
Subjectivity in Object-Oriented Systems 
Workshop Summary 

William Harrison, Harold Ossher, and Hafedh Mili 

IBM Thomas J Watson Research Center 
P.O. Box 704. Yorktown Heights, NY 10598 

Abstract 

Subjectivity in object-oriented systems is a relatively new 
research area. At this, the second workshop in this area, 
discussion surrounded applications, principles, and 
implementation strategies. The discussions are 
summarized here. 

1. Introduction 

The 1995 Workshop on Subjectivity was structured to 

cover a series of topics, about which the participants 

could explore their concerns, results, speculations, 

conclusions, etc.. The topic areas were: Application 

Requirements, Principles, Subjectivity Support in the 

Real World, Connections among the Subjective Views of 

an Object, and User Interaction with Subjective Objects. 

Each topic area was introduced with a few presentations 

and proceeded to general discussion. Prior to the 

beginning of the series of topics, Bill Harrison gave a 

presentation with the goal of separating various concepts 

involved, with a view toward establishing a common 

terminology. Distinguishing between the definitional 

information and the instantiated information, the “meta”- 

level contains the concept of class, the defining 

information about an object. In non-subjective models, a 

class’s definition is unique and that single concept 

suffices. However, subjectivity requires the introduction 

of a concept to define the collection of related classes 

that form a particular subjective viewpoint. This is what 

he called a subject. The concept of object exists at the 

instantiation level - it is an instance of a class. In like 

manner, subjective models require a term for 

theinstantiation of a subject. He calls this a subject 

activation. The fact that the class definition for an object 

is not complete within any one subject means that the 

state and methods for an object may be distributed across 

many subject activations. It is useful therefore to have a 

term for the state and methods defined for an object by 

one single subject activation. This has been called a 

quantum by Rainer Kossman of BNR. It is important to 

note that all quanta of an object have the same identity, 

and that identity is fundamental to the exploitation of 

subjective views. The concept of interface does not need 

to be extended to deal with subjective points of view, but 

the fact that an object may support many different 

interfaces raises the distinction between a reference to an 

object which specifies only its identity and a reference to 

an object which identifies an interface that constrains the 

operations that may be used with that reference. 

However, since the term capability has already been 

employed for this latter concept, no new term needs to be 

coined. 

2. Topic I: Application Requirements 

The Application Requirements topic covered experience 

with building systems in which subjectivity has been 

needed. Two speakers introduced the discussion, Don 

Batory, from the University of Texas and Francois 

Charoy, from CRIN. 

Software Components with Subjective Interfaces 

Don Batory discussed the role of subjectivity in building 

domain-specific software system generators. In the 

GenVoca system components customize or mutate to 

enlarge the interfaces they export when they are 

, 

Addendum to the Proceedings OOPSLA ‘95 117 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F260111.260261&domain=pdf&date_stamp=1995-10-01


instantiated. Software System Generators are at the 

intersection of software reuse, domain modeling, 

programming language compilers, software architectures, 

transformation systems, parameterized programming, and 

object-oriented software. GenVoca makes use of 

subjectivity because its objects and abstractions do not 

just have a single interface. Instead, there is a family of 

interfaces. The appropriate interfaces are application 

dependent (subjective), but the available components may 

not express them all. GenVoca weakens the need to find 

exact-match software with exact-match views.. 

GenVoca components are composable because they 

export and import the same interface. This allows them to 

be “piped” together as building-blocks. But no single 

interface will suffice for all domains. In fact, GenVoca 

components really export domain-specific instead of 

cast-in-concrete interfaces. So the interfaces for a 

component change with the addition or removal of other 

components. For example, consider a size-of layer on top 

of containers. It exports a read-size, which becomes part 

of the interfaces of all other components as well, so that 

they can be composed together. Components are 

composed by wrappering: for each class, there is an 

operation that says for each op you want to wrap, here is 

a an operation that knows how to wrap. 

Discussion: A question arose about how to show that 

with respect to persistence, one component preserves the 

behavior of the other. The answer was that there is meta- 

data exchanged up and down between the wrappering 

layers. 

There was also some discussion about what to do when 

two components provided behavior for a function in a 

form that did not expect to “wrap” around other function. 

Discussion elaborated the fact that id encounter that, but 

not too often. 

Additional discussion investigated the question of what 

state and meta-information are needed about wrapper 

classes. For example, what if one component wants to 

employ “wait ” and “signal” operations in its wrapper 

only if the wrapped operation doesn’t only use a “read” 

Dimensions of Subjectivity in Software 
Engineering Frameworks 

View management is an old issue, but traditional 

solutions have relied on a known global schema at the 

start of the project. Francois Charoy discussed the COO 

system, which is based on P-ROOT, extended with a 

workspace service, a transaction service, a lock service 

and a constraints service. In COO, a component has some 

object-types and some interfaces. A workspace, with 

various perspectives, is used to instantiate a component. 

