
Automatically Enforcing Quality in Ada Software

Mark Dowson, Marlstone Software Technology Inc

Ada Quality and Style (AQS), and any similar

comprehensive set of Ada programming style guidelines,

includes few guidelines that can h automatically enforced,

i.e., guidelines whose violation cart be reliably detected and

corrected without user intervention. Nonetheless, effective

and useful support can be provided to help Ada developei=s

comform to (or monitor conformance to) the majority of

guidelines. Over the last eighteen months, Marlstone

Software Technology has been developing an Ada Quality

Toolset (AQT) to provide such support.

Support for a Svieguide~me involves two dimensions:

detection of guideline violations and correction of the code

to eliminate tie violations. Dfienmt degrees of support for

both detection and correction m possible for different kinds

of guidelines. Depending on the guideline, an AQT tool may

be able to detect actual violations or only potential

violations. For example:

Detection of actual violations possible “Avoid exit

statements in while and for loops.”

Detectim of potential violations possible: “Provide a

way to avoid raising au exception.”

In the former case, all occurrences of exit statements in while

ad for loops can be detected and presented to the developer

either in the form of a report or interactively. In the latter

case, AQT can only present information about each

exception and the context in which it can be raised and

handled, to facilitate human judgement as to whether the

guideline has been violated.

AQT can support the correction of code to eliminate

guideline violations in a number of ways. Correction can be

automatic, semi-automatic, or manual. For example:

Automatic correction possible: “Minimize the context

(with) clauses in a package specification.”

Semi-automatic correction possible “Do not use

anonymous types.”

Permission to copy witbout fee all m pwt of this material is granted
provided that the copies sre not made or distributed for direct commercial
advantagq the ACM copyright notice and tbe title of the publication and
its date appear, and notk is given that cnpying is by permission of the
kmciation for Com@ing Machinery. To copy otherwise, or to
republish, requires a fee snd/or speeific permission.

@1993 ACM O-89791439-3 KJ3KJO06-168 $1.50

Only msnurtl correction possible: “Ensure elaboration

of an entity before using it, Use function calls in

declarations cautiously.”

In the first case, AQT can automatically eliminate

unnecessary context clauses or move them to the package

body. Automatic corrections of this kind are likely to be

performed incrementally, with the develo~r reviewing each

change. Other kinds of automatic corrections, e.g., those

involving source code presentation and layout, can be

performed in “batch” mode without user intervention.

In the second case, a developer must supply type names for

the detected anonymous types, but a tool can then insert the

names in the appropriate places in the source. In the third

case, while AQT can report potential violations of tie

guideline for human review, automated correction is not

practical (or necessarily desirable).

To allow AQT to work with a variety of compilers and

development environments, AQT is based upon ASIS, the

emerging staudard for representing Ada compilation

information. A set of information extraction, report

generation, and source transformation utilities reads the

contents of an ASIS library. These utilities provide the basis

for guideliie violation detection, violation reporting, and

both automatic and interactive transformations of source

code to conform to selected guidelines.

AQT is intended to be used as an integral part of the

development process, supporting the needs of a variety of

difterextt kinds of user including: programmers; software

maintainers and developers involved in reverse engineering,

inspection teamw software development managers; and

quality assurance engineers.

No tool can replace the need for careful design and

implementation. However, automated support can help

ensure qudty and consistency, automate tedious manual

tasks, and help engineers to check and review large vohumss

of source code methodically, to search for information and

certain classes of errors, and to improve the efficiency and

impact of human review.

168 1993 Washington Ada Symposium

http://crossmark.crossref.org/dialog/?doi=10.1145%2F260096.260357&domain=pdf&date_stamp=1993-06-28

