
Testing Smalltalk Applications

Report by Barbara Yates, Bytesmitbs

Many of the problems encountered in testing Smalltalk
applications are similar to the problems encountered in
testing any software system: how to encourage
(managerially) an adequate testing process, how to
define test plans and test cases, how to test the tests,
etc. One major difference in testing a Smalltalk
application, however, is the role the development
environment plays in the testing process. On one hand,
the development environment fosters early and
continuous testing, and eases the development of tools
that support testing. On the other hand, developers
tend to write code and add features more quickly
(sometimes even changing the compiler/run-time
environment) which complicates the introduction of a
testing process that adequately balances the cost of
testing with the cost of releasing a product.

Are all Smalltalk testing problems, then, managerial
problems that could be solved by the introduction of
suitable processes? The answer seems to be no. A
greater understanding of the types of problems arising
at different stages of the development process that can
be used to develop tools and code inspection checklists
are needed. More understanding of the role of
coverage tools and templates for defining
interfaces/APIs (and hence test plans) are also
required. A need for more general tools such as GUI
testing tools, problem reporting systems, etc., was also
identified.

Workshop Organizers

Barbara Yates, Bytesmiths
<barbam.bytesmiths@acm.org>

Jan Steinman, Bytesmiths <jan.bytesmiths@acm.org>
Gail Murphy, Univ. of Washington

<gmurphy@cs.washington.edu>
Mark Murphy, Consultant

~71202.2241 @compuserve.com>
Gray Huggins, Texas Instruments <huggins@works.ti.com>

Motivators

Many organizations are jumping on the Smalltalk
bandwagon, hoping to reap the many benefits ascribed
to OOT and Smalltalk in particular. Those who have
already worked hard to bring a product written in
Smalltalk to successful release have been forced to
come up with their own solutions for how to assure the
quality of their product.

The scarcity of literature (particularly how-to
information) and tools to support testing is disturbing,
especially to organizations beginning a Smalltalk
project. Our goals for organizing the workshop were
to: (1) Learn about the current state of the art in testing
Smalltalk applications. (2) Share what we’ve done on
our projects (process, tools, classes).

Process we used

Participants submitted position papers on the themes
of tools, testing strategies, management buy-in, GUI
testing, multi-platform testing, how you handle third-
party or reused classedfiameworks with respect to
testing, fulfilling testing requirements of internal and
external standards bodies and integrating those
requirements into the 00 development process. In
advance of the conference, each participant was
responsible for reading the papers posted on the
workshop’s web page. Timing is everything. We timed
every part of the agenda, and when we slipped and ran
a bit late we compensated later and were able to
accomplish all of our goals for the day. To fit in as
much discussion and idea-generation as possible,
participants were asked to prepare slides showing their
main points, and were limited to five minutes each to
present their slides. Papers were grouped by subject,
and each group of papers was presented like a panel,
with all questions reserved until the full panel had
presented. Each “panel” was followed by a session of
what we called “list work”. One of the organizers

Addendum to the Proceedings OOPSLA ‘95 143

http://crossmark.crossref.org/dialog/?doi=10.1145%2F260111.260269&domain=pdf&date_stamp=1995-10-01

acted as moderator while two scribes captured what
the participants felt were strengths or “good things”
and weaknesses or “bad things” about what the
presenters had just discussed. These lists were hung on
the walls of the workshop room until we ultimately
had papered the room and the doors. In the afternoon
we distilled the ideas we had written on the lists in the
morning and came up with four discussion groups. We
spent some time in the afternoon discussing costly
bugs we had found on our projects and what we could
learn from that experience. Three of the participants
gave live demos of tools that they had developed
which aid in the testing process. These demos were of
the Bytesmiths Task Management (defect, tracking)
tools, the MCG Software’s OTF (An Object Testing
Framework), and the internal tools used by IBM to test
VisualAge and IBM Smalltalk.

Highlights from the panels

The position papers were distilled into a few slides
each and presented in panel groups as follows:
Process, Experience Reports; What Smalltalk Testing
Means; Theory, Techniques, Patterns; and
Frameworks and Tools. These are some of the points
raised during the panel presentations.

l Role of “bugflx checker”: reviews all code
changes made to fix a bug, and 20-30% of the time
they find a possible problem with the changes. The
checker is not the submitter.

l No third-party tool is adequate for automated GUI
testing on all platforms on which the product runs.
Instead of automated tests, test scripts are
followed.

l Relative amount of developer time spent on testing
is 40-50% during phase in which test cases are
eing written; testing drops to 20% of the time
when the product is in maintenance.

l “YOU CLUI’t test without specs” - many presenters

mentioned lack of written specifications as a major
problem.

l There was general agreement that interfaces need
to be tested, with emphasis the “the contract’s the
thing!”

