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ABSTRACT
We address the problem of retrieving chess game positions
similar to a given query position from a collection of archived
chess games. We investigate this problem from an informa-
tion retrieval (IR) perspective. The advantage of our pro-
posed IR-based approach is that it allows using the standard
inverted organization of stored chess positions, leading to an
efficient retrieval. Moreover, in contrast to retrieving exactly
identical board positions, the IR-based approach is able to
provide approximate search functionality. In order to define
the similarity between two chess board positions, we encode
each game state with a textual representation. This textual
encoding is designed to represent the position, reachability
and the connectivity between chess pieces. Due to the ab-
sence of a standard IR dataset that can be used for this
search task, a new evaluation benchmark dataset was con-
structed comprising of documents (chess positions) from a
freely available chess game archive. Experiments conducted
on this dataset demonstrate that our proposed method of
similarity computation, which takes into account a combina-
tion of the mobility and the connectivities between the chess
pieces, performs well on the search task, achieving MAP and
nDCG values of 0.4233 and 0.6922 respectively.

Categories and Subject Descriptors
H.3.1 [INFORMATION STORAGE AND RETRIE-
VAL]: Content Analysis and Indexing—Abstracting meth-
ods

Keywords
Query by Example, Similar Chess Positions

1. INTRODUCTION
It is beneficial for a chess player during a live game to

know whether previously archived chess games lead to po-
sitions approximately similar to the position considered at
present. A knowledge about the successive moves from these
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(a) Karjakin vs. Nakamura,
position after move 20.

(b) Zagorsek vs. Zirkelbach,
position after move 37.

Figure 1: Two similar (not identical) chess positions.

retrieved games can then be used to devise a winning or a
game saving strategy in general, and even decide a sequence
of the next best moves in particular. Kotov, the Soviet chess
grand master, opines that if one can recall similar positions
from earlier games, then it is “easier to reach an assessment
of how things stand, and to hit upon the correct plan or
analyze variations” [8].

Existing chess search systems equipped with a query-by-
example (QBE) [19] search interface are limited to search
only the exact matches in response to a given query position.
However, the strict requirement of an exact match may fail
to retrieve any matching board position This is because it is
highly unlikely for a position in the middle or end stages of
a game to exactly match another position from a previously
played game due to the massive combinatorial state space
of a chess game (the number of possible board positions in
a chess game has been estimated to be 1043 [16]).

To illustrate with an example, let us take the board posi-
tion arising after the 20th move in a game between Karjakin
vs. Nakamura as a sample input query shown in Figure 1a.1

The online search interface 365Chess2 performs a known-
item search by retrieving this very position from this game
itself. It however fails to retrieve a very similar position as
shown in Figure 1b occurring in a different game. In addition
to the obvious visual similarity with regard to the position of
the chess pieces, one can also notice a few other thematic or
structural similarities, e.g. the black bishop plays an impor-
tant defensive role on black’s kingside, and that the white

1Section 3 briefly reviews chess notations and terminologies.
2http://www.365chess.com/search position.php



queen has limited reachability on the opponent’s half due to
the presence of two centrally located pawns etc. An inter-
esting observation is that both games resulted in a win for
white. This example clearly shows that the strategy adopted
by white in the subsequent course of one of the games might
have been used to devise a similar strategy in the other.

The underlying approach of a QBE chess position exact
search system primarily involves storing each position of ev-
ery game in a hash organized file. Retrieval is then simply
a computation of the hash function of the query board po-
sition and returning the board positions from the collection
which hash to the same value as the query. The hash func-
tion mostly used is the Zobrist hashing [20]. While this
approach is highly efficient and scalable for very large game
collections, the major disadvantage is that it does not allow
provision for approximate search, the importance of which
has already been discussed (c.f. Figure 1). The search sys-
tem CQL3 (Chess Query Language) alleviates this problem
of exact item search by allowing for approximate matches
with the help of wild-card queries [4]. However, there are
three important limitations in CQL, as follows. Firstly, in
CQL a user has to meticulously formulate the query text in
a complex query language for a given board position. Sec-
ondly, in order to allow for more relaxed matches, instead of
using a simple hash-based lookup, CQL employs a position
filter constructed from the query to each position of every
game in the collection and reports the ones which evaluate
to true when applied to this query position filter. For ex-
ample, the CQL query “(position [RQ]b2 bg8)” matches any
position with a white rook or a white queen on b2 and a
black bishop on g8. For reporting the results against this
query, CQL checks if there is a white rook or a white queen
on the square b2 and a black bishop on the square g8 and
reports the ones which satisfy this constraint. This imple-
mentation of the matching phase in CQL leads to a slow
runtime even for moderate sized game databases. The third
limitation of CQL is that it suffers from the classical prob-
lem of Boolean retrieval, i.e. it has no way of ranking the
search results because it applies a Boolean filter instead of
computing a similarity score. The order in which relevant
game positions are presented to the searcher can save a con-
siderable amount of time in the analysis of the current query
position. Returning to our example query of Figure 1a (re-
produced in Figure 2a), the position shown in Figure 2b, in
spite of being visually quite similar to the query, may not
quite provide useful insights into the analysis of the current
game position. This can be seen from a few contrasting ob-
servations such as: i) the strategy for white in Figure 2b
would be to develop attack along the centre of the board
because the king is not castled and stays in the e8 square,
whereas the most rewarding line of attack for white in the
query position would be along the kingside; and ii) the white
queen has more mobility along the f file in comparison to
the white queen of the query position.

