “Documents”, and
“Applications”. Each contribution was given 10 minutes
(enforced!) to present the most important ideas. Ques-
tions and answers became a basis for discussion.

Although the workshop participants have quite different
backgrounds, their presentations and approaches con-
centrated on a small number of the same important
conceptual issues. What follows is an overview of these
issues (and discussions), based on the perception of the
workshop organizers. We don’t even attempt to state
that this is the only correct perception!

Participants
APPROACHES: Doug Bryan (Stanford University); B.
Cameron, C. Geldrez, A. Hopley, D. Howes, B. Mirek,
and M Plucinska, (BNR Canada); John Daniels (Object
Designers Ltd.); Bent Bruun Kristensen (Aalborg Uni-
versity); James J. Ode11 (James Ode11 Associates); David
A. Redberg (AT&T Bell Laboratories); Charles Richter
(Objective Engineering, Inc.)

ENTERPRISE UNDERSTANDING: Joseph Morabito
(Merrill Lynch & Co., Inc.); Jim Ross and Tom Smith
(CAP Gemini America,)

ABSTRACTION BY SPECIFICATION: Roger F. Os-
mond (Bytex); Dave Thomson (Object Technology In-
ternational Inc.)

STANDARDS: Colin Ashford (Bell-Northern Re-
search, Ltd); Erik Colban and Heine Christensen
(Bellcore); Haim Kilov and Laura Redmann (Bellcore);
Richard Sinnott and K. J. Turner (Department of Com-
puting Science, University of Stirling)

DOCUMENTS: Lillian Cuthbert (Bellcore); Haim Ki-
lov (Bellcore)

APPLICATIONS: Bill Harvey (Robert Morris College),
Richard Price (Department of Veterans Affairs), and
Cameron Schlehuber (Department of Veterans Affairs,
VHA Database Administration); Augustin Mrazik and
Jana Ceredejevova (ArtInAppleS spol. s. r. 0); Stephen
L. Nicoud (Boeing Computer Services); Kingsley Nwo-
su (AT&T Bell Laboratories) and Bhavani Thuraising-
ham (The MITRE Corporation)

138 Portland, OR October 23-27,1994

Activities
Specifications

Specifications were the subject matter of the workshop.
The participants discussed both the general properties
of specifications and examples and lessons of their use
in particular application areas. Some properties of a
specification should be true for all viewpoints, e.g.,
internal consistency and correctness. Completeness (be-
ing able to answer all questions that could be reasonably
asked3) is defined with respect to a viewpoint. In
other words, only viewpoint-specific questions could
be asked, and therefore the quantitativeness (“how
precise...“) is determined by the consumer’s viewpoint.

It was noted (Redberg) that the work we’re doing can
be thought of as the analogy to software design patterns
in the information perspective (see also [7, 12, 151).
Indeed, an information modeling construct is nothing
more than an information modeling design pattern; it
is reusable in application-specific models, it is an ab-
straction, it solves a real, general problem, and it pre-
cisely describes the thing (the objects participating in
the relationship) and how the thing works (the behavior
based on the relationship). [Unfortunately, not all soft-
ware design patterns are defined in a rigorous manner!]
Software patterns are used to architect software systems
by abstracting code. Information modeling constructs
are used to specify business information systems by
abstracting (collections of) real-world entities. There
exists an obvious need to relate the two viewpoints,
and implementation libraries like the ones described in
[121 can be used for this purpose.

The need for abstraction

Many participants were quite unhappy with the current
state of requirements. Several challenges were men-
tioned: requirements provided in terms of solutions;
“thousands of use cases; and no common vocabulary”
(Cameron et al.). As there is more to real world than
just software (Redberg, Daniels, and others), the re-
quirements need to be formulated in terms the customer
can understand. Therefore constructs like message send-
ing are not an appropriate way to write these require-
ments: they overspecify (Perhaps, they are as low-level
as, in other contexts, goto’s, pointers, or hypertext links

3“with a view to requirements modelling, the purpose of a model is
to ask questions and demonstrate that answers can be given entirely
in terms of the model.” [161

