
ar
X

iv
:0

90
5.

07
68

v2
 [

cs
.D

S]
 1

5
M

ay
 2

00
9

Fully-Functional Static and Dynamic Succinct Trees

Kunihiko Sadakane∗ Gonzalo Navarro†

Abstract

We propose new succinct representations of ordinal trees, which have been studied exten-
sively. It is known that any n-node static tree can be represented in 2n+ o(n) bits and various
operations on the tree can be supported in constant time under the word-RAM model. How-
ever the data structures are complicated and difficult to dynamize. We propose a simple and
flexible data structure, called the range min-max tree, that reduces the large number of relevant
tree operations considered in the literature, to a few primitives that are carried out in constant
time on sufficiently small trees. The result is extended to trees of arbitrary size, achieving
2n + O(n/polylog(n)) bits of space. The redundancy is significantly lower than any previous
proposal. For the dynamic case, where insertion/deletion of nodes is allowed, the existing data
structures support very limited operations. Our data structure builds on the range min-max
tree to achieve 2n+O(n/ logn) bits of space and O(log n) time for all the operations. We also
propose an improved data structure using 2n+O(n log logn/ logn) bits and improving the time
to O(log n/ log logn) for most operations.

1 Introduction

Trees are one of the most fundamental data structures, needless to say. A classical representation
of a tree with n nodes uses O(n) pointers or words. Because each pointer must distinguish all the
nodes, it requires log n bits1 in the worst case. Therefore the tree occupies Θ(n log n) bits. This
causes a space problem for storing a large set of items in a tree. Much research has been is devoted
to reducing the space to represent static trees [19, 25, 26, 28, 15, 16, 5, 10, 7, 8, 21, 18, 2, 17, 35, 20, 9]
and dynamic trees [27, 33, 6, 1], achieving so-called succinct data structures for trees.

A succinct data structure stores objects using space close to the information-theoretic lower
bound, while simultaneously supporting a number of primitive operations on the objects in con-
stant time. Here the information-theoretic lower bound for storing an object from a universe with
cardinality L is logL bits because in the worst case this number of bits is necessary to distinguish
any two objects.

In this paper we are interested in ordinal trees, in which the children of a node are ordered. The
information-theoretic lower bound for an ordinal tree with n nodes is 2n−Θ(log n) bits because there

exist
(2n−1
n−1

)

/(2n − 1) = 22n/Θ(n
3
2) such trees [25]. The size of a succinct data structure storing

∗Department of Computer Science and Communication Engineering, Kyushu University. Motooka 744, Nishi-ku,
Fukuoka 819-0395, Japan. sada@csce.kyushu-u.ac.jp Work supported in part by the Grant-in-Aid of the Ministry
of Education, Science, Sports and Culture of Japan.

†Department of Computer Science, University of Chile. gnavarro@dcc.uchile.cl. Funded in part by Millennium
Institute for Cell Dynamics and Biotechnology (ICDB), Grant ICM P05-001-F, Mideplan, Chile.

1The base of logarithm is 2 throughout this paper.

1

http://arxiv.org/abs/0905.0768v2

an object from the universe is typically (1 + o(1)) log L bits. We assume that the computation
model is the word RAM with word length Θ(log n) in which arithmetic and logical operations on
Θ(log n)-bit integers and Θ(log n)-bit memory accesses can be done in constant time.

Basically there exist three types of succinct representations of ordinal trees: the balanced paren-
theses sequence (BP) [19, 25], the level-order unary degree sequence (LOUDS) [19, 8], and the
depth-first unary degree sequence (DFUDS) [5, 20]. An example of them is shown in Figure 1.
LOUDS is a simple representation, but it lacks many basic operations, such as the subtree size
of a given node. Both BP and DFUDS build on a sequence of balanced parentheses, the former
using the intuitive depth-first-search representation and the latter using a more sophisticated one.
The advantage of DFUDS is that it supports a more complete set of operations in constant time,
most notably going to the i-th child of a node. In this paper we focus on the BP representation,
and achieve constant time for a large set of operations, including all those handled with DFUDS.
Moreover, as we manipulate a sequence of balanced parentheses, our data structure can be used to
implement a DFUDS representation as well.

1.1 Our contributions

We propose new succinct data structures for ordinal trees encoded with balanced parentheses, in
both static and dynamic scenarios. For the static case, we obtain the following result.

Theorem 1 For any ordinal tree with n nodes, all operations in Table 1 except insert and delete
are carried out in constant time O(c2) with a data structure using 2n +O(n/ logc n) bits of space
on a Θ(log n)-bit word RAM, for any constant c > 0. The data structure can be constructed from
the balanced parentheses sequence of the tree, in O(n) time using O(n) bits of space.

The data structure improves upon the lower-order term in the space complexity of previous rep-
resentations. For example, the extra data structure for level ancestor requires O(n log log n/

√
log n)

bits [28], or O(n(log log n)2/ log n) bits2 [20], and that for child requires O(n/(log log n)2) bits [21].
Ours requires O(n/ logc n) bits for all of the operations.

For the dynamic case, the following theorem summarizes our results.

Theorem 2 On a Θ(log n)-bit word RAM, all operations on a dynamic ordinal tree with n nodes
can be carried out within the worst-case complexities given in Table 1, using a data structure that
requires 2n+O(n log log n/ log n) bits. Alternatively, they can be carried out in O(log n) time using
2n+O(n/ log n) bits of space.

The simplicity and space-efficiency of our data structures stem from the fact that any query
operation in Table 1 is reduced to a few basic operations on a bit vector, which can be efficiently
solved by a range min-max tree. This approach is different from previous studies in which each
operation needs distinct auxiliary data structures. Therefore their total space is the summation
of all the data structures. For example, the first succinct representation of BP [25] supported
only findclose, findopen, and enclose (and other easy operations) and each operation used different
data structures. Later, many further operations such as lmost leaf [26], lca [35], degree [7], child
and child rank [21], level ancestor [28], were added to this representation by using other types of
data structures for each. There exists another elegant data structure for BP supporting findclose,

2This data structure is for DFUDS, but the same technique can be also applied to BP.

2

findopen, and enclose [15]. This reduces the size of the data structure for these basic operations,
but still has to add extra auxiliary data structures for other operations.

Our approach is suitable for the dynamic maintenance of trees. Former approaches in the static
case use two-level data structures to reduce the size, which causes difficulties in dynamic case.
On the other hand, our approach using the range min-max tree is easily applied in dynamic case,
resulting in simple and efficient dynamic data structures.

Table 1: Operations supported by our data structure. The time complexities are for the dynamic
case; in the static case all operations are performed in constant time. The first group is composed
of basic operations, used to implement the others, but which could have other uses.

operation description time complexity
inspect(i) P [i] O(log n/ log logn)
findclose(i)/findopen(i) position of parenthesis matching P [i] O(log n/ log logn)
enclose(i) position of tightest open parent. enclosing node i O(log n/ log logn)
rank((i)/rank)(i) number of open/close parentheses in P [1..i] O(log n/ log logn)
select((i)/select)(i) position of i-th open/close parenthesis O(log n/ log logn)
rmqi(i, j)/RMQi(i, j) position of min/max excess value in range [i..j] O(log n/ log logn)
pre rank(i)/post rank(i) preorder/postorder rank of node i O(log n/ log logn)
pre select(i)/post select(i) the node with preorder/postorder i O(log n/ log logn)
isleaf (i) whether P [i] is a leaf O(log n/ log logn)
isancestor(i, j) whether i is an ancestor of j O(log n/ log logn)
depth(i) depth of node i O(log n/ log logn)
parent(i) parent of node i O(log n/ log logn)
first child(i)/last child(i) first/last child of node i O(log n/ log logn)
next sibling(i)/prev sibling(i) next/previous sibling of node i O(log n/ log logn)
subtree size(i) number of nodes in the subtree of node i O(log n/ log logn)
level ancestor(i, d) ancestor j of i such that depth(j) = depth(i)− d O(log n) or

O(d+ log logn/ logn)
level next(i)/level prev(i) next/previous node of i in BFS order O(log n/ log logn)
level lmost(d)/level rmost(d) leftmost/rightmost node with depth d O(log n) or

O(d+ log logn/ logn)
lca(i, j) the lowest common ancestor of two nodes i, j O(log n/ log logn)
deepest node(i) the (first) deepest node in the subtree of i O(log n/ log logn)
degree(i) number of children of node i O(log n/ log logn)
child(i, k) k-th child of node i O(log n/ log logn)
child rank(i) number of siblings to the left of node i O(log n/ log logn)
in rank(i) inorder of node i O(log n/ log logn)
in select(i) node with inorder i O(log n/ log logn)
leaf rank(i) number of leaves to the left of leaf i O(log n/ log logn)
leaf select(i) i-th leaf O(log n/ log logn)
lmost leaf (i)/rmost leaf (i) leftmost/rightmost leaf of node i O(log n/ log logn)
insert(i, j) insert node given by matching parent. at i and j O(log n/ log logn)
delete(i) delete node i O(log n/ log logn)

1.2 Organization of the paper

In Section 2 we review basic data structures used in this paper. In Section 3 we describe the main
ideas for our new data structures for ordinal trees. Sections 4 and 5 describe the static construction.

3

2 6

8

1

73 54

((()()())(()()))

1

((()((())))(()))
2 3 4 5 6 7 8

1

2
3 4 5

6
7 8

BP

DFUDS

Ordinal tree

1

110111011000000
2 3 4 56 7 8

LOUDS

Figure 1: Succinct representations of trees.

1212343432321232321210

(()((()())())(()())())

E
1/2 2/4 3/4 2/3 1/3 2/3 1/2 0/0m/M

1/4 1/3 0/2

0/4

P

a

b

c d e

f

g h i

j

k l

Figure 2: An example of the range min-max tree
using function π, and showing the m/M values.

In Sections 6 and 7 we give two data structures for dynamic ordinal trees. In Section 8 we conclude
and give future work directions.

2 Preliminaries

Here we describe the balanced parentheses sequence and basic data structures used in this paper.

