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THE COMPLEXITY OF APPROXIMATELY COUNTING TREE
HOMOMORPHISMS

LESLIE ANN GOLDBERG AND MARK JERRUM

ABSTRACT. We study two computational problems, parameterised byed fireeH . #HoMSTO(H)
is the problem of counting homomorphisms from an input gr&pto H. #WHOMSTO(H) is
the problem of counting weighted homomorphismd#pgiven an input grapliz and a weight
function for each vertex of G. Even thoughH is a tree, these problems turn out to be suf-
ficiently rich to capture all of the known approximation beiloar in #P. We give a complete
trichotomy for #WHOMSTO(H ). If H is a star then #WHEMSTO(H) isin FP. If H is not a star
but it does not contain a certain induced subgrdpthen #WHOMSTO(H ) is equivalent under
approximation-preserving (AP) reductions to #BIS, thebfem of counting independent sets in
a bipartite graph. This problem is complete for the class HRHnder AP-reductions. Finally, if
H contains an induceds then #WHoMSTO(H) is equivalent under AP-reductions to #S the
problem of counting satisfying assignments to a CNF Boofeamula. Thus, #WMSTO(H)

is complete for P under AP-reductions. The results are similar foraghtsTo(H ) except that
a rich structure emerges H contains an induceds. We show that there are treésfor which
#HoMmsTo(H) is #SaT-equivalent (disproving a plausible conjecture of Kelkpwever, it is still
notknown whether #8MSTO(H ) is #SAT-hard foreverytree H which contains an inducef. It
turns out that there is an interesting connection betwessethomomorphism-counting problems
and the problem of approximating the partition functionhafierromagnetic Potts modeln par-
ticular, we show that for a family of graph§, parameterised by a positive integethe problem
#HomsTo(J,) is AP-interreducible with the problem of approximating thetition function of
the ¢-state Potts model. It was not previously known that thedRattdel had a homomorphism-
counting interpretation. We use this connection to obtaimes additional upper bounds for the
approximation complexity of #6MSTO(J,).

1. INTRODUCTION

A homomorphisnfrom a graph(z to a graph# is a mapping : V(G) — V(H) such that the
image(o(u),o(v)) of every edgu,v) € E(G) isin E(H). Let Hom(G, H) denote the set of
homomorphisms frond- to H and letZy(G) = | Hom(G, H)|. For each fixedd, we consider
the following computational problem.

Problem: #HoMSTo(H).
Instance: GraphG.
Output: Zgy(G).
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The vertices ofH are often referred to as “colours” and a homomorphism fi@rto H can
be thought of as an assignment of colours to the vertice§ ofhich satisfies certain con-
straints along each edge Gf The constraints guarantee that adjacent verticésane assigned
colours which are adjacent if. A homomorphism inHom (G, H) is therefore often called
an “H-colouring” of G. WhenH = K,, the complete graph with vertices, the elements of
Hom(G, K,,) are propeg-colourings ofG.

There has been much work on determining the complexity oftkelouring decision prob-
lem, which is the problem of determining wheth&y; (G) = 0, given inputG. This work will
be described in Sectidn 1.1, but at this point it is worth rweming the dichotomy result of Hell
and Nesetfil[[21], which shows that the decision problemadlvable in polynomial time iff is
bipartite and that it is NP-hard otherwise. There has alemveork [12] 27] on determining the
complexity of exactly or approximately solving the relatsmlinting problem #l@mMsTo(H).
This paper is concerned with the computational difficultytbfoMSTo(H ) whenH is bipartite,
and particularly wherf is a tree.

As an example, consider the case whArés the four-vertex patt®, (of length three). Label
the vertices (or coloursl), 2, 3, 4, in sequence. If7 is not bipartite theom(G, H) = (), so the
interesting case is whe® is bipartite. Suppose for simplicity thatis connected. Then one side
of the vertex bipartition of7 must be assigned even colours and the other side must beedsig
odd colours. Itis easy to see that the vertices assignedrsdl@and4 form an independent set of
G, and that every independent set arises in exactly two wagdhasomorphism. Thugp, (G)
is equal to twice the number of independent sets in the lipaaphG. We will return to this
example presently.

It will sometimes be useful to consider a weighted geneatibs of the homomorphism-
counting problem. Suppose, for eache V(G), thatw, : V(H) — Qs is a weight func-
tion, assigning a non-negative rational weight to eachuwoloet W (G, H) be an indexed set of
weight functions, containing one weight function for eaetexv € V(G), Thus,

W(G, H)={w, |veV(G)}

Our goal is to compute the weighted sum of homomorphisms frota H, which is expressed
as the partition function

Zy(GW(G.H)= Y ] wlow).
oc€Hom(G,H) veV(G)
Given a fixedH, each weight functiom, € W (G, H) can be represented succinctly as a list
of |V (H)| rational numbers. This representation is used in the falgwomputational problem.
Problem: #WHoMSTO(H).
Instance: A graphG and an indexed set of weight functioWs(G, H).
Output: Zy(G, W (G, H)).
The complexity ofexactlysolving #HomsTo(H ) and #WHoMSTO(H) is already under-
stood. Dyer and Greenhill have observed [12, Lemma 4.1]#kiMSTO(H) is in FP if H
is a complete bipartite graph. It is easy to see (see Obgemd) that the same is true of
#WHowmsTo(H). On the other hand, Dyer and Greenhill showed thab#dTo(H) is #P-
complete for every bipartite grapti that is not complete. Since #H1STO(H) is a special case
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of the more general problem #WHSTO(H ), we conclude that both problems ardiR if H is
a star (a tree in which some “centre” vertex is an endpoinvefieedge), and that both problems
are#P-complete for every other trei.

This paper maps the complexityabproximatelysolving #HomMsTo (H ) and #WHOMSTO(H )
when H is a tree. Dyer, Goldberg, Greenhill and Jerrum [10] intietlithe concept of “AP-
reduction” for studying the complexity of approximate cting problems. Informally, an AP-
reduction is an efficient reduction from one counting prabte another, which preserves close-
ness of approximation; two counting problems that are fiatkrcible using this kind of reduc-
tion have the same complexity when it comes to finding goodamate solutions. We have
already encountered an extremely simple example of tworérfeducible problems, namely
#HowmsTo(P,) and #BIS, the problem of counting independent sets in a tiipgraph. Using
less trivial reductions, Dyer et al. showed ([10, Theoreirttat several natural counting prob-
lems in addition to #l&MsSTo(P;,) are interreducible with #B1S, and moreover that they are all
complete for the complexity class #RHK with respect to AP-reductions. The class #lRHs
conjectured to contain problems that do not have an FPRA&eWer it is not believed to contain
#SAT, the classical hard problem of computing the number of fyatig assignments to a CNF
Boolean formula. Refer to Sectidh 2 for more detail on théamézal concepts mentioned here
and elsewhere in the introduction.

Steven Kelk’s PhD thesis [27] examined the approximationgiexity of the problem #l@MsSTo(H )
for generalH. He identified certain families of graph§ for which #HomMsTo(H) is AP-
interreducible with #B1S and other large families for whigHoMsTo(H ) is AP-interreducible
with #SAT. He noted[[2F7, Section 5.7.1] that, during the study, he didemcountemny bi-
partite graphd? for which #x1 <,p #HOMSTO(H ), and that he suspected [27, Section 7.3]
that there were “structural barriers” which would preveottomorphism-counting problems to
bipartite graphs from being #$-hard. An interesting test case is the ttgewhich is depicted
in Figure[1. Kelk referred to this tree [27, Section 7.4] ds“function”, and conjectured that
#HomsTo(J;) is neither #B1S-easy nor #$-hard. Thus, he conjectured that unlike the set-
ting of Boolean constraint satisfaction, where every pate@mleads to a computational problem
which is FPRASable, #BIS-equivalent, or #iSequivalent[[11], the complexity landscape for
approximater -colouring may be more nuanced, in the sense that there meybtaphsd for
which none of these hold.

The purpose of this paper is to describe the interesting texitplandscape of the approxima-
tion problems #kbMSTo(H) and #WHOMSTO(H) when H is a tree. It turns out that even the
case in whichH is a tree is sufficiently rich to include all of the known apgiroation complexity
behaviour in#P.

First, consider the weighted problem #WMSTO(H ). For this problem, we show that there
is a complexity trichotomy, and the trichotomy depends upheninduced subgraphs &f. We
say thatH contains an induced{’ if H has an induced subgraph that is isomorphid#o
Here is the result. IfH contains no induced, then it is a star, so #W&IMSTO(H) is in
FP (Observatioill). IfH contains an induced; but it does not contain an inducel then
it turns out that #WkbMSTO(H) is AP-interreducible with #BIS (Lemmid 4). Finally, i
contains an induceds, then #3T1 <,p #WHoMSTO(H) (Lemmd®6.) Thus, the complexity of
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#WHoMSTO(H) is completely determined by the induced subgraphs of tiegireand there are
no possibilities other than those that arise in the Bool@astraint satisfaction trichotomly [11].

Now consider the problem #bMSTO(H). Like its weighted counterpart, the unweighted
problem #HomMSTo(H) is in FP if H is a star, and it is #B1S-equivalent H contains an in-
ducedP, but it does not contain an inducedgl However, it is not known whether #MsTo(H)
is #AT-hard for everyH which contains an induceds. The structure that has emerged is
already quite rich. First, we have discovered (Theorein ha) there are treed for which
#HoMmsTo(H) is #SaT-hard. This result is surprising — it disproves the plausitnjecture of
Kelk that #HoMSTO(H) is not #xT-hard for any bipartite grapf/. We don’t know whether
#HoMSTO(H) is #SAT-hard foreverytree H which contains an induced;. In fact, we have
discovered an interesting connection between these honpdimsan-counting problems and the
problem of approximating the partition function of tlEgromagnetic Potts modelin particu-
lar, Theoreni_1I0 shows that for a family of graphs parameterised by a positive integetthe
problem #HbomMsTo(.J,) is AP-interreducible with the problem of approximating thertition
function of theg-state Potts model. This is surprising because it was notvkribat the Potts
model had a homomorphism-counting interpretation.

The Potts-model connection allows us to give a non-trivigher bound for the complexity
of #HomsTo(J,). In particular, Corollary 12 shows that this problem is Aflucible to the
problem of counting proper-colourings of bipartite graphs.