‘?he need to separate these concerns has been clearly stated, in
particular, in the Open Distributed Processing Draft Standard: “Spec-
ifications and their refinements typically do not coexist in the same
system description” [5].

are [131.). The customer has to verify requirements
because otherwise the system to be built may be quite
different from what the customer wants. Therefore there
is a need to clearly separate the concerns of the business
enterprise from the concerns of the system development.
The fundamental purpose of a specification is to com-
municate intent. A good specification should be correct,
complete, and be in the language of the consumer; and
one sentence is preferable to 50 pages describing what
the wrong thing is (Osmond). The specification should
state what business processes and their effects really
are, rather than describe 10,000 event traces (Richter).

Some customers prefer to present requirements in terms
of external interfaces to currently existing systems. Al-
though these presentations do not use system develop-
ment terms, they reuse forms, charts, etc. from current
legacy systems (Ross, Smith, and others). Obviously,
this viewpoint on requirements does not properly repre-
sent the concerns of the business. As an example from
the document management business (Kilov), paper and
electronic document have quite different external inter-
faces, but solve the same business problems, and there-
fore the description of a business should not be based
on a particular (legacy or otherwise) electronic document
management system.

How do we keep users from presenting requirements
in terms of solutions? The user often does design instead
of analysis, and there is a need to distinguish between
what the user says (“how”) and what the user wants
(“what”). There is also a need to distinguish a system
for hire from a system for sale (Osmond). Analysis
deals with things about which you have no choice
(Daniels); design is everything else. These things have
to be discovered, and walkthroughs (see [121) are es-
sential for this: they break people out of a box (Ross,
Smith) by getting them into a meeting room where
different viewpoints are merged. Sometimes different
people get to know about each other as there is a lot of
replication of like functions across different lines of
responsibility (Ross, Smith, Osmond). Multiple projec-
tions from the same specification have to be used for
multiple consumers (Osmond).

Unrealistic expectations

“You can’t push the button so that the system comes
out the other side. And if you can then the user is left
behind.” (Ross, Smith). In other words, miracles don’t
happen: the domain expert, modeler, and developer have
to think. Obviously, tools and object (collection) librar-
ies help a lot, but in order to reuse a particular construct,
its context has to be understood.

Addendum to the Proceedings OOPSLA ‘94 139

Precise declarative specifications

Many participants were very unhappy with lack of pre-
cision in lots of published work on 00 methods. The
need to specify behavioral semantics in a precise and
explicit manner has been clearly recognized. Declarative
specifications, including invariants for (collections of)
objects, as well as pre- and postconditions for operations,
have been presented and supported by many participants.
These specifications have also been promoted by IS0
standardization documents on Open Distributed Pro-
cessing (ODP) [1,5] and General Relationship Model
(GRM) [8,11]. All examples in the GRM use this ap-
proach (by presenting a specification in stylized En-
glish), and the users accept it “if you don’t tell them
that the specifications are formal” (Kilov, Redmann).

There exist several problems with this approach. Where-
as it obviously makes a specification precise (and often
quite explicit!), many customers and modelers may not
be used to this kind of precision as there seems to exist
a contention between formality and clarity (Thomson,
Bryan, and others). Many customers (and modelers)
will be more comfortable in using precise specifications
translated from a formal notation like Z or Object Z
into stylized English. Some people close up their minds
when they hear about pre- and postconditions (Richter),
but they usually accept stylized English specifications
(Kilov, Odell). Almost all of us have encountered precise
specifications in real life: think about legal documents,
e.g.,, contracts like the one for buying a house (Kilov).
Terse specifications are difficult for end users (Bryan),
and so explanatory comments - as recommended by
mature Z users, for example - may be very useful.
Visual formalisms may augment or be otherwise used
in the specification, provided that each element and
relationship between elements of this formalism has
been precisely and explicitly defined (Daniels, Redberg,
Kilov). If these precise definitions do not exist - as
too often happens - then a set of “cartoons” (diagrams)
does not help much: we “need to annotate pictures
with a little bit more formality” (Nicoud). And quite a
few users understand that informal integrity constraints
are difficult to enforce (Kilov, Redmann).