2.1 Succinct data structures for rank/select

Consider a bit string S[0..n−1] of length n. We define rank and select for S as follows. rankc(S, i) is
the number of occurrences c ∈ {0, 1} in S[1..i], and selectc(S, i) is the position of the i-th occurrence
of c in S. Note that rankc(S, selectc(S, i)) = i and selectc(S, rankc(S, i)) ≤ i.

There exist many succinct data structures for rank/select [19, 24, 32]. A basic one uses n+ o(n)
bits and supports rank/select in constant time on the word RAM with word length O(log n).
The space can be reduced if the number of 1’s is small. For a string with m 1’s, there exists
a data structure for constant-time rank/select using log

(n
m

)

+ O(n log log n/ log n) = m log n
m +

O(m + n log log n/ log n) bits [32]. Recently [29] the extra space has been reduced to m log n
m +

O(n tt/ logt n + n3/4) bits, performing rank and select in O(t) time. This can be built in linear
worst-case time3.

A crucial technique for succinct data structures is table lookup. For small-size problems we
construct a table which stores answers for all possible sequences and queries. For example, for rank
and select, we use a table storing all answers for all 0,1 patterns of length 1

2 log n. Because there

exist only 2
1
2
logn =

√
n different patterns, we can store all answers in a universal table (i.e., not

3They use a predecessor structure by Pătraşcu and Thorup [30], more precisely their result achieving time
“lg ℓ−lgn

a
”, which is a simple modification of van Emde Boas’ data structure.

4

depending on the bit sequence) that uses
√
n · polylog(n) = o(n/polylog(n)) bits, which can be

accessed in constant time on a word RAM with word length Θ(log n).

2.2 Succinct tree representations

A rooted ordered tree T , or ordinal tree, with n nodes is represented by a string P [0..2n − 1] of
balanced parentheses of length 2n. A node is represented by a pair of matching parentheses (. . .)
and all subtrees rooted at the node are encoded in order between the matching parentheses (see
Figure 1 for an example). A node v ∈ T is identified with the position i of the open parenthesis
P [i] representing the node.

There exist a lot of succinct data structures for ordinal trees. Among them, the ones with
maximum functionality [9] support all the operations in Table 1, except insert and delete, in constant
time using 2n+O(n log log log n/ log log n)-bit space. Our static data structure supports the same
operations and reduces the space to 2n + O(n/polylog(n)) bits. In addition, ours is the first BP-
based structure achieving constant time for all those operations.

2.3 Dynamic succinct trees

We consider insertion and deletion of internal nodes or leaves in ordinal trees. In this setting, there
exist no data structures supporting all the operations in Table 1. The data structure of Raman
and Rao [33] supports, for binary trees, parent, left and right child, and subtree size of the current
node in the course of traversing the tree in constant time, and updates in O((log log n)1+ǫ) time.
Note that this data structure assumes that all traversals start from the root. Chan et al. [6] gave
a dynamic data structure using O(n) bits and supporting findclose and enclose, and updates, in
O(log n/ log log n) time. They also gave another data structure using O(n) bits and supporting
findclose, enclose, lca, leaf rank, leaf select, and updates, in O(log n) time.

3 Fundamental concepts

In this section we give the basic ideas of our ordinal tree representation. In the next sections we
build on these to define our static and dynamic representations.

We represent a possibly non-balanced4 parentheses sequence by a 0,1 vector P [0..n− 1] (P [i] ∈
{0, 1}). Each opening/closing parenthesis is encoded by (= 1,) = 0.

First, we remind that several operations of Table 1 either are trivial in a BP representation, or
are easily solved using enclose, findclose, findopen, rank, and select [25]. These are:

inspect(i) = rank1(P, i)− rank1(P, i− 1) (in case accessing P [i] is problematic)

isleaf (i) = [inspect(i+ 1) = 0]

isancestor (i, j) = i < j ∧ findclose(P, j) < findclose(P, i)

depth(i) = rank1(P, i)− rank0(P, i)
parent(i) = enclose(P, i)

pre rank(i) = rank1(P, i)

pre select(i) = select1(P, i)

4As later we will use these constructions to represent arbitrary chunks of a balanced sequence.

5

post rank(i) = rank0(P, i)

post select(i) = select0(P, i)

first child(i) = i+ 1 (if P [i+ 1] = 1, else i is a leaf)

last child(i) = findopen(P,findclose(P, i) − 1) (if P [i+ 1] = 1, else i is a leaf)

next sibling(i) = findclose(i) + 1 (if P [findclose(i) + 1] = 1, else i is the last sibling)

prev sibling(i) = findopen(i− 1) (if P [i− 1] = 1, else i is the first sibling)

subtree size(i) = (findclose(i) − i+ 1)/2

Hence the above operations will not be considered further in the paper. Let us now focus on a
small set of primitives needed to implement most of the other operations. For any function g(·) on
{0, 1}, we define the following.

Definition 1 For a 0,1 vector P [0..n − 1] and a function g(·) on {0, 1},

sum(P, g, i, j)
def
=

j
∑

k=i

g(P [k])

fwd search(P, g, i, d)
def
= min

j>i
{j | sum(P, g, i, j) = d}

bwd search(P, g, i, d)
def
= max

j<i
{j | sum(P, g, j, i) = d}

rmq(P, g, i, j)
def
= min

i≤k≤j
{sum(P, g, i, k)}

rmqi(P, g, i, j)
def
= argmin

i≤k≤j
{sum(P, g, i, k)}

RMQ(P, g, i, j)
def
= max

i≤k≤j
{sum(P, g, i, k)}

RMQi(P, g, i, j)
def
= argmax

i≤k≤j
{sum(P, g, i, k)}

The following function is particularly important.

Definition 2 Let π be a function such that π(1) = 1, π(0) = −1. Given P [0..n − 1], we define the
excess array E[0..n − 1] of P as an integer array such that E[i] = sum(P, π, 0, i).

Note that E[i] stores the difference between the number of opening and closing parentheses in
P [0..i]. When P [i] is an opening parenthesis, E[i] = depth(i) is the depth of the corresponding
node, and is the depth minus 1 for closing parentheses. We will use E as a conceptual device in our
discussions, it will not be stored. Note that, given the form of π, it holds that |E[i+ 1]−E[i]| = 1
for all i.

The above operations are sufficient to implement the basic navigation on parentheses, as the
next lemma shows. Note that the equation for findclose is well known, and the one for level ancestor
appeared in [28], but we give proofs for completeness.

Lemma 1 Let P be a BP sequence encoded by {0, 1}. Then findclose, findopen, enclose, and
level ancestor can be expressed as follows.

findclose(i) = fwd search(P, π, i, 0)

6

findopen(i) = bwd search(P, π, i, 0)

enclose(i) = bwd search(P, π, i, 2)

level ancestor(i, d) = bwd search(P, π, i, d + 1)

Proof. For findclose, let j > i be the position of the closing parenthesis matching the opening
parenthesis at P [i]. Then j is the smallest index > i such that E[j] = E[i]− 1 = E[i− 1] (because
of the node depths). Since by definition E[k] = E[i − 1] + sum(P, π, i, k) for any k > i, j is the
smallest index > i such that sum(P, π, i, j) = 0. This is, by definition, fwd search(P, π, i, 0).

For findopen, let j < i be the position of the opening parenthesis matching the closing paren-
thesis at P [i]. Then j is the largest index < i such that E[j− 1] = E[i] (again, because of the node
depths)5. Since by definition E[k − 1] = E[i] − sum(P, π, k, i) for any k < i, j is the largest index
< i such that sum(P, π, j, i) = 0. This is bwd search(P, π, i, 0).

For enclose, let j < i be the position of the opening parenthesis that most tightly encloses the
opening parenthesis at P [i]. Then j is the largest index < i such that E[j − 1] = E[i] − 2 (note
that now P [i] is an opening parenthesis). Now we reason as for findopen to get sum(P, π, j, i) = 2.

Finally, the proof for level ancestor is similar to that for enclose. Now j is the largest index < i
such that E[j − 1] = E[i] − d− 1, which is equivalent to sum(P, π, j, i) = d+ 1. ⊓⊔

We also have the following, easy or well-known, equalities:

lca(i, j) = max(i, j), if isancestor(i, j) or isancestor(j, i)

parent(rmqi(P, π, i, j) + 1), otherwise [34]

deepest node(i) = RMQi(P, π, i,findclose(i))

level next(i) = fwd search(P, π,findclose(i), 0)

level prev(i) = findopen(bwd search(P, π, i, 0))

level lmost(d) = fwd search(P, π, 0, d)

level rmost(d) = findopen(bwd search(P, π, n − 1,−d))

We also show that the above functions unify the algorithms for computing rank/select on 0,1
vectors and those for balanced parenthesis sequences. Namely, let φ,ψ be functions such that
φ(0) = 0, φ(1) = 1, ψ(0) = 1, ψ(1) = 0. Then the following equalities hold.

Lemma 2 For a 0,1 vector P ,

rank1(P, i) = sum(P, φ, 0, i)

select1(P, i) = fwd search(P, φ,−1, i)
rank0(P, i) = sum(P,ψ, 0, i)

select0(P, i) = fwd search(P,ψ,−1, i)

Therefore, in principle we must focus only on the following set of primitives: fwd search,
bwd search, sum, rmqi, RMQi, degree, child, and child rank, for the rest of the paper.

Our data structure for queries on a 0,1 vector P is basically a search tree in which each leaf
corresponds to a range of P , and each node stores the maximum and the minimum values of prefix
sums for the concatenation of all the ranges up to the subtree rooted at that node.

5Note E[j]− 1 = E[i] could hold at incorrect places, where P [j] is a closing parenthesis.

