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THE COMPLEXITY OF APPROXIMATELY COUNTING TREE
HOMOMORPHISMS

LESLIE ANN GOLDBERG AND MARK JERRUM

ABSTRACT. We study two computational problems, parameterised by a fixed treeH . #HOMSTO(H)
is the problem of counting homomorphisms from an input graphG to H . #WHOMSTO(H) is
the problem of counting weighted homomorphisms toH , given an input graphG and a weight
function for each vertexv of G. Even thoughH is a tree, these problems turn out to be suf-
ficiently rich to capture all of the known approximation behaviour in #P. We give a complete
trichotomy for #WHOMSTO(H). If H is a star then #WHOMSTO(H) is inFP. If H is not a star
but it does not contain a certain induced subgraphJ3 then #WHOMSTO(H) is equivalent under
approximation-preserving (AP) reductions to #BIS, the problem of counting independent sets in
a bipartite graph. This problem is complete for the class #RHΠ1 under AP-reductions. Finally, if
H contains an inducedJ3 then #WHOMSTO(H) is equivalent under AP-reductions to #SAT, the
problem of counting satisfying assignments to a CNF Booleanformula. Thus, #WHOMSTO(H)
is complete for#P under AP-reductions. The results are similar for #HOMSTO(H) except that
a rich structure emerges ifH contains an inducedJ3. We show that there are treesH for which
#HOMSTO(H) is #SAT-equivalent (disproving a plausible conjecture of Kelk). However, it is still
not known whether #HOMSTO(H) is #SAT-hard foreverytreeH which contains an inducedJ3. It
turns out that there is an interesting connection between these homomorphism-counting problems
and the problem of approximating the partition function of theferromagnetic Potts model. In par-
ticular, we show that for a family of graphsJq, parameterised by a positive integerq, the problem
#HOMSTO(Jq) is AP-interreducible with the problem of approximating thepartition function of
theq-state Potts model. It was not previously known that the Potts model had a homomorphism-
counting interpretation. We use this connection to obtain some additional upper bounds for the
approximation complexity of #HOMSTO(Jq).

1. INTRODUCTION

A homomorphismfrom a graphG to a graphH is a mappingσ : V (G) → V (H) such that the
image(σ(u), σ(v)) of every edge(u, v) ∈ E(G) is in E(H). Let Hom(G,H) denote the set of
homomorphisms fromG to H and letZH(G) = |Hom(G,H)|. For each fixedH, we consider
the following computational problem.

Problem: #HOMSTO(H).
Instance: GraphG.
Output: ZH(G).
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reflects only the authors’ views and not the views of the ERC orthe European Commission. The European Union is
not liable for any use that may be made of the information contained therein. This work was partially supported by
the EPSRC grantComputational Counting.
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The vertices ofH are often referred to as “colours” and a homomorphism fromG to H can
be thought of as an assignment of colours to the vertices ofG which satisfies certain con-
straints along each edge ofG. The constraints guarantee that adjacent vertices inG are assigned
colours which are adjacent inH. A homomorphism inHom(G,H) is therefore often called
an “H-colouring” of G. WhenH = Kq, the complete graph withq vertices, the elements of
Hom(G,Kq) are properq-colourings ofG.

There has been much work on determining the complexity of theH-colouring decision prob-
lem, which is the problem of determining whetherZH(G) = 0, given inputG. This work will
be described in Section 1.1, but at this point it is worth mentioning the dichotomy result of Hell
and Nešetřil [21], which shows that the decision problem is solvable in polynomial time ifH is
bipartite and that it is NP-hard otherwise. There has also been work [12, 27] on determining the
complexity of exactly or approximately solving the relatedcounting problem #HOMSTO(H).
This paper is concerned with the computational difficulty of#HOMSTO(H) whenH is bipartite,
and particularly whenH is a tree.

As an example, consider the case whereH is the four-vertex pathP4 (of length three). Label
the vertices (or colours)1, 2, 3, 4, in sequence. IfG is not bipartite thenHom(G,H) = ∅, so the
interesting case is whenG is bipartite. Suppose for simplicity thatG is connected. Then one side
of the vertex bipartition ofG must be assigned even colours and the other side must be assigned
odd colours. It is easy to see that the vertices assigned colours1 and4 form an independent set of
G, and that every independent set arises in exactly two ways asa homomorphism. Thus,ZP4

(G)
is equal to twice the number of independent sets in the bipartite graphG. We will return to this
example presently.

It will sometimes be useful to consider a weighted generalisation of the homomorphism-
counting problem. Suppose, for eachv ∈ V (G), thatwv : V (H) → Q≥0 is a weight func-
tion, assigning a non-negative rational weight to each colour. LetW (G,H) be an indexed set of
weight functions, containing one weight function for each vertexv ∈ V (G), Thus,

W (G,H) = {wv | v ∈ V (G)}.

Our goal is to compute the weighted sum of homomorphisms fromG to H, which is expressed
as the partition function

ZH(G,W (G,H)) =
∑

σ∈Hom(G,H)

∏

v∈V (G)

wv(σ(v)).

Given a fixedH, each weight functionwv ∈ W (G,H) can be represented succinctly as a list
of |V (H)| rational numbers. This representation is used in the following computational problem.

Problem: #WHOMSTO(H).
Instance: A graphG and an indexed set of weight functionsW (G,H).
Output: ZH(G,W (G,H)).

The complexity ofexactlysolving #HOMSTO(H) and #WHOMSTO(H) is already under-
stood. Dyer and Greenhill have observed [12, Lemma 4.1] that#HOMSTO(H) is in FP if H
is a complete bipartite graph. It is easy to see (see Observation 1) that the same is true of
#WHOMSTO(H). On the other hand, Dyer and Greenhill showed that #HOMSTO(H) is #P-
complete for every bipartite graphH that is not complete. Since #HOMSTO(H) is a special case
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of the more general problem #WHOMSTO(H), we conclude that both problems are inFP if H is
a star (a tree in which some “centre” vertex is an endpoint of every edge), and that both problems
are#P-complete for every other treeH.

This paper maps the complexity ofapproximatelysolving #HOMSTO(H) and #WHOMSTO(H)
whenH is a tree. Dyer, Goldberg, Greenhill and Jerrum [10] introduced the concept of “AP-
reduction” for studying the complexity of approximate counting problems. Informally, an AP-
reduction is an efficient reduction from one counting problem to another, which preserves close-
ness of approximation; two counting problems that are interreducible using this kind of reduc-
tion have the same complexity when it comes to finding good approximate solutions. We have
already encountered an extremely simple example of two AP-interreducible problems, namely
#HOMSTO(P4) and #BIS, the problem of counting independent sets in a bipartite graph. Using
less trivial reductions, Dyer et al. showed ([10, Theorem 5]) that several natural counting prob-
lems in addition to #HOMSTO(P4) are interreducible with #BIS, and moreover that they are all
complete for the complexity class #RHΠ1 with respect to AP-reductions. The class #RHΠ1 is
conjectured to contain problems that do not have an FPRAS; however it is not believed to contain
#SAT , the classical hard problem of computing the number of satisfying assignments to a CNF
Boolean formula. Refer to Section 2 for more detail on the technical concepts mentioned here
and elsewhere in the introduction.

Steven Kelk’s PhD thesis [27] examined the approximation complexity of the problem #HOMSTO(H)
for generalH. He identified certain families of graphsH for which #HOMSTO(H) is AP-
interreducible with #BIS and other large families for which#HOMSTO(H) is AP-interreducible
with #SAT . He noted [27, Section 5.7.1] that, during the study, he did not encounterany bi-
partite graphsH for which #SAT ≤AP #HOMSTO(H), and that he suspected [27, Section 7.3]
that there were “structural barriers” which would prevent homomorphism-counting problems to
bipartite graphs from being #SAT-hard. An interesting test case is the treeJ3 which is depicted
in Figure 1. Kelk referred to this tree [27, Section 7.4] as “the junction”, and conjectured that
#HOMSTO(J3) is neither #BIS-easy nor #SAT -hard. Thus, he conjectured that unlike the set-
ting of Boolean constraint satisfaction, where every parameter leads to a computational problem
which is FPRASable, #BIS-equivalent, or #SAT-equivalent [11], the complexity landscape for
approximateH-colouring may be more nuanced, in the sense that there mightbe graphsH for
which none of these hold.

The purpose of this paper is to describe the interesting complexity landscape of the approxima-
tion problems #HOMSTO(H) and #WHOMSTO(H) whenH is a tree. It turns out that even the
case in whichH is a tree is sufficiently rich to include all of the known approximation complexity
behaviour in#P.

First, consider the weighted problem #WHOMSTO(H). For this problem, we show that there
is a complexity trichotomy, and the trichotomy depends uponthe induced subgraphs ofH. We
say thatH contains an inducedH ′ if H has an induced subgraph that is isomorphic toH ′.
Here is the result. IfH contains no inducedP4 then it is a star, so #WHOMSTO(H) is in
FP (Observation 1). IfH contains an inducedP4 but it does not contain an inducedJ3 then
it turns out that #WHOMSTO(H) is AP-interreducible with #BIS (Lemma 4). Finally, ifH
contains an inducedJ3, then #SAT ≤AP #WHOMSTO(H) (Lemma 6.) Thus, the complexity of
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#WHOMSTO(H) is completely determined by the induced subgraphs of the treeH, and there are
no possibilities other than those that arise in the Boolean constraint satisfaction trichotomy [11].

Now consider the problem #HOMSTO(H). Like its weighted counterpart, the unweighted
problem #HOMSTO(H) is in FP if H is a star, and it is #BIS-equivalent ifH contains an in-
ducedP4 but it does not contain an inducedJ3. However, it is not known whether #HOMSTO(H)
is #SAT-hard for everyH which contains an inducedJ3. The structure that has emerged is
already quite rich. First, we have discovered (Theorem 11) that there are treesH for which
#HOMSTO(H) is #SAT-hard. This result is surprising — it disproves the plausible conjecture of
Kelk that #HOMSTO(H) is not #SAT -hard for any bipartite graphH. We don’t know whether
#HOMSTO(H) is #SAT-hard foreverytreeH which contains an inducedJ3. In fact, we have
discovered an interesting connection between these homomorphism-counting problems and the
problem of approximating the partition function of theferromagnetic Potts model. In particu-
lar, Theorem 10 shows that for a family of graphsJq, parameterised by a positive integerq, the
problem #HOMSTO(Jq) is AP-interreducible with the problem of approximating thepartition
function of theq-state Potts model. This is surprising because it was not known that the Potts
model had a homomorphism-counting interpretation.

The Potts-model connection allows us to give a non-trivial upper bound for the complexity
of #HOMSTO(Jq). In particular, Corollary 12 shows that this problem is AP-reducible to the
problem of counting properq-colourings of bipartite graphs.

We are not aware of any complexity relationships between theproblems #HOMSTO(Jq), for
q > 2. At one extreme, they might all be AP-interreducible; at theother, they might all be incom-
parable. Another conceivable situation is that #HOMSTO(Jq ) is AP-reducible to #HOMSTO(Jq′)
exactly whenq ≤ q′. There is no real evidence for or against any of these or otherpossibili-
ties. However, in the final section we exhibit a natural problem that provides an upper bound on
the complexity of infinite families of problems of the form #HOMSTO(Jq) whereq is a prime
power. Specifically, we show (Corollary 15) that #HOMSTO(Jpk) is AP-reducible to the weight
enumerator of a linear code over the fieldFp.