We are not aware of any complexity relationships betweerpthblems #kbmsTo(J,), for
q > 2. At one extreme, they might all be AP-interreducible; atdtieer, they might all be incom-
parable. Another conceivable situation is thatgitsTo(.J,) is AP-reducible to #l&msTo(.J,)
exactly wheng < ¢’. There is no real evidence for or against any of these or qtbssibili-
ties. However, in the final section we exhibit a natural peobthat provides an upper bound on
the complexity of infinite families of problems of the form #iMsTo(.J,) whereq is a prime
power. Specifically, we show (Corollary]15) that 8MsTo(.J,») is AP-reducible to the weight
enumerator of a linear code over the fi&lg

1.1. Previous Work. We have already mentioned Hell and NeSetfil's classickWydi] on the
complexity of theH -colouring decision problem. They showed that this probigisolvable in
polynomial time if H is bipartite, and that it is NP-complete otherwise. Our pageoncerned
with the situation in which/ is an undirected graph (specifically, an undirected treé)tbs
worth noting that the decision problem becomes much moreptioated if 4 is allowed to be
adirectedgraph. Indeed, Feder and Vardi showed [13] that every cainstsatisfaction prob-
lem (CSP) is equivalent to some digraph homomorphism pnoblBespite much research, a
complete dichotomy theorem for the digraph homomorphispistten problem is not known.
Bang-Jensen and Helll[2] had conjectured a dichotomy forsfiexial case in which the di-
graphH has no sources and no sinks. This conjecture was proved ioriant recent work of
Barto, Kozik and Niven([3]. Given the conjecture, Hell, M&d, and Zhu[[20] stated that “di-
graphs with sources and sinks, and in particular orientekirseem to be the hard part of the
problem.” Gutjahr, Woeginger and Welzl [19] constructedracted tree/ such that determin-
ing whether a digraplix has a homomorphism td is NP-complete. Of course, for some other
trees, this problem is solvable in polynomial time. For epienthey showed that it is solvable
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in polynomial time wheneveH is an oriented path (a path in which edges may go in either
direction). Hell, NeSetfil and Zhu [20] construct a whédenily of directed trees for which the
homomorphism decision problem is NP-hard, and study theleno of characterising NP-hard
trees by forbidden subtrees. The reader is referred to HdlNeSetfil's book[[22] and to their
survey papetr [23] for more details about these decisionlpnat

As mentioned in the introduction, there is already sometiexjsvork [12, 27] on determining
the complexity of exactly or approximately counting homapiosms. This work is discussed in
more detail elsewhere in this paper. The problem of samplargomorphisms uniformly at ran-
dom (or, in the weighed case, of sampling homomorphismspvithability proportional to their
contributions to the partition function) is closely relat® the approximate counting problem.
We will later discuss some existing worik [18] on the compierif the homomorphism-sampling
problem. First, we describe some related results on a p&ti@approach to this problem -
namely, the application of the Markov chain Monte Carlo (MCMmethod. Here the idea is to
simulate a Markov chain whose states correspond to homdmnsong fromG to H. The chain
will be constructed so that the probability of a particulamfomorphisna in the stationary distri-
bution of the chain is proportional to the contributiorvato the partition function. If the Markov
chain israpidly mixingthen it is possible to efficiently sample homomorphisms febdistribu-
tion that is very close to the appropriate distribution. st turn, leads to a good approximate
counting algorithm[[B]. First, Cooper, Dyer and Frieze [6hsidered the unweighted problem.
They showed that, for any non-trividl, any Markov chain or7-colourings that changes the
colours of up to some constant fraction of the vertice§ @ a single step will have exponential
mixing time (so will not lead to an efficient approximate cting algorithm). Wher/ is a tree
with a self-loop on every vertex, they construct a weightction wy: V(H) — Q> so that
rapid mixing does occur for the special case of the weightaddmorphism problem in which
every vertexv of G has weight functionv, = wgy. Thus, their result gives an FPRAS for this
special case of #WBIMSTO(H ). The slow-mixing results of [6] have been extended in [1] and
in [4]. In particular, Borgs et all [4] considered the case/ich H is a rectangular subset of the
hypercubic lattice, and constructed a weight functigp for which quasi-local Markov chains
(which change the colours of up to some constant fractiohetertices in a small sublattice at
each step) have slow mixing.

2. PRELIMINARIES

This section brings together the main complexity-theomitions that are specific to the study
of approximate counting problems. A more detailed accoantle found in[10].

A randomised approximation schensean algorithm for approximately computing the value
of a functionf : ¥* — R-(. The approximation scheme has a parameter(0, 1) which spec-
ifies the error tolerance. Aandomised approximation scherwe f is a randomised algorithm
that takes as input an instancec >* (e.g., in the case of #6MSTO(H ), the input would be an
encoding of a graply) and a rational error toleraneec (0, 1), and outputs a rational number
z (arandom variable depending on the “coin tosses” made bglgweithm) such that, for every
instancer, Pr (e~ f(z) < z < e f(z)] > 3. We adopt the convention thatis represented as a
pair of integers representing the numerator and the deraioririrhe randomised approximation
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scheme is said to befally polynomial randomised approximation schermeFPRAS if it runs
in time bounded by a polynomial ifx| ande~!. As in [16], we say that a real numberis
efficiently approximablé there is an FPRAS for the constant functipr) = .

Our main tool for understanding the relative difficulty ofpspximation counting problems is
approximation-preserving reductiong/e use the notion of approximation-preserving reduction
from Dyer et al.[[10]. Suppose thgtand g are functions from:* to R>,. An AP-reduction
from f to g gives a way to turn an FPRAS fgrinto an FPRAS forf. The actual definition
in [10] applies to functions whose outputs are natural nusib&€he generalisation that we use
here follows McQuillan{[28]. Anmapproximation-preserving reductiofAP-reduction) fromf
to ¢ is a randomised algorithid for computingf using an oracle fog. The algorithmA takes
as input a paifz, ) € ¥* x (0, 1), and satisfies the following three conditions: (i) everyotea
call made byA is of the form(w, §), wherew € ¥* is an instance of, andé € (0, 1) is an error
bound satisfyingg=! < poly(|z|,e71); (ii) the algorithm.4 meets the specification for being
a randomised approximation scheme fofas described above) whenever the oracle meets the
specification for being a randomised approximation schamg;fand (iii) the run-time of4 is
polynomial in|z| ande~! and the bit-size of the values returned by the oracle.

If an approximation-preserving reduction frofrto g exists we writef <,p g, and say that
f is AP-reducible tg;. Note that if f <,p g andg has an FPRAS thefi has an FPRAS. (The
definition of AP-reduction was chosen to make this true,j ¥.p g andg < p f then we say
that f and g are AP-interreducibleand writef =xp ¢. A word of warning about terminology:
the notation<,p has been used (see, e.q., [7]) to denote a different type mbamation-
preserving reduction which applies to optimisation praide We will not study optimisation
problems in this paper, so hopefully this will not cause csidn.

Dyer et al. [10] studied counting problems in #P and iderttiffleee classes of counting prob-
lems that are interreducible under approximation-présgmeductions. The first class, contain-
ing the problems that have an FPRAS, are trivially AP-irgducible since all the work can be
embedded into the reduction (which declines to use the @radlhe second class is the set of
problems that are AP-interreducible with 4S the problem of counting satisfying assignments
to a Boolean formula in CNF. Zuckerman [31] has shown that#&nnot have an FPRAS
unlessRP = NP. The same is obviously true of any problem to whic#$ AP-reducible.

The third class appears to be of intermediate complexigortains all of the counting prob-
lems expressible in a certain logically-defined complegifass, #RHI;. Typical complete prob-
lems include counting the downsets in a partially ordered1€3, computing the partition func-
tion of the ferromagnetic Ising model with local externalgnatic fields[[15], and counting the
independent sets in a bipartite graph, which is defined &sAsl

Problem: #BIS.
Instance: A bipartite graph’.
Output: The number of independent set(in

In [10] it was shown that #BIS is complete for the logicallgfithed complexity clasgRHII,
with respect to approximation-preserving reductions. Ofgecture([16] that there is no FPRAS
for #BIS.
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FIGURE 1. The tree/s.

A problem that is closely related to approximate countintdpésproblem of sampling config-
urations almost uniformly at random. The analogue of an FBRAthe context of sampling
problems is the PAUS, d?olynomial AlImost Uniform Sampler

Goldberg, Kelk, and Patersan [18] have studied the problesamplingH -colourings almost
uniformly at random. They gave a hardness result for evesdfixeeH that is not a star. In
particular, their theorem [18, Theorem 2] shows that ther®iPAUS for sampling/-colourings
unless #BIS has an FPRAS.

In general, there is a close connection between approxisw@iating and almost-uniform
sampling. Indeed, in the presence of a technical conditdied “self-reducibility”, the count-
ing and sampling variants of two problems are interredec|B6]. The weighted problem
#WHoMSTO(H) is self-reducible, so the result of [18] immediately gives AP-reduction
from #BIS to #WHOMSTO(H) for every treeH that is not a star. However, it is not known
whether the unweighted problem #iMsTo(H) is self-reducible.

As mentioned in Sectidn 1.1 the paper [9] shows how to turn@$for H-colourings into an
FPRAS for #/FbMSTO(H ), but it is not known whether there is a reduction in the othiesation.
Thus, we cannot directly apply the hardness result of [18kthuce #BIS to #l@MSTO(H).
However, we will see in the next section that the complexiy dpetween problems with an
FPRAS and those that are #BIS-equivalent still holds folo#t9To(H) in the special case
whenH is a tree, which is the focus of this paper.

3. WEIGHTED TREE HOMOMORPHISMS

First, we introduce some notation and a few graphs that aspeaxfial interest.

In this paper, the graphs that we consider are undirectediamule — they do not have self-
loops or multiple edges between vertices. For every pasitieger, let[n] denote{1,2,... n}.
We usel'; (v) to denote the set of neighbours of vertei graphH and we uséy (v) to denote
the degree ob, which is|I"g (v)|.

Let P, be then-vertex path (withn — 1 edges). Am-leafstaris the complete bipartite graph
K, ,. Let J, be the graph with vertex set

V(Jy) ={wtu{e i€ gt uic|ied}
and edge set
E(Jy) = {(ci,c)) | i € lg]} U{(cj,w) | i € [q]}.
J3 is depicted in Figurgl1.
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3.1. Stars. As Dyer and Greenhill observed [12, Lemma 4.1],@M5TO(H) is in FP if H
is a complete bipartite graph. We now show that #8M$To(H ) is also inFP in this case.
Suppose that! is a complete bipartite graph with bipartitiofy, U') whereU = {uy,...,un}
andU’ = {u},...,u),}. LetG be an input to #WldMsTo(H ) with connected components
G',...,G". Clearly,Zy(G) =[], Zu(G"). Also, if G* is non-bipartite therZ (G*) = 0.
Suppose thaf is a connected bipartite graph with bipartitiori V') whereV = {vy,...,v,}
andV’ = {v{,...,v/,}. Then

n' R ! n h

Zu(G) =[] D w,(ue) [T D w, (utr) + H > wy(ue) [T w, (ul).

j=1 c=1 j'=1c'=1 j=1 c=1 j'=1c'=1
In the context of this paper, whefé is a tree, we can draw the following concluson.