7

Definition 3 A range min-max tree for a vector P [0..n−1] and a function g(·) is defined as follows.
Let [ℓ1..r1], [ℓ2..r2], . . . , [ℓq..rq] be a partition of [0..n − 1] where ℓ1 = 0, ri + 1 = ℓi+1, rq = n − 1.
Then the i-th leftmost leaf of the tree stores the sub-vector P [ℓi..ri], as well as e[i] = sum(P, g, 0, ri),
m[i] = e[i−1]+rmq(P, g, ℓi, ri) andM [i] = e[i−1]+RMQ(P, g, ℓi, ri). Each internal node u stores in
e[u]/m[u]/M [u] the last/minimum/maximum of the e/m/M values stored in its child nodes. Thus,
the root node stores e = sum(P, g, 0, n − 1), m = rmq(P, g, 0, n − 1) and M = RMQ(P, g, 0, n − 1).

Example 1 An example of range min-max tree is shown in Figure 2. Here we use g = π, and thus
the nodes store the minimum/maximum values of array E in the corresponding interval.

4 A simple data structure for moderate-size trees

Building on the previous ideas, we give a simple data structure to compute fwd search, bwd search,
and sum in constant time for arrays of moderate size. Then we will consider further operations.

Let g(·) be a function on {0, 1} taking values in {1, 0,−1}. We call such a function ±1
function. Note that there exist only six such functions where g(0) 6= g(1), which are indeed
φ,−φ,ψ,−ψ, π,−π.

Let w be the bit length of the machine word in the RAM model, and c ≥ 1 any constant. We
have a (not necessarily balanced) parentheses vector P [0, n − 1], of moderate size n ≤ N = wc.
Assume we wish to solve the operations for an arbitrary ±1 function g(·), and let G[i] denote
sum(P, g, 0, i), analogously to E[i] for g = π.

Our data structure is a range min-max tree TmM for vector P and function g(·). Let s = 1
2w.

We imaginarily divide vector P into ⌈n/s⌉ blocks of length s. These form the partition alluded in
Definition 3: ℓi = s · (i − 1). Thus the values m[i] and M [i] correspond to minima and maxima of
G within each block, and e[i] = G[ri].

Furthermore, the tree will be k-ary and perfectly balanced, for k = Θ(w/ logw). Thus the
leaves store all the elements of arrays m and M . Because it is perfect, the tree can be represented
just by three integer arrays e′[0..O(n/s)], m′[0..O(n/s)], and M ′[0..O(n/s)], like a heap.

Because −wc ≤ e′[i],m′[i],M ′[i] ≤ wc for any i, arrays e′, m′ and M ′ occupy at most (i.e., for
k = 2) 2ns · ⌈log(2wc +1)⌉ = O(nc logw/w) bits each. The depth of the tree is ⌈logk(n/s)⌉ = O(c).

The following fact is well known; we reprove it for completeness.

Lemma 3 Any range [i..j] ⊆ [0..n − 1] in TmM is represented by a direct sum of O(ck) subranges
where the leftmost and rightmost ones may be subranges of leaves of TmM , and the others correspond
to whole tree nodes.

Proof. Let a be the smallest value such that i ≤ ra and b be the largest such that j ≥ ℓb. Then
the range [i..j] is covered by the direct sum [i..j] = [i..ra][ℓa+1..ra+1] . . . [ℓb..j] (we can discard the
special case a = b, as in this case we have already one leaf covering [i..j]). Then [i..ra] and [ℓb..j]
are the leftmost and rightmost leaf subranges alluded in the lemma; all the others are whole tree
nodes.

It remains to show that we can reexpress this direct sum using O(ck) tree nodes. If all the k
children of a node are in the range, we replace the k children by the parent node, and continue
recursively level by level. Note that if two parent nodes are created in a given level, then all the
other intermediate nodes of the same level must be created as well, because the original/created
nodes form a range at any level. At the end, there cannot be more than 2k − 2 nodes at any level,

8

because otherwise k of them would share a single parent and would have been replaced. As there
are c levels, the obtained set of nodes covering [i..j] is of size O(ck). ⊓⊔

Example 2 In Figure 2 (where s = k = 3), the range [3..18] is covered by [3..5], [6..8], [9..17], [18..18].
They correspond to nodes d, e, f , and a part of leaf k, respectively.

Computing fwd search(P, g, i, d) is done as follows (bwd search is symmetric). First we check if
the block of i, [ℓk, rk] for k = ⌊i/s⌋, contains fwd search(P, g, i, d) with table lookup using vector P ,
by precomputing a simple universal table of 2ss2 log s = O(

√
2ww2 logw) bits. If so, we are done.

Else, we compute the global target value we seek, d′ = G[i] + d = e[k] − sum(P, g, i + 1, rk) + d
(again, the sum inside the block is done in constant time using table lookup). Now we divide the
range [rk + 1, n − 1] into subranges I1, I2, . . . represented by range min-max tree nodes u1, u2, . . .
as in Lemma 3. Then, for each Ij, check if the target value d′ is between m[uj] and M [uj], the
minimum and maximum values of subrange Ij . Let Ik be the first j such that m[uj] ≤ d′ ≤M [uj],
then fwd search(P, g, i, d) lies within Ik. If Ik corresponds to an internal tree node, we iteratively
find the leftmost child of the node whose range contains d′, until we reach a leaf. Finally, we find
the target in the block corresponding to the leaf by table lookups, using P again.

Example 3 In Figure 2, where G = E and g = π, computing findclose(3) = fwd search(P, π, 3, 0) =
12 can be done as follows. Note this is equivalent to finding the first j > 3 such that E[i] =
E[3− 1] + 0 = 1. First examine the node ⌊3/s⌋ = 1 (labeled d in the figure). We see that the target
1 does not exist within d after position 3. Next we examine node e. Since m[e] = 3 and M [e] = 4, e
does not contain the answer either. Next we examine the node f . Because m[f] = 1 and M [f] = 3,
the answer must exist in its subtree. Therefore we scan the children of f from left to right, and
find the leftmost one with m[·] ≤ 1, which is node h. Because node h is already a leaf, we scan the
segment corresponding to it, and find the answer 12.

The sequence of subranges arising in this search corresponds to a leaf-to-leaf path in the range
min-max tree, and it contains O(ck) ranges according to Lemma 3. We show now how to carry out
this search in time O(c2) rather than O(ck).

According to Lemma 3, the O(ck) nodes can be partitioned into O(c) sequences of sibling nodes.
We will manage to carry out the search within each such sequence in O(c) time. Assume we have
to find the first j ≥ i such that m[uj] ≤ d′ ≤M [uj], where u1, u2, . . . , uk are sibling nodes in TmM .
We first check if m[ui] ≤ d′ ≤ M [ui]. If so, the answer is ui. Otherwise, if d′ < m[ui], the answer
is the first j > i such that m[uj] ≤ d′, and if d′ > M [ui], the answer is the first j > i such that
M [uj] ≥ d′.

Lemma 4 Let u1, u2, . . . a sequence of TmM nodes containing consecutive intervals of P . If g(·) is
a ±1 function and d < m[u1], then the first j such that d ∈ [m[uj],M [uj]] is the first j > 1 such
that d ≥ m[uj]. Similarly, if d > M [u1], then it is the first j > 1 such that d ≤M [uj].

Proof. Since g(·) is a ±1 function and the intervals are consecutive, M [uj] ≥ m[uj−1] − 1 and
m[uj] ≤ M [uj−1] + 1. Therefore, if d ≥ m[uj] and d < m[uj−1], then d < M [uj] + 1, thus
d ∈ [m[uj],M [uj]]; and of course d 6∈ [m[uk],M [uk]] for any k < j as j is the first index such that
d ≥ m[uj]. The other case is symmetric. ⊓⊔

9

Thus the problem is reduced to finding the first j > i such that m[j] ≤ d′, among (at most) k
sibling nodes (the case M [j] ≥ d′ is symmetric). We build a universal table with all the possible
sequences of k/c m[·] values and all possible −wc ≤ d′ ≤ wc values, and for each such sequence and
d′ we store the first j in the sequence such that m[j] ≤ d′ (or we store a mark telling that there
is no such node in the sequence). Thus the table has log(2wc + 1)(k/c)+1 entries, and log(1 + k/c)
bits per entry. By choosing the constant of k = Θ(w/ logw) so that k ≤ cw

2 log(2w+1) , the total

space is O(
√
2wwc) (and the arguments for the table fit in a machine word). With the table, each

search for the first node in a sequence of siblings can be done by chunks of k/c nodes, which takes
O(k/(k/c)) = O(c) rather than O(k) time, and hence the overall time is O(c2) rather than O(ck).
Note that k/c values to input to the table are stored in contiguous memory, as we store the m′[·]
values in heap order. Thus we can access any k/c consecutive children values in constant time. We
use an analogous table for M [·].

Finally, the process to solve sum(P, g, i, j) in O(c2) time is simple. We descend in the tree up
to the leaf [ℓk, rk] containing j. In the process we easily obtain sum(P, g, 0, ℓk − 1), and compute
the rest, sum(P, g, ℓk, j), in constant time using a universal table we have already introduced. We
repeat the process for sum(P, g, 0, i − 1) and then subtract both results.

We have proved the following lemma.

Lemma 5 In the RAM model with w-bit word size, for any constant c ≥ 1 and a 0,1 vector P of
length n < wc, and a ±1 function g(·), fwd search(P, g, i, j), bwd search(P, g, i, j), and sum(P, g, i, j)
can be computed in O(c2) time using the range min-max tree and universal lookup tables that require
O(
√
2ww2 logw) bits.

4.1 Supporting range minimum queries

Next we consider how to compute rmqi(P, g, i, j) and RMQi(P, g, i, j).

Lemma 6 In the RAM model with w-bit word size, for any constant c ≥ 1 and a 0,1 vector P
of length n < wc, and a ±1 function g(·), rmqi(P, g, i, j) and RMQi(P, g, i, j) can be computed in
O(c2) time using the range min-max tree and universal lookup tables that require O(

√
2ww2 logw)

bits.