1.1. Previous Work. We have already mentioned Hell and Nešetřil’s classic work [21] on the
complexity of theH-colouring decision problem. They showed that this problemis solvable in
polynomial time ifH is bipartite, and that it is NP-complete otherwise. Our paper is concerned
with the situation in whichH is an undirected graph (specifically, an undirected tree) but it is
worth noting that the decision problem becomes much more complicated ifH is allowed to be
a directedgraph. Indeed, Feder and Vardi showed [13] that every constraint satisfaction prob-
lem (CSP) is equivalent to some digraph homomorphism problem. Despite much research, a
complete dichotomy theorem for the digraph homomorphism decision problem is not known.
Bang-Jensen and Hell [2] had conjectured a dichotomy for thespecial case in which the di-
graphH has no sources and no sinks. This conjecture was proved in important recent work of
Barto, Kozik and Niven [3]. Given the conjecture, Hell, Nešetřil, and Zhu [20] stated that “di-
graphs with sources and sinks, and in particular oriented trees, seem to be the hard part of the
problem.” Gutjahr, Woeginger and Welzl [19] constructed a directed treeH such that determin-
ing whether a digraphG has a homomorphism toH is NP-complete. Of course, for some other
trees, this problem is solvable in polynomial time. For example, they showed that it is solvable
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in polynomial time wheneverH is an oriented path (a path in which edges may go in either
direction). Hell, Nešetřil and Zhu [20] construct a wholefamily of directed trees for which the
homomorphism decision problem is NP-hard, and study the problem of characterising NP-hard
trees by forbidden subtrees. The reader is referred to Hell and Nešetřil’s book [22] and to their
survey paper [23] for more details about these decision problems.

As mentioned in the introduction, there is already some existing work [12, 27] on determining
the complexity of exactly or approximately counting homomorphisms. This work is discussed in
more detail elsewhere in this paper. The problem of samplinghomomorphisms uniformly at ran-
dom (or, in the weighed case, of sampling homomorphisms withprobability proportional to their
contributions to the partition function) is closely related to the approximate counting problem.
We will later discuss some existing work [18] on the complexity of the homomorphism-sampling
problem. First, we describe some related results on a particular approach to this problem -
namely, the application of the Markov chain Monte Carlo (MCMC) method. Here the idea is to
simulate a Markov chain whose states correspond to homomorphisms fromG to H. The chain
will be constructed so that the probability of a particular homomorphismσ in the stationary distri-
bution of the chain is proportional to the contribution ofσ to the partition function. If the Markov
chain israpidly mixingthen it is possible to efficiently sample homomorphisms froma distribu-
tion that is very close to the appropriate distribution. This, in turn, leads to a good approximate
counting algorithm [9]. First, Cooper, Dyer and Frieze [6] considered the unweighted problem.
They showed that, for any non-trivialH, any Markov chain onH-colourings that changes the
colours of up to some constant fraction of the vertices ofG in a single step will have exponential
mixing time (so will not lead to an efficient approximate counting algorithm). WhenH is a tree
with a self-loop on every vertex, they construct a weight function wH : V (H) → Q≥0 so that
rapid mixing does occur for the special case of the weighted homomorphism problem in which
every vertexv of G has weight functionwv = wH . Thus, their result gives an FPRAS for this
special case of #WHOMSTO(H). The slow-mixing results of [6] have been extended in [1] and
in [4]. In particular, Borgs et al. [4] considered the case inwhichH is a rectangular subset of the
hypercubic lattice, and constructed a weight functionwH for which quasi-local Markov chains
(which change the colours of up to some constant fraction of the vertices in a small sublattice at
each step) have slow mixing.

2. PRELIMINARIES

This section brings together the main complexity-theoretic notions that are specific to the study
of approximate counting problems. A more detailed account can be found in [10].

A randomised approximation schemeis an algorithm for approximately computing the value
of a functionf : Σ∗ → R≥0. The approximation scheme has a parameterε ∈ (0, 1) which spec-
ifies the error tolerance. Arandomised approximation schemefor f is a randomised algorithm
that takes as input an instancex ∈ Σ∗ (e.g., in the case of #HOMSTO(H), the input would be an
encoding of a graphG) and a rational error toleranceε ∈ (0, 1), and outputs a rational number
z (a random variable depending on the “coin tosses” made by thealgorithm) such that, for every
instancex, Pr

[

e−ǫf(x) ≤ z ≤ eǫf(x)
]

≥ 3
4
. We adopt the convention thatz is represented as a

pair of integers representing the numerator and the denominator. The randomised approximation
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scheme is said to be afully polynomial randomised approximation scheme, or FPRAS, if it runs
in time bounded by a polynomial in|x| and ǫ−1. As in [16], we say that a real numberz is
efficiently approximableif there is an FPRAS for the constant functionf(x) = z.

Our main tool for understanding the relative difficulty of approximation counting problems is
approximation-preserving reductions. We use the notion of approximation-preserving reduction
from Dyer et al. [10]. Suppose thatf andg are functions fromΣ∗ to R≥0. An AP-reduction
from f to g gives a way to turn an FPRAS forg into an FPRAS forf . The actual definition
in [10] applies to functions whose outputs are natural numbers. The generalisation that we use
here follows McQuillan [28]. Anapproximation-preserving reduction(AP-reduction) fromf
to g is a randomised algorithmA for computingf using an oracle forg. The algorithmA takes
as input a pair(x, ε) ∈ Σ∗ × (0, 1), and satisfies the following three conditions: (i) every oracle
call made byA is of the form(w, δ), wherew ∈ Σ∗ is an instance ofg, andδ ∈ (0, 1) is an error
bound satisfyingδ−1 ≤ poly(|x|, ε−1); (ii) the algorithmA meets the specification for being
a randomised approximation scheme forf (as described above) whenever the oracle meets the
specification for being a randomised approximation scheme for g; and (iii) the run-time ofA is
polynomial in|x| andε−1 and the bit-size of the values returned by the oracle.

If an approximation-preserving reduction fromf to g exists we writef ≤AP g, and say that
f is AP-reducible tog. Note that iff ≤AP g andg has an FPRAS thenf has an FPRAS. (The
definition of AP-reduction was chosen to make this true.) Iff ≤AP g andg ≤AP f then we say
thatf andg are AP-interreducible, and writef ≡AP g. A word of warning about terminology:
the notation≤AP has been used (see, e.g., [7]) to denote a different type of approximation-
preserving reduction which applies to optimisation problems. We will not study optimisation
problems in this paper, so hopefully this will not cause confusion.

Dyer et al. [10] studied counting problems in #P and identified three classes of counting prob-
lems that are interreducible under approximation-preserving reductions. The first class, contain-
ing the problems that have an FPRAS, are trivially AP-interreducible since all the work can be
embedded into the reduction (which declines to use the oracle). The second class is the set of
problems that are AP-interreducible with #SAT, the problem of counting satisfying assignments
to a Boolean formula in CNF. Zuckerman [31] has shown that #SAT cannot have an FPRAS
unlessRP = NP. The same is obviously true of any problem to which #SAT is AP-reducible.

The third class appears to be of intermediate complexity. Itcontains all of the counting prob-
lems expressible in a certain logically-defined complexityclass, #RHΠ1. Typical complete prob-
lems include counting the downsets in a partially ordered set [10], computing the partition func-
tion of the ferromagnetic Ising model with local external magnetic fields [15], and counting the
independent sets in a bipartite graph, which is defined as follows.

Problem: #BIS.
Instance: A bipartite graphG.
Output: The number of independent sets inG.

In [10] it was shown that #BIS is complete for the logically-defined complexity class#RHΠ1

with respect to approximation-preserving reductions. We conjecture [16] that there is no FPRAS
for #BIS.
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FIGURE 1. The treeJ3.

A problem that is closely related to approximate counting isthe problem of sampling config-
urations almost uniformly at random. The analogue of an FPRAS in the context of sampling
problems is the PAUS, orPolynomial Almost Uniform Sampler.

Goldberg, Kelk, and Paterson [18] have studied the problem of samplingH-colourings almost
uniformly at random. They gave a hardness result for every fixed treeH that is not a star. In
particular, their theorem [18, Theorem 2] shows that there is no PAUS for samplingH-colourings
unless #BIS has an FPRAS.

In general, there is a close connection between approximatecounting and almost-uniform
sampling. Indeed, in the presence of a technical condition called “self-reducibility”, the count-
ing and sampling variants of two problems are interreducible [26]. The weighted problem
#WHOMSTO(H) is self-reducible, so the result of [18] immediately gives an AP-reduction
from #BIS to #WHOMSTO(H) for every treeH that is not a star. However, it is not known
whether the unweighted problem #HOMSTO(H) is self-reducible.

As mentioned in Section 1.1 the paper [9] shows how to turn a PAUS forH-colourings into an
FPRAS for #HOMSTO(H), but it is not known whether there is a reduction in the other direction.
Thus, we cannot directly apply the hardness result of [18] toreduce #BIS to #HOMSTO(H).
However, we will see in the next section that the complexity gap between problems with an
FPRAS and those that are #BIS-equivalent still holds for #HOMSTO(H) in the special case
whenH is a tree, which is the focus of this paper.

3. WEIGHTED TREE HOMOMORPHISMS

First, we introduce some notation and a few graphs that are ofspecial interest.
In this paper, the graphs that we consider are undirected andsimple — they do not have self-

loops or multiple edges between vertices. For every positive integern, let [n] denote{1, 2, . . . , n}.
We useΓH(v) to denote the set of neighbours of vertexv in graphH and we usedH(v) to denote
the degree ofv, which is|ΓH(v)|.

LetPn be then-vertex path (withn− 1 edges). Ann-leafstar is the complete bipartite graph
K1,n. LetJq be the graph with vertex set

V (Jq) = {w} ∪ {ci | i ∈ [q]} ∪ {c′i | i ∈ [q]},

and edge set
E(Jq) = {(ci, c

′
i) | i ∈ [q]} ∪ {(c′i, w) | i ∈ [q]}.

J3 is depicted in Figure 1.



8 LESLIE ANN GOLDBERG AND MARK JERRUM

3.1. Stars. As Dyer and Greenhill observed [12, Lemma 4.1], #HOMSTO(H) is in FP if H
is a complete bipartite graph. We now show that #WHOMSTO(H) is also inFP in this case.
Suppose thatH is a complete bipartite graph with bipartition(U, U ′) whereU = {u1, . . . , uh}
andU ′ = {u′

1, . . . , u
′
h′}. Let G be an input to #WHOMSTO(H) with connected components

G1, . . . , Gκ. Clearly,ZH(G) =
∏κ

i=1 ZH(G
i). Also, if Gi is non-bipartite thenZH(G

i) = 0.
Suppose thatGi is a connected bipartite graph with bipartition(V, V ′) whereV = {v1, . . . , vn}
andV ′ = {v′1, . . . , v

′
n′}. Then

ZH(G
i) =

n
∏

j=1

h
∑

c=1

wvj (uc)
n′

∏

j′=1

h′

∑

c′=1

wv′
j′
(u′

c′) +
n′

∏

j=1

h
∑

c=1

wv′j
(uc)

n
∏

j′=1

h′

∑

c′=1

wvj′
(u′

c′).

In the context of this paper, whereH is a tree, we can draw the following concluson.

Observation 1. Suppose thatH is a star. Then#WHOMSTO(H) is inFP.

3.2. Trees with intermediate complexity. The purpose of this section is to prove Lemma 4,
which says that ifH is a tree that is not a star and has no inducedJ3 then #BIS≡AP #HOMSTO(H)
and #BIS≡AP #WHOMSTO(H). The main work of the section is in the proof of Lemma 4, but
first we need some existing results. In particular, Lemma 2 below is due to Kelk, and Lemma 3
is an easy consequence of earlier work by the authors and their coauthors on counting CSPs. We
have chosen to include a proof sketch of the former because the work of Kelk is unpublished [27]
and a proof of the latter because we did not state or prove it explicitly in earlier work, and it might
be rather difficult for the reader to see why it is implied by that work.

If H is a tree with no inducedP4 then it is a star, so, by Observation 1, #WHOMSTO(H) is in
FP. On the other hand, the following lemma shows that ifH contains an inducedP4 then even
the unweighted problem #HOMSTO(H) is #BIS-hard. To motivate the lemma, suppose thatH
contains an inducedP4. Then it is a bipartite graph which is not complete, so by Goldberg at
al. [18, Theorem 2] the (uniform) sampling problem forH-colourings of a graph is as hard as
the sampling problem for independent sets in a bipartite graph. This is not quite the result we are
seeking, but it is close in spirit, given the close connection between sampling and approximate
counting. The following lemma, which is a special case of [27, Lemma 2.19], is exactly what we
need.