Observation 1. Suppose that/ is a star. ThedfWHOMSTO(H) is in FP.

3.2. Trees with intermediate complexity. The purpose of this section is to prove Lemima 4,
which says that if{ is a tree that is not a star and has no induégithen #BIS=,p #HOMSTO(H)
and #BIS=,p #WHoOMSTO(H). The main work of the section is in the proof of Lemiia 4, but
first we need some existing results. In particular, Lerhimal@bés due to Kelk, and Lemmid 3
is an easy consequence of earlier work by the authors ancctieaithors on counting CSPs. We
have chosen to include a proof sketch of the former becaesgdtk of Kelk is unpublished [27]
and a proof of the latter because we did not state or proveiiagtty in earlier work, and it might
be rather difficult for the reader to see why it is implied bgtttvork.

If H is atree with no induce®, then it is a star, so, by Observation 1, #\WSTO(H) is in
FP. On the other hand, the following lemma shows thdiitontains an induce&, then even
the unweighted problem #bMsTo(H) is #BI1S-hard. To motivate the lemma, suppose ttat
contains an induce®,. Then it is a bipartite graph which is not complete, so by ®Geld at
al. [18, Theorem 2] the (uniform) sampling problem fdrcolourings of a graph is as hard as
the sampling problem for independent sets in a bipartitptgrahis is not quite the result we are
seeking, but it is close in spirit, given the close connechbetween sampling and approximate
counting. The following lemma, which is a special case of [23mma 2.19], is exactly what we
need.

Lemma 2 (Kelk). Let H be a tree containing an induced,. Then
#BIS <xp #HOMSTO(H).

Proof. (Proof sketch) We will not give a complete proof of Lemma 2csiiit is a special case
of a lemma of Kelk, but here is a sketch to give the reader a-le@gél idea of the construction.
Let A be the maximum degree of verticesdfand letA’ < A be the maximum degree taken
by a neighbour of a degres-vertex in H. Note thatA’ > 2 since H cannot be a star. Let
(c,d) be any edge in{ with dy(c) = A anddy(d) = A’. Let N, be the sef’y(c) — {¢}
and letN, = I'y(c) — {c}. SinceH is a tree, there are no edgeshihbetweenN,. and N...
Now consider a connected instarGef #BIS with bipartitionV' (G) = (V,V’). Let G’ be the
bipartite graph with vertex séf(G) U {C, C'} (whereC andC” are new vertices that are not in
V(G)) and edge seb(G) U{(C,C")}U{C} x V'U{C"} x V. Consider arf{-colouringo of G
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with o(C') = cando(C”) = ¢. (Standard constructions can be used to augiiiéso that almost
all homomorphisms td@/ have this property.) For every vertexc V', o(v) € N. U {c} and for
every vertex) € V', o(v') € N.U{c}. Also,{v e V | o(v) € No}U{v' € V' | o(v') € N.}

is an independent set ¢f. Thus, there is an injection from independent set§-ahto these
H-colourings ofG’. Standard tricks can be used to adjust the constructionas@bmost all of
the homomorphisms correspondrtaximumindependent sets @ and so that all maximum
independent sets correspond to approximately the sameeruwhbhomomorphisms. The proof
follows from the fact that counting maximum independens sefa bipartite graph is equivalent
to #BIS [10]. O

As mentioned above, the main result of this section is Lemlnahich will be presented
below. Its proof relies on earlier work on countiegnstraint satisfaction problem&SPs).
Suppose that andz’ are Boolean variables. An assignment {z,2'} — {0,1} is said to
satisfy the implication constrailMP(x,2’) if (o(x),o(2’)) is in {(0,0),(0,1),(1,1)}. The
idea is that &(z) = 1” implies “o(z’) = 1”. The assignment is said to satisfy the “pinning”
constrainty(x) if o(z) = 0 and the pinning constraint (z) if o(z) = 1. If X is a set of Boolean
variables then a sét of {IMP, d,, 4, } constraints ornX is a set of constraints of the forép(x),
91 (x) andIMP(z, 2") for x andz’ in X. The setS(X, C) of satisfying assignmenis the set of
all assignments : X — {0, 1} which simultaneously satisfy all of the constraint€inWe will
consider the following computational problem.

Problem: #CSRIMP, 6y, d1).
Instance: A setX of Boolean variables and a sgtof {IMP, d,, J; } constraints orX.
Output: [S(X, C)|.
We will also consider the following weighted version of #G8RP). Suppose, for each
x € X, thaty, : {0,1} — Q- is a weight function. For an indexed sgtX) = {~, | z € X}

of weight functions, let
2(X,0) = > ]l
0eS(X,0) zeX

Problem: #CSP (IMP, 6y, d1).
Instance: A setX of Boolean variables, a sét of {IMP, dy, 6, } constraints on¥, and an
indexed sety(X) of weight functions.
Output: Z(X,C,7).
We will use the following lemma, which follows from earlierork on counting CSPs.

Lemma 3. #CSP (IMP, dy, d1) =ap #BIS.

Proof. Dyer, Goldberg, and Jerrum [11, Theorem 3] shows that #T8P, 6y, 61) =ap #BIS.
#CSRIMP, 4y, 01) trivially reduces to #CSRIMP, oy, 6;) since it is a special case. Thus, it
suffices to give an AP-reduction from #CSPMP, &y, §;) to #CSRIMP, ¢, ;). The idea be-
hind the construction that we use comes from Bulatov et alL§gnma 36, Item (i)]. We give
the details in order to translate the construction into tiveent context.

Let (X, C,v) be an instance of #CSHMP, ¢y, 6;). We can assume without loss of generality
that all of the weights,.(b) are positive integers by multiplying all of the weights b ghroduct
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of the denominators. The construction that follows is ndfialilt but the details are a little
bit complicated, so we use the following running exampldltesirate. LetX = {y,z}, C =
IMP(y, 2), 7,(0) = 5,7,(1) = 2,7.(0) = L and.(1) = 1.

For every variable € X, consider the weight functiop,. Letk, = max([lg~.(0)], [lgv.(1)]).
For everyb € {0, 1}, write the bit-expansion of.(1 & b) as

71’(1 S b) = Qg 0,0 + a':c,b,121 + T+ ax,b,kw2kw>

where eachu,;,; € {0,1}. Note thaty,(1 & b) > 0 so there is at least onewith a,,; = 1.
Let min,, = min{i | a,p; = 1} andmax,, = max{i | a,,; = 1}. If i < max,; and
azp; = 1thenletnext,;, = min{j > i | a,,; = 1}. If ¢ > min,;, anda,,; = 1 then let
prev, ,; = max{j < i | a,p; = 1}. For the running example,

o k, =[lgh] =3andk, = [lg1] =0.

e For the variable, takingb = 0 we havey,(1 & 0) = 2! soa, o0 = 0, a,01 = 1, and
Ay 0,2 = Qy,0,3 = 0. AlSO,miny,o =1= maXy -

e Similarly, takingb = 1 givesy, (1 ® 1) =2° +2?soa,10=1,a,11 =0, a1, = 1 and
ay1,3 = 0. Thusmin,; = 0 andmax,; = 2. Then nexf, , = 2 and prey , , = 0.

e Finally, for the variablez andb € {0,1}, we havey.(1 ® b) = 2° soa,,o = 1 and
min, , = 0 = max, .

Now for everyxz € X, for every: € {1,...,k,} and everyb € {0,1} with a,,; = 1 let
A, be the set of + 2 variables{z;1,...,%pii} U {Lzpi, Repi}t- Let Cyyp; be the set of
implication constraint@jem{IMP(LMJ-, Tp;;), IMP (x5, Rep)}. Note that there arg’ + 2
satisfying assignments to the #CSP instafue; ;, C, ;;): one witho (L, ;;) = 0(R.p,) = 0,
one witho(L, ;) = o(R.p:) = 1, and2’ with (L, ;;) = 0 ando(R,;;) = 1. The point
here is that the setd, , ; will be combined for different values af The satisfying assignments
with (L, ;) = o(R.p:) = 0 will correspond to contributions from a different indéx>
and the satisfying assignments withZ.. ;) = o(R. ;) = 1 will correspond to contributions
from a different index’ < i. There are exactlg’ satisfying assignments with(L, ;) = 0 and
o(R.,,;) = 1and these will correspond to the, ;2 summand in the bit-expansionef(1®b).
For the running example,

e for the Variabley and forb = 0 andi = 1 we haVEA%Q’l = {y07171} U {Ly7071, Ry,O,l}-
ThenCy7071 ContainS{IMP(L%Q’l,’y07171), IMP(le’l, Ry7071)} and there ar@ + 2t =4
solutions.

e Forthe variablg and forb = 1 andi = 2we haveA, ; » = {y121, Y122 }U{Ly12, Ry12}
ThenCyJ; contains the ConstrainIMP(Ly,Lg, y172’1), IMP<y1’2717 Ry,1,2>l IMP(Ly,LQ, y172’2),
andIMP (y; 29, R, 12) and there are + 2% = 6 solutions.