144 Austin, TX

’ Use of test coverage analyzers is recommended.

l Use cases can form the basis for test cases.

l Use a tool to perform static analysis of the code to
find complexity, then target testing at the complex
parts.

l Use of assertions was recommended by one
presenter, but it is necessary that the assertions be
easy to remove.

l Some Smalltalk dialects do not include compile-
time or batch modes of determining messages sent
but not implemented, so some participants have
developed checkers to do such tests. Another sort
of check that is performed is type-inference for
messages sent to instance variables.

l Smalltalk developers do a tremendous amount of
informal testing. There seems to be a need to
capture the informal tests that developers write.
Often “formalized” testing takes place too late.
Test suites, like source code, need to be managed,
versioned, and controlled.

l The single largest factor in testing is not testing,
but management. (This sentiment was echoed by
all participants.)

l Performing cluster and class tests cuts the number
of bugs that are found later.

l It is worthwhile to classify the patterns used in
qesting. There will be a book published soon on
this subject.

l The Smalltalk archives at UIUC will soon contain
a “Style Checker” tool that detects classic
Smalltalk bugs and points out possible errors
according to some rules about error-prone coding
styles.

l For internal use, the ParcPlace Portland office
developed a TestCoverage Analyzer and
TestWorks toolset. Unfortunately, there are no
plans to productize these tools.

October 1519,1995

l The IBM folks have developed in-house tools to
aid in testing VisualAge, IBM Smalltalk, and
third-party developed components. These are
prototype tools, with no announced plans to
productize them.

l Model VS. GUI Testing - PardciPanm disagreed
about their relative importance. Bottom line is that
you must test both, the problem is determining
what types and coverage of testing will reduce
risks of software failure to an acceptable level.

Conclusions from costly bugs discussion

All participants were asked to be prepared to describe
a costly bug from their own Smalltalk projects. About
half of the participants talked about their costly bugs.
These are some of the lessons we took from their
descriptions:

1. Be very careful when tinkering with VMs and
third-party code.

2. Integrate frequently and use incremental
development.

3. Don’t be blinded by technology; keep tabs on the
process.

4. Performance tune only when needed
5. Don’t ship prototypes.
6. Have other people inspect problems.
7. Specification bugs are still bugs (use detailed

specs/use cases).

Group discussions

After lunch we chose four “hot topics” from the many
items that were captured in our morning sessions of
list work and separated into groups to discuss them. A
summary of those discussions follows.

Management issues
Experience has been that when schedule pressures
mount, often it is the testing that is short-changed.
Kevin HaaIand told us that at OTI, any developer can
say “we can’t ship this.” They strive for consensus.
One participant observed that it is often marketing
who decides when the product is ready to ship. They
are eager for the immediate cash-flow, and will pay

what they must for maintenance later. One concern
developers have is that their perception of the
priorities of bugs do not match their customers’
priorities. A participant said that although there is a lot
of lip service paid to testing, he finds that he has to
“sneak quality in.” Developers versus external QA
groups were discussed. At OTI the developers do QA.
New hires run test cases to help them become familiar
with the code. They also act as naive users and find a
lot of GUI bugs. An estimate is that OTI gets 60%
coverage of their GUI by following test scripts. When
OTI gets a customer-reported bug, they immediately
write a use case for it and an automated test. One
developer writes the use cases and test cases, another
implements the feature. OTI prefers to cut features to
allow sufficient testing time. The group discussed
what should be in the image under test, both during
end-of-cycle incremental development and at system
test time. It is important to test the runtime,
productized image. The image should contain only the
product plus the test cases.

Conclusions

Who should decide when the product is ready for
release, marketing or engineering? We lean toward a
consensus, with clear criteria for judging release-
readiness. Each incremental development cycle has a
testing phase which should use as close to the delivery
environment as possible. Test plan must be written
early, and it must be based upon written specifications.
There is a need for both developers to test and for a
separate QA group for the system testing. The whole
team follows the product to the end.