Lemma 2 (Kelk). LetH be a tree containing an inducedP4. Then

#BIS ≤AP #HOMSTO(H).

Proof. (Proof sketch) We will not give a complete proof of Lemma 2 since it is a special case
of a lemma of Kelk, but here is a sketch to give the reader a high-level idea of the construction.
Let ∆ be the maximum degree of vertices ofH and let∆′ ≤ ∆ be the maximum degree taken
by a neighbour of a degree-∆ vertex inH. Note that∆′ ≥ 2 sinceH cannot be a star. Let
(c, c′) be any edge inH with dH(c) = ∆ anddH(c′) = ∆′. Let Nc be the setΓH(c) − {c′}
and letNc′ = ΓH(c

′) − {c}. SinceH is a tree, there are no edges inH betweenNc andNc′.
Now consider a connected instanceG of #BIS with bipartitionV (G) = (V, V ′). Let G′ be the
bipartite graph with vertex setV (G) ∪ {C,C ′} (whereC andC ′ are new vertices that are not in
V (G)) and edge setE(G)∪{(C,C ′)}∪{C}×V ′∪{C ′}×V . Consider anH-colouringσ of G
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with σ(C) = c andσ(C ′) = c′. (Standard constructions can be used to augmentG′ so that almost
all homomorphisms toH have this property.) For every vertexv ∈ V , σ(v) ∈ Nc′ ∪ {c} and for
every vertexv′ ∈ V ′, σ(v′) ∈ Nc ∪ {c}. Also,{v ∈ V | σ(v) ∈ Nc′} ∪ {v′ ∈ V ′ | σ(v′) ∈ Nc}
is an independent set ofG. Thus, there is an injection from independent sets ofG into these
H-colourings ofG′. Standard tricks can be used to adjust the construction so that almost all of
the homomorphisms correspond tomaximumindependent sets ofG and so that all maximum
independent sets correspond to approximately the same number of homomorphisms. The proof
follows from the fact that counting maximum independent sets in a bipartite graph is equivalent
to #BIS [10]. �

As mentioned above, the main result of this section is Lemma 4, which will be presented
below. Its proof relies on earlier work on countingconstraint satisfaction problems(CSPs).
Suppose thatx andx′ are Boolean variables. An assignmentσ : {x, x′} → {0, 1} is said to
satisfy the implication constraintIMP(x, x′) if (σ(x), σ(x′)) is in {(0, 0), (0, 1), (1, 1)}. The
idea is that “σ(x) = 1” implies “σ(x′) = 1”. The assignmentσ is said to satisfy the “pinning”
constraintδ0(x) if σ(x) = 0 and the pinning constraintδ1(x) if σ(x) = 1. If X is a set of Boolean
variables then a setC of {IMP, δ0, δ1} constraints onX is a set of constraints of the formδ0(x),
δ1(x) andIMP(x, x′) for x andx′ in X. The setS(X,C) of satisfying assignmentsis the set of
all assignmentsσ : X → {0, 1} which simultaneously satisfy all of the constraints inC. We will
consider the following computational problem.

Problem: #CSP(IMP, δ0, δ1).
Instance: A setX of Boolean variables and a setC of {IMP, δ0, δ1} constraints onX.
Output: |S(X,C)|.

We will also consider the following weighted version of #CSP(IMP). Suppose, for each
x ∈ X, thatγx : {0, 1} → Q>0 is a weight function. For an indexed setγ(X) = {γx | x ∈ X}
of weight functions, let

Z(X,C, γ) =
∑

σ∈S(X,C)

∏

x∈X

γx(σ(x)).

Problem: #CSP∗(IMP, δ0, δ1).
Instance: A setX of Boolean variables, a setC of {IMP, δ0, δ1} constraints onX, and an

indexed setγ(X) of weight functions.
Output: Z(X,C, γ).

We will use the following lemma, which follows from earlier work on counting CSPs.

Lemma 3. #CSP∗(IMP, δ0, δ1) ≡AP #BIS.

Proof. Dyer, Goldberg, and Jerrum [11, Theorem 3] shows that #CSP(IMP, δ0, δ1) ≡AP #BIS.
#CSP(IMP, δ0, δ1) trivially reduces to #CSP∗(IMP, δ0, δ1) since it is a special case. Thus, it
suffices to give an AP-reduction from #CSP∗(IMP, δ0, δ1) to #CSP(IMP, δ0, δ1). The idea be-
hind the construction that we use comes from Bulatov et al. [5, Lemma 36, Item (i)]. We give
the details in order to translate the construction into the current context.

Let (X,C, γ) be an instance of #CSP∗(IMP, δ0, δ1). We can assume without loss of generality
that all of the weightsγx(b) are positive integers by multiplying all of the weights by the product
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of the denominators. The construction that follows is not difficult but the details are a little
bit complicated, so we use the following running example to illustrate. LetX = {y, z}, C =
IMP(y, z), γy(0) = 5, γy(1) = 2, γz(0) = 1 andγz(1) = 1.

For every variablex ∈ X, consider the weight functionγx. Letkx = max(⌈lg γx(0)⌉, ⌈lg γx(1)⌉).
For everyb ∈ {0, 1}, write the bit-expansion ofγx(1⊕ b) as

γx(1⊕ b) = ax,b,0 + ax,b,12
1 + · · ·+ ax,b,kx2

kx,

where eachax,b,i ∈ {0, 1}. Note thatγx(1 ⊕ b) > 0 so there is at least onei with ax,b,i = 1.
Let minx,b = min{i | ax,b,i = 1} andmaxx,b = max{i | ax,b,i = 1}. If i < maxx,b and
ax,b,i = 1 then let nextx,b,i = min{j > i | ax,b,j = 1}. If i > minx,b andax,b,i = 1 then let
prevx,b,i = max{j < i | ax,b,j = 1}. For the running example,

• ky = ⌈lg 5⌉ = 3 andkz = ⌈lg 1⌉ = 0.
• For the variabley, takingb = 0 we haveγy(1 ⊕ 0) = 21 soay,0,0 = 0, ay,0,1 = 1, and
ay,0,2 = ay,0,3 = 0. Also,miny,0 = 1 = maxy,0.

• Similarly, takingb = 1 givesγy(1⊕ 1) = 20 + 22 soay,1,0 = 1, ay,1,1 = 0, ay,1,2 = 1 and
ay,1,3 = 0. Thusminy,1 = 0 andmaxy,1 = 2. Then nexty,1,0 = 2 and prevy,1,2 = 0.

• Finally, for the variablez andb ∈ {0, 1}, we haveγz(1 ⊕ b) = 20 so az,b,0 = 1 and
minz,b = 0 = maxz,b.

Now for everyx ∈ X, for everyi ∈ {1, . . . , kx} and everyb ∈ {0, 1} with ax,b,i = 1 let
Ax,b,i be the set ofi + 2 variables{xb,i,1, . . . , xb,i,i} ∪ {Lx,b,i, Rx,b,i}. Let Cx,b,i be the set of
implication constraints

⋃

j∈[i]{IMP(Lx,b,i, xb,i,j), IMP(xb,i,j, Rx,b,i)}. Note that there are2i + 2

satisfying assignments to the #CSP instance(Ax,b,i, Cx,b,i): one withσ(Lx,b,i) = σ(Rx,b,i) = 0,
one withσ(Lx,b,i) = σ(Rx,b,i) = 1, and2i with σ(Lx,b,i) = 0 andσ(Rx,b,i) = 1. The point
here is that the setsAx,b,i will be combined for different values ofi. The satisfying assignments
with σ(Lx,b,i) = σ(Rx,b,i) = 0 will correspond to contributions from a different indexi′ > i
and the satisfying assignments withσ(Lx,b,i) = σ(Rx,b,i) = 1 will correspond to contributions
from a different indexi′ < i. There are exactly2i satisfying assignments withσ(Lx,b,i) = 0 and
σ(Rx,b,i) = 1 and these will correspond to theax,b,i2i summand in the bit-expansion ofγx(1⊕b).
For the running example,

• for the variabley and forb = 0 andi = 1 we haveAy,0,1 = {y0,1,1} ∪ {Ly,0,1, Ry,0,1}.
ThenCy,0,1 contains{IMP(Ly,0,1, y0,1,1), IMP(y0,1,1, Ry,0,1)} and there are2 + 21 = 4
solutions.

• For the variabley and forb = 1 andi = 2we haveAy,1,2 = {y1,2,1, y1,2,2}∪{Ly,1,2, Ry,1,2}.
ThenCy,1,2 contains the constraintsIMP(Ly,1,2, y1,2,1), IMP(y1,2,1, Ry,1,2), IMP(Ly,1,2, y1,2,2),
andIMP(y1,2,2, Ry,1,2) and there are2 + 22 = 6 solutions.

We now add some constraints corresponding to thei = 0 case above. For everyx ∈ X and
everyb ∈ {0, 1} with ax,b,0 = 1 let Ax,b,0 be the set of variables{Lx,b,0, Rx,b,0}. Let Cx,b,0 be
the set containing the constraintIMP(Lx,b,0, Rx,b,0). Note that there are20 + 2 = 3 satisfying
assignments to the #CSP instance(Ax,b,0, Cx,b,0): one withσ(Lx,b,0) = σ(Rx,b,0) = 0, one with
σ(Lx,b,0) = σ(Rx,b,0) = 1, and20 = 1 with σ(Lx,b,0) = 0 andσ(Rx,b,0) = 1. For the running
example,

• Ay,1,0 = {Ly,1,0, Ry,1,0} andCy,1,0 = {IMP(Ly,1,0, Ry,1,0)}.
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• For b ∈ {0, 1}, Az,b,0 = {Lz,b,0, Rz,b,0} andCz,b,0 = {IMP(Lz,b,0, Rz,b,0)}.

Now for everyx ∈ X andb ∈ {0, 1} let C ′
x,b be the set of constraints forcing equality of

σ(Rx,b,i) andσ(Lx,b,j) wheni andj are adjacent one-bits in the bit-expansion ofγx(1 ⊕ b). In
particular,

C ′
x,b =

⋃

nextx,b,i=j,prevx,b,j=i

{IMP(Rx,b,i, Lx,b,j), IMP(Lx,b,j, Rx,b,i)}

For the running example,

• C ′
y,0 = C ′

z,0 = C ′
z,1 = ∅ since these variables have only one positive coefficient in the bit

expansion.
• For the variabley andb = 1 the relevant non-zero coefficients arei = 0 andj = 2 so we

get
C ′

y,1 = {IMP(Ry,1,0, Ly,1,2), IMP(Ly,1,2, Ry,1,0)}.

Now considerx ∈ X. LetC ′′
x,0 = C ′

x,0∪{δ0(Lx,0,minx,0)} and letC ′′
x,1 = C ′

x,1∪{δ1(Rx,1,maxx,1)}.
Forx ∈ X andb ∈ {0, 1} let

Ax,b =
⋃

i∈{0,...,kx},ax,b,i=1

Ax,b,i

and let
Cx,b = C ′′

x,b ∪
⋃

i∈{0,...,kx},ax,b,i=1

Cx,b,i.

Now will show that there areγx(1) satisfying assignments to the #CSP instance(Ax,0, Cx,0)
which have the property thatσ(Rx,0,maxx,0) = 1 and one satisfying assignment in whichσ(Rx,0,maxx,0) =
0. To see this, note that the constraintδ0(Lx,0,minx,0) forcesσ(Lx,0,minx,0) = 0. If σ(Rx,0,maxx,0) =
0 then all of the variables inAx,0 are assigned spin0 by σ. Otherwise, there is exactly onei with
ax,0,i = 1 andσ(Lx,0,i) = 0 andσ(Rx,0,i) = 1. As we noted above, there are2i assignments
to the variables inAx,b,i. But

∑

i:ax,0,1=i 2
i = γx(1), as required. Similarly, there areγx(0) sat-

isfying assignments to the #CSP instance(Ax,1, Cx,1) in which σ(Lx,1,minx,1) = 0 and there is
one satisfying assignment in whichσ(Lx,1,minx,1) = 1. Let us quickly apply this to the running
example.