We now add some constraints corresponding toithe0 case above. For eveny< X and
everyb € {0,1} with a, ;0 = 1 let A, be the set of variable§L, 1, R, 40} LetCyp o be
the set containing the constraitM[P (L, 0, R.50). Note that there arg® + 2 = 3 satisfying
assignments to the #CSP instanieg ; o, C, 40): one witho (L, 40) = o(Rsp0) = 0, one with
0(Lypo) = 0(Repo) = 1, and2 = 1 with o(L,40) = 0 ando (R, ) = 1. For the running
example,

) Ay,l,(] = {Ly71,0, Ry,l,(]} andCyJ,o = {IMP(Ly,L(], Ry71’0>}.
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e Forb e {0, 1}, Az,b,O = {Lz,b,Oa Rz,b,O} andCZ7b70 = {IMP(Lz7b7O, Rz,b,O)}-
Now for everyz € X andb € {0,1} let C; , be the set of constraints forcing equality of
o(Ryp:) ando (L, ;) wheni andj are adjacent one-bits in the bit-expansionypfl & b). In
particular,

L= U {IMP(Ru.b4, Lapj), IMP (L g, Raupi)}
next; »,;=J,prev, , ;=i
For the running example,
e C,,=C.,=C., =0 since these variables have only one positive coefficieriterbit
expansion.
e For the variablegy andb = 1 the relevant non-zero coefficients are 0 and; = 2 so we
get
C;;,l - {IMP(R%LO, Ly71,2), IMP(Ly’LQ, Ry,l,(])}-

Now consider: € X. LetC;’p = C;,OU{%(Lx,o,minw,o)} and IetC’g’L,’,1 = C;,lu{él(R:v,l,maxw,l)}-
Forz € X andb € {0,1} let

Ax,b = U A:c,b,i

’iE{O ..... kw}7aw7b7i:1

and let
Cpp=C U U Cop,i-

i€{0,....kz },az,p,i=1

Now will show that there are, (1) satisfying assignments to the #CSP instatdeg, C. o)
which have the property tha{ R, o max, ,) = 1 and one satisfying assignment in whiefR,, o max, ,) =
0. To see this, note that the constraiptL, o min, ,) fOrceso (L o min, o) = 0. If 0( Rz 0max,0) =
0 then all of the variables ir, , are assigned spinby . Otherwise, there is exactly onevith
az0; = lando(L,p;) = 0 ando(R.0;) = 1. As we noted above, there a2eassignments
to the variables i, ; ;. But Zi:azm:i 2! = ~,(1), as required. Similarly, there arg(0) sat-
isfying assignments to the #CSP instaiiee 1, C, 1) in which o (L, 1 min,,) = 0 and there is
one satisfying assignment in whiet{ L, ; min, ,) = 1. Let us quickly apply this to the running
example.
e Taking variabley andb = 0 we haveA, , = A, o1 andCy = {Jo(Ly0,1)}UCy0.1- Then
max, o = 1. From above, there is one solutiorwith o (R, ¢ max,,) = 0 and there are
2! = ,(1) solutionso with o(Ry 0 max, ) = 1.
e Taking variabley andb = 1 we have

Ay =A 10U Ay 12
and
Cg///,l - {(51(Ry71,2), IMP(R%LO, Ly71,2), IMP(L%LQ, Ry’LO)} U Cy,l,O U Cy71’2.

There is one solution with o(L, 1) = 1. There are® + 22 = ~,(0) solutionso with
U(Ly,1,0> =0.
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e Taking variablez we haveA, , = A, o = {L.s0, R.p0}. Then, takingg =0, C,y =
{60(L.00), IMP(L, 00, R.00)}. SOtherei®® =1 = ~,(1) assignment witlr (R, 0 o) =
1 and one WithT(RZp,()) = 0. Taklngb =1, Cz,l = {61(Rz,1,0)7 IMP(LZJ,(), Rz,l,O)} SO
there is2° = 1 = ~.(0) assignment witlr (L. ; o) = 0 and one witho (L, ; o) = 1.

Finally, considerr € X. Let C, be the set of constraints containing the four implications
IMP (2, Ry 0.maxs 0 )s IMP (R 0. maxe 05 %), IMP(2, Lyt min,., ), @VAIMP (L, 1 in, , 7). Now there
are,(1) solutions to(A, o U A, U {z}, Cro U C,1 UC,) with o(z) = 1 and~,(0) solutions
with o(z) = 0. Thus, we have simulated the weight functiopwith {IMP, §,, d; } constraints.
For the running example,

e first consider the variablg.
— With o(y) = 1 the constraints i, force o (R, 0max,,) = 1 Which, from above,
givesy, (1) solutionsta A4, o, C, o). The constraints i, also forcer(Ly 1 min(y,1)) =
1, which, from above, gives one solution(td, ;, C, ).
— With o(y) = 0 the constraints ir’, force o (R, o max,,) = 0 SO there is only one
solution to(A, o, Cy0). The constraints id, also forceo (L, 1 min(y,1)) = 0 SO there
are,(0) solutions to(A, 1, Cy 1).
e The argument for variableis similar.
Thus, the correct output for the #CSPMP, ¢y, d1) instance X, C, v) is same as the correct
output for the #CSHMP, 4, 6,) instance obtained froiX, C, v) by adding new variables and
constraints to simulate each weight functign O

We can now prove the main lemma of this section.

Lemma 4. Suppose thatl is a tree which is not a star and which has no indudedThen
#BIS =,p #HOMSTO(H) and#BIS =,p #WHOMSTO(H).

Proof. #HoMSTO(H) is a special case of #\WbMSTO(H) so it is certainly AP-reducible to
#WHoMsTo(H). By Lemmd 2, #BIS is AP-reducible to #41SsTo(H ) and therefore it is AP-
reducible to #WHMSTO(H). So it suffices to give an AP-reduction from #V@MSTO(H)
to #BIS. Applying Lemmal3, it suffices to give an AP-reductivom #WHoMSTO(H) to
#CSP (IMP, 4y, ).

In order to do the reduction, we will order the verticesfusing the fact that it has no
inducedJs. (This ordering is similar the one arising from the “croggproperty” of the authors
thatis mentioned in [27, Section 7.3.3].) A “convex ordgfinf a connected bipartite graph with
bipartition (U, U”") with |U| = h and|U’| = i’/ and edge sekl C U x U’ is a pair of bijections
m: U — [h] andn’ : U" — [A'] such that there are monotonically non-decreasing funstion
functionsm : [h] — [], M : [h] — [W], ™’ : [W'] — [h] and M’ : [W'] — [h] satisfying the
following conditions.

o If m(u) =ithen{n'(v) | (u,u') € E} ={l € [W]| m(i) << M(i)}.
o If 7/(v') =ithen{n(u) | (u,v') € E} ={l & [h] | m'(i) << M'(i)}.

The purpose of andr’ is just to put the vertices in the correct order. For examiplEigure2,
7 is the identity map on the séf = {1,2,3,4} and~’ is the identity map on the séf’ =
{1,2,3}. Vertex3 in U is connected to the sequence containing verticesand3 in U’, so
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FIGURE 2. An example of a convex ordering

m(3) = 1 and M(3) = 3. Every other vertex irU has degred and in particularm (1) =
M(1) =1,m(2) = M(2) = 1 andm(4) = M(4) = 3. Similarly, vertexl in U’ is attached
to the sequence containing vertices2 and3 in U som/(1) = 1 andM'(1) = 3 butm/(2) =
M'(2) = 3andm/(3) = M'(3) = 4.

To see that a convex ordering Bf always exists, consider the following algorithm. The input
is a treeH with no induced/s;, a bipartition(U, U’) of the vertices off, and a distinguished
leafu € U whose parent’ is adjacent to at most one non-leaf. (Note that such auedivays
exists sincéd is atree.) The outputis a convex orderingbfn whichz(u) = handr’(u') = 1.
Here is what the algorithm does. If all of the neighbours/oére leaves, theh’ = 1 so take
any bijectionr from U — {u} to [, — 1] and setr(u) = h andr’(u") = h’. Return this output.
Otherwise, letu” be the neighbour of’ that is not a leaf. Lef{’ be the graph formed from
H by removing all of thely(u') — 1 neighbours of.’ other thanu”. SinceH has no induced
Js, the graphH’ has the following propertyx’ is a leaf whose parent,”, is adjacent to at
most one non-leaf. Recursively, construct a convex ordefion A’ in which 7(v’) = k' and
m(u") = h — (dy(u’') — 1). Extendr by assigning values to the leaf-neighbours.Qfensuring
thatr(u) = h.

We will now show how to reduce #WétMsTo(H) to #CSP (IMP, ¢y, 4,). Let G be a con-
nected bipartite graph with bipartitiofi’, V') and letWW (G, H) be an indexed set of weight
functions. Let

Zy(G,W(G, H)) = > I wio(w)
)

c€Hom(G,H) witho(V) C U veV (G

and let
Zy(G,W(G, H)) = > [T wilo)).
oc€Hom(G,H) with (V') C U’ veV (G)
Clearly, Zy(G,W(G,H)) = Zy(G,W(G,H)) + Z}(G,W (G, H)). We will show how to
reduce the computation d&f}, (G, W (G, H)), given the input(G, W (G, H)), to the problem
#CSP(IMP, dy, 41). In the same way, we can reduce the computatiodpfG, W (G, H)) to
#CSP (IMP, 6y, 6, ).
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Since we are considering assignments which iap U andV”’ to U’, the vertices irlV will
not get mixed up with the vertices Y. We can simplify the notation by relabelling the vertices
so thatr and~’ are the identity permutations. Then, given the convex amdesroperty, we can
assume that’ = [h] and thaty’ = [/] and that we have monotonically non-decreasing functions
functionsm : [h] — [R], M : [h] — [W'], m" : [W'] — [h] andM" : [W'] — [h] such that
o foricU,I'y(i)={Ce[h]|m(i)<¢< M)}, and
o fori e U, Ty(i) = {0 [h] | m/'(i) <L < M(i)}.
A configurationo contributing toZ%, (G, W (G, H)) is a map fromV’ to [h] together with a
map fromV” to [/’] such that the following is true for every edge v') € V- x V'.
1) m(o(v)) <o(v') < M(co(v)), and
(2) m'(o(v)) < o(v) < M'(o(v)).
Sincem, M, m' and M’ are monotonically non-decreasing, we can re-write the itiamg in
a less natural way which will be straightforward to applydvel

1) o(v) <i |mpI|e30( ") < M(1),

(2") o(v') <i' implieso(v) < M'(7),

(3" o(v') <m(i) — 1implieso(v) <i—1, and
4" o(v) <m/(7') — 1implieso(v') <id' — 1.

Using monotonicity,[() and [2) follow from the right-hand side of{1) andl(2). Suppose that
o(v') < m(i). Then the left-hand side ofl(1) gives(c(v)) < m(i), SO by monotonicity,
o(v) < i. Equation[(B follows. In the same way, Equation/J4ollows from the left-hand side
of (2). Going the other direction, the right-hand sided §fgdd [2) follow from [(1) and [2).To
derive the left-hand side of](1), take the contrapositivef), which sayso(v) > i implies
o(v") > m(i) then plug ini = o(v). The derivation of the left-hand side 6 (2) is similar.

We now construct an instance of #C3RVP, j,, ;). For each vertex € V introduce
Boolean variablesy, ..., v,. Introduce constraint§,(v,) andd;(v,) and, for everyi € [h],
IMP(v;_1,v;). For each vertex’ € V' introduces Boolean variableg, ..., v;,. Introduce
constraints(v,) andd, (v}, ) and, for every’ e [A'], IMP (v}, _,,vl).

Now there is a one-to-one correspondence between assiggmmeamappingV to U and V"’
to U’, and assignmentsto the Boolean variables that satisfy the above constrdimfgarticular,
o(v) = min{i | 7(v;) = 1}. Similarly,o(v") = min{¢' | 7(v)) = 1}.