To alleviate the above limitations of existing chess posi-
tion search systems, this paper approaches the problem from
an IR perspective, which can, in theory, overcome the prob-
lems of the existing approaches. This is because a standard
IR-based approach a) is not limited to identical match find-
ing such as in the 365Chess interface; b) uses a standard
inverted list file structure to efficiently constitute a list of

3http://www.rbnn.com/cql/

(a) Karjakin vs. Nakamura,
after move 20.

(b) Glantz vs. Bekker
Jensen, after move 24.

Figure 2: An example of a chess position which may
not be relevant to the analysis of the query position.

candidate documents for retrieval in contrast to the sequen-
tial approach of CQL; and c) involves the computation of a
similarity score between the documents in the collection and
the query so that the documents in the retrieved list can be
ranked unlike an arbitrarily ordered list of results returned
by CQL. The problem however cannot simply be solved di-
rectly using an off-the-shelf IR system as a black-box.

The critical questions in this case are: i) How can a chess
board position be encoded as a string the constituent terms
of which can be indexed by a standard text-based IR sys-
tem? ii) How can the structural relationship between the
chess pieces be represented in the index, and how can the
similarity computation function make use of this during the
retrieval, e.g. with reference to the query position shown in
Figure 1a, how can the fact that the restricted mobility of
the white queen due to the presence of the white pawns at e4
and f4, be utilized to predict that the position (in Figure)
1b is more relevant to the query than the position 2b?

In the subsequent sections of this paper, we describe how
these questions are addressed towards developing an IR-
based chess position retrieval system. The rest of the pa-
per is organized as follows. Section 2 surveys previous work
related to this research. In Section 3, we provide a short in-
troduction to the chess terminologies and notations relevant
for reading the rest of the paper. Section 4 formally defines
the chess position search problem. Section 5 discusses vari-
ous approaches towards encoding a chess board position as
a text string so that the similarity between two chess board
positions can be computed with the help of a standard IR
model. This is followed by Section 6 which describes the
complete algorithm for the search problem. Section 7 de-
scribes the experiments conducted to evaluate our proposed
approach. Finally, Section 8 concludes the paper by sum-
marizing the observations and providing directions for future
research and generalizing this approach for other domains.

2. RELATED WORK
Due to the novelty of the search task itself, the authors,

to the best of their knowledge, are not aware of any pre-
vious IR-based approach towards solving the chess position
search problem. The search problem, however, is closely
related to the problem of retrieving approximately match-
ing entities (typically non-text) from a collection, given a
query entity (typically also non-text) as an example. Exam-



ples of this class of search tasks include content-based image
search [18], mathematical equations search [7], searching for
the least edit distance reference sentence for example-based
machine translation (EBMT) [10], etc. These search tasks
differ widely from standard text search in the following ways.
Firstly, in contrast to key-word type queries used in ad-hoc
IR, these search problems often use the QBE paradigm [19]
to avoid the user inconvenience of manual query formulation.
As a result of this the queries themselves are comparable in
size to the documents in the collection. Secondly, since the
queries and the documents are comparable in size, the simi-
larity measure often used in these search tasks is that of the
edit distance (inverse similarity), i.e. the minimum number
of operations needed to transform a document to the query
and vice-versa. For example, the similarity between two
mathematical expressions can be computed by the inverse
of the edit distance between their parse tree structures [7].
The edit distance metric can, in principle, be applied to the
chess position search problem as well, where the distance
(inverse similarity) between two positions could be com-
puted by the number of operations required to transform
one board position to another. However, the edit distance
based approach, although effective in practice, may lead to
inefficient retrieval because the edit distance values cannot
be computed by utilizing the standard inverted list indexing
framework. Consequently, the main disadvantage of the edit
distance method is the inefficiency involved in computing the
edit distance values between each document in the collection
and the given query [7]. A solution which overcomes this in-
efficiency was proposed in [10]. Instead of computing the
true edit distances this method approximates the relative
ordering of documents by edit distance values with the help
of an IR-based approach. In the context of mathematical
equation retrieval, [12] proposed a text-based encoding of
mathematical expressions to the accomplish search task by
a standard inverted index based IR approach, which is more
efficient compared to computing edit distances between each
mathematical expression in the collection and the query. We
propose a similar textual encoding for representing the chess
board positions so that the board pos they can be indexed
and retrieved under the framework of a standard text re-
trieval system.

In relation to the chess game playing research, we find
the following relevant to our work in this paper. De Sa [15]
applies logistic regression to predict the likelihood of a win
from a given board position. Cognitive aspects of “similar-
ity” between two chess positions have been reported in [17].
Automatic chess playing programs select the next best move
by selecting the best branch in the game tree generated from
the present board state [2]. The evaluation function of a
board state is estimated by making use of the mobility of
and the connectivity between the chess pieces [2], which we
also use in our work to compute the similarity between two
chess positions.

3. BACKGROUND
This section provides a brief introduction to the chess spe-

cific terminologies such as the algebraic notation and the
most widely used file formats for storing chess games.

Chess Algebraic Notation. Chess is a two player game
played on a 8x8 board. Each square of the chess board can
thus be represented by a coordinate pair. The standard al-
gebraic notation (SAN) prescribes the use of a letter and a

number for this. The columns from white’s left are num-
bered from a to h, whereas the rows are marked from 1 to
8 bottom-up. The coordinate of the bottom left square (the
origin in this coordinate system) is thus a1. For example,
the white king of Figure 2a is placed at the square c1.