• Taking variabley andb = 0 we haveAy,0 = Ay,0,1 andC ′′
y,0 = {δ0(Ly,0,1)}∪Cy,0,1. Then

maxy,0 = 1. From above, there is one solutionσ with σ(Ry,0,maxy,0) = 0 and there are
21 = γy(1) solutionsσ with σ(Ry,0,maxy,0) = 1.

• Taking variabley andb = 1 we have

Ay,1 = Ay,1,0 ∪Ay,1,2

and

C ′′
y,1 = {δ1(Ry,1,2), IMP(Ry,1,0, Ly,1,2), IMP(Ly,1,2, Ry,1,0)} ∪ Cy,1,0 ∪ Cy,1,2.

There is one solutionσ with σ(Ly,1,0) = 1. There are20 + 22 = γy(0) solutionsσ with
σ(Ly,1,0) = 0.



12 LESLIE ANN GOLDBERG AND MARK JERRUM

• Taking variablez we haveAz,b = Az,b,0 = {Lz,b,0, Rz,b,0}. Then, takingb = 0, Cz,0 =
{δ0(Lz,0,0), IMP(Lz,0,0, Rz,0,0)}. so there is20 = 1 = γz(1) assignment withσ(Rz,0,0) =
1 and one withσ(Rz,0,0) = 0. Takingb = 1, Cz,1 = {δ1(Rz,1,0), IMP(Lz,1,0, Rz,1,0)} so
there is20 = 1 = γz(0) assignment withσ(Lz,1,0) = 0 and one withσ(Lz,1,0) = 1.

Finally, considerx ∈ X. Let Cx be the set of constraints containing the four implications
IMP(x,Rx,0,maxx,0), IMP(Rx,0,maxx,0, x), IMP(x, Lx,1,minx,1), andIMP(Lx,1,minx,1, x). Now there
areγx(1) solutions to(Ax,0 ∪ Ax,1 ∪ {x}, Cx,0 ∪ Cx,1 ∪ Cx) with σ(x) = 1 andγx(0) solutions
with σ(x) = 0. Thus, we have simulated the weight functionwx with {IMP, δ0, δ1} constraints.
For the running example,

• first consider the variabley.
– With σ(y) = 1 the constraints inCy forceσ(Ry,0,maxy,0) = 1 which, from above,

givesγy(1) solutions to(Ay,0, Cy,0). The constraints inCy also forceσ(Ly,1,min(y,1)) =
1, which, from above, gives one solution to(Ay,1, Cy,1).

– With σ(y) = 0 the constraints inCy forceσ(Ry,0,maxy,0) = 0 so there is only one
solution to(Ay,0, Cy,0). The constraints inCy also forceσ(Ly,1,min(y,1)) = 0 so there
areγy(0) solutions to(Ay,1, Cy,1).

• The argument for variablez is similar.

Thus, the correct output for the #CSP∗(IMP, δ0, δ1) instance(X,C, γ) is same as the correct
output for the #CSP(IMP, δ0, δ1) instance obtained from(X,C, γ) by adding new variables and
constraints to simulate each weight functionγx. �

We can now prove the main lemma of this section.

Lemma 4. Suppose thatH is a tree which is not a star and which has no inducedJ3. Then

#BIS ≡AP #HOMSTO(H) and#BIS ≡AP #WHOMSTO(H).

Proof. #HOMSTO(H) is a special case of #WHOMSTO(H) so it is certainly AP-reducible to
#WHOMSTO(H). By Lemma 2, #BIS is AP-reducible to #HOMSTO(H) and therefore it is AP-
reducible to #WHOMSTO(H). So it suffices to give an AP-reduction from #WHOMSTO(H)
to #BIS. Applying Lemma 3, it suffices to give an AP-reductionfrom #WHOMSTO(H) to
#CSP∗(IMP, δ0, δ1).

In order to do the reduction, we will order the vertices ofH using the fact that it has no
inducedJ3. (This ordering is similar the one arising from the “crossing property” of the authors
that is mentioned in [27, Section 7.3.3].) A “convex ordering” of a connected bipartite graph with
bipartition(U, U ′) with |U | = h and|U ′| = h′ and edge setE ⊆ U × U ′ is a pair of bijections
π : U → [h] andπ′ : U ′ → [h′] such that there are monotonically non-decreasing functions
functionsm : [h] → [h′], M : [h] → [h′], m′ : [h′] → [h] andM ′ : [h′] → [h] satisfying the
following conditions.

• If π(u) = i then{π′(u′) | (u, u′) ∈ E} = {ℓ ∈ [h′] | m(i) ≤ ℓ ≤ M(i)}.
• If π′(u′) = i then{π(u) | (u, u′) ∈ E} = {ℓ ∈ [h] | m′(i) ≤ ℓ ≤ M ′(i)}.

The purpose ofπ andπ′ is just to put the vertices in the correct order. For example,in Figure 2,
π is the identity map on the setU = {1, 2, 3, 4} andπ′ is the identity map on the setU ′ =
{1, 2, 3}. Vertex3 in U is connected to the sequence containing vertices1, 2 and3 in U ′, so
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FIGURE 2. An example of a convex ordering

m(3) = 1 andM(3) = 3. Every other vertex inU has degree1 and in particularm(1) =
M(1) = 1, m(2) = M(2) = 1 andm(4) = M(4) = 3. Similarly, vertex1 in U ′ is attached
to the sequence containing vertices1, 2 and3 in U som′(1) = 1 andM ′(1) = 3 butm′(2) =
M ′(2) = 3 andm′(3) = M ′(3) = 4.

To see that a convex ordering ofH always exists, consider the following algorithm. The input
is a treeH with no inducedJ3, a bipartition(U, U ′) of the vertices ofH, and a distinguished
leafu ∈ U whose parentu′ is adjacent to at most one non-leaf. (Note that such a leafu always
exists sinceH is a tree.) The output is a convex ordering ofH in whichπ(u) = h andπ′(u′) = h′.
Here is what the algorithm does. If all of the neighbours ofu′ are leaves, thenh′ = 1 so take
any bijectionπ from U − {u} to [h − 1] and setπ(u) = h andπ′(u′) = h′. Return this output.
Otherwise, letu′′ be the neighbour ofu′ that is not a leaf. LetH ′ be the graph formed from
H by removing all of thedH(u′) − 1 neighbours ofu′ other thanu′′. SinceH has no induced
J3, the graphH ′ has the following property:u′ is a leaf whose parent,u′′, is adjacent to at
most one non-leaf. Recursively, construct a convex ordering for H ′ in which π(u′) = h′ and
π(u′′) = h− (dH(u

′)− 1). Extendπ by assigning values to the leaf-neighbours ofu′, ensuring
thatπ(u) = h.

We will now show how to reduce #WHOMSTO(H) to #CSP∗(IMP, δ0, δ1). Let G be a con-
nected bipartite graph with bipartition(V, V ′) and letW (G,H) be an indexed set of weight
functions. Let

Z ′
H(G,W (G,H)) =

∑

σ∈Hom(G,H) with σ(V ) ⊆ U

∏

v∈V (G)

wv(σ(v))

and let
Z ′′

H(G,W (G,H)) =
∑

σ∈Hom(G,H) with σ(V ) ⊆ U ′

∏

v∈V (G)

wv(σ(v)).

Clearly, ZH(G,W (G,H)) = Z ′
H(G,W (G,H)) + Z ′′

H(G,W (G,H)). We will show how to
reduce the computation ofZ ′

H(G,W (G,H)), given the input(G,W (G,H)), to the problem
#CSP∗(IMP, δ0, δ1). In the same way, we can reduce the computation ofZ ′′

H(G,W (G,H)) to
#CSP∗(IMP, δ0, δ1).
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Since we are considering assignments which mapV to U andV ′ to U ′, the vertices inU will
not get mixed up with the vertices inU ′. We can simplify the notation by relabelling the vertices
so thatπ andπ′ are the identity permutations. Then, given the convex ordering property, we can
assume thatU = [h] and thatU ′ = [h′] and that we have monotonically non-decreasing functions
functionsm : [h] → [h′], M : [h] → [h′], m′ : [h′] → [h] andM ′ : [h′] → [h] such that

• for i ∈ U , ΓH(i) = {ℓ ∈ [h′] | m(i) ≤ ℓ ≤ M(i)}, and
• for i ∈ U ′, ΓH(i) = {ℓ ∈ [h] | m′(i) ≤ ℓ ≤ M ′(i)}.

A configurationσ contributing toZ ′
H(G,W (G,H)) is a map fromV to [h] together with a

map fromV ′ to [h′] such that the following is true for every edge(v, v′) ∈ V × V ′.

(1) m(σ(v)) ≤ σ(v′) ≤ M(σ(v)), and
(2) m′(σ(v′)) ≤ σ(v) ≤ M ′(σ(v′)).

Sincem, M , m′ andM ′ are monotonically non-decreasing, we can re-write the conditions in
a less natural way which will be straightforward to apply below.

(1′) σ(v) ≤ i impliesσ(v′) ≤ M(i),
(2′) σ(v′) ≤ i′ impliesσ(v) ≤ M ′(i′),
(3′) σ(v′) ≤ m(i)− 1 impliesσ(v) ≤ i− 1, and
(4′) σ(v) ≤ m′(i′)− 1 impliesσ(v′) ≤ i′ − 1.

Using monotonicity, (1′) and (2′) follow from the right-hand side of (1) and (2). Suppose that
σ(v′) < m(i). Then the left-hand side of (1) givesm(σ(v)) < m(i), so by monotonicity,
σ(v) < i. Equation (3′) follows. In the same way, Equation (4′) follows from the left-hand side
of (2). Going the other direction, the right-hand sides of (1) and (2) follow from (1′) and (2′).To
derive the left-hand side of (1), take the contrapositive of(3′), which saysσ(v) ≥ i implies
σ(v′) ≥ m(i) then plug ini = σ(v). The derivation of the left-hand side of (2) is similar.

We now construct an instance of #CSP∗(IMP, δ0, δ1). For each vertexv ∈ V introduce
Boolean variablesv0, . . . , vh. Introduce constraintsδ0(v0) and δ1(vh) and, for everyi ∈ [h],
IMP(vi−1, vi). For each vertexv′ ∈ V ′ introduces Boolean variablesv′0, . . . , v

′
h′. Introduce

constraintsδ0(v′0) andδ1(v′h′) and, for everyi′ ∈ [h′], IMP(v′i′−1, v
′
i′).

Now there is a one-to-one correspondence between assignments σ mappingV to U andV ′

toU ′, and assignmentsτ to the Boolean variables that satisfy the above constraints. In particular,
σ(v) = min{i | τ(vi) = 1}. Similarly,σ(v′) = min{i′ | τ(v′i) = 1}.

Now, σ(v) ≤ i is exactly equivalent toτ(vi) = 1. Thus, we can add the following further
constraints to rule out assignmentsσ that do not satisfy (1′), (2′), (3′) and (4′). Add all of the fol-
lowing constraints wherev ∈ V , v′ ∈ V ′, i ∈ [h] andi′ ∈ [h′]: IMP(vi, v

′
M(i)), IMP(v′i′ , vM ′(i′)),

IMP(v′m(i)−1, vi−1), andIMP(vm′(i′)−1, v
′
i′−1). Now the assignmentsτ of Boolean values to the

variables satisfy all of the constraints if and only if they correspond to assignmentsσ which
satisfy (1′), (2′), (3′) (4′), and so should contribute to

Z ′
H(G,W (G,H)) =

∑

σ∈Hom(G,H) with σ(V ) ⊆ U

∏

v∈V (G)

wv(σ(v)).