Now, o(v) < i is exactly equivalent ta(v;) = 1. Thus, we can add the following further
constraints to rule out assignmentthat do not satisfy (}, (@), (3) and [4). Add all of the fol-
lowing constraints where € V, v' € V', i € [h] andi’ € [A']: IMP (v;, vy ), IMP (0], var i),
IMP (v Uy (i) 15 Vi—1), @andIMP (v, ()1, v}, ). Now the assignments of Boolean values to the
variables satisfy all of the constraints if and only if theyrr@spond to assignmentswhich
satisfy [1), (@), (3) (@), and so should contribute to

Zu(G,W(G, H)) = > I[ w(o@)
oc€Hom(G,H) with o(V) CU veV(G)

We will next construct weight functions for the instance @ %F (IMP, 4y, d;) in order to
reproduce the effect of the weight functionsin(G, H).
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In order to avoid division by, we first modify the construction. Suppose that for someaidei
v € V and some € [h], w,(i) = 0. Configurationsr with o(v) = i make no contribution
to Z,,(G,W (G, H)). Thus, it does no harm to rule out such configurations by nyouifthe
#CSP (IMP, 4y, 01) instance to ensure thatv;) = 1 implies7(v;—;) = 1. We do this by adding
the constrainiMP (v;, v;_1). Similarly, if w, (i) = 0 for v’ € V andi’ € [h'] then we add the
constrainiMP (v}, v}, _;).

Once we've made this change, we can repldcg~, H) with an equivalent indexed set of
weight functiongV’(G, H) wherew, (i) = w, (i) if w,(i) > 0 andw/, (i) = 1, otherwise.

The weight functions for the #CSHMP, 4y, 6, ) instance are then constructed as follows, for
eachv € V. For eachi € [h], let,, ,(0) = 1. Let~,, (1) = w,(h). For eachi € [h — 1], let
Y (1) = wl (i) /w, (i + 1). Note thaty,, (0) and~,,(1) have not yet been defined — these values
can be chosen arbitrarily. They will not be relevant givem¢bnstraints, (vy) andd; (vy,).

Now if o(v) = i we haver(vy) = -+ = 7(v;—1) = 0and7(v;) = --- = 7(v,) = 1 S0
[1; 7, (7(v;)) = w, (i), as required. Similarly, for eacti € V', define the weight functions as
follows. For each € [1], lety,, (0) = 1. Lety, (1) = wj,(h). Foreachi € [n" — 1], let
Yo (1) = wi, (i) /wy, (i 4+ 1). Using these weight functions, we obtain the desired rediu¢tom
the computation oZ’, (G, W (G, H)) to #CSP (IMP, ¢, ). O

3.3. Intractable trees. Lemmal4 shows that iff has no induced; then #WHOMSTO(H) is
AP-reducible to #BIS. The purpose of this section is to progmmal6, below, which shows,
by contrast, that if7 does have an inducefi, then #WHdIMSTO(H) is #SaT-hard.

In order to prepare for the proof of Lemrh& 6, we introduce thgom of a multiterminal
cut. Given a grapltz = (V, E') with distinguished vertices, 8 and-~, which we refer to as
“terminals”, amultiterminal cutis a sett’ C F whose removal disconnects the terminals in the
sense that the grail, £\ £’) does not contain a path between any two distinct termindis. T
size of the multiterminal cut is the number of edge#in Consider the following computational
problem.

Problem: #MULTITERMINAL CUT(3).

Instance: A positive integei, a connected grapfi = (V, E') and3 distinct verticesy, 3
and~ from V. The input has the property that every multiterminal cutdias at leasb.

Output: The number of sizé-multiterminal cuts foiGG with terminalsa, 3, and-.

We will use the following technical lemma, which we used befm [15] (without stating it
formally).
Lemma 5. #MULTITERMINAL CUT(3) =ap #SAT.

Proof. This follows essentially from the proof of Dalhaus et al. {8t the decision version of
#MULTITERMINAL CUT(3) is NP-hard and from the fact [10, Theorem 1] that the NP-hesd
of a decision problem implies that the corresponding cogrpproblem is AP-interreducible with
#3AT. The details are given in[15, Section 4]. 0J

Lemma 6. Suppose that! is a tree with an induceds. Then
#SAT < p #WHOMSTO(H).



16 LESLIE ANN GOLDBERG AND MARK JERRUM

FIGURE 3. The treeJ.

Proof. We will prove the lemma by giving an AP-reduction from #MrITERMINAL CUT(3) to
#WHoMSTO(H). The lemma will then follow from Lemmid 5.

Suppose that/ has an induced subgraph which is isomorphid{oTo simplify the notation,
label the vertices and edges Hf in such a way that the induced subgraph is (identically) the
graph.J depicted in Figurél3.

Letb, G = (V,E), a, 8 and~ be an input to #MILTITERMINAL CUT(3). Lets = 2 +
|E(G)| + 2|V(G)|. (The exact size of is not important, but it has to be at least this big to make
the calculation work, and it has to be at most a polynomiahedize of=.) Let G’ be the graph
defined as follows. First, l6t"(G) = {(e,i) | e € E,i € [s]}. Thus,V'(G) containss vertices
for each edge of G. Then letG’ be the graph with vertex s&t(G’) = V(G) U V/(G) and edge
set

E(G) ={(u,(e,1)) | u € V(G), (e,i) € V'(G),andu is an endpoint o }.

We will define weight functionsu, for v € V(G’) so that an approximation to the number of
sized multi-terminal cuts foiz with terminalsa, 5 andy can be obtained from an approximation
to Zy(G',W(G', H)). We start by defining the set of pairs, ¢) € V(G’) x V(H) for which we
will specify w,(c) > 0. In particular, define the sét as follows.

Q= {(e,20), (B, 90), (7, 20) U ((V(G) —{e, B,7}) x {0, Yo, 20}) U(V'(G) x {w, 21,51, 21}) .

Letw,(c) = 1if (v,c) € Q. Otherwise, letw,(c) = 0.

Thus,Zyx(G', W (G, H)) is the number of homomorphismsrom G’ to H with o(V(G)) =
{0, Y0, 20}, c(V'(Q)) C{w,x1,y1, 21}, 0(a) = xg, 0(B) = yo @ando(y) = z,. We will refer to
these as “valid” homomorphisms.

If o is a valid homomorphism, then let

bi(c) = {e € E(G) | the vertices of/(G) corresponding to
the endpoints of are mapped to different colours by.

Note that, for every valid homomorphism bi(c) is a multiterminal cut for the grap&y with
terminalsa, 5 and~.

For every multiterminal cutt’, let x(E’) denote the number of components in the graph
(V, E\ E'). For each multiterminal cuf’, let Zx denote the number of valid homomorphisms
from G’ to H such that ko) = E’. From the definition of multiterminal cuk(£’) > 3. If
k(E'") = 3 then

Ty = 23(EG)=E)
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since there are two choices for the colours of each véetey with e € E(G) — E’. (Since the
endpoints of each such edgeare assigned the same colourdythe vertex(e, i) can either be
colouredw, or it can be coloured with one other colour.) Also,

T < 93BG ~E)3r(B)=3
since the component ofis mapped ta;, by o, the component of is mapped tay,, the compo-
nent of~y is mapped tOzO, and each remaining component is mapped to a colo{itjnyo, zo}-

Let Z* = 25B(@=Y _|f E' has sizeb thenk(E') = 3. (Otherwise, there would be a smaller
multiterminal cut, contrary to the definition of #MTITERMINAL CUT(3).) So, in this case,
1) A

If £’ has sizé/ > bthen

T < 2s(E(G 3/@(E’ 2—s(b’—b)3H(E’)—3z* < 2—83‘V(G>|Z*.

Clearly, there are at mo8t®(@)l multiterminal cutsE’ So, using the definition of,

(2) > Zp < 2
E":|E'|>b
From Equation[(11), we find that, if there ahesized multiterminal cuts then
Zy(G\W(G H)=NZ"+ > Zp.
E":|E'|>b
So applying Equatiori.{2) , we get
Zy(G' " W(G', H)) 1
<N+ -.
7 =T
Thus, we have an AP-reduction from #MrITERMINAL CUT(3) to #HOMSTO(H ). To deter-
mine the accuracy with whicH(G) should be approximated in order to achieve a given accuracy
in the approximation taV, see the proof of Theorem 3 of [10]. O

N <

4. TREE HOMOMORPHISMS CAPTURE THE FERROMAGNETI®OTTS MODEL.

The problem #dMSTO(H ) counts colourings of a graph satisfying “hard” constraitgo
colours (corresponding to vertices Bf) are either allowed on adjacent vertices of the instance
or disallowed. By contrast, the Potts model (to be descrgredently) is “permissive”: every
pair of colours is allowed on adjacent vertices, but somespaie favoured relative to others.
The strength of interactions between colours is contrdied real parametey. In this section,
we will show that approximating the number of homomorphismg, is equivalent in difficulty
to the problem of approximating the partition function o tlerromagnetig-state Potts model.
Since the latter problem is not known to be #BIS-easy for @ny 2, we might speculate that
approximating #l&dMsTo(.J,) is not #BIS-easy for any > 2. If so, J; would be the smallest
tree with this property.

It is interesting that, for fixed, a continuously parameterised class of permissive prabtam
be shown to be computationally equivalent to a single cognproblem with hard constraints.
Suppose, for example, that we wanted to investigate thalplitysthat computing the partition
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function of theg-state ferromagnetic Potts model formed a hierarchy of lprob of increas-
ing complexity with increasing. We could equivalently investigate the sequence of problem
#HowmsTo(J,), which seems intuitively to be an easier proposition.

We start with some definitions. Let be a positive integer. The-state Potts model is a
statistical mechanical model of Potts [29] which geneealighe classical Ising model from two
to ¢ spins. In this model, spins interact along edges of a gr@ph (V, E). The strength of
each interaction is governed by a parametéa real number which is always at least, and
is greater tha in theferromagnetiaccase which we study, where like spins attract each other).
Theg-state Potts partition function is defined as follows.

(3) ZPotts G q, 7 Z H (1 + ’)/5(0'(11), U(“)))?

o:V—[q] e={u,v}€E

whered(s, s’) is1if s = &', and isO otherwise.

The Potts partition function is well-studied. In additiamthe complexity-theory literature
mentioned below, we refer the reader to Sokal’s survey [30].

In order to state our results in the strongest possible fareyse the notion of “efficiently ap-
proximable real number” from Sectidh 2. Recall that a reahber~ is efficiently approximable
if there is an FPRAS for the problem of computing it. The notd “efficiently approximable” is
not important to the constructions below — the reader whéepsgo assume that the parameters
are rational will still appreciate the essence of the redust

Let ¢ be a positive integer and letbe a positive efficiently approximable real. Consider the
following computational problem, which is parameterisgd;tand-y.