Proof. Because the algorithm for RMQi is analogous to that for rmqi, we consider only the
latter. From Lemma 3, the range [i, j] is expressed by a direct sum of O(ck) subranges, each
corresponding to some node of the range min-max tree. Let µ1, µ2, . . . be the minimum values
of the subranges. Then the minimum value in [i, j] is the minimum of them. The minimum
values in a subrange are stored in array m′, except for at most two subranges corresponding to
leaves of the range min-max tree. The minimum values of such leaf subranges are found by table
lookups using P , by precomputing a universal table of O(

√
2ww2 logw) bits. The minimum value

of a subsequence µℓ, . . . , µr which shares the same parent in the range min-max tree can be also
found by table lookups. There are at most k such values, and for consecutive k/c values we use
a universal table to find their minimum, and repeat this c times, as before. The size of the table
is O(

√
2wk log k) = O(

√
2ww) bits (the k factor is to account for queries that span less than k/c

blocks, so we can compute the minimum up to some value in the table, for any such value).
Let µ be the minimum value we find in µ1, µ2, . . . , µm. If there is a tie, we choose the leftmost

one. Let k be the index attaining this minimum. If µ corresponds to an internal node of the range

10

min-max tree, we traverse the tree from the node to a leaf having the leftmost minimum value.
At each step, we find the leftmost child of the current node having the minimum, in O(c) time
using our precomputed table. We repeat the process from the resulting child, until reaching a leaf.
Finally, we find the index of the minimum value in the leaf, in constant time by a lookup on our
other universal table. The overall time complexity is O(c2). ⊓⊔

4.2 Other operations

The previous development on fwd search, bwd search, rmqi, and RMQi, has been general, for any
g(·). Applied to g = π, they solve a large number of operations, as shown in Section 3. For the
remaining ones we focus directly on the case g = π.

It is obvious how to compute degree(i), child(i, q) and child rank(i) in time proportional to the
degree of the node. To compute them in constant time, we add another array n′[·] to the data
structure. In the range min-max tree, each node stores the minimum value of a subrange for the
node. In addition to this, we also store in n′[·] the number of the minimum values of each subrange
in the tree.

Lemma 7 The number of children of node i is equal to the number of occurrences of the minimum
value in E[i+ 1,findclose(i)− 1].

Proof. Let d = E[i] = depth(i) and j = findclose(i). Then E[j] = d − 1 and all excess values
in E[i + 1..j − 1] are ≥ d. Therefore the minimum value in E[i + 1, j − 1] is d. Moreover, for
the range [ik, jk] corresponding to the k-th child of i, E[ik] = d + 1, E[jk] = d, and all the values
between them are > d. Therefore the number of occurrences of d, which is the minimum value in
E[i+ 1, j − 1], is equal to the number of children of i. ⊓⊔

Now we can compute degree(i) in constant time. Let d = depth(i) and j = findclose(i). We
partition the range E[i+1..j− 1] into O(ck) subranges, each of which corresponds to a node of the
range min-max tree. Then for each subrange whose minimum value is d, we sum up the number of
occurrences of the minimum value (n′[·]). The number of occurrences of the minimum value in leaf
subranges can be computed by table lookup on P , with a universal table using O(

√
2ww2 logw)

bits. The time complexity is O(c2) if we use universal tables that let us process chunks of k/c
children at once, that is, telling the minimum m[·] value within the sequence and the number of
times it appears. This table requires O(

√
2ww) bits.

Operation child rank(i) can be computed similarly, by counting the number of minima in
E[parent(i), i − 1]. Operation child(i, k) follows the same idea of degree(i), except that, in the
node where the sum of n′[·] exceeds k, we must descend until the range min-max leaf that contains
the opening parenthesis of the k-th child. This search is also guided by the n′[·] values of each
node, and is done also in O(c2) time.

For operations leaf rank , leaf select , lmost leaf and rmost leaf , we define a bit-vector P1[0, n−
1] such that P1[i] = 1 ⇐⇒ P [i] = 1 ∧ P [i + 1] = 0. Then leaf rank (i) = rank1(P1, i)
and leaf select(i) = select1(P1, i) hold. The other operations are computed by lmost leaf (i) =
select1(P1, rank1(P1, i− 1) + 1) and rmost leaf (i) = select1(P1, rank1(P1,findclose(i))).

We recall the definition of inorder of nodes, which is essential for compressed suffix trees.

11

Definition 4 ([35]) The inorder rank of an internal node v is defined as the number of visited
internal nodes, including v, in the left-to-right depth-first traversal, when v is visited from a child
of it and another child of it will be visited next.

Note that an internal node with k children has k − 1 inorders, so leaves and unary nodes have
no inorder. We define in rank (i) as the smallest inorder value of internal node i.

To compute in rank and in select , we use another bit-vector P2[0..n − 1] such that P2[i] =
1 ⇐⇒ P [i] = 0∧P [i+1] = 1. The following lemma gives an algorithm to compute the inorder of
an internal node.

Lemma 8 ([35]) Let i be an internal node, and let j = in rank (i), so i = in select(j). Then

in rank (i) = rank1(P2,findclose(P, i+ 1))

in select(j) = enclose(P, select1(P2, j) + 1)

Note that in select(j) will return the same node i for any its degree(i)− 1 inorder values.

Note that we need not to store P1 and P2 explicitly; they can be computed from P when needed.
We only need the extra data structures for constant-time rank and select, which can be reduced to
the corresponding sum and fwd search operations on the virtual P1 and P2 vectors.

4.3 Reducing extra space

Apart from vector P [0, n−1], we need to store vectors e′, m′,M ′, and n′. In addition, to implement
rank and select using sum and fwd search, we would need to store vectors e′φ, e

′
ψ, m

′
φ, m

′
ψ, M

′
φ,

and M ′
ψ which maintain the corresponding values for functions φ and ψ. However, note that

sum(P, φ, 0, i) and sum(P,ψ, 0, i) are nondecreasing, thus the minimum/maximum within the block
is just the value of the sum at the beginning/end of the block. Moreover, as sum(P, π, 0, i) =
sum(P, φ, 0, i) − sum(P,ψ, 0, i) and sum(P, φ, 0, i) + sum(P,ψ, 0, i) = i, it turns out that both
Mφ[i] = (ri + e[i])/2 and Mψ[i] = (ri − e[i])/2 are redundant; analogous formulas hold for e and
m and for internal nodes. Moreover, any sequence of k/c consecutive such values can be obtained,
via table lookup, from the sequence of k/c consecutive values of e[·], because the ri values increase
regularly at any node. Hence we do not store any extra information to support φ and ψ.

If we store vectors e′, m′, M ′, and n′ naively, we require O(nc log(w)/w) bits of extra space on
top of the n bits for P .

The space can be largely reduced by using a recent technique by Pătraşcu [29]. They define an
aB-tree over an array A[0..n− 1], for n a power of B, as a perfecly balanced tree of arity B, storing
B consecutive elements of A in each leaf. Additionally, a value ϕ ∈ Φ is stored at each node. This
must be a function of the corresponding elements of A for the leaves, and a function of the ϕ values
of the children, and of the subtree size, for internal nodes. The construction is able to decode the
B values of ϕ for the children of any node in constant time, and to decode the B values of A for
the leaves in constant time, if they can be packed in a machine word.

In our case, A = P is the vector, B = k is our arity, and our trees will be of size N =
Bc, which is slightly smaller than the wc we have been assuming. Our values are tuples ϕ ∈
〈−Bc,−Bc, 0,−Bc〉 . . . 〈Bc, Bc, Bc, Bc〉 encoding the m, M , n, and e values at the nodes, respec-
tively. We give next their result, adapted to our case.

12

Lemma 9 (adapted from Thm. 8 in [29]) Let Φ = (2B + 1)4c, and B be such that (B +
1) log(2B + 1) ≤ w

8c (thus B = Θ(w
c logw)). An aB-tree of size N = Bc with values in Φ can

be stored using N + 2 bits, plus universal lookup tables of O(
√
2w) bits. It can obtain the m, M ,

n or e values of the children of any node, and descend to any of those children, in constant time.
The structure can be built in O(N + w3/2) time, plus O(

√
2wpoly(w)) for the universal tables.

The “+w3/2” construction time comes from a fusion tree [14] that is used internally on O(w)
values. It could be reduced to wǫ time for any constant ǫ > 0 and navigation time O(1/ǫ), but we
prefer to set c > 3/2 to make it irrelevant.

These parameters still allow us to represent our range min-max trees while yielding the com-
plexities we had found, as k = Θ(w/ logw) and N ≤ wc. Our accesses to the range min-max
tree are either (i) partitioning intervals [i, j] into O(ck) subranges, which are easily identified by
navigating from the root in O(c) time (as the k children are obtained together in constant time);
or (ii) navigating from the root while looking for some leaf based on the intermediate m, M , n, or
e values.

Thus we retain all of our time complexities. The space, instead, is reduced to N +2+O(
√
2w),

where the latter part comes from universal tables. Note that our vector P must be exactly of length
N ; padding is necessary otherwise. Both the padding and the universal tables will lose relevance
for larger trees, as seen in the next section.

The next theorem summarizes our results in this section. We are able of handling trees of
Θ((w

c logw)
c) nodes, for any c > 3/2.

Theorem 3 On a w-bit word RAM, for any constant c > 3/2, we can represent a sequence P of
N = Bc parentheses, with sufficiently small B = Θ(w

c logw), computing all operations of Table 1 in

O(c2) time, with a data structure depending on P that uses N +2 bits, and universal lookup tables
(i.e., not depending on P) that use O(

√
2w) bits. The preprocessing time is O(N +

√
2wpoly(w))

(the latter being needed only once for universal tables) and the working space is O(N) bits.

In case we need to solve the operations that build on P1 and P2, we need to represent their
corresponding φ functions (as ψ is redundant). This can still be done with Lemma 9 using Φ =
(2B + 1)6c and (B + 1) log(2B + 1) ≤ w

12c . Theorem 3 applies verbatim.

5 A data structure for large trees

In practice, one can use the solution of the previous section for trees of any size, achieving
O(k lognw logk n) = O(logn

logw−log logn) = O(log n) time (using k = w/ log n) for all operations with

an extremely simple and elegant data structure (especially if we choose to store arrays m′, etc. in
simple form). In this section we show how to achieve constant time on trees of arbitrary size.

For simplicity, let us assume in this section that we handle trees of size wc in Section 4. We
comment at the end the difference with the actual size Bc handled.