We will next construct weight functions for the instance of #CSP∗(IMP, δ0, δ1) in order to
reproduce the effect of the weight functions inW (G,H).
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In order to avoid division by0, we first modify the construction. Suppose that for some variable
v ∈ V and somei ∈ [h], wv(i) = 0. Configurationsσ with σ(v) = i make no contribution
to Z ′

H(G,W (G,H)). Thus, it does no harm to rule out such configurations by modifying the
#CSP∗(IMP, δ0, δ1) instance to ensure thatτ(vi) = 1 impliesτ(vi−1) = 1. We do this by adding
the constraintIMP(vi, vi−1). Similarly, if wv′(i

′) = 0 for v′ ∈ V andi′ ∈ [h′] then we add the
constraintIMP(v′i′, v

′
i′−1).

Once we’ve made this change, we can replaceW (G,H) with an equivalent indexed set of
weight functionsW ′(G,H) wherew′

v(i) = wv(i) if wv(i) > 0 andw′
v(i) = 1, otherwise.

The weight functions for the #CSP∗(IMP, δ0, δ1) instance are then constructed as follows, for
eachv ∈ V . For eachi ∈ [h], let γvi−1

(0) = 1. Let γvh(1) = w′
v(h). For eachi ∈ [h − 1], let

γvi(1) = w′
v(i)/w

′
v(i+ 1). Note thatγvh(0) andγv0(1) have not yet been defined — these values

can be chosen arbitrarily. They will not be relevant given the constraintsδ0(v0) andδ1(vh).
Now if σ(v) = i we haveτ(v0) = · · · = τ(vi−1) = 0 and τ(vi) = · · · = τ(vh) = 1 so

∏

j γvj (τ(vj)) = w′
v(i), as required. Similarly, for eachv′ ∈ V ′, define the weight functions as

follows. For eachi ∈ [h′], let γv′i−1
(0) = 1. Let γv′

h′
(1) = w′

v′(h
′). For eachi ∈ [h′ − 1], let

γv′i(1) = w′
v′(i)/w

′
v′(i+ 1). Using these weight functions, we obtain the desired reduction from

the computation ofZ ′
H(G,W (G,H)) to #CSP∗(IMP, δ0, δ1). �

3.3. Intractable trees. Lemma 4 shows that ifH has no inducedJ3 then #WHOMSTO(H) is
AP-reducible to #BIS. The purpose of this section is to proveLemma 6, below, which shows,
by contrast, that ifH does have an inducedJ3, then #WHOMSTO(H) is #SAT-hard.

In order to prepare for the proof of Lemma 6, we introduce the notion of a multiterminal
cut. Given a graphG = (V,E) with distinguished verticesα, β andγ, which we refer to as
“terminals”, amultiterminal cutis a setE ′ ⊆ E whose removal disconnects the terminals in the
sense that the graph(V,E \E ′) does not contain a path between any two distinct terminals. The
size of the multiterminal cut is the number of edges inE ′. Consider the following computational
problem.

Problem: #MULTITERMINAL CUT(3).
Instance: A positive integerb, a connected graphG = (V,E) and3 distinct verticesα, β

andγ from V . The input has the property that every multiterminal cut hassize at leastb.
Output: The number of size-b multiterminal cuts forG with terminalsα, β, andγ.

We will use the following technical lemma, which we used before in [15] (without stating it
formally).

Lemma 5. #MULTITERMINAL CUT(3) ≡AP #SAT .

Proof. This follows essentially from the proof of Dalhaus et al. [8]that the decision version of
#MULTITERMINAL CUT(3) is NP-hard and from the fact [10, Theorem 1] that the NP-hardness
of a decision problem implies that the corresponding counting problem is AP-interreducible with
#SAT . The details are given in [15, Section 4]. �

Lemma 6. Suppose thatH is a tree with an inducedJ3. Then

#SAT ≤AP #WHOMSTO(H).
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FIGURE 3. The treeJ .

Proof. We will prove the lemma by giving an AP-reduction from #MULTITERMINAL CUT(3) to
#WHOMSTO(H). The lemma will then follow from Lemma 5.

Suppose thatH has an induced subgraph which is isomorphic toJ3. To simplify the notation,
label the vertices and edges ofH in such a way that the induced subgraph is (identically) the
graphJ depicted in Figure 3.

Let b, G = (V,E), α, β and γ be an input to #MULTITERMINAL CUT(3). Let s = 2 +
|E(G)|+ 2|V (G)|. (The exact size ofs is not important, but it has to be at least this big to make
the calculation work, and it has to be at most a polynomial in the size ofG.) LetG′ be the graph
defined as follows. First, letV ′(G) = {(e, i) | e ∈ E, i ∈ [s]}. Thus,V ′(G) containss vertices
for each edgee of G. Then letG′ be the graph with vertex setV (G′) = V (G)∪ V ′(G) and edge
set

E(G′) = {(u, (e, i)) | u ∈ V (G), (e, i) ∈ V ′(G), andu is an endpoint ofe}.

We will define weight functionswv for v ∈ V (G′) so that an approximation to the number of
size-b multi-terminal cuts forG with terminalsα, β andγ can be obtained from an approximation
toZH(G

′,W (G′, H)). We start by defining the set of pairs(v, c) ∈ V (G′)×V (H) for which we
will specify wv(c) > 0. In particular, define the setΩ as follows.

Ω = {(α, x0), (β, y0), (γ, z0)}∪
(

(V (G)−{α, β, γ})×{x0, y0, z0}
)

∪(V ′(G)× {w, x1, y1, z1}) .

Let wv(c) = 1 if (v, c) ∈ Ω. Otherwise, letwv(c) = 0.
Thus,ZH(G

′,W (G′, H)) is the number of homomorphismsσ from G′ toH with σ(V (G)) =
{x0, y0, z0}, σ(V ′(G)) ⊆ {w, x1, y1, z1}, σ(α) = x0, σ(β) = y0 andσ(γ) = z0. We will refer to
these as “valid” homomorphisms.

If σ is a valid homomorphism, then let

bi(σ) = {e ∈ E(G) | the vertices ofV (G) corresponding to

the endpoints ofe are mapped to different colours byσ}.

Note that, for every valid homomorphismσ, bi(σ) is a multiterminal cut for the graphG with
terminalsα, β andγ.

For every multiterminal cutE ′, let κ(E ′) denote the number of components in the graph
(V,E \E ′). For each multiterminal cutE ′, letZE′ denote the number of valid homomorphismsσ
from G′ to H such that bi(σ) = E ′. From the definition of multiterminal cut,κ(E ′) ≥ 3. If
κ(E ′) = 3 then

ZE′ = 2s(E(G)−E′)



TREE HOMOMORPHISMS 17

since there are two choices for the colours of each vertex(e, i) with e ∈ E(G)− E ′. (Since the
endpoints of each such edgee are assigned the same colour byσ, the vertex(e, i) can either be
colouredw, or it can be coloured with one other colour.) Also,

ZE′ ≤ 2s(E(G)−E′)3κ(E
′)−3,

since the component ofα is mapped tox0 by σ, the component ofβ is mapped toy0, the compo-
nent ofγ is mapped toz0, and each remaining component is mapped to a colour in{x0, y0, z0}.

Let Z∗ = 2s(E(G)−b). If E ′ has sizeb thenκ(E ′) = 3. (Otherwise, there would be a smaller
multiterminal cut, contrary to the definition of #MULTITERMINAL CUT(3).) So, in this case,

(1) ZE′ = Z∗.

If E ′ has sizeb′ > b then

ZE′ ≤ 2s(E(G)−b′)3κ(E
′)−3 = 2−s(b′−b)3κ(E

′)−3Z∗ ≤ 2−s3|V (G)|Z∗.

Clearly, there are at most2|E(G)| multiterminal cutsE ′. So, using the definition ofs,

(2)
∑

E′:|E′|>b

ZE′ ≤
Z∗

4

From Equation (1), we find that, if there areN size-b multiterminal cuts then

ZH(G
′,W (G′, H)) = NZ∗ +

∑

E′:|E′|>b

ZE′.

So applying Equation (2) , we get

N ≤
ZH(G

′,W (G′, H))

Z∗
≤ N +

1

4
.

Thus, we have an AP-reduction from #MULTITERMINAL CUT(3) to #HOMSTO(H). To deter-
mine the accuracy with whichZ(G) should be approximated in order to achieve a given accuracy
in the approximation toN , see the proof of Theorem 3 of [10]. �

4. TREE HOMOMORPHISMS CAPTURE THE FERROMAGNETICPOTTS MODEL.

The problem #HOMSTO(H) counts colourings of a graph satisfying “hard” constraints: two
colours (corresponding to vertices ofH) are either allowed on adjacent vertices of the instance
or disallowed. By contrast, the Potts model (to be describedpresently) is “permissive”: every
pair of colours is allowed on adjacent vertices, but some pairs are favoured relative to others.
The strength of interactions between colours is controlledby a real parameterγ. In this section,
we will show that approximating the number of homomorphismsto Jq is equivalent in difficulty
to the problem of approximating the partition function of the ferromagneticq-state Potts model.
Since the latter problem is not known to be #BIS-easy for anyq > 2, we might speculate that
approximating #HOMSTO(Jq) is not #BIS-easy for anyq > 2. If so, J3 would be the smallest
tree with this property.

It is interesting that, for fixedq, a continuously parameterised class of permissive problems can
be shown to be computationally equivalent to a single counting problem with hard constraints.
Suppose, for example, that we wanted to investigate the possibility that computing the partition
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function of theq-state ferromagnetic Potts model formed a hierarchy of problems of increas-
ing complexity with increasingq. We could equivalently investigate the sequence of problems
#HOMSTO(Jq), which seems intuitively to be an easier proposition.

We start with some definitions. Letq be a positive integer. Theq-state Potts model is a
statistical mechanical model of Potts [29] which generalises the classical Ising model from two
to q spins. In this model, spins interact along edges of a graphG = (V,E). The strength of
each interaction is governed by a parameterγ (a real number which is always at least−1, and
is greater than0 in the ferromagneticcase which we study, where like spins attract each other).
Theq-state Potts partition function is defined as follows.

(3) ZPotts(G; q, γ) =
∑

σ:V→[q]

∏

e={u,v}∈E

(

1 + γ δ(σ(u), σ(v))
)

,

whereδ(s, s′) is 1 if s = s′, and is0 otherwise.
The Potts partition function is well-studied. In addition to the complexity-theory literature

mentioned below, we refer the reader to Sokal’s survey [30].
In order to state our results in the strongest possible form,we use the notion of “efficiently ap-

proximable real number” from Section 2. Recall that a real numberγ is efficiently approximable
if there is an FPRAS for the problem of computing it. The notion of “efficiently approximable” is
not important to the constructions below — the reader who prefers to assume that the parameters
are rational will still appreciate the essence of the reductions.

Let q be a positive integer and letγ be a positive efficiently approximable real. Consider the
following computational problem, which is parameterised by q andγ.

Problem: POTTS(q, γ).
Instance: GraphG = (V,E).
Output: ZPotts(G; q, γ).

This problem may be defined more generally for non-integersq via the Tutte polynomial. We
will use some results from [16] which are more general, but wedo not need the generality here.

In an important paper, Jaeger, Vertigan and Welsh [24] examined the problem of evaluating
the Tutte polynomial. Their result gave a complete classification of the computational complex-
ity of POTTS(q, γ). For every fixed positive integerq, apart from the trivialq = 1, and for
every fixedγ, they showed that this computational problem is #P-hard. When q = 1 andγ is
rational,ZPotts(G; q, γ) can easily be exactly evaluated in polynomial time. The complexity of
the approximation problem has also been partially resolved. In the positive direction, Jerrum
and Sinclair [25] gave an FPRAS for the caseq = 2. In the negative direction, Goldberg and
Jerrum [16] showed that approximation is #BIS-hard for every fixed q > 2. They left open the
question of whether approximatingZPotts(G; q, γ) is as easy as #BIS (or whether it might be
even harder).