Problem: PoTTS(q, 7).
Instance: GraphG = (V, E).
Output ZPOttS(G; q, 7)

This problem may be defined more generally for non-integers the Tutte polynomial. We
will use some results fronh [16] which are more general, butiw@&ot need the generality here.

In an important paper, Jaeger, Vertigan and Welsh [24] emadhihe problem of evaluating
the Tutte polynomial. Their result gave a complete clas#ifim of the computational complex-
ity of POTTS(¢q,v). For every fixed positive integer, apart from the trivialy = 1, and for
every fixed~, they showed that this computational problem is #P-hardeMh= 1 and~ is
rational, Zp.s (G ¢, y) can easily be exactly evaluated in polynomial time. The dewity of
the approximation problem has also been partially resolMadhe positive direction, Jerrum
and Sinclair[[25] gave an FPRAS for the case- 2. In the negative direction, Goldberg and
Jerrum [16] showed that approximation is #BI1S-hard for g¥ixed ¢ > 2. They left open the
question of whether approximating..;s(G; ¢, ) is as easy as #BIS (or whether it might be
even harder).

In this paper, we show that the approximation problem isvedent in complexity to a tree ho-
momorphism problem. In particular, we show thatt®s(q, ) is AP-equivalent to the problem
of approximately counting homomorphisms to the tige

We first give an AP-reduction fromd¥1s(g, 1) to #HOMSTO(J,,).
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Lemma 7. Letq > 2 be a positive integer.
POTTS(q,1) <ap #HOMSTO(J,).

Proof. Let G be an instance of ®r7s(q, 1). We can assume without loss of generality that
is connected, since it is clear froml (3) that a gra@phvith connected componen¢s,, . . ., G,
SatiSﬁeSZpotts(G; q, '7) = Hj:l ZPotts(Gi; q, 7)
Let G’ be the graph with
V(G =V(G)U E(G)
and
E(G") ={(u,e) |u e V(G),e € E(G),andu is an endpoint o }.

G' is sometimes referred to as the-stretch” of G. For clarity, when we consider an element
e € F(G) as a vertex o’ (rather than an edge ©f), we shall refer to it as the “midpoint vertex
corresponding to edgé.

Let s be an integer satisfying

V(@)+E@) AN
4) 8q(q+1) < (2) .
For concreteness, taketo be the smallest integer satisfying (4). The exact size isfnot so
important. The calculation below relies on the fact tha large enough to satisfil(4). On the
other hands must be at most a polynomial in the size@®@fto make the reduction feasible.

We will construct an instanc&” of #HomsTo(.J,) by adding some gadgets &. Fix a
vertexv € V(G). LetG" be the graph with/ (G”) = V(G)UE(G)U{wy, ..., v} andE(G") =
E(G")U{(v,v9)} U{(vo,v;) | i € [s]}. See Figurél4.

We say that a homomorphissfrom G” to J, is typicalif o(vy) = w. Note that, in a typical
homomorphism, every vertex ii(G) is mapped by to one of the colours fronjc, ..., c,}.
Let Zf,q (G") denote the number of typical homomorphisms fréfhto J,,.

Given a mappingr : V(G) — {c},...,c,}, the number of typical homomorphisms which
induce this mapping i€™°"(*)¢*, wheremono(c) is the number of edges € E(G) whose
endpoints inl/(G) are mapped to the same colour &y (To see this, note that there are two
possible colours for the midpoint vertices correspondmguch edges, whereas the other mid-
point vertices have to be mappeditdoy o. Also, there are possible colours for each vertex in
{v1,...,vs}.) Thus, using the definitiof|3), we conclude that

Ztt]q (G”) = Z 2m0n0(0)qs = quPotts(G; q, 1)
o:V(G)—={c],....c

The number of atypical homomorphisms fr@# to .J,, which we denote b)Zf}q(G”), is at

most2¢2%(¢q 4+ 1)V @HEG] (To see this, note, that there axgalternative colours for,. For
each of these, there are at mdsblours for each vertex ifwy, . .., v, } and at most + 1 colours
for each vertex i/ (G) U E(G).) Using Equationl(4), we conclude thd$ (G”) < ¢°/4. Since
2;,(G") = 25 (G") + Z5 (G"), we have
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FIGURE 4. The instance&z”. The thick curved line betweel (G) and E(G)
indicates that the edges iBi(G’) go between elements df(G) and elements
of £(G), but these are not shown.

Z;(G" 1
Jq(s ) S ZPotts(G; q, 1) + Z
Equation[(5) guarantees that the construction is an APetemtufrom PoTTS(¢, 1) to the prob-

lem #HomsTo(J,). To determine the accuracy with whichy, (G”) should be approximated in

order to achieve a given desired accuracy in the approximadi Zp.s(G; ¢, 1), see the proof

of Theorem 3 of[[10]. O

(5) ZPotts<G; q, 1) S

In order to get a reduction going the other direction, we rteegeneralise the Potts partition
function to a hypergraph version. L&t = (V, £) be a hypergraph with vertex sgtand hyper-
edge (multi)seE. Letq be a positive integer. Thestate Potts partition function 6{ is defined

as follows:
ZPottqury Z Hl—'—’}/(S{U "UGf}))

o:V—q) fEE
whered(.S) is 1 if its argument is a singleton and 0 otherwise. k&te a positive integer and let
~ be a positive efficiently approximable real. We considerftilewing computational problem,
which is parameterised hyand~.

Problem: HYPERPOTTS(q, ).
Instance: A hypergraph{ = (V, €).
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Output: ZPotts(%; q, 7)

We start by reducing #6IMSTo(J,) to the problem of approximating the Potts partition funetio
of a hypergraph with parameteyand1.

Lemma 8. Letq be a positive integer.
#HomsTo(.J,) <ap HYPERPOTTS(¢, 1).

Proof. We can assume without loss of generality that the instangéitamsTo(.J,) is bipartite,
since otherwise the output is zero. We can also assume thatahnected since a graghwith
connected components, . . ., G, satisfies?; (G) = [[\_, Z,,(G;). Finally, it is easy to find a
bipartition of a connected bipartite graph in polynomiaiei, so we can assume without loss of
generality that this is provided as part of the input.

Let B = (U,V, E) be a connected instance of #MsTo(.J,) consisting of vertex set§’
andV and edge sel’ (a subset ot/ x V). Let Zf/q(B) be the number of homomorphisms from
B to J, in which vertices inU are coloured with colours ific;, ..., ¢, }. Similarly, letZ} (B)
be the number of homomorphisms frdsto .J, in which vertices in/” are coloured with colours
in{c,,...,¢,}. Clearly,Z; (B) = Z5 (B) + Z} (B). We will show how to approximat&y (B)
using an approximation oracle foRERPOTTS(¢, 1). The approximation OZ}/(I(B) is similar.

The construction is straightforward. For everyg V, letI'(v) denote the set of neighbours of
vertexv in B. Let ' = {I'(v),| v € V'}. Let H = (U, F') be an instance of HPERPOTTS(¢, 1).

The reduction is immediate, becauggl(B) = Zpotts(H; q,1). To see this, note that ev-
ery configurationo : U — {c},...,c,} contributes weigh™m°() to Zp.(H; q, 1), where
mono(o) is the number of hyperedges i that are monochromatic im. Also, the configura-
tion o can be extended in exacty**"°(?) ways to homomorphisms frod to J,,. OJ

The next step is to reduce the problem of approximating thitsRmartition function of a
hypergraph to the problem of approximating the Potts pantfunction of auniformhypergraph,
which is a hypergraph in which all hyperedges have the same he reason for this step is that
the paper[16] shows how to reduce the latter to the apprdiomaf the Potts partition function
of agraph which is the desired target of our reduction.

Letq be a positive integer and letbe a positive efficiently approximable real. We consider the
following computational problem, which, like WERPOTTS(q, v), is parameterised byand-y.

Problem: UNIFORMHYPERPOTTS(q, 7).
Instance: A uniform hypergrapt{ = (V, £).
Output: ZPotts(H; q, 'y)

We will actually only use the following lemma with = 1 but we state, and prove, the more
general lemma, since it is no more difficult to prove.

Lemma 9. Letq be a positive integer and letbe a positive efficiently approximable real. Then

HYPERPOTTS(q, ) <ap UNIFORMHYPERPOTTS(q, 7).
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Proof. Let H = (V, £) be an instance to YPERPOTTS(q, v) with |V| = n and|£| = m and
max(|f| | f € £) = t. Lets be any positive integer that is at least

log(4g™ ™=V (1 +)"™)

log(1+ ) '

As with our other reductions, the exact valuesois not important, as long as it satisfies the
above inequality, it is bounded from above by a polynomial Bndm, and its can be computed
in polynomial time (as a function of andm). An appropriates can be readily computed by
computing crude upper and lower bounds4aand evaluating different values efone-by-one
to find one that is sufficiently large, in terms of these bounds

For every hyperedgg € &, fix some vertex; € f. Introduce new vertice§us,; | f € £,i €
[t—1]}, andlety =V U{us, | f€&,iet—1]}. Let

8':{fu{uf,i}i€ [t_|f|]})f68}U{{Uf,Uﬁl,...,Uﬁt_l}X [s] ‘ feé'}.

That is, the multi-se€’ hass copies of the edgéuvy, uy1, ..., us.—1} and one copy of the edge
fU{uys; | i € [t—|f|]} for each hyperedgg € £. LetH' = (V', £’). Note thatH' is t-uniform.

Now, the total contribution t&p(H'; ¢, v) from configurationg which are monochromatic
on every edgduvy, uysy, ..., up—1} IS €xactlyZpous(H; g,7)(1 + )™ . Also, the total contribu-
tion to Zpows (7 ¢, 7) from any other configurationsis at most™ (=1 (1 + )™ (1 4 ~)*™ =Y
since there are at mogt™(*~1 such configurations ang > 0.

So
Zpous(H';¢,7) g1 4 )"
Zpotts(M; ¢,7) < s < Zpotts(H; ¢, 5
1
S ZPotts(H; q:f}/) + Z
which completes the reduction. 0J

Finally, we are ready to put together the pieces to show tbatevery integery > 2, the
problem of approximating the Potts partition function isueglent to a tree homomorphism
problem.

Theorem 10. Letg > 2 be a positive integer and let be a positive efficiently approximable
real. ThenPOTTS(q,y) =ap #HOMSTO(.J,).

Proof. We start by establishing the reduction from &tsTo(.J,) to POTTS(q,v). By Lemmas
and®.

#HoMsTo(J,) <ap HYPERPOTTS(g,1) <ap UNIFORMHYPERPOTTS(q,1).