PGN Notation. The PGN (Portable Game Notation) [5]
format is used to encode the moves of a chess game. The
string encoding of a move comprises of the piece name being
moved (in case of a pawn the piece name is empty) and the
coordinate of the destination square of the move. Taking an
opponent piece as a part of the move is represented with an
additional character ‘X’ before the destination square coor-
dinate. For example, the next three moves from the position
depicted in Figure 2a are “20... Bxc3 21. bxc3 Qf6”, which
implies black takes the knight on the c3 square with his
bishop, following which white takes black’s bishop with his
pawn after which black moves his queen to the f6 square.
In our work, we use the PGN encoded move sequences of
a game to compute and store the textual encoding of each
intermediate board position matrix in an index.

FEN Notation. In contrast to the PGN notation (which
encodes a move), the FEN (Forsyth-Edwards Notation) no-
tation encodes a particular position encountered during a
chess game. A FEN string can be decoded into a board po-
sition matrix. In our search system, a user can specify a
query with the help of a FEN encoded string.

4. PROBLEM FORMULATION
In this section, we define the chess position retrieval prob-

lem as an ad-hoc search problem. The task of the chess
search problem is to retrieve a list of chess positions most
similar to a given query position. The intention is to use the
associated information from similar positions in the analysis
of the current game position.

The underlying scenario of this search problem is some-
what analogous to the content-based image retrieval (CBIR)
problem, where the intention is to retrieve the top-most sim-
ilar images, given a query image [18]. Conceptually speak-
ing, the chess position search problem can be visualized as a
CBIR problem, in which the intention is to retrieve a ranked
list of snapshot images of chess positions ordered by decreas-
ing values of similarities with respect to the query snapshot
image. However, one important aspect in which the chess
position search differs from other standard search tasks is
due to the presence of an additional constraint that it is de-
sirable to retrieve only a single board position (the one which
best matches the query) from each game, instead of retriev-
ing more than one position from a single game. The search
objective in this case is somewhat analogous to detecting
the best entry point (the best matching chess position) from
which a user should start reading a document (a chess game)
so as to satisfy his information need [13].

It is reasonable to apply this additional constraint for the
chess position search because sets of consecutive positions in
the same game tend to be more similar to each other than to
other positions in different games. Consequently, retrieving
this whole set of consecutive positions from a single game
does not allow similar positions from other games to be re-
trieved at top ranks. According to the objective of the search
task, it is desirable to retrieve a single best matching posi-
tion from each unique game, so that the current game can
then be analyzed by extracting information from the sub-
sequent moves following the best matching position of this



game. Each retrievable unit in this case thus has to be asso-
ciated with a parent element, that is the game in which this
position has occurred, and the system must ensure that the
parent of each retrieved position is unique. We now define
the chess position search problem formally as follows.

Given a chess game collection of N chess games, where
each game gi = {gi

1, . . . , g
i
mi}, i = 1 . . . N (each game gi is a

list of mi positions), a query chess position q from a game Q,
and a similarity function sim(p1, p2) denoting the similarity
between two chess positions p1 and p2, return a list of chess

positions L =
KS

i=1

gi
j such that:

1. gk 6= gk′
∀k, k′ ∈ {1, .., K}, i.e. all games are distinct

from each other,
2. sim(gi

j , q) ≥ sim(gi
j′ , q) ∀j′ ∈ {1, .., mi} − {j}, i.e. re-

trieve the best matching position from each game, and

3. sim(gi
j , q) ≥ sim(gi′

j′ , q) ∀i′ > i, i.e. games ordered by
non-increasing values of the best matching position.

The crucial part in the problem definition is designing
a suitable similarity function sim(p1, p2), which should be
able to determine how similar two chess positions p1 and p2
are to each other. For computing this similarity, one needs
to encode a chess position as a feature vector so that the
similarity between these vectors can be computed by the
standard dot product. The features themselves need to be
carefully chosen so as to represent the key factors in a game
position, such as the position, mobility and connectivity of
the pieces [2].

5. SIMILARITY COMPUTATION
This section addresses the problem of encoding chess board

positions. We first start with a naive feature encoding ap-
proach and then progressively work towards enhancing it
with more contextual information.

5.1 A Naive Encoding
A very simple and naive approach of encoding a chess

board state is through a feature vector f ∈ {0, 1}64, i.e.
a Boolean vector of 64 (8× 8) dimensions where fi = 0
if the square is empty or 1, if it is occupied. We adapt
the convention that the component f1 corresponds to the
top left square, i.e. a8 whereas the component f64 corre-
sponds to the square h1. Under such an encoding scheme,
the chess board of Figure 3a (reproduced from Figure 1a) is
{0, 0, 1, 1, 0, 1, 1, 0, 0, 1, . . .}.

This method does not take into account the type or the
colour of the pieces. It is easy to see that the dot product
would falsely lead to a very large number of high similarity
values based only on the occupancy factor of the squares.
For example, a rook at the c8 square of the position in Figure
3a may match with a knight at c8 in another board position.
An easy solution is to use a higher number of dimensions to
correspond to the piece type and colour. Since there are a
total of 6 piece types and 2 colours, f can be represented as
a vector of 64× 12 dimensions, where the ith component is
1 if the square corresponding to the component is occupied
by a piece of the type and the colour which the component
corresponds to [15].

This notation of the feature vectors is very inconvenient
to use in practice. Adopting the IR convention from now
on, we can think of each dimension as a term representing a

(a) Karjakin vs. Nakamura,
after move 20.

(b) A transformation of the
board on left.