For large trees with n > wc nodes, we divide the parentheses sequence into blocks of length wc.
Each block (containing a possibly non-balanced sequence of parentheses) is handled with the range
min-max tree of Section 4.

Let m1,m2, . . . ,mt; M1,M2, . . . ,Mt; and e1, e2, . . . , et; be the minima, maxima, and excess of
the t = ⌈2n/wc⌉ blocks, respectively. These values are stored at the root nodes of each TmM tree
and can be obtained in constant time.

13

5.1 Forward and backward searches on π

We consider extending fwd search(P, π, i, d) and bwd search(P, π, i, d) to trees of arbitrary size. We
focus on fwd search, as bwd search is symmetric.

We first try to solve fwd search(P, π, i, d) within the block j = ⌊i/wc⌋ of i. If the answer is
within block j, we are done. Otherwise, we must look for the first excess d′ = depth(i) + d in the
following blocks (see Section 5.2 for how to compute depth). Then the answer lies in the first block
r > j such that mr ≤ d′ ≤ Mr. Thus, we can apply again Lemma 4, starting at [mj+1,Mj+1]: If
d′ 6∈ [mj+1,Mj+1], we must either find the first r > j + 1 such that mr ≤ j, or such that Mr ≥ j.
Once we find such block, we complete the operation with a local fwd search(P, π, 0, d′−er−1) query
inside it.

The problem is how to achieve constant-time search, for any j, in a sequence of length t. Let
us focus on left-to-right minima, as the others are similar.

Definition 5 Let m1,m2, . . . ,mt be a sequence of integers. We define for each 1 ≤ j ≤ t the
left-to-right minima starting at j as lrm(j) = 〈j0, j1, j2, . . .〉, where j0 = j, jr < jr+1, mjr+1

< mjr ,
and mjr+1 . . . mjr+1−1 ≥ mjr .

The following lemmas are immediate.

Lemma 10 The first element ≤ x after position j in a sequence of integers m1,m2, . . . ,mt is mjr

for some r > 0, where jr ∈ lrm(j).

Lemma 11 Let lrm(j)[pj] = lrm(j′)[pj′]. Then lrm(j)[pj + i] = lrm(j′)[pj′ + i] for all i > 0.

That is, once the lrm sequences starting at two positions coincide in a position, they coincide
thereafter. Lemma 11 is essential to store all the t sequences lrm(j) for each block j, in compact
form. We form a tree Tlrm, which is essentially a trie composed of the reversed lrm(j) sequences.
The tree has t nodes, one per block. Block j is a child of block j1 = lrm(j)[1] (note lrm(j)[0] =
j0 = j), that is, j is a child of the first block j1 > j such that mj1 < mj. Thus each j-to-root path
spells out lrm(j), by Lemma 11. We add a fictitious root to convert the forest into a tree. Note
this structure is called 2d-Min-Heap by Fischer [11], who shows how to build it in linear time.

Example 4 Figure 3 illustrates the tree built from the sequence 〈m1..m9〉 = 〈6, 4, 9, 7, 4, 4, 1, 8, 5〉.
Then lrm(1) = 〈1, 2, 7〉, lrm(2) = 〈2, 7〉, lrm(3) = 〈3, 4, 5, 7〉, and so on.

If we now assign weight mj −mj1 to the edge between j and its parent j1, the original problem
of finding the first jr > j such that mjr ≤ d′ reduces to finding the first ancestor jr of node j such
that the sum of the weights between j and jr exceeds d′′ = mj − d′. Thus we need to compute
weighted level ancestors in Tlrm. Note that the weight of an edge in Tlrm is at most wc.

Lemma 12 For a tree with m nodes where each edge has an integer weight in [1,W], after
O(m log1+ǫm) time preprocessing, a weighted level-ancestor query is solved in O(t + 1/ǫ) time on
a Ω(log(mW))-bit word RAM. The size of the data structure is O(m logm log(mW) + mWtt

logt(mW)
+

(mW)3/4) bits.

14

5
1

2

3

4

5 6

7

8

9

9

7

4 4

1

8

4

6

Figure 3: A tree representing the lrm(j) sequences of values m1 . . . m9.

Proof. We use a variant of Bender and Farach’s 〈O(m logm),O(1)〉 algorithm [4]. Let us ignore
weights for a while. We extract a longest root-to-leaf path of the tree, which disconnects the tree
into several subtrees. Then we repeat the process recursively for each subtree, until we have a set of
paths. Each such path, say of length ℓ, is extended upwards, adding other ℓ nodes towards the root
(or less if the root is reached). The extended path is called a ladder, and its is stored as an array so
that level-ancestor queries within a ladder are trivial. This guarantees that a node of height h has
also height h in its path, and thus at least its first h ancestors in its ladder. Moreover the union of
all ladders has at most 2m nodes and thus requires O(m logm) bits.

For each tree node v, an array of its (at most) logm ancestors at depths depth(v) − 2i, i ≥ 0,
is stored (hence the O(m logm)-number space and time). To solve the query level ancestor(v, d),
where d′ = depth(v)− d, the ancestor v′ at distance d′′ = 2⌊log d

′⌋ from v is computed. Since v′ has
height at least d′′, it has at least its first d′′ ancestors in its ladder. But from v′ we need only the
ancestor at distance d′ − d′′ < d′′, so the answer is in the ladder.

To include the weights, we must be able to find the node v′ and the answer considering the
weights, instead of the number of nodes. We store for each ladder of length ℓ a sparse bitmap of
length at most ℓW , where the i-th 1 left-to-right represents the i-th node upwards in the ladder, and
the distance between two 1s, the weight of the edge between them. All the bitmaps are concatenated
into one (so each ladder is represented by a couple of integers indicating the extremes of its bitmap).
This long bitmap contains at most 2m 1s, and because weights do not exceed W , at most 2mW 0s.
Using Pătraşcu’s sparse bitmaps [29], it can be represented using O(m logW+ mWtt

logt(mW)
+(mW)3/4)

bits and do rank/select in O(t) time.
In addition, we store for each node the logm accumulated weights towards ancestors at distances

2i, using fusion trees [14]. These can store n keys of ℓ bits in O(nℓ) bits and, using O(n5/6(n1/6)4) =
O(n1.5) preprocessing time, answer predecessor queries in O(logℓ n) time (via an ℓ1/6-ary tree). The
1/6 can be reduced to achieve O(n1+ǫ) preprocessing time and O(1/ǫ) query time for any desired
constant 0 < ǫ ≤ 1/2.

In our case this means O(m logm log(mW)) bits of space, O(m log1+ǫm) construction time,
and O(1/ǫ) access time. Thus we can find in constant time, from each node v, the corresponding
weighted ancestor v′ using a predecessor query. If this corresponds to distance 2i, then the true
ancestor is at distance < 2i+1, and thus it is within the ladder of v′, where it is found using
rank/select on the bitmap of ladders (each node v has a pointer to its 1 in the ladder corresponding
to the path it belongs to). ⊓⊔

To apply this lemma for our problem of computing fwd search outside blocks, we have W = wc

15

and m = n
wc . Then the size of the data structure becomes O(n log2 n

wc + n tt

logt n
+ n3/4). By choosing

ǫ = min(1/2, 1/c2), the query time is O(c2 + t) and the preprocessing time is O(n) for c > 3/2.

5.2 Other operations

For computing rmqi and RMQi, we use a simple data structure [3] on the mr and Mr values, later
improved to require only O(t) bits on top of the sequence of values [34, 12]. The extra space is
thus O(n/wc) bits, and it solves any query up to the block granularity. For solving a general query
[i..j] we should compare the minimum/maximum obtained with the result of running queries rmqi
and RMQi within the blocks at the two extremes of the boundary [i..j].

For the remaining operations, we define pioneers [19]. We divide a parentheses sequence
P [0..2n − 1] into blocks of length wc. Then we extract pairs (i, j) of matching parentheses
(j = findclose(i)) such that i and j belong to different blocks. If we consider a graph whose
vertex set consists of the blocks and whose edge set consists of the pairs of parentheses, the graph
is outer-planar. To remove multiple edges, we choose the tightest pair of parentheses for each pair
of vertices. These parentheses are called pioneers. The number of pioneers is shown [19] to be
O(n/wc), and they form another balanced parentheses sequence P ′ representing an ordinal tree
with O(n/wc) nodes.

To encode P ′ we use a compressed bit vector C[0..2n − 1] such that C[i] = 1 indicates that
parenthesis P [i] is a pioneer. Using again Pătraşcu’s result [29], vector C can be represented in at
most n

wc log(wc)+O(n tt

logt n
+n3/4) bits, so that operations rank and select can be computed in O(t)

time.
For computing child and child rank, it is enough to consider only nodes which completely include

a block of length wc (otherwise the query is solved in constant time by considering just two adjacent
blocks). Furthermore, among them, it is enough to consider pioneers because if there are two pairs
of parentheses (i, i′) and (j, j′) such that i < j, each of them contains a block, i and j belong to
the same block, i′ and j′ belong to the same block, then (i, i′) contains (j, j′) as a descendant, and
ranges [i..j− 1] and [j′ +1..i′] are contained in a block, respectively, resulting that computing child
and child rank for (i, i′) is done in constant time, again considering just two blocks.

Let us call marked the nodes to consider. Thus there are O(n/wc) marked nodes, and they
contain at least one full block. We focus on the children of marked nodes placed at the blocks fully
contained in the nodes, as the others are in at most the two extreme blocks and can be dealt with
in constant time. In this sense, each block contains children of at most one marked block, and a
marked block is a child of at most one marked block.

For each marked node v we store a list formed by the blocks fully contained in v, and the
marked blocks children of v. The contained blocks store the number of children of v that start
within them, and the children marked blocks store simply a 1 (indicating they contain 1 child of
v). All also store their position inside the list. The length of all the sequences adds up to O(n/wc)
because each block and marked node appears in at most one list. Their total sum is at most 2n,
for the same reason. Thus, it is easy to store all the numbers as gaps between consecutive 1s in
a bitmap, which can be stored within the same space bounds of the other bitmaps in this section
(O(n) bits, O(n/wc) 1s).