To complete the sequence of reductions we need to know tadash problem is reducible to
POTTS(q, 7). Fortunately, this step already appears in the literatueslightly different guise,
SO we just need to explain how to translate the terminologmfthe earlier result to the current
setting. For every positive integer the partition functionZp.s(H; ¢, ) of the Potts model on
hypergraphs is equal to theitte polynomialiru.(H; ¢,v) (whose definition we will not need
here). This equality is proved in [16, Observation 2.1]ngghe same basic line of argument that
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Fortuin and Kasteleyn [14] used in the graph case. Furthexnfarqg > 2, Lemmas 9.1 and 10.1
of [16] reduce the problem of approximating the Tutte pimifunction Zr,..(#; ¢, 1), where
‘H is auniform hypergraphto that of approximating the Tutte partition functi@f..(G; q, ),
whereG is agraph Given the equivalence betwe&h,..(G; ¢, ) andZp.s(G; ¢, v) mentioned
earlier, we see that

UNIFORMHYPERPOTTS(q, 1) <ap POTTS(q,7),

completing the chain of reductions.

For the other direction, we will establish an AP-reductiooni POTTS(q,~y) to the problem
#HowmsTo(J,). To start, we note that since a graph is a special case of armmifiyper-
graph, Lemmas 9.1 and 10.1 of [16] give an AP-reduction franm13(q, y) to POTTS(q, 1).
(It is definitely not necessary to go via hypergraphs for teguction, but here it is easier to
use the stated result than to repeat the work.) Finally, Lefiimshows that 8TTS(q, 1) <ap
#HowmsTo(J,). O

5. INAPPROXIMABILITY OF COUNTING TREE HOMOMORPHISMS

Until now, it was not known whether or not a bipartite graptexists for which approximating
#HoMSTO(H) is #SaT-hard. It is perhaps surprising, then, to discover thab#IHdTo(H ) may
be #3\T-hard even wher#{ is a tree. However, the hardness result from Sedétion 3 pesvid
clue. There it was shown that the weighted version #WWiSTo(H) is #SaT-hard wheneveH
is a tree containing; as an induced subgraph. If we were able to construct aftemntaining
J3, that is able, at least in some limited sense, to simulatexeveights, then we might obtain
a reduction from #WIdMsSToO(J3) to #HoMSTO(H). That is roughly how we proceed in this
section. We will obtain our hard treE by “decorating” the leaves of;. These decorations
will match certain structures in the instanGeso that particular distinguished verticeGrwill
preferentially be coloured with particular colours. Cangythrough this idea requires to have
a certain level of complexity, and the trg¢ that we actually use (see Figure 5) is about the
smallest for which this approach works. Presumably the sampeoach could also be applied
starting atJ,, for ¢ > 3. It is possible that there are tre@sthat are much smaller thari for
which #HOMSTO(H ) is #SAT-hard. It is even possible that ##SToO(.J;) is #SAT-hard. But
demonstrating this would require new ideas.

Define vertex sets

X =A{zo, 1} U{za, | i € [5]},
Y ={yo,y1} U{yei [ i €[4} U{ysi; [ i€ [4],7 €3]},
Z ={zo, 21} U{22; | i€ B} U{zs:; [0 €[3],7 € [8]} U{zaugn |1 € [3],5 €3,k € 2]},
and edge sets

Ex = {(wo, x1)} U{(z1,22;) | 0 € [5]},

Ey ={(yo, y1) } U{(y1,92:) | i € [4]} U{(v2,i,¥3,) | 7 € [4],7 € [3]},

Ez ={(20,21)} U{(21,204) | i € [3]} U{(224,23.5) | i € [3],5 € [3]}

U{(23,5, 2a,56) | © € [3],5 € [3], k € [2]}.
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FIGURE 5. The treeJ;.

Let J; be the tree with vertex séf(J;) = {w} U X UY U Z and edge set
E(J3) = {(w,z0), (w,y0), (w, 20)} U Ex U Ey U Ez.

See Figurél5. Consider the equivalence relatiof 0s;) defined by graph isomorphism — two
vertices ofJ; are in the same equivalence class if there is an isomorphisf mapping one
to the other. The canonical representatives of the equigalelasses are the verticesxg, x1,
T2.15 Yor Y1s Y2,15 Y3,1,15 20, 21, 22,15 23,1,1 andZ471’171. These are shown in the figure.

In this section, we will show that #8 is AP-reducible to #lémsTo(.J;). We start by iden-
tifying relevant structure iw/;.

A simple path in a graph is a path in which no vertices are riged-or every vertek of J;,
and every positive intege, let d.(h) be the number of simple lengthpaths fromh. The
valuesd, (h), dy(h) andds(h) can be calculated for each canonical representativd/ (/) by
inspecting the definition of; (or its drawing in Figurél5). These values are recorded ifitse
four columns of the table in Figuré 6.

Now let wy(h) denote the number of lengthwalks from#h in J;. Clearly,w,(h) = d;(h)
since J; has no self-loops, so all lengthwalks are simple paths. Next, note thai(h) =
di(h) + do(h). To see this, note that every lendtlwalk from £ is either a simple lengtB-path
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w 3 3 12 3 6 24
T 2 7 2 2 9 13
1 6 1 2 6 7 39
X211 1 5 1 1 6 7
Yo 2 6 14 2 8 24
n 5 13 | 2 5 18 | 40
yor || 4 | 4 | 10 | 4 8 | 30
ysaa |1 3 4 1 4 8
20 2 5 11 2 7 20
21 4 10 20 4 14 46
22,1 4 9 7 4 13 32
23,1,1 3 3 7 3 6 19
24,1,1,1 1 2 3 1 3 6

FIGURE 6. For each canonical representative V' (.J;), we record the values

from J3, or it is a walk obtained by taking an edge framand then going back th. Finally,
ws(h) = dy(h)? + dao(h) + ds(h) since every lengtl-walk from % is one of the following:

e a simple lengtts path fromh,

e a simple length2 path fromh, with the last edge repeated in reverse, or

e a simple lengtht path fromh with the last edge repeated in reverse, followed by another
simple lengtht path fromh.

These values are recorded, for each canonical represexitati V' (.J;), in the last three columns
of the table in Figurél6. The important fact that we will uséniatw, (k) is uniquely maximised
ath = 1, wy(h) is uniquely maximised at = y;, andws(h) is uniquely maximised &t = z;.
(These are shown in boldface in the table.)

We are now ready to prove the following theorem.

Theorem 11. #SAT <,p #HOMSTO(J3).

Proof. By Lemmal5, it suffices to give an AP-reduction from #MITERMINAL CUT(3) to
#HomsTo(J;). The basic construction follows the outline of the reductieveloped in the
proof of Lemma®6. However, unlike the situation of Lermma @, tdrget problem #8MSTO(J3)
does not include weights, so we must develop gadgetry tolatenthe role of these.

Letb, G = (V, E), «,  andy be an input to #MILTITERMINAL CUT(3). Lets = 3+|E(G)|+
2|V (G)|. (As before, the exact size efis not important, but it has to be at least this big to make
the calculation work, and it has to be at most a polynomiahedize ofG.)

Let G’ be the graph defined in the proof of Lemma 6. In particularl/1éG) = {(e,?) | e €
E(G),i € [s]}. Then letG’ be the graph with vertex s&t(G’) = V(G) U V'(G) and edge set

E(G) ={(u,(e,1)) | u € V(G), (e,i) € V'(G),andu is an endpoint o }.
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Now letr be any positive integer such that

46\" | IV(G)|+5|B(G)|+7
© (35) s .
For concreteness, takdo be the smallest integer satisfying (6). Once again, thetexalue of-
is not so important. Any would work as long as it is at most a polynomial in the sizéoand
it satisfies[(b).
We will construct an instanc@” of #HomsTo(.J;) by adding some gadgets €. First, we
define the gadgets.

e LetI'; be a graph with vertex séf(I';) = {v,, } U U, {v,:} and edge sek (') =
Uie[r}{(vxl ) U:B,i>}'
e Letl', be a graph with vertex set(I',) = {v,, }UU,c,{vy.i: v} and edge sl (') =
Uie[r]{<vyl ,Uy), (Vg Uy ) -
e Let I, be a graph with vertex sét(I'.) = {v.,} U Uj;¢{vzs, 0%, 02} and edge set
ET,) = Uie[r}{(vzw Vzi)s (Vziy U;,z’)> (U;,w Ug,i)}'
Finally, let

V(G") = V(G") U{vw, Vags Vyo, vz UV (T,) UV(T,) UV(T,),
and

E(G") = {(vu, Vo) (Vs Vyo ) (Vs Vzg)s (Vs Uiy )5 (Vg5 Uy ), (Vg5 V1), (Vg @) (01, B), (0215 7)
UE(G") U {(vy,v) |veV(G)}UE(,)UET,) UET,).

A picture of the instancé&” is shown in Figurél7.

We say that a homomorphisenfrom G” to J3 is typical if o(v,,) = x1, o(vy,) = 11, and
o(v,,) = z1. Note that, in a typical homomorphism(v,,) = w, soo(V(G)) = {xo, o, 20} and
oc(V'(@)) C {w,z1,y1, 21} Also,o(a) = xg, 0(B) = yo, ando () = 2.

If o is a typical homomorphism, then let

bi(c) = {e € E(G) | the vertices of/(G) corresponding to
the endpoints of are mapped to different colours by.

Note that, for every typical homomorphism bi(c) is a multiterminal cut for the grap&' with
terminalsa, 5 and~.

For every multiterminal cut’ of G, let x(E’) denote the number of components in the graph
(V,E \ E'). For each multiterminal cut’, let Zp denote the number of typical homomor-
phismso from G” to J; such that ko) = £'.

As in the proof of Lemmal6s(E’) > 3. If x(E’) = 3 then

T = 2IPG)-Flgrigrgr = 2s1B(G)-El4968".

The2:#(@)~E'l comes from the two choices for the colour of each veftex) with e € E(G) —
E’, as before. Th&" comes from the choices for the verticesliil',) \ {z;} according to
column 5 of the table in Figufe 6. TH&" comes from the choices for the verticediql', ) \ {y: }
(in column 6) and the6” comes from the choices for the verticesil’,) \ {z;} (in column 7).
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FIGURE 7. The instanc&s”. The thick curved line betweeVi(G) andV'(G)
indicates that the edges iA(G’) go between vertices iV (G) and vertices
in V’'(G), but these are not shown. Vertex is connected to each vertexf(G).