Another related problem deals with terminology. The
same names may denote very different things (“altitude”
has different meanings in different systems (Nicoud),
and all of us know that more generic terms like “cus-
tomer” are context-dependent). The approach taken by
the Reference model for Open Distributed Processing
provides a solution: a name is usable for denoting entities
only within a particular, explicitly specified, context
[5], so that the same entity may have different names
in different contexts, and the same name may denote

different entities in different contexts.

Still another problem deals with understandability. It is
not sufficient for an understandable specification to be
precise: even a Smalltalk specification may present ma-
jor problems (Thomson)! Abstraction is needed as well,
and precision is applicable at all levels of abstraction.
A precise, but not abstract, specification is unmanage-
able and therefore not understandable. Eiffel has been
successfully used for embedding extractable specifica-
tions (Osmond), in particular because it has language
mechanisms for declarative contract specifications (pre-
and postconditions, as well as class invariants). A human,
not a machine, maps the specification onto an imple-
mentation. Understandability is as important - if not
more - than verifiability (Richter). The need for a
specification to facilitate communication among people
(Thomson) has also been stressed, e.g., in [12, 15, 161.

A contract “happens” because a meeting of the minds
is assured; the same is needed for creating specifications.
Precision is needed for the minds to meet (not just in
adversarial situation), and then the specification is cre-
ated cooperatively, as a team effort (Kilov, Ross, Smith,
Harvey, and others). As an example, in the Veterans
Administration hospital information system, in order
to document the intent, email messages leading to the
integration agreement about the meaning of data are
attached to this agreement (Harvey). A specification
should provide a deterministic answer to user’s ques-
tions, although at times the question may have no answer
at that level. Different viewpoints may refer to different
levels of abstraction. Different sets of questions are
asked for different viewpoints. And finally, often the
implementors have to “supplement” the specification.

Is a precise specification really that complicated? Con-
sider Lewis Carroll’s quote about compositions (Kilov,
Redmann): “Alice had begun with ‘Let’s pretend we’re
kings and queens;’ and her sister, who liked being very
exact, had argued that they couldn’t, because there were
only two of them, and Alice had been reduced at last
to say, ‘Well, you can be one of them then, and I’ll be
all the rest.’ ” (Through the Looking Glass)

Collections of objects

No object is an island (Kilov, Redmann, Kristensen,
Daniels, Richter, and others). Most OOA methods do
not deal with system-level functionality (Richter) or
with properties of collections of objects. Early allocation
of behavior to classes often promoted because of tradi-
tional 00 programming constructs “is bad”. There is a
need to deal with relationships explicitly by providing
a more abstract specification of aggregate behavior and

140 Portland, OR October 23-27,1994

separating it from inner object behavior (Bryan, Richter,
and others). Traditional specifications using attributes
and isolated object operations (“object-centered method
invocations” (Kristensen)) are not appropriate (too de-
tailed) for understanding, although they may be quite
precise (Kilov, Redmann, Redberg, Kristensen, Ash-
ford, Bryan, and others).

Various approaches to dealing with collections of ob-
jects have been discussed. Collective state, for example,
is specified in the IS0 General Relationship Model
using an invariant for a relationship. This approach is
supplemented by specifying pre- and postconditions
for operations applied to collections of objects (collec-
tive behavior). It has been described in more detail in
[121 and has been successfully used to create under-
standable and reusable specifications (Kilov, Redmann,
Redberg, Ross, Morabito, and others). In particular,
the same generic relationships (composition, dependen-
cy, symmetric relationship, and so on) have been pre-
cisely defined and reused in very different application
areas. For example (Redberg), an attribute-based model
for telecommunications network and service operations
(without easily understandable semantics) has been re-
placed with a much more understandable and reusable
specification using generic relationships like dependen-
cy described in [121. This model was provided both to
users and developers. Thus, a library of sufficiently
rich and expressive information modeling constructs
can be specified in a precise and abstract manner, stan-
dardized (as in [8,11]) and successfully reused.