Using this bitmap child and child rank can easily be solved using rank and select. For child(v, k)
on a marked node v we start using p = rank1(Cv, select0(Cv , k)) on the bitmap Cv of v. This tells
the position in the list of blocks and marked nodes of v where the k-th child of v lies. If it is a

16

marked node, then that node is the child. If instead it is a block v′, then the answer corresponds to
the k′-th minimum within that block, where k′ = k−rank0(select1(Cv , p)). For child rank(u), where
v = parent(u) is marked, we start with z = rank0(Cv, select1(Cv , pu)), where pu is the position of
the block of u within the list of v. Then, if u is a marked node, the answer is z, otherwise we have
to add the number of minima in the block of u until u− 1.

For degree, similar arguments show that we only need to consider marked nodes, for which we
simply store all the answers within O(n logn

wc) bits of space.
Finally, the remaining operations require just rank and select on P , or the virtual bit vectors

P1 and P2. We can make up a sequence with the accumulated number of 1s in each of the t blocks.
The numbers add up to O(n) and thus can be represented as gaps of 0s between consecutive 1s in
a bitmap, which can be stored within the previous space bounds. Performing rank and select on
this bitmap, in time O(t), lets us know in which block must we finish the query, using its range
min-max tree.

5.3 The final result

Recalling Theorem 3, we have O(n/Bc) blocks, for B = O(w
c logw). The sum of all the block sizes

is 2n+O(n/Bc), plus shared universal tables that add up to O(
√
2w) bits. Padding the last block

to size exactly Bc adds up another negligible extra space.
On the other hand, in this section we have extended the results to larger trees of n nodes,

adding time O(t) to the operations. By properly adjusting w to B in the results, the overall extra

space added is O(n(c logB+log2 n)
Bc + n tt

logt n
+
√
2B + n3/4) bits. Assuming pessimistically w = log n,

setting t = c2, and replacing B, we get that the time for any operation is O(c2), construction time
is O(n), and the total space simplifies to 2n+O(n logc logn

logc−2 n
).

Construction time is O(n). We now analyze the working space for constructing the data struc-
ture. We first convert the input balanced parentheses sequence P into a set of aB-trees, each of
which represents a part of the input of length Bc. The working space is O(Bc) from Theorem 3.
Next we compute pioneers: We scan P from left to right, and if P [i] is an opening parenthesis, we
push i in a stack, and if it is closing, we pop an entry from the stack. Because P is nested, the
values in the stack are monotone. Therefore we can store a new value as the difference from the
previous one using unary code. Thus the values in the stack can be stored in O(n) bits. Encoding
and decoding the stack values takes O(n) time in total. It is easy to compute pioneers from the
stack. Once the pioneers are identified, Pătraşcu’s compressed representation [29] of bit vector C
is built in O(n) space too, as it also cuts the bitmap into polylog-sized aB-trees and then computes
some directories over just O(n/polylog(n)) values.

The remaining data structures, such as the lrm sequences and tree, the lists of the marked
nodes, and the Cv bitmaps, are all built on O(n/Bc) elements, thus they need at most O(n) bits
of space for construction.

By rewriting c − 2 − δ as c, for any constant δ > 0, we get our main result on static ordinal
trees, Theorem 1.

6 A simple data structure for dynamic trees

In this section we give a simple data structures for dynamic ordinal trees. In addition to the
previous query operations, we add now insertion and deletion of internal nodes and leaves.

17

6.1 Memory management

We store a 0,1 vector P [0..2n − 1] using a dynamic min-max tree. Each leaf of the min-max tree
stores a segment of P in verbatim form. The length ℓ of each segment is restricted to L ≤ ℓ ≤ 2L
for some parameter L > 0.

If insertions or deletions occurr, the length of a segment will change. We use a standard
technique for dynamic maintenance of memory cells [23]. We regard the memory as an array of
cells of length 2L each, hence allocation is easily handled in constant time. We use L + 1 linked
lists sL, . . . , s2L where si stores all the segments of length i. All the segments with equal length i
are packed consecutively, without wasting any extra space, in the cells of linked list si. Therefore
a cell (of length 2L) stores (parts of) at most three segments, and a segment spans at most two
cells. Tree leaves store pointers to the cell and offset where its segment is stored. If the length of
a segment changes from i to j, it is moved from si to sj . The space generated by the removal is
filled with the head segment in si, and the removed segment is stored at the head of sj .

With this scheme, scanning any segment takes O(L/ log n) time, by processing it by chunks of
Θ(log n) bits. This is also the time to compute operations fwd search, bwd search, rmqi, etc. on the
segment, using proper universal tables. Migrating a node to another list is also done in O(L/ log n)
time.

If a migration of a segment occurrs, pointers to the segment from a leaf of the tree must change.
For this sake we store back-pointers from each segment to its leaf. Each cell stores also a pointer
to the next cell of its list. Finally, an array of pointers for the heads of sL, . . . , s2L is necessary.
Overall, the space for storing a 0,1 vector of length 2n is 2n +O(n logn

L) bits.
The rest of the dynamic tree will use sublinear space, and thus we allocate fixed-size memory

cells for the internal nodes, as they will waste at most a constant fraction of the allocated space.

6.2 A dynamic tree

We give a simple dynamic data structure representing an ordinal tree with n nodes using 2n +
O(n/ log n) bits, and supporting all query and update operations in O(log n) worst-case time.

We divide the 0,1 vector P [0..2n−1] into segments of length from L to 2L, for L = log2 n. We use
a balanced binary tree for representing the range min-max tree. If a node of the tree corresponds
to a vector P [i..j], the node stores i and j, as well as e = sum(P, π, i, j), m = rmq(P, π, i, j),
M = RMQ(P, π, i, j), and n, the number of minimum values in P [i..j] regarding π. (Data on φ for
the virtual vectors P1 and P2 is handled analogously.)

It is clear that fwd search, bwd search, rmqi, RMQi, rank, select, degree, child and child rank can
be computed in O(log n) time, by using the same algorithms developed for small trees in Section 4.
These operations cover all the functionality of Table 1. Note the values we store are local to
the subtree (so that they are easy to update), but global values are easily derived in a top-down
traversal. For example, to solve fwd search(P, π, i, d) starting at the min-max tree root v with
children vl and vr, we first see if j(vl) ≥ i, in which case try first on vl (seeking excess depth(i)+d).
If the answer is not there or j(vl) < i, we try on vr, seeking excess depth(i) + d− e(vl).

Because each node uses O(log n) bits, and the number of nodes is O(n/L), the total space
is 2n + O(n/ log n) bits. This includes the extra O(n logn

L) term for the leaf data. Note that
we need to maintain several universal tables that handle chunks of 1

2 log n bits. These require
O(√n · polylog(n)) extra bits, which is negligible.

If insertion/deletion occurrs, we update a segment, and the stored values in the leaf for the

18

segment. If the length of the segment exceeds 2L, we split it into two and add a new node. If
the length becomes shorter than L, we find the adjacent segment to the right. If its length is L,
we concatenate them; otherwise move the leftmost bit of the right segment to the left one. In this
manner we can keep the invariant that all segments have length L to 2L. Then we update all the
values in the ancestors of the modified leaves. If a balancing operation occurrs, we also update the
values in nodes. All these updates are easily carried out in constant time per involved node, as
the values to update are minima, maxima, and sum over the two children values. Thus the update
time is also O(log n).

When ⌈log n⌉ changes, we must update the allowed values for L, recompute universal tables,
change the width of the stored values, etc. Mäkinen and Navarro [22] have shown how to do this for
a very similar case (dynamic rank/select on a bitmap). Their solution of splitting the bitmap into
5 parts and moving border bits across parts to deamortize the work applies verbatim to our case,
thus we can handle changes in ⌈log n⌉ without altering the space nor the time complexity (except
for O(w) extra bits in the space due to a constant number of system-wide pointers, a technicism
we ignore). This applies to the next solution too, where we will omit the issue.

7 A faster dynamic data structure

Instead of the balanced binary tree, we use a B-tree with branching factor Θ(
√
log n), as in previous

work [6]. Then the depth of the tree is O(log n/ log log n). The lengths of segments is L to 2L
for L = log2 n/ log log n. The required space for the range min-max tree and the vector is now
2n+O(n log log n/ log n) bits (the internal nodes use O(log3/2 n) bits but there are only O(n

L
√

logn
)

internal nodes). Now each leaf can be processed in time O(log n/ log log n).
Each internal node v of the range min-max tree has k children, for

√
log n ≤ k ≤ 2

√
log n. Let

c1, c2, . . . , ck be the children of v, and [ℓ1..r1], . . . , [ℓk..rk] be their corresponding subranges. We
store (i) the children boundaries ℓi, (ii) sφ[1..k] and sψ[1..k] storing sφ/ψ[i] = sum(P, φ/ψ, ℓ1, ri),
(iii) e[1..k] storing e[i] = sum(P, π, ℓ1, ri), (iv) m[1..k] storing m[i] = e[i− 1]+ rmq(P, π, ℓi, ri), and
M [1..k] storing M [i] = e[i − 1] + RMQ(P, π, ℓi, ri). Note that the values stored are local to the
subtree (as in the simpler balanced binary tree version) but cumulative with respect to previous
siblings. Note also that storing sφ, sψ and e is redundant, as noted in Section 4.3, but we need
them in explicit form to achieve constant-time searching into their values, as it will be clear soon.

Apart from simple accesses, we need to support the following operations within a node:

• p(i): the largest j such that ℓj−1 ≤ i (or j = 1).

• wφ/ψ(i): the largest j such that sφ/ψ[j − 1] ≤ i (or j = 1).

• f(i, d): the smallest j ≥ i such that m[j] ≤ d ≤M [j].

• b(i, d): the largest j ≤ i such that m[j] ≤ d ≤M [j].

• r(i, j, t): the t-th x such that m[x] is minimum in m[i..j].

• R(i, j, t): the t-th x such that M [x] is maximum in M [i..j].

• n(i, j): the number of times the minimum occurs in m[i..j].