Subjectivity can be seen in several dimensions: 

Dimension 

Value 

Datatype definition 

Interface 

Operational 

Active 

Semantic 

Concurrency Control: 

Characterization / Examples 

in different subjects, objects ma 

have different values. for 

versioning or history managemc 

different subjects may have 

different schemas, like Relation: 

DB Views, OODB Virtual 

Classes or PCTE SDS’s 

different subjects may exercise 

different interfaces 

in different subjects, an object 

may have different behaviors. 

events in one subject activation 

may produce a reaction in other 

subjects 

different subjects may employ 

different transaction or integrity 

constraints 

different kinds of concurrency 

control may be employed in 

different subjects 

Presentation 

Access Control 

Process 

P-ROOT has a limited kind of subjective support. There is 

no universal “public” interface for an object. Access 

depends on subject activation using it. P-Root employs a 

dynamic composition mechanism, but does not make 

composition explicit. There is therefore no explicit 

management of relationships between perspectives. They 

118 Austin, TX October 1519,199s 



are implicit in the bodies of operations and somewhat 

hard to track. 

Discussion: There was some discussion on the 

enforcement of constraints and the use of triggers. 

Triggers may be cross-subject to check semantic 

constraints, e.g. quality control subject: to be delivered 

product must have zero defects, or a product management 

subject: product must be delivered next week. There is a 

need to define precedence and who wins in logical 

conflicts. A similar problem arises with concurrency 

control: what is precedence of lock types etc. in global 

lock table. 

3. Topic II: Principles 

The Principles topic addressed the relationships among 

the concepts of “subjects”, “subjective views of objects”, 

“objects”, “roles”, etc.. Two speakers introduced the 

discussion, Bent Bruun Kristensen, from Aalborg 

University and Pablo Victory, from JP Morgan. 

Subjectivity and Roles 

Bent Kristensen discussed conceptual modeling 

approaches. In his work, roles are a specialization of 

concepts, and he wants to use them directly in problem 

analysis. His intention is to use roles, etc., directly as part 

of a modeling style and then later discuss the mapping of 

the ideas to different programming languages or support 

systems. 

Consider this example use of roles. John is associated 

with ECOOP as a reviewer and with OOPSLA as a 

participant. Roles may appear and disappear during the 

lifetime of an object. If we take the term “role” to be 

refer to a me&level (specification) concept, roles can 

have their own hierarchies (for specialization). Roles can 

also be aggregated, e.g. “participant” is made up of being 

a “traveler” and being a “hotel guest “. It is possible to 

associate objects and, similarly, to associate a role of one 

object with a role of another. 

A role may add to an object by adding operations, but 

may also add behavior to an existing operation. In this 

terminology, a “subject” is the intrinsic object (actually 

concept) with some of its roles. The subject specifies 

which of the actual roles do you include when you 

actually access the thing. (The term subject here is 

employed not as a me&level concept, but at the level of 

instantiations, unlike the term “subject” described in the 

Introduction. In addition, it refers to a single object’s 

information and not to the characterization of many 

classes of objects.) 

Discussion: There was some discussion of the “life- 

cycle” problem, in which an object changes the roles it 

takes on during its life. For each role, this can be modeled 

as subject which always exists, but in which the object is 

retyped, e.g. one subject may reflect the states: single, 

married, widowed, divorced, etc., while another reflects 

renter, home-owner, dependent. The idea of relationships 

among roles is closely related to the idea of defining 

correspondence rules in subject composition. 

Real-World Object Behavior 

Pablo Victory described various forces that affect an 

object’s behavior in the real world: sender force, context 
force, and state force. There is a precedence among them. 

The sender of a message may affect how an object 

responds. For example, the way you respond to your 

spouse’s greeting may be different from the way you 

respond to your dogs. Context also affects the behavior 

- greetings in public may be different from greetings in 

private. State also affects behavior. This effect is often 

defined in an object’s code by case-like statements. But it 

would be preferable if case-like structures were not 

hidden in the code itself. 

Pablo argued strongly that we need to focus on new tools 

and methods to enable the coding of these facets of an 

object separately, and that we need new methodologies to 

enable developers to clearly separate their concerns. 

A property of an object role may be intrinsic or extrinsic. Discussion: Dispatching on the basis of context seems 

When you add a role to an object, a relationship can be closely related to classical multi-method dispatch, and its 
defined relating a property of the role to an existing associated rules. There was discussion of the question of 
property of the object. 

Addendum to the Proceedings OOPSLA ‘95 119 



the precedence of the “forces”. Can an inference engine be 

used to sort out logical rule structures that relate these? 