Figure 3: An example to illustrate the limitation of
exact matching inherent in naive encoding.

particular piece of a specific colour in a specific location. For
example, the two terms Nc3 and bg7 indicate the presence of
a white knight at c3 and a black bishop at g7, where we use
uppercase characters for the white and lowercase ones for the
black, respectively. A chess board feature vector can thus
be represented as a document with constituent terms. An
advantage of the textual representation is that chess board
positions can simply be thought of as text documents and
hence standard IR similarity measures, such as cosine or
BM25 [14], can directly be applied on the board positions
as well. The constituent terms of the textual representation
of the board position of Figure 3a is represented as follows.

rc8 qd8 rf8 kg8 pb7 nd7 pf7 bg7 pa6 pd6 pe6 pg6 ph6 Ph5

Pe4 Pf4 Nb3 Nc3 Qf3 g3 a2 b2 c2 Kc1 Rd1 Re1

The problem with the naive encoding is that it does not
allow for an approximate match by a relaxation of the piece
positions, e.g. Figure 3b shows an artificially created board
position with a positional transformation on a majority of
the pieces. By positional transformation, we mean shifting a
piece to another square according to the rules of the game.
For example, the white queen has been moved from f3 to
e2, which is a valid move. It can be seen clearly that the
similarity value between the textual representation of the
board positions will be considerably lower because of a large
number of term mis-matches. However, this artificially con-
structed board position, if it had occurred in a real game,
would have potentially acted as a relevant board position
with the capability of providing valuable insights into the
current game analysis. This is because even if the pieces
have been transformed, the structural relationship between
the pieces remains very similar, e.g. the mobility of the white
queen is still restricted, the black bishop is still a threat on
the white kingside and so on.

We now describe additional pieces of information to repre-
sent the structural relationship between the pieces of a chess
board, namely the set of squares reachable by a piece and
the set of pieces being attacked and defended by a piece.

5.2 Reachable Squares
Informally speaking, every chess piece has got its own “ac-

tive zone” which is the set of squares reachable from the
current position of the piece. The role played by the piece
during the game is largely restricted to this zone. For exam-
ple, the set of squares reachable by the white rook on d1 is
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Figure 4: An illustration of term propagation during indexing.

{d2, d3, d4, d5}. The idea is analogous to “propagating” the
influence of a term to adjacent positions in a document by a
proximity-based kernel density function, which is maximum
at the current position and decreases gradually with increas-
ing distances from the current position [11]. In the case of a
document, the position of a term refers to the offset (mea-
sured in terms of the number of words) from the starting
word of the document. For example, Figure 4a shows that
the weight function of a term is maximum at its true posi-
tion (which in this example is the Gaussian curve centred
at offset 3). The weights with which the term contributes
in the rest of the document progressively decrease on both
sides of its true position.

In our case, we apply a similar approach with some nec-
essary modifications. In standard positional-based term in-
dexing, a term can (in theory) exist at all positions with
progressively decreasing weights. In the case of chess search,
the term (which is equivalent to a chess piece) can only exist
in one of the set of squares reachable from its current posi-
tion. Assuming the bottom left corner square is (1, 1) and
the top right corner is (8, 8), let us formally define the set
of squares reachable by a piece p from its current position
(x, y) ∈ {1, 8}2 as follows.

r-closure(p, x, y) = {(x, y)}∪{(x′, y′) : (p, x, y) |=R (p, x′, y′)}
(1)

(p, x, y) |=R (p, x′, y′) denotes that the piece p can be placed
from the square (x, y) to the empty square (x′, y′)4. in one
move according to the rules of the game. Thus, while a
positional-based text indexing approach [11] considers all
integer offset positions of a term, we simply need to restrict
the positions to the set r−closure as defined in Equation 1.

Figure 4b illustrates the r-closure for the white queen
present at the square f3 of the chess board of Figure 3a.
The figure highlights the set of reachable squares for the
piece Qf3. Note that in this clarifying example, we make
a simplifying assumption that there are no other pieces on
the board to obstruct the reachability of the queen. As
a distance measure, we use the Chebyshev distance (also
known as the chess board distance) has been widely used in
the game of chess, and is defined as the minimum number of

4Possible moves to a non-empty square following the capture
of an opponent piece are not considered here. These moves
are handled in Section 5.3.1

moves a king requires to move between the source and the
destination positions. Figure 4b shows these distance values
of the reachable squares measured from the square f3.

The weight function of a chess piece (i.e. the likelihood
with which it can occur in other positions in addition to its
true position) is now defined for all points in the r-closure
set of that piece. Similar to the approach shown in Fig-
ure 4a, these weight values are derived from a function of
the current position and the distance to the destination po-
sition. More specifically, for a piece p located in (x, y),
we define the following weight function for each member
(p, x′, y′) ∈ r-closure(p, x, y).

w(p, x, y, x′y′) = 1− 7× d((x, y), (x′, y′))

64
(2)

where d((x, y), (x′, y′)) is the chess board distance between
positions (x, y) and (x′, y′). Note that the slope of 7

64
of

the weight function ensures a minimum value of 1
8

at the
maximum possible distance value 8, and a maximum value
of 1 at distance 0, i.e. at the true position of the piece.

Figure 4 shows the plot of the weight function, defined in
Equation 2. Note that the maximum intensity of the weight
function can be seen by the white surface at (6, 3), i.e. at the
square f3, and that the values gradually decrease along the
horizontal, vertical and diagonal lines. For squares outside
the set r-closure(Q, 6, 3), the weight function is zero as can
be seen by the black patches of surfaces in Figure 4. The
weight function that we use in our study is a linear function
instead of the more complex Gaussian function used in [11],
so as to avoid tuning of additional parameters.