• update: updates the data structure upon ±1 changes in some child.

19

Operations fwd search/bwd search can then be carried out via O(log n/ log log n) applications of
f(i, d)/b(i, d). Recalling Lemma 3, the interval of interest is partitioned intoO(√log n·log n/ log log n)
nodes of the B-tree, but these can be grouped into O(log n/ log log n) sequences of siblings. Within
each such sequence a single f(i, d)/b(i, d) operation is sufficient. Once the answer of interest j is
finally found within some internal node, we descend to its j-th child and repeat the search until find-
ing the correct leaf, again in O(log n/ log log n) applications of f(i, d)/b(i, d). Operations rmqi and
RMQi are solved in very similar fashion, using O(log n/ log log n) applications of r(i, j, 1)/R(i, j, 1).
Also, operations rank and select on P are carried out in obvious manner with O(log n/ log log n)
applications of p(i) and wφ/ψ(i). Handling φ for P1 and P2 is immediate; we omit it.

For degree we partition the interval as for rmqi and then use m[r(i, j, 1)] in each node to identify
those holding the global minimum. For each node holding the minimum, n(i, j) gives the number
of occurrences of the minimum in the node. Thus we apply r(i, j, 1) and n(i, j) O(log n/ log log n)
times. Operation child rank is very similar, by changing the right end of the interval of interest,
as before. Finally, solving child is also similar, except that when we exceed the desired rank in the
sum (i.e., in some node n(i, j) ≥ t, where t is the local rank of the child we are looking for), we
find the desired min-max tree branch with r(i, j, t), and continue until finding the proper leaf with
one r(i, j, t) operation per level.

7.1 Dynamic partial sums

Let us now face the problem of implementing the basic operations. Our first tool is a result by
Raman et al., which solves several subproblems of the same type.

Lemma 13 ([31]) Under the RAM model with word size Θ(log n), it is possible to maintain a
sequence of logǫ n nonnegative integers x1, x2, . . . of log n bits each, for any constant 0 ≤ ǫ < 1,
such that the data structure requires O(log1+ǫ n) bits and carries out the following operations in
constant time: sum(i) =

∑i
j=1 xj, search(s) = max{i, sum(i) ≤ s}, and update(i, δ), which sets

xi ← xi + δ, for |δ| ≤ log n. The data structure also uses a precomputed universal table of size
O(nǫ′) bits for any fixed ǫ′ > 0. The structure can be built in O(log n) time except the table.

Then we can store ℓ, sφ, and sψ in differential form, and obtain their values via sum. The same
can be done with e, provided we fix the fact that it can contain negative values by storing e[i]+n · i
(this works for constant-time sum, yet not for search). Operations p and w are then solved via
search on ℓ and s, respectively. Moreover we can handle ±1 changes in the subtrees in constant
time as well. In addition, we can store m[i]− e[i− 1] and M [i]− e[i− 1], which depend only on the
subtree, and reconstruct the values in constant time using sum on e, which eliminates the problem
of propagating changes in e[i] to m[i + 1..] and M [i + 1..]. Local changes to m[i] or M [i] can be
applied directly.

7.2 Super-Cartesian trees

Our second tool is the Super-Cartesian tree [13]. A Cartesian tree [36] for an array B[1..k] is a
binary tree in which the root node stores the minimum value B[µ], and the left and the right
subtrees are Cartesian trees for B[1..µ − 1] and B[µ+ 1..k], respectively. If there exist more than
one minimum value position, then µ is the leftmost. The Super-Cartesian tree (SC-tree for short)
is designed to allow counting the number of minima, which is not possible with the information of
the Cartesian tree alone. In this case the right edge of each node can be “horizontal” or “vertical”.

20

If it is horizontal, it means that the right child value is equal to the parent, so all the minima form
a horizontal rightmost path from the root, and the same occurs at each internal node. Thus the
tree has enough information to determine, from its shape, the number of minima in any range [i..j].
The number of SC-trees is shown to be Θ(ρk/k3/2), where ρ = 3 + 2

√
2 ≈ 5.8284 [13].

To carry out the remaining operations on the node, we build SC-trees for m[1..k] and for
M [1..k]. Each of these can be represented in log Θ(ρk/k3/2) < 3k bits (indeed, the construction can
be carried out in O(k) time [13]). Since 3k = O(

√
log n), universal tables let us answer in constant

time any query of the form r(i, j, t), R(i, j, t), and n(i, j), as these depend only on the SC-tree

shape. All the universal tables we will use on SC-trees will take O(ρ2
√

logn · polylog(n)) = o(nα)
for any constant 0 < α < 1.

The only remaining operation is f(i, d), which does not depend only on the SC-tree shape,
but on the actual values m[i..k] and M [i..k] (we disregard b(i, d), which is symmetric). Following
Lemma 4, we first check whether m[i] ≤ d ≤ M [i], in which case the answer is i. Otherwise, the
answer is either the next j such that m[j] ≤ d, or M [j] ≥ d. Let us focus on the case m[i] ≤ d, as
the other is symmetric. By Lemma 10, the answer belongs to lrm(i), where the sequence is m[1..k].

Lemma 14 Let C be the SC-tree for m[1..k]. Then lrm(i) is the sequence of nodes of C in the
upward path from i to the root, which are reached from the left child.

Proof. The left and right children of node i contain values larger than i. All the nodes in the
upward path are smaller than i. Those reached from the right must be at the left of position i, as
they must be either to the left or to the right of all the nodes already seen, and i has been seen.
Their left children are also to the left of i. Ancestors j reached from the left are, by the same
argument, to the right of i and thus belong to lrm(i). Finally, the right descendants of j are not
in lrm(i) because they are after j and larger than m[j]. ⊓⊔

The SC-tree can thus have precomputed lrm(i) for each i, as this depends only on the tree
shape. We can then binary search this sequence to compute f(i, d) in O(log k) time. Recall that
all these are universal tables.

7.3 Handling updates

We already solved some simple cases of update, so now we focus on the more complex ones. When a
value m[i] or M [i] changes (by ±1), the SC-trees might change their shape. Similarly, a ±1 change
in e[i] induces a change in the effective value of m[i + 1..k] and M [i + 1..k]. We store m and M
in a way independent of s, but the SC-trees are built upon the actual values of m and M . Let us
focus on m, as M is similar. If m[i] decreases by 1, we need to determine if i should go higher in
the tree. First, if i participates in a path of horizontal edges, it must leave it, and the left and
right part of the path become its left and right children, respectively. Then, we must consider its
closest ancestor excluding the horizontal path, i<. If m[i<] < m[i]− 1, then i must become a child
of i< (by a vertical edge in case i< < i). If m[i<] = m[i] − 1, then if i< < i, then i must become
a child if i< by a horizontal edge. If i< > i, instead, then i< must be made right child of i via a
horizontal edge, and the parent of i< must now point to i. The SC-tree can have precomputed the
i< for each i, and also have precomputed the resulting SC-tree for each i, depending on whether
m[i<] is equal or strictly smaller than m[i]− 1.

21

a b c d e

A B C D E F

X

a b c d e

A B C D E F

X

c

d

d’

d

a b c d e

A B C D E F

X

d’

a b c d

A B C D F

e

X

d’

b c d e

A B C D E F

a b d e

A B D E FC

1 1

d’

X
d−1

X

a

d−1

1

d’+1

d−1

d’

E

d’

1

d’’

d’’+1

d

a

A

X

B

a

A

X

B

d’

d

d’’

d−1

d’’+1d’+1

Figure 4: Rearrangements with the children upon the bold node being decreased by 1 in a SC-tree.
We mark the effects on the differences that change.

All the possible cases are illustrated in Figures 4 and 5. Note that, in all cases, we would be
able to know the new differences between each SC-tree node and its parent by knowing the current
ones (the importance of this will be apparent soon).

Similarly, if m[i] increases by 1, it must leave its horizontal path. Also, if it has left or vertical
right children, it must be compared to both, and depending on the comparison the three nodes must
be rearranged. For example, if the left child il is smaller than the right child ir, and mi = mil − 1,
then i must become a horizontal right child of il, and the parent of i must become parent of il.
Other cases are similar. All those rearrangements cases can be precomputed in universal tables for
each possible SC-tree and, again, all the new differences between any node and its SC-tree parent
can be known from the current ones.

When the change is in e[i], we should be able to carry out all the changes in m[i + 1..k] in
constant time. The information we are storing up to now is not sufficient for this . In addition,
we store an array d[1..k] of k log(k + 2) = O(

√
log n log log n) = o(log n) bits. Cell d[i] tells the

difference between mi and its parent in the SC-tree. However, if the difference is larger than k,
then d[i] = k+1. As the structure of the SC-tree only changes when a difference becomes zero, and
all the updates are by ±1, we have sufficient information in d[·] to predict any change in shape for

22

X

x

B C

1

x

B C

A

Y X

Z

x

B C

Xx

B C

Z

d

A

Y

Z Z

X
1

d

Figure 5: Rearrangements with the (leftwards) parent upon the bold node x being decreased by
1, assuming that now their difference becomes zero. We mark the effects on the differences that
change. We assume the distances to the children of x are already updated. In the case of a
rightwards parent with distance to x becoming zero, we simply convert the vertical edge between
them into horizontal.

the next k updates without error. As both the SC-tree and d fit in much less than log n bits, we
can use tables to compute in constant time the next SC-tree and the next d array upon changes of
any kind: e[i]± 1, m[i]± 1, and M [i]± 1. Note that, as shown before, if the SC-tree shape changes,
then the parent of some nodes can change too, but from the current distance table d we can know
the new values when parents change. The table requires o(nα) bits for any 0 < α < 1.

In addition, we must refresh table d[·] fast enough to ensure that no value of d is used for more
than k updates, as then its imprecision could cause a flaw. We simply recompute cyclically the
cells of d, one per update. That is, at the i-th update arriving at the node, we recompute the cell
i′ = 1+(i mod k), setting again d[i′] = min(k+1,m[i′]−m[SCparent(i′)]); note that SCparent(i′)
is computed from the SC-tree shape in constant time via table lookup. Note the values of m[·] are
always up to date because we do not keep them in explicit form but with e[i − 1] subtracted (and
e is maintained not explicitly but via partial sums); the problem is to maintain the explicit d[·]
values up to date.