There was general agreement that a multimethod-like 

dispatch is a good thing to do, but there were also 

concerns about the comprehensibility of the resulting 

system. Decisions about what needs to happen may be 

too complex to understand. Exchange of metadata is 

important in mediating these decisions. In “roles” world 

the sender is assuming an identity as a role. Variation in 

behavior happens by way of the role interaction. . 

Ira Foreman related these interactions to Holt’s work on 

“Rattle” at MCC. The space of objects is divided into 

roles and there are synchronous interactions among roles, 

fitting into a petri-net model of what the call looks like. 

The petri-net alternatives are somewhat like the multiple- 

dispatch criteria. 

4. Topic III: Packaging, Persistence and 
Polylingualism 

The Packaging topic addressed the implications of the 

fact that with subjectivity, the implementation of an 

object can exist in fragments, each in a different 

programming language or paradigm for life-cycle 

management, for sharing and passing information among 

the fragments, for naming, and for persistence. Two 

speakers introduced the discussion, Bill Harrison, from 

IBM Research, Dirck Riehle, from the Union Bank of 

Switzerland, and Jack Wileden, from the University of 

Massachusetts. 

Packaging Rules for Subjects 

Bill Harrison discussed how rules describing the physical 

packaging of software within a subject can addressed so 

that the functional aspacts of an implementation can be 

separated from the packaging aspects. 

A compositor may be responsible for the assignment of 

the executable code for a subject to processes and to 

machines. Actual assignments may be made for many 

reasons: performance, security, integrity, or resource 

availability. To address these varied requirements, 

packaging rules may be given to the compositor 

indicating how code from various input subjects is to he 

packaged into processes. The processes may be assigned 

to specific nodes and various start-up policies can be set 
in place. 

Most object-oriented language implementations assign all 

of the memory required to represent an object’s state in 

some contiguous space. This implementation is not 

adequate for many uses of subjects. The storage 

associated with different subjects’ views of the objects 

may have different constraints with respect to: lifetime, 

locality to code, security, and transaction behavior 

Packaging rules can be specified to the compositor 

indicating how the information needed for different state 

elements is to be stored. Each different fragment, which 

we have called a facet, can be assigned to a different part 

of memory to satisfy the constraints. 

The Tools and Materials Metaphor 

Dirck Riehle focused on using the tools and materials 

methodology, at the design level. This approach makes 

employs the concepts of tools (e.g., lister, formeditor, . ..). 

aspects (e.g., listable, formeditable, . ..). and materials: 

(e.g., folder, contract form, . ..). 

The materials are arranged in a classification hierarchy. 

For example, paper has the subclasses: bank information, 

document, and registration media. Registration Media has 

the subclasses: Calculation Sheet, and Form With 

Signature. 

Aspects describe the interfaces that are to be supported 

by classes. For example, Registration Media must 

support Form Editable, Paper must support Printable and 

Storable, and Document, Contract, and form must 

support Host Transmittable. 

Adapter technology is then used to describe how the 

materials various aspects are supported by the adapters. 

For example, Form Interest Adapter is used to support 

Form Editable on Registration Media. 

Discussion: It was felt that many of the problems arose 

from lack of subjectivity support. For example, 

FormEditable support acts as a wrapper to InterestRate 

Information. There remains the problem of how the 

120 Austin, TX October 15-19, 1995 

----. 



FormEditable interface support determines which 

concrete class to use for each real object’s concrete class 

to which it is applied. This can be done with factories in 

which there is a global factory which knows that the 

FormEditable interface is implemented for InterestRate 

Information by a class FormInterestAdapter. One of the 

advantages of the subject-composition models is that it 

does not need such global factories, but uses the class 

correspondences instead to make this determination. 

A SPIN on Subjectivity 

Jack Wileden addressed the need for Convergent 

Computing Systems - those whose components which 

come from different computational paradigms or are 

written in different programming languages. One example 

of a convergent system is a Persistent Object system, 

because it combines programming languages and 

database/file systems. 

Convergence manifests the incompatibilities in 

presumptions about name management, persistence, and 

interoperability. 

Name management determines the meaning of names in a 

convergent system. Existing name management 

mechanisms, such as the UnixTM directory structure, 

search paths, or environment variables and programming 

language scope rules, both based on the union/override 

model, are distinctly inadequate. 

Interoperability and polylingual access to objects is 

needed so that developers can have maximum freedom to 

define object types. Whether the objects are shared or 

unshared should have minimal impact on the developers 

of these objects. 

It is a distinct challenge to construct a multi-lingual 

persistent object store. In such a store, persistent quanta 

of same or compatible types can be created for the same. 

Transparent access to these multi-lingual object from 

programs in any language is crucially important. 