This process of computing the reachable squares and then
weighting them by the function w is performed for all pieces
present in a board position. The weight function obviously
depends on the piece for which it is computed because of
the variation in the rules of allowable moves, e.g. the weight
function plot for a rook, which only moves vertically and
horizontally, is different from that of a bishop which only
moves diagonally. The reachable positions of a piece along
with their weights are stored as delimiter separated values
in the textual representation of the document.5 As an ex-

5Storing the weights as delimiter separated values was
purely a Lucene specific implementation decision to utilize



(a) (b) (c)

Figure 5: Black dark square bishop attacks.

ample, we show a part of the textual encoding of our earlier
example, i.e. the board of Figure 3a, as follows.

rc8 qd8 rf8 kg8 ...
Qf2|0.89 Qf1|0.78 Qg2|0.89 Qh1|0.78 Qe2|0.89 Qe3|0.89
Qd3|0.78 Qg4|0.89
Re2|0.89 Re3|0.78 ...

Note that the additional terms (shown in italics) represent
the reachable positions of the pieces. The advantage of this
encoding is illustrated by the fact that it enables the board
position depicted in Figure 3b to be retrieved from the index,
due to the presence of the matching terms Qe2 etc. The
weight function ensures that, during retrieval with a query
term (say Qf3), a board position (document) in which the
white queen is at f3 will get a higher score than a document
where the white queen is at e2.

5.3 Connectivity between the pieces
In the previous section, we have seen that the limitation

of the exact match can be overcome by incorporating the
reachability information for each piece on the board. This
section explores the integration of structural relationships
between the pieces into the encoding.

5.3.1 Attack Squares
Two board positions are more likely to be similar to each

other if the same piece is found to attack similar squares
of the opponent. Let us illustrate this with an example.
The boards of Figures 1a, 1b and 2b have been reproduced
in Figures 5a, 5b and 5c respectively. One of the reasons
that the board in Figure 5b is more relevant to the query
board of Figure 5a than the board of Figure 5c, is that both
the boards in Figure 5a and 5b have the white knight at c3
under a threat by the black bishops at g7 and f6 respectively
(even though f6 and g7 are distinct squares, f6 is reachable
from g7). On the other hand, the bishop of the board in
Figure 5c is passive (blocked by two of its own pieces) not
attacking the knight at c3 or any other of white’s pieces.
Such observations about the active or passive nature of the
pieces can be crucial in determining the relevance of board
positions in game analysis [9].

Following the above reasoning, the textual encoding of the
board state is thus appended with terms corresponding to
a list of attacking positions for each piece. More formally
speaking, we define

a-closure(p, x, y) = {(p, p′, x′, y′) : (p, x, y) |=A (p′, x′, y′)}
(3)

the class “DelimitedPayloadTokenFilter”. See Section 6 for
the implementation details.

(a) (b) (c)

Figure 6: Defense squares of Qf3.

Hence, the a-closure(p, x, y) of a piece p at (x, y) contains
all those tuples (p, p′, x′, y′) such that the piece p attacks
an opponent piece p′ at square (x′, y′). For example, the
set a-closure(b, g, 7) of Figure 5a comprises of the tuple
(b, N, c, 3). Note that we do not put the source position in
the member tuples of the set a-closure to allow for the flex-
ibility that the corresponding piece in a retrieved board po-
sition can attack an opponent piece from one of the squares
reachable from the position which that piece occupies in the
query. For example, storing the square g7 would not have
allowed a match between the positions of Figures 5a and 5b.

A part of the textual encoding of Figure 5a, with addi-
tional terms corresponding to those of the attacking squares,
is shown in italics as follows (we use an arbitrary delimiter
“>” to separate the current piece and the attacked piece).

rc8 qd8 rf8 kg8 ...
Qf2|0.89 Qf1|0.78 Qg2|0.89 Qh1|0.78 Qe2|0.89 Qe3|0.89
Qd3|0.78 Qg4|0.89 ...

b>Nc3 r>Nc3 p>Ph5 R>pd6 ...

5.3.2 Defense Squares
Analogous to the attacking squares, for each piece we also

keep track of the pieces it defends. This again helps to de-
termine the critical pieces and their connectivity across two
board positions that need to be matched. For example, both
the white queens at f3 of boards Figure 6a and Figure 6b
defend a knight, a rook and two pawns at identical positions,
whereas the queen in Figure 6c has only two matching de-
fended pieces (Rd1 and Pe4) with respect to the query (Fig-
ure 6a). Similar to the a-closure we formally define the set
of defended squares as follows.

d-closure(p, x, y) = {(p, p′, x′, y′) : (p, x, y) |=D (p′, x′, y′)}
(4)

Hence, the d-closure(p, x, y) of a piece p at (x, y) contains
all those tuples (p, p′, x′, y′) such that the piece p defends an
opponent piece p′ at square (x′, y′).

5.3.3 Ray-Attack Squares
In chess, a ray attack or an X-ray attack [3] occurs when a

piece attacks an opponent piece “through” other pieces in its
way. Although the opponent piece cannot be taken in the
next move, but still these situations often lead to threaten-
ing attacks on the opponent piece being ray-attacked. For
example, rf8 in positions of Figure 7a and 7b ray-attacks
the white queen on f3. Note that Qf3 of board 7c is not
under a ray-attack by any of the opponent pieces, as a re-
sult of which this criteron can also play a crucial part in
comparing the relevance of one board position to the query
over another. Similar to the attack and defense closures of



(a) (b) (c)

Figure 7: Ray-attacks on Qf3.