In another approach (Richter), a function is specified
using initiator, outgoing signals, and pre- and postcon-
ditions (in pseudo-English): use English, but always
talk in terms of object model constructs. Individual
object behaviors may be specified later. Similarly
(Daniels), behavior is described declaratively, by means
of events and their order; an event has pre- and post-
conditions. Similarly (Odell), business rules are pre-
sented rigorously, in stylized English, using, e.g., oper-
ation constraint rules (pre- and postconditions), structure
constraint rules (invariants), and so on. Similarly (Kris-
tensen), transverse activities representing joint behavior
have a directive and participants, may be classified
(generalized and specialized), aggregated [e.g., pre-
review, paper-evaluation, and post-review are aggregat-
ed into review-activity], etc. These activities represent
idioms useful in analysis, design, and programming.
Activities, functions, operations, etc., - and invariants!
- jointly owned by several objects can be (if there is
such a desire!)- implemented using messages attached
to particular objects. This is not needed, however, at
the specification level. Certain existing languages (like
CLOS) permit implementation of collective behavior.

Standards

Some IS0 standards, such as ODP [1,5] and GRM
[8,11], explicitly deal with specification of behavioral
semantics. They define general concepts and constructs
reusable in all application areas. They specify semantics
in a precise, and often formal, manner. These spec-
ifications are written in stylized English, and some es-
sential ODP specifications are formalized in [l] using
such notations as LOTOS and Z.

These standards have been successfully used to specify
the TINA-C architecture - reusable design patterns
for broadband networks (Colban, Christensen). The log-
ical framework architecture has been built upon ODP
information, computational, and engineering view-
points. However, the ODP information viewpoint had
to be expanded because of the need to specify relation-
ships, and therefore the GRM has been used in the
information model. Invariants and pre- and postcondi-
tions have been successfully used in TINA-C spec-
ifications. Several ways of (not one-to-one!) mapping
between information and computational models have
been described.

The standards themselves have been discussed in some
detail (Ashford, Kilov, Redmann, Sinnott), with a strong
emphasis on the “why”, i.e., on design considerations.
The need for better understanding and for distinguishing
between the ontology and representation (Ashford) has
been stressed by all participants. Declarative specifica-
tions, such as invariants for defining a managed rela-
tionship (Ashford, Kilov, Redmann) and pre- and post-
conditions for the ESTABLISH operation for a managed
relationship (Kilov, Redmann), provide a way to under-
stand and therefore reuse on many levels, from concepts
(such as invariants) to (fragments of) specifications.
The participants stressed the need for formal descrip-
tions of concepts and constructs, especially referring to
the ODP approach (Sinnott) where Part 4 of the ODP
Reference Model [l] provides the architectural seman-
tics of ODP through the interpretation of basic modeling
and specification concepts of [5] using various formal
description techniques. It appears (Sinnott) that Z (or
its 00 extensions) is more appropriate for specifying
the ODP enterprise and information viewpoints, whereas
LOTOS - for the computational viewpoint.

Documents

Domain experts, modelers (specifiers), developers, and
others use documents in their work. These documents
are quite complicated and need to be specified as well.
In modeling a document collection, there exists a need
to separate between the contents, logical layout, and

Addendum to the Proceedings OOPSLA ‘94 141

physical presentation (Kilov). To make documents un-
derstandable, the document contents model should cor-
respond to the model of enterprises described by these
documents. Existing technology (such as hypertext link
management (Kilov) or SGML (Cuthbert)) solves some
problems here, but is not adequate for specifying se-
mantics of complex document collections.

Part-whole

And finally, there was a heated discussion about whether
a system behavior may be defined from its parts alone?
It appeared that, in addition to parts, we need the de-
scription of the relationships between parts and the
description of the whole as well. Example (Kilov): when
a document is created out of components, perhaps com-
ponents of other documents, not all document properties
are defined by the components’ properties or even by
the relationships between them. The new whole is not
just the sum of the parts (e.g., the title of a new document
is not defined by its parts).