PolySpin is an extension to the SPIN architecture to 

supports polylingual access 

5. Topic IV: Connections among the 
Subjective Views of an Object 

The Connections topic addressed issues of how data and 

control are shared across the subjective views of an 

object, with most of the discussion concerning data 

sharing. One speaker introduced the discussion, Michael 

Werner, from the Wentworth Institute of Technology. 

Why Use Subject-Oriented Programming in 
Databases 

Michael Werner stated the goal of facilitating the 

development and evolution of suites of cooperating 

applications. 

In his view, different subjects cooperate with each other 

in order to create a shared database. Sharing implies that 

objects will be created or modified by one subject and 

accessed (read) by another. Although each individual 

subject may perceive the database schema in its own way, 

sharing necessitates that a common conceptual schema 

underlie the individual subjective schemas. 

Although subjectivity in general goes well beyond views, 

even this restriction of subjective approaches to views 

yields important gains in the database area. The restricted 

subjective views correspond to subschemas, existing at 

several levels: use case schema, role schema, actor 

schema, and conceptual schema. 

An actor is an entity that is completely external to the 

system, for example: a professor, student, department 

head. A single actor might play various roles. The 

professor is at times a teacher of her classes, at other 

times an advisor. A graduate student may play the usual 

student role of taking classes and earning credits towards 

a degree, but may also play the role of teaching assistant. 

Each role may provide for a number of functions. For 

example, a professor in her teaching role might use the 

registration system to obtain lists of students in her 

classes and enter grades, in her advising role she might 

obtain transcripts of her advisees, enter course 

substitution approvals, etc. 

Addendum to the Proceedings OOPSLA ‘95 121 



Composition consists largely of conforming, followed by 

combining. Conforming is necessary when the views to 

be composed have different subjective perceptions of the 

system. These subjective views must be mapped to a 

common view. Combining consists primarily of merging 

conformed views. 

6. Topic V: User Interaction with 
Subjective Objects 

The User Interaction topic addressed the fact that both 

object builders and object users have a conception of an 

object, and the question of how subjects may affect this 

breakdown into builders and users. One speaker 

introduced the discussion: Jay Fenton of Electronic 

Communities. 

Dividing Objective from Subjective Knowledge 

Jay described his mission as one to create Global 

Cyberspace. Subjectivity is a critical concept to reach 

this goal. Global Cyberspace different points of view 

(avatars in different places), different times (network 

latency), different roles (a bone is a dogs way of 

fertilizing a lawn), and different paradigms. 

Most people are familiar with the model-view-controller 

idea, and its variation in which only two elements: (M 

and VC) are used. The Model is intended to represent the 

objective world (of trees and stuff) with particular laws 

of nature, as in the alternate reality kit Randy Smith. 

But subjectivity arises from the existence of many 

perceptors (brains) each of which has its own Model. 

Here, there is a “relatively objective world” with 

“identities” that have “attached properties” to which 

“analytical rules”, “objective rules”, and the like apply. 

We need to understand how to characterize the 

phenomenological boundary between the external world 

and the internal worlds. 

7. General Discussion 

based on context of use, different appearances of an 

object”, noting that there is a breakdown of the 

monolithic class structures. Donald Cowan observed that 

one use of subjectivity is to be able to reference arbitrary 

collections of objects and attribute appropriate behavior 

to those collections through added, context sensitive 

interfaces. Ian Simmonds pointed out that certain things 

are subjectively explicit if you can directly name and pull 

out those parts of the system - that it’s a modularity 

question. Hafedh Mili commented that subjectivity allows 

people to develop applications separately and to put them 

together. Ian Holland noted that the exact meaning of 

“subject” varies according to which design method is 

being used. Dirck Riehl objects to the use of the term 

“subjectivity” since we are transferring meanings about 

subjectivity from our other experiences, perhaps 

somewhat inappropriately. Don observed that we’re 

seeing a number of implementations of the same concept. 

He can see the foam but feels that it is not distilling into a 

firm set of concepts. Hafedh Mili agreed with Ian that 

subjectivity can be an excuse for sloppy modeling, but 

should not encourage it. Hafedh suggested that 

preplanning the use of different names for the same thing 

when appearing in different contexts can be a good idea. 

Don noted that we need to raise the level of abstraction in 

programming. Bill pointed out that, after all, subjects are 

to be a higher-level packaging construct. Don said that 

aiming at the issue of composition is critical. Ian 

Simmonds noted that composing from smaller elements is 

more powerful than decomposing from larger ones. One 

often can’t take apart for reuse those things that are 

already glued together too strongly. 

Harold Ossher raised the question: “What make a system 

‘subjective’: multiple interfaces per objects, additional 

dispatch criteria, view synthesis, ‘something different’ 

122 Austin, TX October 1519,199s 