In this paper, we show that the approximation problem is equivalent in complexity to a tree ho-
momorphism problem. In particular, we show that POTTS(q, γ) is AP-equivalent to the problem
of approximately counting homomorphisms to the treeJq.

We first give an AP-reduction from POTTS(q, 1) to #HOMSTO(Jq).
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Lemma 7. Let q > 2 be a positive integer.

POTTS(q, 1) ≤AP #HOMSTO(Jq).

Proof. Let G be an instance of POTTS(q, 1). We can assume without loss of generality thatG
is connected, since it is clear from (3) that a graphG with connected componentsG1, . . . , Gκ

satisfiesZPotts(G; q, γ) =
∏κ

i=1 ZPotts(Gi; q, γ).
LetG′ be the graph with

V (G′) = V (G) ∪ E(G)

and

E(G′) = {(u, e) | u ∈ V (G), e ∈ E(G), andu is an endpoint ofe}.

G′ is sometimes referred to as the “2-stretch” ofG. For clarity, when we consider an element
e ∈ E(G) as a vertex ofG′ (rather than an edge ofG), we shall refer to it as the “midpoint vertex
corresponding to edgee”.

Let s be an integer satisfying

(4) 8q(q + 1)|V (G)|+|E(G)| ≤
(q

2

)s

.

For concreteness, takes to be the smallest integer satisfying (4). The exact size ofs is not so
important. The calculation below relies on the fact thats is large enough to satisfy (4). On the
other hand,s must be at most a polynomial in the size ofG, to make the reduction feasible.

We will construct an instanceG′′ of #HOMSTO(Jq) by adding some gadgets toG′. Fix a
vertexv ∈ V (G). LetG′′ be the graph withV (G′′) = V (G)∪E(G)∪{v0, . . . , vs} andE(G′′) =
E(G′) ∪ {(v, v0)} ∪ {(v0, vi) | i ∈ [s]}. See Figure 4.

We say that a homomorphismσ from G′′ to Jq is typical if σ(v0) = w. Note that, in a typical
homomorphism, every vertex inV (G) is mapped byσ to one of the colours from{c′1, . . . , c

′
q}.

Let Zt
Jq(G

′′) denote the number of typical homomorphisms fromG′′ to Jq.
Given a mappingσ : V (G) → {c′1, . . . , c

′
q}, the number of typical homomorphisms which

induce this mapping is2mono(σ)qs, wheremono(σ) is the number of edgese ∈ E(G) whose
endpoints inV (G) are mapped to the same colour byσ. (To see this, note that there are two
possible colours for the midpoint vertices corresponding to such edges, whereas the other mid-
point vertices have to be mapped tow by σ. Also, there areq possible colours for each vertex in
{v1, . . . , vs}.) Thus, using the definition (3), we conclude that

Zt
Jq(G

′′) =
∑

σ:V (G)→{c′
1
,...,c′q}

2mono(σ)qs = qsZPotts(G; q, 1).

The number of atypical homomorphisms fromG′′ to Jq, which we denote byZa
Jq(G

′′), is at

most2q2s(q + 1)|V (G)|+|E(G)|. (To see this, note, that there are2q alternative colours forv0. For
each of these, there are at most2 colours for each vertex in{v1, . . . , vs} and at mostq+1 colours
for each vertex inV (G) ∪ E(G).) Using Equation (4), we conclude thatZa

Jq(G
′′) ≤ qs/4. Since

ZJq(G
′′) = Zt

Jq
(G′′) + Za

Jq
(G′′), we have



20 LESLIE ANN GOLDBERG AND MARK JERRUM

V (G) E(G)

v

v0

v1

v2

vs

FIGURE 4. The instanceG′′. The thick curved line betweenV (G) andE(G)
indicates that the edges inE(G′) go between elements ofV (G) and elements
of E(G), but these are not shown.

(5) ZPotts(G; q, 1) ≤
ZJq(G

′′)

qs
≤ ZPotts(G; q, 1) +

1

4
.

Equation (5) guarantees that the construction is an AP-reduction from POTTS(q, 1) to the prob-
lem #HOMSTO(Jq). To determine the accuracy with whichZJq(G

′′) should be approximated in
order to achieve a given desired accuracy in the approximation toZPotts(G; q, 1), see the proof
of Theorem 3 of [10]. �

In order to get a reduction going the other direction, we needto generalise the Potts partition
function to a hypergraph version. LetH = (V, E) be a hypergraph with vertex setV and hyper-
edge (multi)setE . Let q be a positive integer. Theq-state Potts partition function ofH is defined
as follows:

ZPotts(H; q, γ) =
∑

σ:V→[q]

∏

f∈E

(

1 + γδ({σ(v) | v ∈ f})
)

,

whereδ(S) is 1 if its argument is a singleton and 0 otherwise. Letq be a positive integer and let
γ be a positive efficiently approximable real. We consider thefollowing computational problem,
which is parameterised byq andγ.

Problem: HYPERPOTTS(q, γ).
Instance: A hypergraphH = (V, E).
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Output: ZPotts(H; q, γ).

We start by reducing #HOMSTO(Jq) to the problem of approximating the Potts partition function
of a hypergraph with parametersq and1.

Lemma 8. Let q be a positive integer.

#HOMSTO(Jq) ≤AP HYPERPOTTS(q, 1).

Proof. We can assume without loss of generality that the instance to#HOMSTO(Jq) is bipartite,
since otherwise the output is zero. We can also assume that itis connected since a graphG with
connected componentsG1, . . . , Gκ satisfiesZJq(G) =

∏κ
i=1 ZJq(Gi). Finally, it is easy to find a

bipartition of a connected bipartite graph in polynomial time, so we can assume without loss of
generality that this is provided as part of the input.

Let B = (U, V, E) be a connected instance of #HOMSTO(Jq) consisting of vertex setsU
andV and edge setE (a subset ofU × V ). LetZU

Jq(B) be the number of homomorphisms from
B to Jq in which vertices inU are coloured with colours in{c′1, . . . , c

′
q}. Similarly, letZV

Jq(B)
be the number of homomorphisms fromB to Jq in which vertices inV are coloured with colours
in {c′1, . . . , c

′
q}. Clearly,ZJq(B) = ZU

Jq
(B)+ZV

Jq
(B). We will show how to approximateZU

Jq
(B)

using an approximation oracle for HYPERPOTTS(q, 1). The approximation ofZV
Jq
(B) is similar.

The construction is straightforward. For everyv ∈ V , letΓ(v) denote the set of neighbours of
vertexv in B. LetF = {Γ(v), | v ∈ V }. LetH = (U, F ) be an instance of HYPERPOTTS(q, 1).

The reduction is immediate, becauseZU
Jq(B) = ZPotts(H ; q, 1). To see this, note that ev-

ery configurationσ : U → {c′1, . . . , c
′
q} contributes weight2mono(σ) to ZPotts(H ; q, 1), where

mono(σ) is the number of hyperedges inF that are monochromatic inσ. Also, the configura-
tion σ can be extended in exactly2mono(σ) ways to homomorphisms fromB to Jq. �

The next step is to reduce the problem of approximating the Potts partition function of a
hypergraph to the problem of approximating the Potts partition function of auniformhypergraph,
which is a hypergraph in which all hyperedges have the same size. The reason for this step is that
the paper [16] shows how to reduce the latter to the approximation of the Potts partition function
of agraph, which is the desired target of our reduction.

Let q be a positive integer and letγ be a positive efficiently approximable real. We consider the
following computational problem, which, like HYPERPOTTS(q, γ), is parameterised byq andγ.

Problem: UNIFORMHYPERPOTTS(q, γ).
Instance: A uniform hypergraphH = (V, E).
Output: ZPotts(H; q, γ).

We will actually only use the following lemma withγ = 1 but we state, and prove, the more
general lemma, since it is no more difficult to prove.

Lemma 9. Let q be a positive integer and letγ be a positive efficiently approximable real. Then

HYPERPOTTS(q, γ) ≤AP UNIFORMHYPERPOTTS(q, γ).
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Proof. Let H = (V, E) be an instance to HYPERPOTTS(q, γ) with |V| = n and |E| = m and
max(|f | | f ∈ E) = t. Let s be any positive integer that is at least

log(4qn+m(t−1)(1 + γ)m)

log(1 + γ)
.

As with our other reductions, the exact value ofs is not important, as long as it satisfies the
above inequality, it is bounded from above by a polynomial inn andm, and its can be computed
in polynomial time (as a function ofn andm). An appropriates can be readily computed by
computing crude upper and lower bounds forγ and evaluating different values ofs one-by-one
to find one that is sufficiently large, in terms of these bounds.

For every hyperedgef ∈ E , fix some vertexvf ∈ f . Introduce new vertices{uf,i | f ∈ E , i ∈
[t− 1]}, and letV ′ = V ∪ {uf,i | f ∈ E , i ∈ [t− 1]}. Let

E ′ =
{

f ∪
{

uf,i

∣

∣ i ∈ [ t− |f | ]
}

∣

∣

∣
f ∈ E

}

∪
{

{vf , uf,1, . . . , uf,t−1} × [s]
∣

∣

∣
f ∈ E

}

.

That is, the multi-setE ′ hass copies of the edge{vf , uf,1, . . . , uf,t−1} and one copy of the edge
f ∪{uf,i | i ∈ [t−|f | ]} for each hyperedgef ∈ E . LetH′ = (V ′, E ′). Note thatH′ is t-uniform.

Now, the total contribution toZPotts(H
′; q, γ) from configurationsσ which are monochromatic

on every edge{vf , uf,1, . . . , uf,t−1} is exactlyZPotts(H; q, γ)(1 + γ)sm. Also, the total contribu-
tion toZPotts(H

′; q, γ) from any other configurationsσ is at mostqn+m(t−1)(1 + γ)m(1 + γ)s(m−1)

since there are at mostqn+m(t−1) such configurations andγ > 0.
So

ZPotts(H; q, γ) ≤
ZPotts(H

′; q, γ)

(1 + γ)sm
≤ ZPotts(H; q, γ) +

qn+m(t−1)(1 + γ)m

(1 + γ)s

≤ ZPotts(H; q, γ) +
1

4
which completes the reduction. �

Finally, we are ready to put together the pieces to show that,for every integerq > 2, the
problem of approximating the Potts partition function is equivalent to a tree homomorphism
problem.

Theorem 10. Let q > 2 be a positive integer and letγ be a positive efficiently approximable
real. ThenPOTTS(q, γ) ≡AP #HOMSTO(Jq).

Proof. We start by establishing the reduction from #HOMSTO(Jq) to POTTS(q, γ). By Lemmas
8 and 9.

#HOMSTO(Jq) ≤AP HYPERPOTTS(q, 1) ≤AP UNIFORMHYPERPOTTS(q, 1).