Given a “high-enough” level of components, could you
build a system? The users require and describe capabil-
ities, “parts”. Can the specification of system behavior
be defined out of specifications of component behav-
iors? (Things like relationship objects (and perhaps in-
variants) are also parts!) Perhaps... pushouts in category
theory may provide an answer (some workshop partic-
ipants have also been students at the category theory
tutorial by Jose Fiadeiro and Tom Maibaum a day before
and highly praised it).

Conclusions

The workshop considered in detail how to meet the
demand for a rigorous specification that corresponds
appropriately to a form of presentation whose meaning
can be validated by domain experts. Particularly pro-
ductive was the discussion of the tension between the
mode of customer requirements presentation and the
need for the analyst to receive requirements that are
not distorted by speculations on the part of the domain
expert that transcend the expert’s role and anticipate
solutions. Dialog underscored the importance of correct
treatment of the collective behavior of objects. We start-
ed the discussion on “part-whole”, made some progress,
and want to continue at OOPSLA’95.

References
1. ISO/IEC JTCl/SC 21/WG 7, Information Technology
- Basic Reference Model of Open Distributed Processing
- Part 4: Architectural Semantics, International Stan-
dards Organization, August 1994. Working draft.

2. W. Harrison and H. Ossher, “Subject-Oriented Pro-
gramming: A Critique of Pure Objects,” in Proceedings
of OOPSLA’93, pp. 41 l-428, ACM Press.

3. B. Harvey, H. Kilov, and H. Mili, “Specification of
Behavioral Semantics in Object-Oriented Information
Modeling: workshop report,” OOPS Messenger, ACM
Press, 1994. Addendum to the OOPSLA’93 Proceed-
ings, pp. 85-89.

4. Geir Magne Hoydalsvik and Guttorm Sindre, “On
the Purpose of Object-Oriented Analysis,” in Proceed-
ings of OOPSLA’93, pp. 240-255, ACM Press.

5. ISO/IEC JTClISC21IWG7, Basic Reference Model
for Open Distributed Processing - Part 2: Descriptive
Model (DIS 10746-2, February 1994).

6. H. Kilov and B. Harvey, “Object-Oriented Reasoning
in Information Modeling: Workshop Report,” in OOP-
SLA’92 Addendum to the Proceedings, pp. 75-79.

7. A.J.M. van Gasteren, On the shape of mathematical
arguments. Lecture Notes in Computer Science, Vol.
445. Springer Verlag, 1990.

8. ISO/IEC JTClSC21, Information Technology - Open
Systems Interconnection - Management Information
Services - Structure of Management Information - Part
7: General Relationship Model. CD ISO/IEC 10165-7
N 8454. March 30, 1994.

9. E.W.Dijkstra, Voorwoord. EWDl156,9 June 1993.

10. Proceedings of the OOPSLA’94 Workshop on Pre-
cise Behavioral Specifications in Object-Oriented In-
formation Modeling, Robert Morris College, 1994.

11. ISOIJTClISC21 (Open Systems Interconnection,
Data Management and Open Distributed Processing.
OS1 Management) P.Golick, H.Kilov, E.Lin, L.Red-
mann. U.S. National Body Comments on SC21 N 8454,
ISO/IEC DIS 10165-7, General Relationship Model.
Document number X3T5/94-198, July 11, 1994.

12. H.Kilov and J.Ross, Information Modeling: an
Object-oriented Approach. Englewood Cliffs, NJ:
Prentice-Hall, 1994.

13. H.Kilov. On understanding hypertext: are links es-
sential? ACM Software Engineering Notes, Vol. 19,
No. 1 (January 1994), p. 30.

14. B.Liskov and J.Guttag. Abstraction and speci$cation
in program development. McGraw-Hill, 1986.

15. C.Morgan. Programming from specifications. Sec-
ond edition. Prentice-Hall, 1994.

16. Micheal Mac an Airchinnigh. Tutorial lecture notes
on the Irish school of the VDM. In: VDM ‘91. Formal
Software Development Methods. Lecture Notes in Com-
puter Science, Vol. 552, Springer Verlag, 1991, pp.
141-237.

142 Portland, OR October 23-27, 1994