Also, for any multiterminal cu’ of G,
Zgyr < 25IB@O=Fl3r(EN=34968"

since in any typical homomorphistm the component ok is mapped ta:, by o, the component
of 5 is mapped tqyy, the component ofy is mapped toyy, and each remaining component is
mapped to a colour ifixg, yo, 20 }-

Let Z* = 2:1E(@)-bl4968". If E’ has sizeb thenx(E’) = 3. (Otherwise, there would be a
smaller multiterminal cut, contrary to the definition of #MriTERMINAL CUT(3).) So, in this
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case,
) Zp = 27"

If £ has sizé' > bthen

T < 9SIE(G) =V |3r(E)=34968" — 9—s(t/=b)gr(E)=3 7+ < 9=s3IV(G)] 77*
Clearly, there are at most®(%)| multiterminal cutsE’. So, using the definition of,
®) Y Ze<Z
E':|E'|>b
Now let Z~ denote the number of homomorphisms fraffito J; that are not typical. Now
77 < |V (J3)|VOHIVIORT (40 /46)"4968",
since there are at mogdt (.J;)| colours for each of the vertices in
V(G) UV'(G) U {0, Vags Vygs Usgs Uy s Vyy s Usy |-

Also, given that the assignmenttg,, v,, andv,, is not preciselyr;, y; andz;, respectively, it
can be seen from the table in Figlte 6 that the number of pbgsibfor the remaining vertices
is at most(40/46)" times as large as it would otherwise have been. (For exarfiphe,the last
column of the table, colouring., with y; instead of withz; would give exactly40” choices
for the colours of the vertices i, \ {v., } instead of46” choices. The differences in the other
columns are more substantial than this.) SINCEG)| = s|E(G)],

7" < |V(J§)"V(G)Hs'E(G)‘+7(40/46)T4968T.
We can assume that< | E(G)| (otherwise, the number of siZzemultiterminal cuts is trivially0)
so from the definition ofZ*,
2= < V()| VOHE@T 40 /46 7+
Using Equation[(6), we get
7

(9) zm <%

From Equation[([7), we find that, if there ahesized multiterminal cuts then
Zp(G)=NZ"+ Y Zp+Z.
E':|E'|>b
So applying Equation§{8) and (9), we get

Z,:(G
N < "f’(*) !

<N+ -.
= +4

Thus, we have an AP-reduction from #MrITERMINAL CuT(3) to #HomsTo(J;). To deter-
mine the accuracy with whicH (G) should be approximated in order to achieve a given accuracy
in the approximation tav, see the proof of Theorem 3 of [10]. 0J
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6. THE POTTS PARTITION FUNCTION AND PROPER COLOURINGS OF BIPARTITERAPHS

Let ¢ be any integer greater tha&n Consider the following computational problem.
Problem: #BIPARTITE ¢-COL.
Instance: A bipartite graphG.
Output: The number of propey-colourings ofG.

Dyer et al.[10, Theorem 13] showed that #B{Sp #BIPARTITE ¢-CoL. However, it may be
the case that #BARTITE ¢-CoOL is easier to approximate than #S Certainly, no AP-reduction
from #3AT to #BIPARTITE ¢g-CoL has been discovered (despite some effort!). Therefore, it
seems worth recording the following upper bound on the cerigyl of #HomsTo(.J,), which
is an easy consequence of Theotern 10.

Corollary 12. Letq > 2 be a positive integer. ThefHOMSTO(.J,) <ap #BIPARTITE ¢-COL.

Corollary[12 follows immediately from Lemniall3 below by agpb Theorem 110 withy =
1/(q—2).
Lemma 13. Letq > 2 be a positive integer. ThdPDTTS(q, 1/(q¢—2)) <ap #BIPARTITE ¢-COL.

Proof. Let G = (V, E) be an input to BTTS(¢q,1/(¢ — 2)). Let G’ be the two-stretch of7
constructed as in the proof of Lemiia 7. In particul&ris the bipartite graph with

V(G") =V(G)U E(G)
and
E(G") ={(u,e) | u € V(G),e € E(G),andu is an endpoint ot }.

Consider an assignmeat V(G) — [g] and an edge = (u,v) of G. If o(u) # o(v) then
there arey— 2 ways to colour the midpoint vertex corresponding 8o that it receives a different
colour fromo(u) ando(v). However, ifo(u) = o(v) then there arg — 1 possible colours for
the midpoint vertex.

Let N denote the number of propercolourings ofG’. Then sincgq — 1)/(¢ —2) — 1 =
1/(q¢ — 2), we have

1 mono(o)
V-2 ¥ (155) = -2 tnn(Gia /a2,
q—2

o:V—[q]
wheremono(o) is the number of edgesc E(G) whose endpoints i (G) are mapped to the
same colour by.

O

7. THE POTTS PARTITION FUNCTION AND THE WEIGHT ENUMERATOR OF A CODE

A linear codeC of length N over a finite fieldF, is a linear subspace @Tflv If the subspace
has dimension then the code may be specified byran N generating matrix\/ overF, whose
rows form a basis for the code. For any real numbgthe weight enumerator of the code is
given by Wi (\) = >, cc Al*I where||w|| is the number of non-zero entriesin (||w]| is
usually called theHamming weighof w.) We consider the following computational problem,
parameterised by and\.
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Problem: WE(q, \).

Instance: A generating matrix\/ overF,.

Output: Wy ().
In [17], the authors considered the special case 2 and obtained various results on the com-
plexity of WE(2, \), depending on\. Here we show that, for any prime WE(p, \) provides
an upper bound on the complexity 0bPTS(p*, 7).

Theorem 14. Suppose that is a prime,k is a positive integer satisfying® > 2 and\ € (0, 1)
is an efficiently computable real. Then

POTTS(p", 1) <ap WE(p, A).
The following corollary follows immediately from Theorédmd And Theorern 10.

Corollary 15. Suppose that is a prime,k is a positive integer satisfying® > 2 and\ € (0, 1)
is an efficiently computable real. ThétlomsTO(J,x) <ap WE(p, A).

The conditionp” > 2 can in fact be removed from Corollary]15, even though thelreses
not follow from Theoreni_14 in this situation. For the missitese where = 2 andk = 1,
Lemmd 4 gives #8MSTO(Jy) <ap #BIS and|[17, Cor. 7, Part (4)] show #BIS p WE(2, \).

A striking feature of Corollary_15 is that it provides a uniio upper bound on the complexity
of the infinite sequence of problems #MSTO(J,x), with p fixed andk varying. This uniform
upper bound is interesting if (as we suspect) WB) is not itself equivalent to #& via AP-
reducibility.

Proof of Theoreri l4Let ¢ = p* and lety = A~¢»~1D/» — 1 > 0. Since Theoreri 10 shows
POTTS(p", 1) =ap #HOMSTO(J,x) =ap POTTS(p*, ), it is enough to given an AP-reduction
from POTTS(p*, ) to WE(p, \). So supposé& = (V, E) is a graph with vertices andn edges.
We wish to evaluate

(10) Zpous(Giq,7) = > (L4 7)momel@),

o:V—[q]
Our aim is to construct an instance of the weight enumeraitdripm whose solution is the above
expression, modulo an easily computable factor. Introducellection of variables(’ = {zV |
v € Vandi € [k]}. To each assignment : IV — [¢] we define an associated assignment
o : X — F, as follows: for allv € V,

(0(27),6(x3), ..., 0(x7)) = p(o(v)),
wherep is any fixed bijectiong] — IF’; Note thato +— ¢ is a bijection from assignments
V' — [g] to assignmentX’ — F,,. (Informally, we have coded the spin at each vertex/aduple
of variables taking values ifi,.)

Let 41(21, ..., 2k)s .., Ly(21, ..., 2z,) be an enumeration of all linear formsg z; + a2, +
-+« + a2z, overF,, where(ay, o, . .., ax) ranges ove}F’;. This collection of linear forms has
the following property:

If 21 =20 =---2, =0, thenall ofl; (21, ..., 2x),....0,(#1, ..., 2) are zero;

11
(11) otherwise, precisely/p = p* ' of (1(z1,..., z), ... Ay(21,. .., ) are zero.
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The first claim in[(11) is trivial. To see the second, assuntbauit loss of generality that # 0.
Then, for any choice ofas,...,ax) € F’;—l, there is precisely one choice fog € I, that
makeswyz; + - - -+ agz, = 0.

Now give an arbitrary direction to each edg@e v) € E and consider the systemof linear
equations

{ﬁj (6(x)) — o(at), 6(a8) —6(ah), ..., 6(zp) —6(a})) =0:j € [¢] and(u,v) € E}

(We view A as a multiset, so the trivial equation= 0 arising from the linear fornt; with
ap = ap = --- = a; = 0 occursm times, a convention that makes the following calculation
simpler.) Denote byat(5) the number of satisfied equations/in Then, from [(11),

sat(6) = gmono(o) + g(m — mono(0)),
p
and hence

Noting thatl + v = A~9=1/p,

Z (1 4 y)menol) = Z (1 + )@/ o= Da) sat(@)=m/(p=1)

o0:V—|q] 6:X—Fp

— \Im/p Z )\~ sat(6)

6: X T,

(12) _ )\—(l—l/p)qm Z )\unsat(fr)7

5:X T,

whereunsat(d) = gm — sat(¢) is the number of unsatisfied equations\in

The system\ hasgm equations irkn variables, so we may write it in matrix formdé = 0,
where A is a (¢gm x kn)-matrix, andé is a kn-vector overF,. The columns of4 and the
components o are indexed by pair§, v) € [k] x V, and the(i, v)-component of is 5 (z}).
Enumerating the columns of asaj € F™ for (i,v) € [k] x V, we may re-expres4 in the
form

i€[k],veV

where0 is the lengthgm zero vector. Themnsat(o) is the Hamming weight of the lengthn
vectorb(c) = >, o(z})aj. As ranges over all assignments — [, sob() ranges over
the vector space (or code)

C= {Za—(x;f) a?

2,V

5;X—>Fp}:<ag|z'e[k],vev>

generated by the vectofa!'}.



32 LESLIE ANN GOLDBERG AND MARK JERRUM

We will argue that the mapping sendidgto b(s) is ¢ to 1, from which it follows that
S, Aumsat@) js ¢ times the weight enumerator of the co@e Then, from [(ID) and(12), let-
ting M be any generating matrix far,

Zpouts(G5.q,7) = gAY W, (X)),
To see where the factgrcomes from, consider the assignmentsatisfying
(13) > 6(a)ay =b,
i€k]),veV

for someb € F7™. For everyi € [k] and every edgeu,v) € E, there is an equation in
specifying the value of (z}) — o(z}). Thus, sinces is connected, the vectdr determiness

once the partial assigmefi(z}), ..., d(x})) is specified for some distinguished vertex V.

Conversely, each of the partial assignment&s (z7), ..., o(x})) extends to a total assignment

satisfying [1B). O
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