To complete the sequence of reductions we need to know that the last problem is reducible to
POTTS(q, γ). Fortunately, this step already appears in the literature in a slightly different guise,
so we just need to explain how to translate the terminology from the earlier result to the current
setting. For every positive integerq, the partition functionZPotts(H; q, γ) of the Potts model on
hypergraphs is equal to theTutte polynomialZTutte(H; q, γ) (whose definition we will not need
here). This equality is proved in [16, Observation 2.1], using the same basic line of argument that
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Fortuin and Kasteleyn [14] used in the graph case. Furthermore, forq > 2, Lemmas 9.1 and 10.1
of [16] reduce the problem of approximating the Tutte partition functionZTutte(H; q, 1), where
H is auniform hypergraph, to that of approximating the Tutte partition functionZTutte(G; q, γ),
whereG is agraph. Given the equivalence betweenZTutte(G; q, γ) andZPotts(G; q, γ)mentioned
earlier, we see that

UNIFORMHYPERPOTTS(q, 1) ≤AP POTTS(q, γ),

completing the chain of reductions.
For the other direction, we will establish an AP-reduction from POTTS(q, γ) to the problem

#HOMSTO(Jq). To start, we note that since a graph is a special case of a uniform hyper-
graph, Lemmas 9.1 and 10.1 of [16] give an AP-reduction from POTTS(q, γ) to POTTS(q, 1).
(It is definitely not necessary to go via hypergraphs for thisreduction, but here it is easier to
use the stated result than to repeat the work.) Finally, Lemma 7 shows that POTTS(q, 1) ≤AP

#HOMSTO(Jq). �

5. INAPPROXIMABILITY OF COUNTING TREE HOMOMORPHISMS

Until now, it was not known whether or not a bipartite graphH exists for which approximating
#HOMSTO(H) is #SAT-hard. It is perhaps surprising, then, to discover that #HOMSTO(H) may
be #SAT-hard even whenH is a tree. However, the hardness result from Section 3 provides a
clue. There it was shown that the weighted version #WHOMSTO(H) is #SAT-hard wheneverH
is a tree containingJ3 as an induced subgraph. If we were able to construct a treeH, containing
J3, that is able, at least in some limited sense, to simulate vertex weights, then we might obtain
a reduction from #WHOMSTO(J3) to #HOMSTO(H). That is roughly how we proceed in this
section. We will obtain our hard treeH by “decorating” the leaves ofJ3. These decorations
will match certain structures in the instanceG, so that particular distinguished vertices inG will
preferentially be coloured with particular colours. Carrying through this idea requiresH to have
a certain level of complexity, and the treeJ∗

3 that we actually use (see Figure 5) is about the
smallest for which this approach works. Presumably the sameapproach could also be applied
starting atJq, for q > 3. It is possible that there are treesH that are much smaller thanJ∗

3 for
which #HOMSTO(H) is #SAT-hard. It is even possible that #HOMSTO(J3) is #SAT-hard. But
demonstrating this would require new ideas.

Define vertex sets

X = {x0, x1} ∪ {x2,i | i ∈ [5]},

Y = {y0, y1} ∪ {y2,i | i ∈ [4]} ∪ {y3,i,j | i ∈ [4], j ∈ [3]},

Z = {z0, z1} ∪ {z2,i | i ∈ [3]} ∪ {z3,i,j | i ∈ [3], j ∈ [3]} ∪ {z4,i,j,k | i ∈ [3], j ∈ [3], k ∈ [2]},

and edge sets

EX = {(x0, x1)} ∪ {(x1, x2,i) | i ∈ [5]},

EY = {(y0, y1)} ∪ {(y1, y2,i) | i ∈ [4]} ∪ {(y2,i, y3,i,j) | i ∈ [4], j ∈ [3]},

EZ = {(z0, z1)} ∪ {(z1, z2,i) | i ∈ [3]} ∪ {(z2,i, z3,i,j) | i ∈ [3], j ∈ [3]}

∪ {(z3,i,j, z4,i,j,k) | i ∈ [3], j ∈ [3], k ∈ [2]}.
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FIGURE 5. The treeJ∗
3 .

Let J∗
3 be the tree with vertex setV (J∗

3 ) = {w} ∪X ∪ Y ∪ Z and edge set

E(J∗
3 ) = {(w, x0), (w, y0), (w, z0)} ∪ EX ∪ EY ∪ EZ .

See Figure 5. Consider the equivalence relation onV (J∗
3 ) defined by graph isomorphism — two

vertices ofJ∗
3 are in the same equivalence class if there is an isomorphism of J∗

3 mapping one
to the other. The canonical representatives of the equivalence classes are the verticesw, x0, x1,
x2,1, y0, y1, y2,1, y3,1,1, z0, z1, z2,1, z3,1,1 andz4,1,1,1. These are shown in the figure.

In this section, we will show that #SAT is AP-reducible to #HOMSTO(J∗
3 ). We start by iden-

tifying relevant structure inJ∗
3 .

A simple path in a graph is a path in which no vertices are repeated. For every vertexh of J∗
3 ,

and every positive integerk, let dk(h) be the number of simple length-k paths fromh. The
valuesd1(h), d2(h) andd3(h) can be calculated for each canonical representativeh ∈ V (J∗

3 ) by
inspecting the definition ofJ∗

3 (or its drawing in Figure 5). These values are recorded in thefirst
four columns of the table in Figure 6.

Now let wk(h) denote the number of length-k walks fromh in J∗
3 . Clearly,w1(h) = d1(h)

sinceJ∗
3 has no self-loops, so all length-1 walks are simple paths. Next, note thatw2(h) =

d1(h) + d2(h). To see this, note that every length-2 walk fromh is either a simple length-2 path
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h d1(h) d2(h) d3(h) w1(h) w2(h) w3(h)
w 3 3 12 3 6 24
x0 2 7 2 2 9 13
x1 6 1 2 6 7 39
x2,1 1 5 1 1 6 7
y0 2 6 14 2 8 24
y1 5 13 2 5 18 40
y2,1 4 4 10 4 8 30
y3,1,1 1 3 4 1 4 8
z0 2 5 11 2 7 20
z1 4 10 20 4 14 46

z2,1 4 9 7 4 13 32
z3,1,1 3 3 7 3 6 19
z4,1,1,1 1 2 3 1 3 6

FIGURE 6. For each canonical representativeh ∈ V (J∗
3 ), we record the values

of w1(h) = d1(h), w2(h) = d1(h) + d2(h) andw3(h) = d21(h) + d2(h) + d3(h).

from J∗
3 , or it is a walk obtained by taking an edge fromh, and then going back toh. Finally,

w3(h) = d1(h)
2 + d2(h) + d3(h) since every length-3 walk fromh is one of the following:

• a simple length-3 path fromh,
• a simple length-2 path fromh, with the last edge repeated in reverse, or
• a simple length-1 path fromh with the last edge repeated in reverse, followed by another

simple length-1 path fromh.

These values are recorded, for each canonical representativeh ∈ V (J∗
3 ), in the last three columns

of the table in Figure 6. The important fact that we will use isthatw1(h) is uniquely maximised
ath = x1, w2(h) is uniquely maximised ath = y1, andw3(h) is uniquely maximised ath = z1.
(These are shown in boldface in the table.)

We are now ready to prove the following theorem.

Theorem 11. #SAT ≤AP #HOMSTO(J∗
3 ).

Proof. By Lemma 5, it suffices to give an AP-reduction from #MULTITERMINAL CUT(3) to
#HOMSTO(J∗

3 ). The basic construction follows the outline of the reduction developed in the
proof of Lemma 6. However, unlike the situation of Lemma 6, the target problem #HOMSTO(J∗

3 )
does not include weights, so we must develop gadgetry to simulate the role of these.

Let b,G = (V,E),α, β andγ be an input to #MULTITERMINAL CUT(3). Lets = 3+|E(G)|+
2|V (G)|. (As before, the exact size ofs is not important, but it has to be at least this big to make
the calculation work, and it has to be at most a polynomial in the size ofG.)

Let G′ be the graph defined in the proof of Lemma 6. In particular, letV ′(G) = {(e, i) | e ∈
E(G), i ∈ [s]}. Then letG′ be the graph with vertex setV (G′) = V (G) ∪ V ′(G) and edge set

E(G′) = {(u, (e, i)) | u ∈ V (G), (e, i) ∈ V ′(G), andu is an endpoint ofe}.
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Now letr be any positive integer such that

(6)

(

46

40

)r

≥ 8|V (J∗
3 )|

|V (G)|+s|E(G)|+7.

For concreteness, taker to be the smallest integer satisfying (6). Once again, the exact value ofr
is not so important. Anyr would work as long as it is at most a polynomial in the size ofG, and
it satisfies (6).

We will construct an instanceG′′ of #HOMSTO(J∗
3 ) by adding some gadgets toG′. First, we

define the gadgets.

• Let Γx be a graph with vertex setV (Γx) = {vx1
} ∪

⋃

i∈[r]{vx,i} and edge setE(Γx) =
⋃

i∈[r]{(vx1
, vx,i)}.

• LetΓy be a graph with vertex setV (Γy) = {vy1}∪
⋃

i∈[r]{vy,i, v
′
y,i} and edge setE(Γy) =

⋃

i∈[r]{(vy1 , vy,i), (vy,i, v
′
y,i)}.

• Let Γz be a graph with vertex setV (Γz) = {vz1} ∪
⋃

i∈[r]{vz,i, v
′
z,i, v

′′
z,i} and edge set

E(Γx) =
⋃

i∈[r]{(vz1 , vz,i), (vz,i, v
′
z,i), (v

′
z,i, v

′′
z,i)}.

Finally, let

V (G′′) = V (G′) ∪ {vw, vx0
, vy0, vz0} ∪ V (Γx) ∪ V (Γy) ∪ V (Γz),

and

E(G′′) = {(vw, vx0
), (vw, vy0), (vw, vz0), (vx0

, vx1
), (vy0 , vy1), (vz0 , vz1), (vx1

, α), (vy1, β), (vz1, γ)}

∪ E(G′) ∪ {(vw, v) | v ∈ V (G)} ∪ E(Γx) ∪ E(Γy) ∪ E(Γz).

A picture of the instanceG′′ is shown in Figure 7.
We say that a homomorphismσ from G′′ to J∗

3 is typical if σ(vx1
) = x1, σ(vy1) = y1, and

σ(vz1) = z1. Note that, in a typical homomorphism,σ(vw) = w, soσ(V (G)) = {x0, y0, z0} and
σ(V ′(G)) ⊆ {w, x1, y1, z1}. Also,σ(α) = x0, σ(β) = y0, andσ(γ) = z0.

If σ is a typical homomorphism, then let

bi(σ) = {e ∈ E(G) | the vertices ofV (G) corresponding to

the endpoints ofe are mapped to different colours byσ}.

Note that, for every typical homomorphismσ, bi(σ) is a multiterminal cut for the graphG with
terminalsα, β andγ.

For every multiterminal cutE ′ of G, let κ(E ′) denote the number of components in the graph
(V,E \ E ′). For each multiterminal cutE ′, let ZE′ denote the number of typical homomor-
phismsσ from G′′ to J∗

3 such that bi(σ) = E ′.
As in the proof of Lemma 6,κ(E ′) ≥ 3. If κ(E ′) = 3 then

ZE′ = 2s|E(G)−E′|6r18r46r = 2s|E(G)−E′|4968r.

The2s|E(G)−E′| comes from the two choices for the colour of each vertex(e, i) with e ∈ E(G)−
E ′, as before. The6r comes from the choices for the vertices inV (Γx) \ {x1} according to
column 5 of the table in Figure 6. The18r comes from the choices for the vertices inV (Γy)\{y1}
(in column 6) and the46r comes from the choices for the vertices inV (Γz) \ {z1} (in column 7).
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vw

vx0
vy0 vz0

vx1

vx,1

vx,2

vx,r

vy1

vy,1

v′y,1

vy,2

v′y,2

vy,r

v′y,r

vz1

vz,1 v′z,1 v′′z,1

vz,2 v′z,2 v′′z,2

vz,r v′z,r v′′z,r

V (G) V ′(G)

α β γ

FIGURE 7. The instanceG′′. The thick curved line betweenV (G) andV ′(G)
indicates that the edges inE(G′) go between vertices inV (G) and vertices
in V ′(G), but these are not shown. Vertexvw is connected to each vertex inV (G).

Also, for any multiterminal cutE ′ of G,

ZE′ ≤ 2s|E(G)−E′|3κ(E
′)−34968r,

since in any typical homomorphismσ, the component ofα is mapped tox0 by σ, the component
of β is mapped toy0, the component ofγ is mapped toz0, and each remaining component is
mapped to a colour in{x0, y0, z0}.

Let Z∗ = 2s|E(G)−b|4968r. If E ′ has sizeb thenκ(E ′) = 3. (Otherwise, there would be a
smaller multiterminal cut, contrary to the definition of #MULTITERMINAL CUT(3).) So, in this
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case,

(7) ZE′ = Z∗.

If E ′ has sizeb′ > b then

ZE′ ≤ 2s|E(G)−b′|3κ(E
′)−34968r = 2−s(b′−b)3κ(E

′)−3Z∗ ≤ 2−s3|V (G)|Z∗.