Black box, white box, gray box?

As the discussion progressed we agreed upon
definitions of the terms. Black box testing (BBT) is
interface based; it assumes no knowledge of nor access
to the implementation. Gray box testing (GBT) is also
interface based but it uses knowledge of the
implementation (no access to implementation’s private
state). White box testing (WBT) can access private
state and makes use of implementation knowledge.

You need stable interfaces in order to build tests. BBT
is easier to maintain because it tests stable interfaces.
Results of coverage analysis can be fed back into the

Addendum to the Proceedings OOPSLA ‘95 145

test development process. While we sort of called
these GBT, this is just a way of thinking about feeding
implementation information into the process of
developing tests - they are still BBT. New releases of
the system under test, that support the same API, will
not invalidate BBT -however they may invalidate
coverage assumptions - coverage needs to be
rechecked.

The question was raised as to the adequacy of BBT.
They can be inadequate because certain important
behaviors are often not captured in the API
specifications. As these behaviors are discovered, this
information should be fed back into the API
specification.

WBT are to be considered a power tool - you get a
lot of leverage per amount of code, as compared to
BBT, but over time you may find WBT are too
expensive to maintain. In fact, because of the pressures
of release cycles, they may not get maintained at all,
making them obsolete. BBT/GBT are more likely to
still be useful, even if they are not maintained.

Conclusions
Start out with a full suite of BBT based on interfaces,
analyze coverage, tweak/add more BBT to get good
coverage, and use WBT where it is impractical to fully
test with a BBT interface approach. As general goals,
try to have most of the test cases be BBT because the
maintenance costs are lower.

Developing a taxonomy of bugs

We aren’t satisfied with the current state of the art in
testing Smalltalk user interfaces. We are also aware
that we need to improve our stress-testing of Smalltalk
applications. There is a definite need for style guides
and good test procedures.

This group drafted a list of commonly detected
Smalltalk bugs. It was agreed that having such a list
could improve the quality of Smalltalk code in several
ways: code reviewers could look for these common
bugs when doing their code-reading, and automated
checks performed by tools such as the Style Checker
developed by John Brant could look for some of the
common bugs. The list started with the bugs that the
Style Checker already checks, and then the group

members added to it, dividing the bugs into broad
categories of model and user interface defects. Here
are the lists they developed.

Model
1. Typographical errors
2. Syntax errors
3. Failure to initialize
4. Type errors
5. Inverse-Bug. Don’t fix the bug, fix around the

bug
6. Misuse of exceptions
7. Failure to separate model from GUI code
8. Misuse / confusion of #super and #self
9. Double initialization

10. Duplicate execution
11. Forgetting to return value
12. Code depending on result of an #add:
13. Modifying a collection while iterating it
14. Forgetting to remove <self halt>
15. Accidental overriding of special methods (e.g.,

#class) ’
16. When allowing VisualWorks to declare

temporary variables, mistakenly causing an
instance variable to be used when it should be a
method temporary variable.

17. Get iffrue:[] wrong way around: when ifFalse:[]
should have been used instead

18. Improper scoping of block temporaries
19. Creation of objects in a loop
20. Global references to objects: causes memory

leaks
21. State based errors (e.g., should keep code

sequence free where ever possible)
22. Failure to kill caches
23. Copy replication issues
24. Usage of data structures (e.g., arrays) instead of

objects
25. Modification of literal arrays
26. Assignment of a literal to a class (e.g.,

Array := 1)
27. Omission of #yourself in cascading
28. Failure to call <super initialize> in an #initialize

method
29. Inconsistent method behavior
30. Incorrect control structures. Examples:

146 Austin, TX October 15-19, 1995

31.

32.

33.

34.

35.

[1 to: aCollection size] do: [....I.
(x c y) whileTrue: [....I
[x isBig] iffrue: [....I.