Equations 3 and 4 respectively, the ray-attacking squares of
a piece are defined as follows.

x-closure(p, x, y) = {(p, p′, x′, y′) : (p, x, y) |=X (p′, x′, y′)}
(5)

A part of the textual representation for the board position
of our earlier example, with additional terms correspond-
ing to the defense and the ray-attack squares (using delim-
iters “<” and “=” for defense and ray-attack respectively),
is shown below.

rc8 qd8 rf8 kg8 ...
Qf2|0.89 Qf1|0.78 Qg2|0.89 Qh1|0.78 Qe2|0.89 Qe3|0.89 ...
b>Nc3 r>Nc3 p>Ph5 R>pd6 ...
Q<Pe4 Q<Pf4 Q<Pg3 Q<Nc3 Q<Rd1 ...

R=qd8 R=nd7 R=pd6 r=Qf3 r=Pf4 ...

6. IMPLEMENTATION DETAILS
In this section, we combine the ideas of Sections 4 and 5

to devise an algorithm for indexing the chess positions for
a given collection of chess games. Our algorithm can use a
standard text IR system to store the game positions in an
inverted file structure. The pseudo-code for indexing and
retrieval is presented in Algorithm 1. In Step 3 of Algo-
rithm 1, the parameter numskip is used to skip a number
of initial moves. This is important because the opening of a
chess game follows a preset sequence of moves chosen from a
few standard opening move sequences. There is thus a high
probability of board positions to be exactly identical to one
another during the opening stages of a game, which is not
particularly interesting for this search task. Moreover, not
skipping the first few moves can contribute to an unneces-
sary increase in the size of the index due to the presence of
a large number of pieces during the initial stages of a game.
In particular, we set numskip to 12 in our experiments, i.e.
we skip the first 12 rounds of moves. Each board position
after a move in a game is encoded as a string constituted of
a list of encodings for each piece computed in the loop from
Steps 7-16. The storage of a text encoded board position in
Step 18 of the algorithm is achieved by the use of Lucene
(version 4.6)6, which is a freely available widely used text
retrieval system.

The query to the system is an FEN encoding of a board
position. The FEN encoding of the query board state is
transformed to an internal encoding (achieved by execut-
ing the procedure “Retrieve” of Algorithm 1). This query
string is then used to retrieve similar board positions from
the index. The query board position, in contrast to an in-
dexed document board position, does not need to contain
the terms corresponding to the reachable squares. To illus-

6https://lucene.apache.org/core/4 6 0/index.html

Algorithm 1 Chess Games Indexing and Retrieval

1: procedure IndexGames(G)
2: for each game g ∈ G do
3: Skip the first numskip moves.
4: for each move m ∈ moves(G) do
5: brdenc← ∅
6: board← board matrix on applying move m
7: for each piece (p, x, y) ∈ board do
8: brdenc← brdenc ∪ (p, x, y)
9: for each (p, x′, y′, w) ∈ r-closure(p, x, y) do

10: brdenc← brdenc ∪ (p, x′, y′, w) . Eq. 2
11: end for
12: for each α ∈ {a, d, x} do
13: for each (p, p′, x′, y′) ∈ α-closure(p, x, y) do
14: brdenc← brdenc ∪ (p, p′, x′, y′) . Eq. 3, 4, 5
15: end for
16: end for
17: end for
18: Add document brdenc to index
19: end for
20: end for
21: end procedure
22: procedure Retrieve(Q)
23: brdenc← ∅
24: board← board matrix of Q
25: for each piece (p, x, y) ∈ board do
26: brdenc← brdenc ∪ (p, x, y)
27: for each α ∈ {a, d, x} do
28: for each (p, p′, x′, y′) ∈ α-closure(p, x, y) do
29: brdenc← brdenc ∪ (p, p′, x′, y′)
30: end for
31: end for
32: end for
33: Retrieve from index by executing query brdenc
34: end procedure

trate with an example, it is possible to retrieve a document
(say D) containing the term Qf3 in response to a query term
Qf2 (because D also contains the term Qf2 along with an
associated weight of 0.89 computed by Equation 2). The
implication is that it is possible to conduct an approximate
search, e.g. retrieve a board position where the white queen
is at f3 in response to a query position where the white
queen is at f2, without needing to add the query term Qf3.

The IR model selected for use in retrieval was BM25 [14]
with the default parameters of Lucene7, which is K = 1.2
and b = 0.75. Retrieval is carried out in two steps. Firstly,
we retrieve a list of 1000 board positions by using the BM25
model. Secondly, we refine this list by retaining the best
matching board position from each game. This ensures that
consecutive board positions from a single game (which are
likely to be similar to each other) are not reported in the
final result-list.

7. EMPIRICAL EVALUATION
In this section, we describe the experiments conducted to

evaluate our proposed approach of chess position retrieval.