Clearly, there are at most2|E(G)| multiterminal cutsE ′. So, using the definition ofs,

(8)
∑

E′:|E′|>b

ZE′ ≤
Z∗

8
.

Now letZ− denote the number of homomorphisms fromG′′ to J∗
3 that are not typical. Now

Z− ≤ |V (J∗
3 )|

|V (G)|+|V ′(G)|+7(40/46)r4968r,

since there are at most|V (J∗
3 )| colours for each of the vertices in

V (G) ∪ V ′(G) ∪ {vw, vx0
, vy0, vz0 , vx1

, vy1, vz1}.

Also, given that the assignment tovx1
, vy1 andvz1 is not preciselyx1, y1 andz1, respectively, it

can be seen from the table in Figure 6 that the number of possibilities for the remaining vertices
is at most(40/46)r times as large as it would otherwise have been. (For example,from the last
column of the table, colouringvz1 with y1 instead of withz1 would give exactly40r choices
for the colours of the vertices inΓz \ {vz1} instead of46r choices. The differences in the other
columns are more substantial than this.) Since|V ′(G)| = s|E(G)|,

Z− ≤ |V (J∗
3 )|

|V (G)|+s|E(G)|+7(40/46)r4968r.

We can assume thatb ≤ |E(G)| (otherwise, the number of size-b multiterminal cuts is trivially0)
so from the definition ofZ∗,

Z− ≤ |V (J∗
3 )|

|V (G)|+s|E(G)|+7(40/46)rZ∗.

Using Equation (6), we get

(9) Z− ≤
Z∗

8
.

From Equation (7), we find that, if there areN size-b multiterminal cuts then

ZJ∗

3
(G) = NZ∗ +

∑

E′:|E′|>b

ZE′ + Z−.

So applying Equations (8) and (9), we get

N ≤
ZJ∗

3
(G)

Z∗
≤ N +

1

4
.

Thus, we have an AP-reduction from #MULTITERMINAL CUT(3) to #HOMSTO(J∗
3 ). To deter-

mine the accuracy with whichZ(G) should be approximated in order to achieve a given accuracy
in the approximation toN , see the proof of Theorem 3 of [10]. �
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6. THE POTTS PARTITION FUNCTION AND PROPER COLOURINGS OF BIPARTITEGRAPHS

Let q be any integer greater than2. Consider the following computational problem.
Problem: #BIPARTITE q-COL.
Instance: A bipartite graphG.
Output: The number of properq-colourings ofG.

Dyer et al. [10, Theorem 13] showed that #BIS≤AP #BIPARTITE q-COL. However, it may be
the case that #BIPARTITE q-COL is easier to approximate than #SAT . Certainly, no AP-reduction
from #SAT to #BIPARTITE q-COL has been discovered (despite some effort!). Therefore, it
seems worth recording the following upper bound on the complexity of #HOMSTO(Jq), which
is an easy consequence of Theorem 10.

Corollary 12. Let q > 2 be a positive integer. Then#HOMSTO(Jq) ≤AP #BIPARTITE q-COL.

Corollary 12 follows immediately from Lemma 13 below by applying Theorem 10 withγ =
1/(q − 2).

Lemma 13. Letq > 2 be a positive integer. ThenPOTTS(q, 1/(q−2)) ≤AP #BIPARTITE q-COL.

Proof. Let G = (V,E) be an input to POTTS(q, 1/(q − 2)). Let G′ be the two-stretch ofG
constructed as in the proof of Lemma 7. In particular,G′ is the bipartite graph with

V (G′) = V (G) ∪ E(G)

and
E(G′) = {(u, e) | u ∈ V (G), e ∈ E(G), andu is an endpoint ofe}.

Consider an assignmentσ : V (G) → [q] and an edgee = (u, v) of G. If σ(u) 6= σ(v) then
there areq−2 ways to colour the midpoint vertex corresponding toe so that it receives a different
colour fromσ(u) andσ(v). However, ifσ(u) = σ(v) then there areq − 1 possible colours for
the midpoint vertex.

Let N denote the number of properq-colourings ofG′. Then since(q − 1)/(q − 2) − 1 =
1/(q − 2), we have

N = (q − 2)|E|
∑

σ:V→[q]

(

q − 1

q − 2

)mono(σ)

= (q − 2)|E|ZPotts(G; q, 1/(q − 2)),

wheremono(σ) is the number of edgese ∈ E(G) whose endpoints inV (G) are mapped to the
same colour byσ.

�

7. THE POTTS PARTITION FUNCTION AND THE WEIGHT ENUMERATOR OF A CODE

A linear codeC of lengthN over a finite fieldFq is a linear subspace ofFN
q . If the subspace

has dimensionr then the code may be specified by anr×N generating matrixM overFq whose
rows form a basis for the code. For any real numberλ, the weight enumerator of the code is
given byWM(λ) =

∑

w∈C λ‖w‖ where‖w‖ is the number of non-zero entries inw. (‖w‖ is
usually called theHamming weightof w.) We consider the following computational problem,
parameterised byq andλ.
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Problem: WE(q, λ).
Instance: A generating matrixM overFq.
Output: WM(λ).

In [17], the authors considered the special caseq = 2 and obtained various results on the com-
plexity of WE(2, λ), depending onλ. Here we show that, for any primep, WE(p, λ) provides
an upper bound on the complexity of POTTS(pk, γ).

Theorem 14. Suppose thatp is a prime,k is a positive integer satisfyingpk > 2 andλ ∈ (0, 1)
is an efficiently computable real. Then

POTTS(pk, 1) ≤AP WE(p, λ).

The following corollary follows immediately from Theorem 14 and Theorem 10.

Corollary 15. Suppose thatp is a prime,k is a positive integer satisfyingpk > 2 andλ ∈ (0, 1)
is an efficiently computable real. Then#HOMSTO(Jpk) ≤AP WE(p, λ).

The conditionpk > 2 can in fact be removed from Corollary 15, even though the result does
not follow from Theorem 14 in this situation. For the missingcase wherep = 2 andk = 1,
Lemma 4 gives #HOMSTO(J2) ≤AP #BIS and [17, Cor. 7, Part (4)] show #BIS≤AP WE(2, λ).
A striking feature of Corollary 15 is that it provides a uniform upper bound on the complexity
of the infinite sequence of problems #HOMSTO(Jpk), with p fixed andk varying. This uniform
upper bound is interesting if (as we suspect) WE(p, λ) is not itself equivalent to #SAT via AP-
reducibility.

Proof of Theorem 14.Let q = pk and letγ = λ−q(p−1)/p − 1 > 0. Since Theorem 10 shows
POTTS(pk, 1) ≡AP #HOMSTO(Jpk) ≡AP POTTS(pk, γ), it is enough to given an AP-reduction
from POTTS(pk, γ) to WE(p, λ). So supposeG = (V,E) is a graph withn vertices andm edges.
We wish to evaluate

(10) ZPotts(G; q, γ) =
∑

σ:V→[q]

(1 + γ)mono(σ).

Our aim is to construct an instance of the weight enumerator problem whose solution is the above
expression, modulo an easily computable factor. Introducea collection of variablesX = {xv

i |
v ∈ V andi ∈ [k]}. To each assignmentσ : V → [q] we define an associated assignment
σ̂ : X → Fp as follows: for allv ∈ V ,

(

σ̂(xv
1), σ̂(x

v
2), . . . , σ̂(x

v
k)
)

= ϕ(σ(v)),

whereϕ is any fixed bijection[q] → Fk
p. Note thatσ 7→ σ̂ is a bijection from assignments

V → [q] to assignmentsX → Fp. (Informally, we have coded the spin at each vertex as ak-tuple
of variables taking values inFp.)

Let ℓ1(z1, . . . , zk), . . . , ℓq(z1, . . . , zk) be an enumeration of all linear formsα1z1 + α2z2 +
· · · + αkzk overFp, where(α1, α2, . . . , αk) ranges overFk

p. This collection of linear forms has
the following property:

If z1 = z2 = · · · zk = 0, then all ofℓ1(z1, . . . , zk), . . . , ℓq(z1, . . . , zk) are zero;

otherwise, preciselyq/p = pk−1 of ℓ1(z1, . . . , zk), . . . , ℓq(z1, . . . , zk) are zero.
(11)
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The first claim in (11) is trivial. To see the second, assume without loss of generality thatz1 6= 0.
Then, for any choice of(α2, . . . , αk) ∈ Fk−1

p , there is precisely one choice forα1 ∈ Fp that
makesα1z1 + · · ·+ αkzk = 0.

Now give an arbitrary direction to each edge(u, v) ∈ E and consider the systemΛ of linear
equations

{

ℓj
(

σ̂(xv
1)− σ̂(xu

1), σ̂(x
v
2)− σ̂(xu

2), . . . , σ̂(x
v
k)− σ̂(xu

k)
)

= 0 : j ∈ [q] and(u, v) ∈ E
}

.

(We viewΛ as a multiset, so the trivial equation0 = 0 arising from the linear formℓj with
α1 = α2 = · · · = αk = 0 occursm times, a convention that makes the following calculation
simpler.) Denote bysat(σ̂) the number of satisfied equations inΛ. Then, from (11),

sat(σ̂) = qmono(σ) +
q

p
(m−mono(σ)),

and hence

mono(σ) =
p

(p− 1)q
sat(σ̂)−

m

p− 1
.

Noting that1 + γ = λ−q(p−1)/p,
∑

σ:V→[q]

(1 + γ)mono(σ) =
∑

σ̂:X→Fp

(1 + γ)(p/(p−1)q) sat(σ̂)−m/(p−1)

= λqm/p
∑

σ̂:X→Fp

λ− sat(σ̂)

= λ−(1−1/p)qm
∑

σ̂:X→Fp

λunsat(σ̂),(12)

whereunsat(σ̂) = qm− sat(σ̂) is the number of unsatisfied equations inΛ.
The systemΛ hasqm equations inkn variables, so we may write it in matrix formAσ̂ = 0,

whereA is a (qm × kn)-matrix, andσ̂ is a kn-vector overFp. The columns ofA and the
components of̂σ are indexed by pairs(i, v) ∈ [k]× V , and the(i, v)-component of̂σ is σ̂(xv

i ).
Enumerating the columns ofA asav

i ∈ Fqm
p for (i, v) ∈ [k] × V , we may re-expressΛ in the

form
∑

i∈[k],v∈V

σ̂(xv
i ) a

v
i = 0,

where0 is the length-qm zero vector. Thenunsat(σ̂) is the Hamming weight of the length-qm
vectorb(σ̂) =

∑

i,v σ̂(x
v
i ) a

v
i . As σ̂ ranges over all assignmentsX → Fp, sob(σ̂) ranges over

the vector space (or code)

C =
{

∑

i,v

σ̂(xv
i ) a

v
i

∣

∣

∣
σ̂ : X → Fp

}

= 〈av
i | i ∈ [k], v ∈ V 〉

generated by the vectors{av
i }.
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We will argue that the mapping sendinĝσ to b(σ̂) is q to 1, from which it follows that
∑

σ̂ λ
unsat(σ̂) is q times the weight enumerator of the codeC. Then, from (10) and (12), let-

tingM be any generating matrix forC,

ZPotts(G; q, γ) = qλ−(1−1/p)qm WM(λ).

To see where the factorq comes from, consider the assignmentsσ̂ satisfying

(13)
∑

i∈[k],v∈V

σ̂(xv
i ) a

v
i = b,

for someb ∈ Fqm
p . For everyi ∈ [k] and every edge(u, v) ∈ E, there is an equation inΛ

specifying the value of̂σ(xv
i ) − σ̂(xu

i ). Thus, sinceG is connected, the vectorb determineŝσ
once the partial assigment(σ̂(xr

1), . . . , σ̂(x
r
k)) is specified for some distinguished vertexr ∈ V .

Conversely, each of theq partial assignments(σ̂(xr
1), . . . , σ̂(x

r
k)) extends to a total assignment

satisfying (13). �
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