Failure to implement a #hash method when an
equality operator is overridden
Assuming that an accessor method answers the
original version of a collection: it may be a copy.
Usage of an explicit class name, rather than <self
class> in a method
Collection bound errors with fixed size
collections
One off errors

User interface
1. Obtaining extra windows when opening a dialog

too quickly
2. Tabbing: incorrect order, absence of, changing of

sequence
3. No formatting of fields
4. Failure to specify “hot” keys
5. Not adequately managing screen resolution,

which can lead to windows which are too large,
or misplacing of fields and labels

6. Incorrect spelling of fields
7. Incorrect casing of fields
8. Inconsistent usage of labels on top or before

fields
9. Incorrect usage of fonts

10. Inconsistent usage of colors
11. Too many widgets on window
12. Aesthetic issues
13. Failure to correctly grey out or disable fields,

buttons, or menus
14. Damage painting or refreshing
15. “Cheese”: Dropping pixels on the screen
16. VisualWorks scrolling problems
17. Incorrect updating of panes
18. Refresh problems: too many, too few
19. Failure to call superclass #close method

What is the role of coverage testing?

This discussion began by centering on coverage
analysis tools and their benefits, and evolved to
include the testing process in general. Coverage

analysis is a tool for measuring code coverage by tests

and identifying deficiencies. The results can help with
risk reduction. It does not verify test completeness. It
should be used as an adjunct to other testing
techniques. It does not verify pre/post conditions.

The group then moved onto the quality of the test
themselves. How can we best verify the tests? Some
testing is done by executing tests written in Smalltalk.
Other testing involves manually following the steps in
a test script. Inspections and reviews of tests must take
place regardless of the medium. But one can’t tell if
tests are good without a specification.

Conclusions

Regardless of whether tests are written in Smalltalk,
are scripts, or something else, the process of validating
the test must take place. Maintenance, training of the
testers, and other issues have a bearing on the choice
of Smalltalk code or test scripts.

Results of list work

At the end of the day we synthesized the many items
on our lists into two short lists. The areas we all agreed
need the most improvement in Smalltalk testing are:

l Lack of process: The newness of 00 and the
changes to the development process appear to
negatively impact testing. Testing is not being
given sufficient attention.

l Lack of discipline: Managers do not appear to be
enforcing their quality assurance process (when
they have one). There also must be specifications;
and test plans must be written and reviewed.

l There is no standard way to specify interfaces
(API). Without knowing the “contract”, good tests
of the interfaces (especially black box tests)
cannot be written.

l Measurement: There is insufficient measurement
of quality by projects. Lack of data makes it very
difficult or impossible to develop quality metrics.

l Vendors don’t perceive that the testing tool market
is viable (they develop test tools and men keep
them in-house).

The areas that we agreed are the strongest and biggest

Addendum to the Proceedings OOPSLA ‘95 147

assets for Smalltalk testing are:

l The development environment fosters early
testing.

l The open development enivronment enables us to
build tools to support testing.

l Refactoring improves our implementations. This
makes black box testing and regression testing
more important. At least some of the black box
tests should still be valid after refactoring.
Regression testing is needed to check the
refactoring.

l Some organizations have found that assigning
novices to test classes has provided the novices
with a good introduction to the organization’s
code.

What next?

The participants would like to see this workshop
repeated. We gave ourselves some tasks with that in
mind:

l Collect data on our projects regarding the kinds of
bugs we find. Also count the bugs per class, noting
the size of the class (in lines of code and number
of methods) and the number of message sends in
the defective code.

l Try to create a WWW site to collect Smalltalkers’
requirements for testing frameworks and tools.
Also collect requirements for defect tracking tools.

At the next workshop on Smalltalk testing, we think
the focus should include these topics:

l Recommendations for a set of tools and the
requirements for them

l Quality metrics

l Good examples of testing process

Acknowledgements

We wish to thank Gail Murphy, Phil Haynes, and
Dave Thomson for their invaluable assistance in
writing this report. Also, we especially appreciate Gail

Murphy’s efforts in creating and maintaining the
workshop’s web page.

Participants

John Brant, University of Illinois
Donald G. Firesmith, Knowledge Systems Corp.

Mark Foulkrod, IBM
Steve Goodman, USF&G
Kenneth R. Greene, Siemens Power Corp.
Kevin Haaland, Object Technology International (OTI)
Philip Haynes, Object Oriented Pty Ltd.
Leo Hsu, Management Strategies
Jeff McKenna, MCG Software, Inc.
Regina Obe, Management Strategies
Roxie Rochat, UniSQL
Michael Silverstein, IBM
Dave Thomson, Object Technology International (OTI)
Jay P. VanSant, Gemstone Systems
Charles Weir, Object Designers Ltd.

Web

The workshop position papers can be read at the
following web location:
http://www.bytesmiths.com/pubs/95StTestingWorkshopPapers

148 Austin, TX October 15-19,199s