7.1 Dataset Construction
A standard IR test collection is comprised of three compo-

nents, namely a document collection, a set of queries and a
set of relevance judgments for these queries. Freely available
chess game archives in the PGN format can be used as the
document collection in this particular search task. However,

7http://lucene.apache.org/core/4 6 0/core/org/apache/
lucene/search/similarities/BM25Similarity.html



Table 1: Document collection statistics
Collection # Games # Players # Docs. # Terms

ICOfY 13.2.1 96,397 32,366 7,587,963 13,580,212

Table 2: Different Retrieval Approaches

Feature Encoding Configurations

Run Name Pos. Wt. Attack Defense Ray-Attack

TruePos N N N N
RchblePos Y N N N
Attk Y Y N N
Dfns Y N Y N
RayAttk Y N N Y
CombNoRay Y Y Y N
CombAll Y Y Y Y

due to the novelty of the search task itself, sets of relevance
assessed queries are not available, to the best of our knowl-
edge. To proceed with the evaluation, we therefore needed
to construct a set of queries and relevance assessments.

7.1.1 Document Collection
As a first step towards building up the test dataset for

evaluation, we indexed a set of freely available PGN game
archive files named ICOfY (version 13.2.1 to 13.2.5)8 accord-
ing to the method outlined in Section 6. Each PGN file in
the document collection was parsed with the help of a free-
ware PGN parser pgnparse9. The parameter numskip was
set to 12, i.e. we ignored the first 12 rounds of moves from
each game. Table 1 outlines the index statistics. The num-
ber of documents in this table refers to the number of chess
positions indexed, which indicates that on average almost
78 positions are indexed per game. The number of unique
terms refers to the number of unique piece configurations.
On average each game position contributes 1.8 unique terms,
which suggests that there is a significant overlap in the piece
configurations across the index.

7.1.2 Setting up the Baselines
In order to test the hypothesis that the mobility and the

structural relationship of the pieces can play a vital role in
chess position search, we set up baseline approaches where
we selectively do not use one or more of these attributes
during the retrieval time similarity computation. The ap-
proaches are outlined in Table 2. The run“TruePos”uses the
naive encoding of a chess board during the similarity com-
putation, whereas the subsequent approaches aim to test the
benefit of applying more information in the similarity com-
putation, such as the weighted reachability (“RchblePos”),
attacking squares information (“Attk”) and so on. The last
approach (“CombAll”) uses a combination of all the features.

7.1.3 Queries and Search User Interface
Queries and relevance assessments were formulated by

crowd-sourcing using an approach similar to [7]. The chess
position retrieval system was made available as a web service
so that the users could formulate arbitrary chess position
queries and provide relevance assessments for each retrieved
board position. Participants for this task were recruited by

8http://icofy-base.de/1321PGN.7z
9http://sourceforge.net/projects/pgnparse/

Figure 8: Screen-shot of the search results page.

distributing a “call for participation” email among our col-
leagues, which contained detailed instructions for using the
web interface. The email asked recipients to sign up for
the experiment only if his familiarity with chess was higher
than 2 in a scale of 1 to 5. Note that this experiment did
not require the participation from professional chess players.
However, a basic knowledge of chess was required for correct
relevance judgments. Each participant from the set of 5 reg-
istered ones, were asked to use the web interface to search
for chess positions. The interface allowed the user to play a
valid sequence of chess moves in order to formulate a search
query. For the purpose of the experiment however, the users
were instructed to cut-and-paste sequences of moves from
real games because the board positions encountered in real
games, when used as queries, have somewhat higher likeli-
hood of retrieving relevant positions from the game database
than when using queries from fictitious board positions.

We used a different PGN game archive ICOfY (version
13.1.4) comprising of 3970 games to formulate our query
set. Each participant was provided with unique chunks of
300 games from this file, and was asked to formulate a query
by randomly selecting a sequence of moves of size at least
numskip + 1 (which in this case is 13), because positions
from the 13th move onwards were indexed into the system.
The fact that each participant was provided with a different
chunk ensured that the set of queries were non-duplicates.
Each participant contributed 5 queries each, as a result of
which the evaluation set comprised of a total of 25 queries.

7.1.4 Relevance Assessments
A screen-shot of the web interface is shown in Figure 8.

The system returns a ranked list of at most 200 best match-
ing positions from unique games. The pool of 200 retrieval
results was formed by a combination of different retrieval
approaches outlined in Table 2. The similarity scores of
the documents from each run were normalized (divided by
the maximum score for that run). The pool was then con-
structed by selecting 200 documents with most normalized
scores from the union of these runs.

In each row of the search results page, the first (left-most)
column displays the query board position, while the second
one displays a retrieved board position, alongside of which a
five point relevance scale (ranging from non-relevant to ex-
tremely relevant) is displayed. The participants were asked
to provide relevance assessments for each retrieved board



position in response to a query. In addition to the visual
similarity between two positions, the participants were in-
structed to also consider the usefulness of the retrieved game
in the analysis of the current query position, i.e. to take into
account the similarities in the key features of the positions.
Note that we relied on a five-point relevance scale rather
than on strict binary relevance judgments. This is because
in the case of chess position search, the relevance judgments
need to accommodate for the different levels of importance
that a retrieved board position may have in analyzing the
current game situation.

Our evaluation is based on manual judgments because it
is not possible to apply a computational model of relevance
for evaluation of the search effectiveness. For instance, a
computational approach of relevance estimation might take
into consideration the next moves and the outcome of the
retrieved and the query board positions. However, such a
model would assume that the next moves of the query board
position are known, which in turn does not conform to the
search use-case.

7.2 Results
In this section, we first report the effectiveness of our

search method in terms of standard evaluation metrics. We
then select the best performing approach and study the ef-
fect of varying the BM25 parameters on the retrieval effec-
tiveness. This is followed by an investigation of the effect of
the query length on retrieval behaviour.