In case of splits or merges of segments or internal range min-max tree nodes, we must insert
or delete subtrees in a node. In this case we fully reconstruct all the values in a node, which can
be done in O(k) = O(√log n) time (recall that both the structure of Lemma 13 and the SC-tree
can be built in linear time). A split may cause other splits in ancestor nodes, but the amortized
number of splits is constant. We can easily deamortize the splits by (1) carrying out only the first
split needed upwards, and (2) for any insertion, considering the path upwards to the root and split
any overflowed node found (just the first one). The maximum possible overflow occurs when all the
k children of a node are successively split and there is no chance to split the parent, which becomes
of size at most 4

√
log n. After this point, no insertion in the subtree can let any of the children

grow without giving first the parent the chance to carry out its split. This new maximum size of k
does not alter our analyses.

23

7.4 The final result

We have obtained the following result.

Lemma 15 For a 0,1 vector of length 2n, there exists a data structure using 2n+O(n log log n/ log n)
bits supporting fwd search and bwd search in O(log n) time, and all other operations (including up-
date) in O(log n/ log log n) time.

In many operations to support, we carry out fwd search(P, π, i, d) or bwd search(P, π, i, d) for a
small constant d. We show now that those particular cases can be made more efficient.

Lemma 16 For a 0,1 vector P , fwd search(P, π, i, d) and bwd search(P, π, i, d) can be computed in
O(d+ log n/ log log n) time.

Proof. To compute fwd search (bwd search is similar), we compute f in successive nodes of the
range min-max tree. In each node, instead of binary search we use linear search within a lrm(·) list.
The traversal in the tree is formed by a first part where we “horizontally” scan the nodes covering
the range [i..2n − 1], using f(i′, d′) within each node (recall Lemma 3) until finding the node that
contains the answer, and a second part where we descend from that node to a leaf, using again
f(i′, d′) to determine the child to descend to. The total amount of sibling sequences traversed in
this leaf-to-leaf path is O(log n/ log log n). The total amount of work done inside each node, across
all f(i′, d′) invocations, is O(d). The reason is that the current m[·] value strictly decreases each
time we advance in the list, thus we find fwd search(P, π, i, d) in at most d + 1 moves. Note that
this is true even when we switch to another range min-max tree node, if we consider the absolute
depth values we traverse. ⊓⊔

This completes our main result in this section, Theorem 2.

8 Concluding remarks

In this paper we have proposed flexible and powerful data structures for the succinct represen-
tation of ordinal trees. For the static case, all the known operations are done in constant time
using 2n + O(n/polylog(n)) bits of space, for a tree of n nodes. This largely improves the re-
dundancy of previous representations, by building on a recent result [29]. This is also the first
balanced-parentheses based representation supporting all the operations considered in the litera-
ture in constant time. The core of the idea is the range min-max tree, which has independent
interest. This simple data structure reduces all of the operations to a handful of primitives, which
run in constant time on polylog-sized subtrees. It can be used in standalone form to obtain a simple
and practical implementation that achieves O(log n) time for all the operations. We then show how
constant time can be achieved by using the range min-max tree as a building block for handling
larger trees.

For the dynamic case, there have been no data structures supporting several of the usual tree
operations. The data structures of this paper support all of the operations, including node insertion
and deletion, in O(log n) time, and a variant supports most of them in O(log n/ log log n) time.
They are based on dynamic range min-max trees, and especially the former is extremely simple
and can be easily implemented.

24

Future work includes reducing the time complexities for all of the operations in the dynamic
case to O(log n/ log log n), as well as trying to improve the redundancy (this is O(n/ log n) for the
simpler structure and O(n log log n/ log n) for the more complex one).

Acknowledgments

We thank Mihai Pătraşcu for confirming us the construction cost of his aB-tree and rank/select
data structure [29].

References

[1] D. Arroyuelo. An improved succinct representation for dynamic k-ary trees. In Proc. 19th
Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS 5029, pages 277–289,
2008.

[2] J. Barbay, J. I. Munro, M. He, and S. S. Rao. Succinct indexes for strings, binary relations
and multi-labeled trees. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 680–689, 2007.

[3] M. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. 4th Latin American
Symposium on Theoretical Informatics (LATIN), LNCS 1776, pages 88–94, 2000.

[4] M. Bender and M. Farach-Colton. The level ancestor problem simplified. Theoretical Computer
Science, 321(1):5–12, 2004.

[5] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing
trees of higher degree. Algorithmica, 43(4):275–292, 2005.

[6] H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Compressed indexes for dynamic text
collections. ACM Transactions on Algorithms, 3(2):article 21, 2007.

[7] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with applications. SIAM Journal
on Computing, 34(4):924–945, 2005.

[8] O. Delpratt, N. Rahman, and R. Raman. Engineering the LOUDS succinct tree representation.
In Proc. 5th Workshop on Efficient and Experimental Algorithms (WEA), pages 134–145.
LNCS 4007, 2006.

[9] A. Farzan and J. I. Munro. A uniform approach towards succinct representation of trees. In
Proc. 11th Scandinavian Workshop on Algorithm Theory (SWAT), LNCS 5124, pages 173–184,
2008.

[10] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for
optimal succinctness, and beyond. In Proc. 46th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 184–196, 2005.

[11] J. Fischer. Optimal succinctness for range minimum queries. CoRR, abs/0812.2775, 2008.

25

[12] J. Fischer and V. Heun. A new succinct representation of RMQ-information and improvements
in the enhanced suffix array. In Proc. 1st International Symposium on Combinatorics, Algo-
rithms, Probabilistic and Experimental Methodologies (ESCAPE), LNCS 4614, pages 459–470,
2007.

[13] J. Fischer and V. Heun. Range median of minima queries, super-cartesian trees, and text
indexing. In Proc. 19th International Workshop on Combinatorial Algorithms (IWOCA), pages
239–252, 2008.

[14] M. Fredman and D. Willard. Surpassing the information theoretic bound with fusion trees.
Journal of Computer and Systems Science, 47(3):424–436, 1993.

[15] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation for
balanced parentheses. In Proc. 15th Annual Symposium on Combinatorial Pattern Matching
(CPM), LNCS 3109, pages 159–172, 2004.

[16] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor queries.
In Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1–10,
2004.

[17] A. Golynski, R. Grossi, A. Gupta, R. Raman, and S. S. Rao. On the size of succinct indices.
In Proc. 15th Annual European Symposium on Algorithms (ESA), pages 371–382. LNCS 4698,
2007.

[18] M. He, J. I. Munro, and S. S. Rao. Succinct ordinal trees based on tree covering. In Proc. 34th
International Colloquium on Automata, Languages and Programming (ICALP), LNCS 4596,
pages 509–520, 2007.

[19] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th IEEE Annual Symposium
on Foundations of Computer Science (FOCS), pages 549–554, 1989.

[20] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation of ordered trees. In
Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 575–584,
2007.

[21] H.-I. Lu and C.-C. Yeh. Balanced parentheses strike back. ACM Transactions on Algorithms
(TALG), 4(3):article 28, 2008.

[22] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences and full-text indexes.
ACM Transactions on Algorithms (TALG), 4(3):article 32, 2008.

[23] J. I. Munro. An implicit data structure supporting insertion, deletion, and search in O(log n)
time. Journal of Computer System Sciences, 33(1):66–74, 1986.

[24] J. I. Munro. Tables. In Proc. 16th Foundations of Software Technology and Computer Science
(FSTTCS), LNCS 1180, pages 37–42, 1996.

[25] J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.
SIAM Journal on Computing, 31(3):762–776, 2001.

26

[26] J. I. Munro, V. Raman, and S. S. Rao. Space efficient suffix trees. Journal of Algorithms,
39(2):205–222, 2001.

[27] J. I. Munro, V. Raman, and A. J. Storm. Representing dynamic binary trees succinctly. In
Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 529–536,
2001.

[28] J. I. Munro and S. S. Rao. Succinct representations of functions. In Proc. 31th International
Colloquium on Automata, Languages and Programming (ICALP), LNCS 3142, pages 1006–
1015, 2004.

[29] M. Pătraşcu. Succincter. In Proc. 49th IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pages 305–313, 2008.

[30] M. Pătraşcu and M. Thorup. Time-space trade-offs for predecessor search. In Proc. 38th
Annual ACM Symposium on Theory of Computing (STOC), pages 232–240, 2006.

[31] R. Raman, V. Raman, and S. S. Rao. Succinct dynamic data structures. In Proc. 7th Annual
Workshop on Algorithms and Data Structures (WADS), LNCS 2125, pages 426–437, 2001.

[32] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to
encoding k-ary trees and multisets. In Proc. 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 233–242, 2002.

[33] R. Raman and S. S. Rao. Succinct dynamic dictionaries and trees. In Proc. 30th International
Colloquium on Automata, Languages and Programming (ICALP), LNCS 2719, pages 357–368,
2003.

[34] K. Sadakane. Succinct Representations of lcp Information and Improvements in the Com-
pressed Suffix Arrays. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 225–232, 2002.

[35] K. Sadakane. Compressed Suffix Trees with Full Functionality. Theory of Computing Systems,
41(4):589–607, 2007.

[36] K. Sadakane. Succinct data structures for flexible text retrieval systems. Journal of Discrete
Algorithms, 5:12–22, 2007.

27

	Introduction
	Our contributions
	Organization of the paper

	Preliminaries
	Succinct data structures for rank/select
	Succinct tree representations
	Dynamic succinct trees

	Fundamental concepts
	A simple data structure for moderate-size trees
	Supporting range minimum queries
	Other operations
	Reducing extra space

	A data structure for large trees
	Forward and backward searches on
	Other operations
	The final result

	A simple data structure for dynamic trees
	Memory management
	A dynamic tree

	A faster dynamic data structure
	Dynamic partial sums
	Super-Cartesian trees
	Handling updates
	The final result

	Concluding remarks