7.2.1 Evaluation of the pooled runs
A standard metric for graded relevance judgments is the

nDCG[6], which we use as one of the evaluation measures.
To measure the ability of the system to retrieve documents
at top ranks, we also measure nDCG@5. Additionally, we
also transform each graded relevance judgment into a binary
one by considering a document as relevant if the graded rel-
evance judgment value is at least 2 and non-relevant oth-
erwise. We then report the standard metrics of MAP and
P@5 using these binary relevance values.

Note that the values for metrics such as MAP and nDCG
cannot, in practice, be computed exactly because some rel-
evant documents for a query may not exist in the pool of
manually judged documents. However, in the case of chess
IR, the number of board positions relevant to a query board
position is expected to be small, as a result of which, it is
less likely for a relevant document to be left out of the pool.

Table 3 shows that the approach “TruePos”, which only
uses the true positions of pieces, does not produce satisfac-
tory results. This is expected because many relevant posi-
tions may not be retrieved due to the fact that the position

Table 3: Evaluation of the chess position search

Retrieval Evaluation Metrics

Method P@5 MAP nDCG@5 nDCG

TruePos 0.0290 0.0960 0.1008 0.1306
RchblePos 0.1229 0.1280 0.2014 0.2678
Attk 0.1441 0.2340 0.2532 0.3103
Dfns 0.1724 0.2692 0.2596 0.3404
RayAttk 0.0621 0.1385 0.1462 0.1728
CombNoRay 0.3866 0.3840 0.3809 0.6130
CombAll 0.4233 0.3926 0.4188 0.6922
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Figure 9: BM25 parameter optimization.

of each individual piece in a board position of the collec-
tion may be slightly different from that of the query (see
Figure 3). Retrieval results are improved when the reacha-
bility information is included in the run “RchblePos”. The
results are further enhanced by the addition of connectivity
information between the pieces. Both attack and defense
connectivities improve the results in comparison to “Rch-
blePos”. “RayAttk” alone does not produce an improve-
ment over “RchblePos”. However, results are significantly
improved when all the three connectivity types are used to-
gether in the approach “CombAll”, as shown in the last row.

7.2.2 BM25 parameter tuning
The best performing run“CombAll”used the default BM25

parameter settings of Lucene, i.e. K = 1.2 and b = 0.75.
Figure 9 shows the effect of varying these parameters for
this run. The figure shows that the nDCG can further be
improved to 0.7083 (from 0.6922 of Table 3) by using K = 1
and b = 0.7. A value of K close to zero indicates more em-
phasis on inverse document frequency (idf) and less on term
frequency (tf), which in the case of chess position search,
produces poor results. This is expected because for textual
representation of a chess board, the presence of a term (tf is
always 1 in this case) bears more importance than the idf.

The iso-b lines of Figure 9 show that document length
normalization plays an important role in retrieving relevant
documents, as can be seen from the relatively lower values
of nDCG for low values of b less than 0.5. Length normal-
ization is important here because a board position with ap-
proximately identical set of pieces with respect to the query
position is more likely to be relevant rather than a longer
document representing a board position containing a higher
number of additional pieces not present in the query.

7.2.3 Query length effect
To determine the effect of query length on retrieval effec-

tiveness, we categorized the queries by their lengths, which
in this case refers to the number of chess pieces present in the
query board position. The results are shown in Figure 10.

It can be observed that the average precision and the av-
erage nDCG values for queries in the range [11, 13], i.e. the
queries where the number of positions is between 11 and
13 (inclusive), are the highest indicating that our proposed



Figure 10: Average retrieval quality for each query
group categorized by length (the number of pieces).

algorithm works particularly well for short queries. This
finding can be explained as follows. A short query typically
represents the ending stage of a game when only a small
number of pieces remain. A match in a term (piece position
or connectivity) towards the ending stages of a game is as-
sociated with more importance than a match in the middle
stages of a game; e.g. towards the end stages of a game a
match in two board positions where a king or a queen is at-
tacked by the same piece almost certainly ensures that one
position is relevant to the other.

8. CONCLUSIONS AND FUTURE WORK
This paper has explored the novel search task of retriev-

ing top-most approximately matching chess game positions
given a query position, so that the subsequent moves from
the retrieved games may be useful in analyzing the current
game and hence in predicting the next best move. In order to
ensure effectiveness and efficiency, we have approached the
search task from an IR perspective, in contrast to existing
chess retrieval systems which are either restricted to provide
the functionality identical matches or allow approximate re-
trieval of positions at the cost of heavy run-time overhead.
In our IR-based approach, each position in a chess game is
encoded as a set of terms, where each term is used to rep-
resent the following: a) the true position of a piece, b) the
reachable positions of a piece with weights inversely propor-
tional to the distances from its true position, and c) the
structural relationships between the pieces, such as the ones
being attacked and defended. Empirical evaluation of our
proposed approach demonstrates that a combination of all
these features produces satisfactory retrieval results. The
conclusion of our study is that the chess position search
problem can be solved effectively and efficiently by employ-
ing an IR-based approach. This observation can, in effect,
lead to developing more effective chess playing algorithms,
where the automatic process of game tree exploration for se-
lecting the next-best move can be supplemented with infor-
mation extracted from closely matching positions retrieved
from previously played games. The system can also be useful
in manual analysis of a current chess game.

Since a chess board position can be represented as a graph
(piece configurations as nodes and inter-piece relationships
as edges), we believe that the methodologies proposed in this
paper can, in future, be generalized to conduct approximate
search of graph objects. A practical application of graph

search could be retrieval of chemical compounds which are
structurally most similar to a given query compound.
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